National Library of Energy BETA

Sample records for rate next-generation nanocoatings

  1. ULTRACOATINGS: Enabling Energy and Power Solutions in High Contact Stress Environments through Next-Generation Nanocoatings

    SciTech Connect (OSTI)

    Blau, P.; Qu, J.; Higdon, C. III

    2011-09-30

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program, Grand Challenge, industry call. It consisted of a one-year effort in which ORNL participated in the area of friction and wear testing. In addition to Eaton Corporation and ORNL (CRADA), the project team included: Ames Laboratory, who developed the underlying concept for titanium- zirconium-boron (TZB) based nanocomposite coatings; Borg-Warner Morse TEC, an automotive engine timing chain manufacturer in Ithaca, New York, with its own proprietary hard coating; and Pratt & Whitney Rocketdyne, Inc., a dry-solids pump manufacturer in San Fernando Valley, California. This report focuses only on the portion of work that was conducted by ORNL, in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared for DOE by the team. The term 'ultracoatings' derives from the ambitious technical target for the new generation of nanocoatings. As applications, Eaton was specifically considering a fuel pump and a gear application in which the product of the contact pressure and slip velocity during operation of mating surfaces, commonly called the 'PV value', was equal to or greater than 70,000 MPa-m/s. This ambitious target challenges the developers of coatings to produce material capable of strong bonding to the substrate, as well as high wear resistance and the ability to maintain sliding friction at low, energy-saving levels. The partners in this effort were responsible for the selection and preparation of such candidate ultracoatings, and ORNL used established tribology testing capabilities to help screen these candidates for performance. This final report summarizes ORNL's portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort. Initial contact stress and speed calculations showed that laboratory tests with available geometries, applied forces, and speeds at ORNL could not reach 70,000 MPa-m/s for the project target, so test conditions were modified to enable screening of the new coating compositions under conditions used in a prior nano-coatings development project with Eaton Corporation and Ames Laboratory. Eaton Innovation Center was able to conduct screening tests at higher loads and speeds, thus providing complementary information on coating durability and friction reduction. Those results are presented in the full team's final report which is in preparation at this writing. Tests of two types were performed at ORNL during the course of this work: (1) simulations of timing chain wear and friction under reciprocating conditions, and (2) pin-on-disk screening tests for bearings undergoing unidirectional sliding. The four materials supplied for evaluation in a timing chain link simulation were hardened type 440B stainless steel, nitrided type 440B stainless steel, vanadium carbide (VC)-coated type 52100 bearing steel, and (ZrTi)B-coated type 52100 bearing steel. Reciprocating wear tests revealed that the VC coating was by far the most wear resistant. In friction, the nitrided stainless steel did slightly better than the other materials.

  2. Ultracoatings: Enabling Energy and Power Solutions in High Contact Stress Environments through next-generation Nanocoatings Final Technical Report

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2012-03-20

    A review of current commercially available, industrial-grade, low friction coatings will show that interfacial contact pressures nearing 1GPa ({approx}150ksi) inherently limit surface engineering solutions like WC, TiN, TiAlN, and so forth. Extremely hard coatings, then, are often pursued as the principle path, although they too are not without significant limitations. A majority of these compounds are inherently brittle in nature or may not pair well with their mating substrate. In either case, their durability in high contact stress environments is compromised. In parallel to thin film coatings, many conventional surface treatments do not yield an interface hard enough to withstand extreme stresses under load. New research into advanced, nanocomposite materials like (Ti, Zr)B2 shows great promise. Bulk compacts of this compound have demonstrated an order of magnitude better wear resistance than current offerings, notably materials like tungsten carbide. At a laboratory level, the (Ti,Zr)B2 nanocomposite material exhibited abrasive and erosive wear resistance nearly ten times better than existing mixed-phase boride systems. In ASTM abrasion and erosion testing, these new compositions exhibit wear resistance superior to other known advanced materials such as RocTec 500 and 'Borazon' cubic boron nitride. Many significant challenges exist for mass production of (Ti, Zr)B2, one of which is the necessary processing technology that is capable of minimizing deleterious impurity phases. Secondly, this material's performance is derived from a synergistic effect of the two materials existing as a single phase structure. While the individual constituents of TiB2 and ZrB2 do yield improvements to wear resistance, their singular effects are not as significant. Lastly, deposition of this material on a commercial level requires thorough knowledge of nanocomposite boride solids; the benefits associated with these innovative new materials are just being realized. Advancing this technology, called Ultracoatings, through initial development, scale up, and commercialization to a variety of markets would represent a transformative leap to surface engineering. Several application spaces were considered for immediate implementation of the Ultracoatings technology, including, but not limited to, a drive shaft for an aerospace fuel pump, engine timing components, and dry solids pump hardware for an innovative coal gasifier. The primary focus of the program was to evaluate and screen the performance of the selected (Ti, Zr)B2 Ultracoatings composition for future development. This process included synthesis of the material for physical vapor deposition, sputtering trials and coating characterization, friction and wear testing on sample coupons, and functional hardware testing. The main project deliverables used to gage the project's adherence to its original objective were: Development of a coating/substrate pairing that exhibits wear rate of 0.1 mg/hour or lower at a 1GPa contact pressure, while achieving a maximum coating cost of $0.10/cm2. Demonstrate the aforementioned wear rate in both lubricated and starved lubrication conditions. Although the (Ti, Zr) B2 coating was not tailored for low friction performance, friction and wear evaluations of the material demonstrated a coefficient of sliding friction as low as 0.09. This suggests that varying the percentage of TiB2 present in the composite could enhance the materials performance in water-based lubricants. In the aerospace drive shaft application, functional hardware coated with (Ti, Zr)B2 survived a variety of abuse and long-range durability tests, with contact pressures exceeding 2 GPa. For engine timing components, further work is planned to evaluate the Ultracoatings technology in direct injection and diesel engine conditions. In the final identified application space the dry solids pump hardware, discussions continue on the application of the Ultracoatings technology for those specific components. Full implementation of the technology into the targeted markets equates to a U.S.-based en

  3. STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS

    SciTech Connect (OSTI)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-15

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, {gamma}), (p, {alpha}), ({alpha}, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  4. Next Generation Materials:

    Office of Environmental Management (EM)

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  5. next-generation biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next-generation biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  6. The Next Generation Photoinjector

    SciTech Connect (OSTI)

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.

  7. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  8. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - ...

  9. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  10. Next Generation of Government Summit

    Broader source: Energy.gov [DOE]

    GovLoop and Young Government Leaders will hold its 4th Annual Next Generation of Government Summit from July 25 to July 26, 2013, in Washington, DC. The theme for the conference is 2013 Next...

  11. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle...

  12. Next Generation Luminaires Design Competition Announces 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners February 27, 2014 -...

  13. Next Generation Luminaires Design Competition Announces 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Luminaires Design Competition Announces 2015 Winners Next Generation Luminaires Design Competition Announces 2015 Winners May 5, 2015 - 2:17pm Addthis Winners in ...

  14. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical

  15. Next Generation Inverter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter Next Generation Inverter 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape040_smith_2012_o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies Office Merit Review 2014: Next Generation Inverter Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

  16. Science on Tap - Next Generation Rocket Propellants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Next Generation Rocket Propellants Science on Tap - Next Generation Rocket Propellants WHEN: Dec 17, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central...

  17. Synchronization System for Next Generation Light Sources

    SciTech Connect (OSTI)

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  18. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  19. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  20. Next Generation National Security Leaders

    SciTech Connect (OSTI)

    Mahy, Heidi A.; Fankhauser, Jana G.; Stein, Steven L.; Toomey, Christopher

    2012-07-19

    It is generally accepted that the international security community faces an impending challenge in its changing leadership demographics. The workforce that currently addresses nonproliferation, arms control, and verification is moving toward retirement and there is a perceived need for programs to train a new set of experts for both technical- and policy-related functions to replace the retiring generation. Despite the perceived need, there are also indicators that there are not sufficient jobs for individuals we are currently training. If we had right-sized the training programs, there would not be a shortage of jobs. The extent and scope of the human resource crisis is unclear, and information about training programs and how they meet existing needs is minimal. This paper seeks to achieve two objectives: 1) Clarify the major human resource problem and potential consequences; and 2) Propose how to characterize the requirement with sufficient granularity to enable key stakeholders to link programs aimed at developing the next generations of experts with employment needs. In order to accomplish both these goals, this paper recommends establishing a forum comprised of key stakeholders of this issue (including universities, public and private sectors), and conducting a study of the human resources and resource needs of the global security community. If there is indeed a human resource crisis in the global security field, we cannot address the problem if we are uninformed. The solution may lie in training more (or fewer) young professions to work in this community or it may lie in more effectively using our existing resources and training programs.

  1. Next Generation Photovoltaics 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics 3 Next Generation Photovoltaics 3 SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency,

  2. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit (RTU). More than half of U.S. commercial building space is cooled by packaged heating, ventilation, and air conditioning (HVAC) equipment. Existing rooftop HVAC units consume more than 1.3% of the United States' annual energy usage annually. Project Description This project seeks to evaluate optimal design strategies

  3. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Environmental Management (EM)

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  4. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Next Generation Electric Machines Next Generation Electric Machines AMO's Next Generation Electric Machines (NGEM) program is an RD&D effort leveraging recent technology advancements in power electronics and electric motors to develop a new generation of energy efficient, high power density, high speed, integrated MV drive systems for a wide variety of critical energy applications. Industrial electric motor systems are employed in a wide range of applications including

  5. International Symposium For Next Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The International Symposium for Next Generation Infrastructure is designed to support the rapidly expanding international research community seeking to understand the interactions between...

  6. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss086barth2012o.pdf More Documents & Publications Next Generation Environmentally Friendly...

  7. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase...

  8. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  9. Science on Tap - Next Generation Rocket Propellants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Next Generation Rocket Propellants Science on Tap - Next Generation Rocket Propellants WHEN: Dec 17, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544, USA SPEAKER: Bryce Tappan, Los Alamos National Laboratory CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Science on Tap happens every third Thursday Event Description Science On Tap happens every third Thursday of the month, featuring a new topic

  10. Next-Generation Solar Collectors for CSP

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  11. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.<br /> Credit: Whirlpool Embraco's high efficiency, oil-free linear compressor. Credit: Whirlpool ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL project aimed at building a more energy-efficient refrigerator. ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL

  12. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  13. Next Generation Solar Collectors for CSP

    SciTech Connect (OSTI)

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  14. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE)...

  15. Next Generation Drivetrain Development and Test Program

    SciTech Connect (OSTI)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  16. Model-Based Transient Calibration Optimization for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine...

  17. DOE Announces Webinars on Next Generation Electric Machines,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Electric Machines, Zero Energy Buildings, and More DOE Announces Webinars on Next Generation Electric Machines, Zero Energy Buildings, and More March 26, 2015 - ...

  18. Race to Zero Student Design Competition: Inspiring the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Race to Zero Student Design Competition: Inspiring the Next Generation of Building Scientists Race to Zero Student Design Competition: Inspiring the Next Generation of Building ...

  19. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  20. Research & Development Roadmap: Next-Generation Low Global Warming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation ... This research and development (R&D) roadmap for next-generation low-GWP refrigerants ...

  1. Secretary Chu Announces $45 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs...

  2. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  3. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Environmental Management (EM)

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  4. 24 Universities Receiving Funding to Train Next Generation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts 24 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts...

  5. Secretary Chu Announces Nearly $15 Million for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Next Generation Energy-Efficient Lighting Secretary Chu Announces Nearly 15 Million for Next Generation Energy-Efficient Lighting June 7, 2011 - 12:00am Addthis ...

  6. Energy Department Announces Indoor Lighting Winners of Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indoor Lighting Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition Energy Department Announces Indoor Lighting Winners of Next Generation ...

  7. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  8. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  9. Next-Generation Power Electronics: Reducing Energy Waste and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - ...

  10. Yahoo! Compute Coop Next Generation Passive Cooling Design for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yahoo Compute Coop Next Generation Passive Cooling Design for Data Centers Yahoo Compute Coop Next Generation Passive Cooling Design for Data Centers PDF icon...

  11. Mesaba next-generation IGCC plant

    SciTech Connect (OSTI)

    2006-01-01

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  12. Neutronics activities for next generation devices

    SciTech Connect (OSTI)

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  13. Next Generation Attics and Roof Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose

  14. Next Generation Rooftop Unit | Department of Energy

    Energy Savers [EERE]

    Unit Next Generation Rooftop Unit A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab Interior of lab prototype RTU under construction, taken during 2nd quarter of FY 14. Credit: Oak Ridge National Lab Interior of lab prototype RTU under construction, taken during 2nd quarter of FY 14. Credit: Oak Ridge National Lab A typical commercial rooftop air-conditioning unit (RTU)

  15. Next Generation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Next Generation Materials Innovative materials with increased functionality can improve the energy productivity of U.S. manufacturing. Materials with novel properties will enable energy savings in energy-intensive processes and applications and will create a new design space for renewable energy generation. Breakthroughs in materials science and engineering are needed to enable these new capabilities. Our R&D portfolio will pursue promising materials technologies that offer the

  16. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  17. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  18. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  19. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as â??â?¦a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilitiesâ?¦â?. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  20. Next Generation Bipolar Plates for Automotive PEM Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE...

  1. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  2. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  3. Social Intelligence: Next Generation Business Intelligence

    SciTech Connect (OSTI)

    Troy Hiltbrand

    2010-09-01

    In order for Business Intelligence to truly move beyond where it is today, a shift in approach must occur. Currently, much of what is accomplished in the realm of Business Intelligence relies on reports and dashboards to summarize and deliver information to end users. As we move into the future, we need to get beyond these reports and dashboards to a point where we break out the individual metrics that are embedded in these reports and interact with these components independently. Breaking these pieces of information out of the confines of reports and dashboards will allow them to be dynamically assembled for delivery in the way that makes most sense to each consumer. With this change in ideology, Business Intelligence will move from the concept of collections of objects, or reports and dashboards, to individual objects, or information components. The Next Generation Business Intelligence suite will translate concepts popularized in Facebook, Flickr, and Digg into enterprise worthy communication vehicles.

  4. Next-Generation LED Package Architectures Enabled by Thermally...

    Energy Savers [EERE]

    LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent ...

  5. Sandia Energy - Research and Development of Next Generation Scada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Next Generation Scada Systems Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric...

  6. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE) Wind Program. November 13, 2015 Secretary Moniz Announces Clean Energy Technologies are Accelerating in the U.S. Marketplace According to New Revolution...Now Report revolution-now-infographic.png October 27, 2015 Articles about Next-Generation Technologies Innovative Study Helps Offshore Wind Developers Protect Wildlife

  7. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to an average of 33% today, up from

  8. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  9. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  10. NEXT GENERATION MELTER OPTIONEERING STUDY - INTERIM REPORT

    SciTech Connect (OSTI)

    GRAY MF; CALMUS RB; RAMSEY G; LOMAX J; ALLEN H

    2010-10-19

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D{sub 2}0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  11. Preparing the Next Generation of Bioenergy Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing the Next Generation of Bioenergy Leaders Preparing the Next Generation of Bioenergy Leaders March 31, 2015 - 5:12pm Addthis Dr. Valerie Sarisky-Reed Dr. Valerie Sarisky-Reed Deputy Director, Bioenergy Technologies Office Engaging and supporting the next generation of renewable energy researchers and innovators is one of the important roles the Bioenergy Technologies Office (BETO) plays in advancing bioenergy and biofuels. BETO provides numerous resources from biomass basics to

  12. Mutation Detection with Next-Generation Resequencing through a Mediator

    Office of Scientific and Technical Information (OSTI)

    Genome (Journal Article) | SciTech Connect Mutation Detection with Next-Generation Resequencing through a Mediator Genome Citation Details In-Document Search Title: Mutation Detection with Next-Generation Resequencing through a Mediator Genome The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to

  13. Next Generation Sequencing at the University of Chicago Genomics Core

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Next Generation Sequencing at the University of Chicago Genomics Core Citation Details In-Document Search Title: Next Generation Sequencing at the University of Chicago Genomics Core The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation).

  14. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Energy Savers [EERE]

    Department of Energy Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant

  15. Notice of Intent: Upcoming Funding Opportunity for Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Projects | Department of Energy Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects February 4, 2015 - 12:27pm Addthis The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

  16. Next Generation Photovoltaics Round 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Next Generation Photovoltaics Round 2 Next Generation Photovoltaics Round 2 Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On Sept. 1, 2011, the U.S. Department of Energy (DOE) announced $24.5 million to fund the Next Generation Photovoltaics II projects

  17. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_molnar.pdf More Documents & Publications Next Generation Solar Collectors for CSP - FY13 Q1 POLYMERIC MIRROR FILMS: DURABILITY IMPROVEMENT AND

  18. Notice of Intent (NOI): Next Generation of Electric Machines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Notice of Intent (NOI): Next Generation of Electric Machines Notice of Intent (NOI): Next Generation of Electric Machines February 4, 2015 - 12:20pm Addthis The purpose of this Notice of Intent is to provide potential applicants advance notice that the Advanced Manufacturing Office (AMO), on behalf of the DOE Office of Energy Efficiency and Renewable Energy (EERE), intends to issue a Funding Opportunity Announcement (FOA) entitled "Next Generation of Electric Machines"

  19. Department of Energy Awards $425 Million for Next Generation Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Department of Energy $425 Million for Next Generation Supercomputing Technologies Department of Energy Awards $425 Million for Next Generation Supercomputing Technologies November 14, 2014 - 10:05am Addthis News Media Contact 202-586-4940 WASHINGTON - U.S. Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale computing, which will help to advance U.S. leadership in

  20. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. PDF icon report_out-next-generation_li-ion_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion

  1. Enabling the Next Generation of High Efficiency Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Generation of High Efficiency Engines Enabling the Next Generation of High Efficiency Engines Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy PDF icon deer12_wagner.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Ignition Control for HCCI Comparison of Conventional Diesel

  2. Silicon Nanostructure-based Technology for Next Generation Energy Storage |

    Energy Savers [EERE]

    Department of Energy Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es126_stefan_2013_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle

  3. Bush Administration Moves Forward to Develop Next Generation Nuclear Energy

    Energy Savers [EERE]

    Systems | Department of Energy Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to

  4. NETL Science & Engineering Ambassadors Guide Next Generation of Energy

    Energy Savers [EERE]

    Decision-Makers | Department of Energy Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers March 7, 2016 - 12:06pm Addthis NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers A trio of scientists and engineers from the National Energy Technology Laboratory (NETL) are using their research skills and experience to prepare future

  5. Energy Department Announces Outdoor Winners of Next Generation

    Office of Environmental Management (EM)

    Luminaires(tm) Solid-State Lighting Design Competition | Department of Energy Outdoor Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition Energy Department Announces Outdoor Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition February 27, 2014 - 2:02pm Addthis The 2013 Next Generation LuminairesTM (NGL) Design Competition outdoor lighting category winners were announced Wednesday night at the Strategies in Light conference in Santa

  6. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2015 Articles about Next-Generation Technologies Innovative Study Helps Offshore Wind Developers Protect Wildlife The Biodiversity Research Institute's (BRI) new report on a...

  7. Building the Next Generation of Parallel Applications: Co-Design...

    Office of Scientific and Technical Information (OSTI)

    Applications: Co-Design Opportunities and Challenges. Citation Details In-Document Search Title: Building the Next Generation of Parallel Applications: Co-Design Opportunities and ...

  8. Next-Generation "Giant" Quantum Dots: Performance-Engineered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Giant" Quantum Dots: Performance-Engineered for Lighting Next-Generation "Giant" Quantum Dots: Performance-Engineered for Lighting Lead Performer: Los Alamos National Laboratory - ...

  9. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the next generation of lower-cost parabolic trough technologies that can compete on an equal footing with conventional power generation. Innovation Abengoa is focusing on ...

  10. Next Generation Sequencing at the University of Chicago Genomics...

    Office of Scientific and Technical Information (OSTI)

    The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation ...

  11. Fostering the Next Generation of Nuclear Energy Technology |...

    Broader source: Energy.gov (indexed) [DOE]

    Fostering the Next Generation of Nuclear Energy Technology Peter W. Davidson Peter W. ... make available 12.6 billion in loan guarantees for advanced nuclear energy technologies. ...

  12. Energy Department Announces Outdoor Winners of Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Luminaires(tm) Solid-State Lighting Design Competition Energy Department Announces Outdoor Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition ...

  13. Next Generation Building Envelope Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Envelope Materials Next Generation Building Envelope Materials Addthis 1 of 3 Vacuum insulation panels (left); Modified atmosphere panels (right) Image: Oak Ridge National...

  14. Next Generation Bio-Based & Sustainable Chemicals Summit

    Broader source: Energy.gov [DOE]

    The 6th Annual Next Generation Bio-Based & Sustainable Chemicals Summit will be hosted in New Orleans, Louisiana, from February 3–5.

  15. Next Generation Sequencing at the University of Chicago Genomics...

    Office of Scientific and Technical Information (OSTI)

    University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing genotyping and...

  16. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  17. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  18. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  19. Next Generation Safeguards Initiative Summer Internship Program | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Next Generation Safeguards Initiative The Department of Energy's National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves over the next 25 years. Learn More Center for Strategic Security Argonne's Center for Strategic Security (CSS) develops and implements practical

  20. SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es158_goodenough_2012_p.pdf More Documents & Publications Solid Electrolyte Batteries SOLID ELECTROLYTE BATTERIES CX-011743: Categorical Exclusion Determination

  1. Innovative Nanocoatings Unlock the Potential for Major Energy and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings for Airline Industry | Department of Energy Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry Innovative Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry July 17, 2012 - 3:33pm Addthis Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Bob

  2. NERSC Launches Next-Generation Code Optimization Effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leads Next-Generation Code Optimization Effort NERSC Launches Next-Generation Code Optimization Effort NERSC, Intel, Cray team up to prepare users for transition to exascale computing August 11, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov GertyCori3 NERSC's next-generation supercomputer, a Cray XC, will be named after Gerty Cori, the first American woman to be honored with a Nobel Prize in science. She shared the 1947 Nobel Prize with her husband Carl (pictured) and Argentine

  3. NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Cray, Intel Announce Next-Generation Supercomputer NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer April 29, 2014 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 GertyCori NERSC's next-generation supercomputer, a Cray XC, will be named after Gerty Cori, the first American woman to be honored with a Nobel Prize in science. She shared the 1947 Nobel Prize with her husband Carl (pictured) and Argentine physiologist Bernardo Houssay. The U.S. Department of Energy's (DOE)

  4. TEXT-ALTERNATIVE VERSION: NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014

    Broader source: Energy.gov [DOE]

    Dan Blitzer, NGL Steering Committee, The Practical Lighting Workshop: Products that have been evaluated by the Next Generation Luminaires Design Competition have been vetted to a degree that no...

  5. Next Generation Natural Gas Vehicle (NGNGV) Program Fact Sheet

    SciTech Connect (OSTI)

    Walkowicz, K.

    2002-05-01

    Fact sheet describing U. S. DOE and NREL's development of next generation natural gas vehicles (NGVs) as a key element in its strategy to reduce oil import and vehicle pollutants.

  6. Next-Generation Catalysts for Fuel Cells - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Find More Like This Return to Search Next-Generation Catalysts for Fuel Cells Materials-by-Design Approach Leads to High-Durability, High-Activity Catalysts...

  7. Next Generation Luminaires Design Competition Announces 2014 Indoor Winners

    Broader source: Energy.gov [DOE]

    Winners in the Indoor category of the sixth annual Next Generation LuminairesTM Design Competition were announced today at The LED Show in Los Angeles. Sponsored by DOE, the Illuminating...

  8. Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners

    Broader source: Energy.gov [DOE]

    The 2013 winners in the outdoor category of the Next Generation Luminaires Solid-State Lighting Design Competition were announced at the Strategies in Light conference in Santa Clara, CA.

  9. Next Generation Nuclear Plant: A Report to Congress

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Next Generation Nuclear Plant (NGNP) project helps address the President’s goals for reducing greenhouse gas emissions and enhancing energy security. The...

  10. Energy Department Announces New Investment to Accelerate Next Generation Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel and jet fuels from biomass.

  11. Next Generation Luminaires Design Competition Announces 2015 Winners

    Broader source: Energy.gov [DOE]

    Winners in the Indoor and Outdoor categories of the seventh annual Next Generation LuminairesTM Design Competition were announced today at LIGHTFAIR® International in New York. Sponsored by DOE,...

  12. Attend a Webinar on AMO's Next Generation Electric Machines Funding

    Broader source: Energy.gov (indexed) [DOE]

    Opportunity | Department of Energy AMO's Next Generation Electric Machines (NGEM) program recently released the Funding Opportunity Announcement (FOA): Next Generation Electric Machines: Megawatt Class Motors. $20 million will fund four to six projects that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of critical energy applications. An Informational Webinar to give applicants an overview of standard

  13. National Labs Collaborate to Shape Development of Next-Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers National Labs Collaborate to Shape Development of Next-Generation Supercomputers National Labs Collaborate to Shape Development of Next-Generation Supercomputers November 10, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 apex logo large Three of the Department of Energy's leading national laboratories are working together to solve some of the world's most challenging problems by ensuring that the nation's scientific community has access to leading edge computing

  14. National labs collaborate to shape development of next-generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supercomputers Development of next-generation supercomputers National labs collaborate to shape development of next-generation supercomputers Three national laboratories are working together to solve some of the world's most challenging problems by ensuring that the nation's scientific community has access to leading edge computing systems to carry out their research. November 10, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez

  15. Secretary Chu Announces Nearly $15 Million for Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Lighting | Department of Energy 15 Million for Next Generation Energy-Efficient Lighting Secretary Chu Announces Nearly $15 Million for Next Generation Energy-Efficient Lighting June 7, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced nearly $15 million to support eight new research and development projects that will accelerate the development and deployment of high-efficiency solid-state lighting technologies like LEDs and OLEDs.

  16. High Temperature Thermal Array for Next Generation Solar Thermal Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_obrey.pdf More Documents & Publications A Method for Evaluating Fire After Earthquake Scenarios for Single

  17. Building the Next Generation of Parallel Applications: Co-Design

    Office of Scientific and Technical Information (OSTI)

    Opportunities and Challenges. (Conference) | SciTech Connect Building the Next Generation of Parallel Applications: Co-Design Opportunities and Challenges. Citation Details In-Document Search Title: Building the Next Generation of Parallel Applications: Co-Design Opportunities and Challenges. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-04-01 OSTI Identifier: 1108313 Report Number(s): SAND2011-2822C 470544 DOE Contract Number: AC04-94AL85000 Resource Type:

  18. Building the next generation of scalable manycore applications and

    Office of Scientific and Technical Information (OSTI)

    libraries. (Conference) | SciTech Connect Building the next generation of scalable manycore applications and libraries. Citation Details In-Document Search Title: Building the next generation of scalable manycore applications and libraries. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-02-01 OSTI Identifier: 1109324 Report Number(s): SAND2011-1154C 471472 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: SIAM

  19. Natural Oils - The Next Generation of Diesel Engine Lubricants? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Oils - The Next Generation of Diesel Engine Lubricants? Natural Oils - The Next Generation of Diesel Engine Lubricants? 2002 DEER Conference Presentation: The Pennsylvania State University PDF icon 2002_deer_perez.pdf More Documents & Publications Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Development of High Performance Heavy Duty

  20. Next Generation Safeguards Initiative Inaugural Conference | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Next Generation Safeguards Initiative Inaugural Conference Next Generation Safeguards Initiative Inaugural Conference September 12, 2008 - 3:20pm Addthis Remarks as Prepared for Energy Secretary Samuel Bodman Thank you, Ken, and all of you for that generous welcome. It is good to see so many of you here today for this discussion of a topic I consider to be among the most important in the Energy Department's portfolio. The U.S. Department of Energy has the responsibility for

  1. The Next Generation of Entrepreneurs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Next Generation of Entrepreneurs The Next Generation of Entrepreneurs July 25, 2011 - 6:15pm Addthis Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Students can apply or get more information on FedConnect (link to right in story) by looking up the reference number "DE-FOA-0000570." Applications are due on August 22, 2011. Entrepreneurs. Venture Capitalists. Clean energy. Competitions and funds. Separately, these words

  2. Next Generation Calibration Models with Dimensional Modeling | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Calibration Models with Dimensional Modeling Next Generation Calibration Models with Dimensional Modeling Incorporates dimensional modeling with engine empirical framework for engine calibration PDF icon p-01_brahma.pdf More Documents & Publications Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Model-Based Transient Calibration Optimization for Next Generation Diesel Engines An Accelerated Aging Method for Diesel Exhaust Aftertreatment

  3. Next-Generation Wireless Instrumentation Integrated with Mathematical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling for Aluminum Production | Department of Energy Next-Generation Wireless Instrumentation Integrated with Mathematical Modeling for Aluminum Production Next-Generation Wireless Instrumentation Integrated with Mathematical Modeling for Aluminum Production Monitoring Electrolytic Cell Anode Current Increases Current and Energy Efficiency In 2011, five-and-a-half-million tons of aluminum were produced in the United States. Over two-million tons were produced in smelters, large

  4. DOE Announces Webinars on Next Generation Electric Machines, Zero Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings, and More | Department of Energy Next Generation Electric Machines, Zero Energy Buildings, and More DOE Announces Webinars on Next Generation Electric Machines, Zero Energy Buildings, and More March 26, 2015 - 8:44am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can

  5. Fueling the Next Generation of Vehicle Technology | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  6. Center for Next Generation of Materials by Design: Incorporating

    Office of Science (SC) Website

    Metastability (CNGMD) | U.S. DOE Office of Science (SC) Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Print Text Size: A A A FeedbackShare Page CNGMD Header Director William Tumas Lead

  7. Model-Based Transient Calibration Optimization for Next Generation Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_atkinson.pdf More Documents & Publications Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010

  8. Nanomaterials: Organic and Inorganic for Next-Generation Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_vanderwal.pdf More Documents & Publications 21st Century Truck

  9. Inspiring and Building the Next Generation of Residential Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professionals | Department of Energy Inspiring and Building the Next Generation of Residential Energy Professionals Inspiring and Building the Next Generation of Residential Energy Professionals April 29, 2014 - 3:31pm Addthis Challenge Home Student Design Competition 1 of 10 Challenge Home Student Design Competition Teams and judges participating in the Challenge Home Student Design Competition stand front of the LEED Platinum CAFE at the National Renewable Energy Laboratory in Golden,

  10. DOE Project Taps HPC for Next-Generation Climate Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Project Taps HPC for Next-Generation Climate Modeling DOE Project Taps HPC for Next-Generation Climate Modeling Berkeley Lab, NERSC to help accelerate development of state-of-the-science Earth system models August 25, 2014 Contact: Dan Krotz 510-486-4019 billcollins.jpg Bill Collins, ACME's Chief Scientist and head of the Earth Sciences Division's Climate Sciences Department at Berkeley Lab. Image: Roy Kaltschmidt High performance computing (HPC) will be used to develop and apply the most

  11. Engaging the Next Generation of Automotive Engineers through Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Competition | Department of Energy Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian

  12. NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 | Department of Energy

    Energy Savers [EERE]

    NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 View this behind-the-scenes look at the 2014 NGL judging event where entries were evaluated by a panel of judges drawn from the architectural lighting community in an intensive three-step process that combined the judges' personal evaluations with objective measures of luminaire performance. View the text-alternative version Solid-State Lighting Home About the Solid-State Lighting Program Research &

  13. Technology Advancements for Next Generation Falling Particle Receivers.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle Receivers. Abstract not provided. Authors: Ho, Clifford K. ; Gill, David Dennis ; Jeter, S. ; Abdel-Khalik, S. ; Sadowski, D. ; Siegel, Nathan Phillip ; Al-Ansary, H. ; Amsbeck, L. ; Buck, R. ; Gobereit, B. ; Christian, Joshua Mark Publication Date: 2013-09-01 OSTI Identifier: 1140577

  14. The Next Generation of Scientists | Department of Energy

    Energy Savers [EERE]

    The Next Generation of Scientists The Next Generation of Scientists August 5, 2010 - 11:23am Addthis Director Brinkman Director Brinkman Director of the Office of Science The DOE Office of Science Graduate Fellowship program, a $22.7 million program to support outstanding students pursing graduate training in the sciences, received an infusion of $12.5 million from the American Recovery and Reinvestment Act. As a result, 150 graduate students will receive a three-year graduate fellowship, which

  15. Next Generation Rooftop Unit - 2013 Peer Review | Department of Energy

    Energy Savers [EERE]

    Unit - 2013 Peer Review Next Generation Rooftop Unit - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech11_shen_040313.pdf More Documents & Publications A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab Next Generation Rooftop Unit Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Rooftop Unit Network

  16. Yahoo! Compute Coop: Next Generation Passive Cooling Design for Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers | Department of Energy Yahoo! Compute Coop: Next Generation Passive Cooling Design for Data Centers Yahoo! Compute Coop: Next Generation Passive Cooling Design for Data Centers Integrated Building Design Eliminates HVAC and Reduces Energy Consumption In 2011, the internet was accessible by almost 31% of the world's population compared with <0.5% global penetration in 1995. This increase in demand for internet services (e.g., web hosting, information retrieval, email, and video

  17. California: Next-Generation Geothermal Demonstration Launched | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Next-Generation Geothermal Demonstration Launched California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine Corporation achieved the nation's first sustained enhanced geothermal system (EGS) demonstration success in 2012. The Geysers EGS Demonstration project successfully created a new and distinct reservoir, yielding

  18. Energy Department Announces Indoor Lighting Winners of Next Generation

    Office of Environmental Management (EM)

    Luminaires(tm) Solid-State Lighting Design Competition | Department of Energy Indoor Lighting Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition Energy Department Announces Indoor Lighting Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition September 17, 2014 - 5:45pm Addthis As part of the Obama Administration's efforts to reduce energy waste in U.S. buildings and help save Americans money by saving energy, the Energy Department

  19. Energy Department Awards $22 Million to Support Next Generation Electric

    Office of Environmental Management (EM)

    Machines for Manufacturing | Department of Energy 22 Million to Support Next Generation Electric Machines for Manufacturing Energy Department Awards $22 Million to Support Next Generation Electric Machines for Manufacturing September 16, 2015 - 10:29am Addthis NEWS MEDIA CONTACT (202) 586-4940 As part of the Administration's effort to increase energy efficiency and double U.S. energy productivity by 2030, the Energy Department is awarding $22 million in funding for five projects aimed at

  20. Research & Development Roadmap: Next-Generation Appliances | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Appliances Research & Development Roadmap: Next-Generation Appliances The Research and Development (R&D) Roadmap for Next-Generation Appliances provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO's energy savings goals. For appliances, BTO targets 14% and 29% primary energy savings by 2020 and 2030, respectively. The recommended initiatives in the report target high-priority R&D, demonstration,

  1. Inspiring the Next Generation in Innovation | Department of Energy

    Office of Environmental Management (EM)

    Inspiring the Next Generation in Innovation Inspiring the Next Generation in Innovation April 29, 2014 - 12:00pm Addthis Benedict College student Faith Kibuye explains her researcher to SRNL Laboratory Director Dr. Terry Michalske Benedict College student Faith Kibuye explains her researcher to SRNL Laboratory Director Dr. Terry Michalske DOE Deputy Assistant Secretary Mark Gilbertson learns of research performed by South Carolina State student Andrew McCray DOE Deputy Assistant Secretary Mark

  2. Graphene, Hydrogen and Next-Generation Electronics | Department of Energy

    Office of Environmental Management (EM)

    Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics July 22, 2011 - 5:32pm Addthis Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory A team of Oak Ridge National Laboratory (ORNL) and New Mexico State University researchers have developed a new approach to growing graphene

  3. Next Generation Safeguards Initiatives at Los Alamos National Laboratory

    National Nuclear Security Administration (NNSA)

    Next Generation Safeguards Initiatives at Los Alamos National Laboratory Strengthening Human Capital for International Safeguards - 2009 * In October 2007, NNSA's Office of Nonproliferation and International Security (NA-24) urged the national laboratories to create projects devoted to improving human capital and training for nuclear safeguards as part of the Next Generation Safeguards Initiative (NGSI). * To meet this need, Los Alamos National Laboratory (LANL), Lawrence Livermore National

  4. EERE Success Story-California: Next-Generation Geothermal Demonstration

    Office of Environmental Management (EM)

    Launched | Department of Energy Next-Generation Geothermal Demonstration Launched EERE Success Story-California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine Corporation achieved the nation's first sustained enhanced geothermal system (EGS) demonstration success in 2012. The Geysers EGS Demonstration project successfully created a

  5. EERE Success Story-Michigan: Universities Train Next Generation of

    Office of Environmental Management (EM)

    Automotive Engineers | Department of Energy Michigan: Universities Train Next Generation of Automotive Engineers EERE Success Story-Michigan: Universities Train Next Generation of Automotive Engineers November 6, 2013 - 12:00am Addthis University of Michigan, Wayne State University, and Michigan Technological University are all carrying out Advanced Electric Drive Vehicle Education programs to educate future engineers about electric drive vehicles. All three universities are developing

  6. NERSC, Cray Move Forward With Next-Generation Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Cray Move Forward With Next-Generation Scientific Computing NERSC, Cray Move Forward With Next-Generation Scientific Computing New Cray XC40 will be first supercomputer in Berkeley Lab's new Computational Research and Theory facility April 22, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 NewCRT.jpg The Cori Phase 1 system will be the first supercomputer installed in the new Computational Research and Theory Facility now in the final stages of construction at Lawrence Berkeley

  7. Crafting the next generation | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crafting the next generation Crafting the next generation Posted: July 16, 2012 - 3:52pm | Y-12 Report | Volume 9, Issue 1 | 2012 I truly enjoyed the opportunity to work with such great people every day," said Brandy Ward, an ironworker/rigger graduate of Y-12's Apprentice Program. "It was a lot of work, but I'd do it again in a heartbeat." The Y-12 Apprentice Program is about a lot of things, including second chances. The program that offers workers an opportunity to become

  8. Come see the Next Generation of Vehicles on Sustainable Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Day-June 22, 2015 | Department of Energy Come see the Next Generation of Vehicles on Sustainable Transportation Day-June 22, 2015 Come see the Next Generation of Vehicles on Sustainable Transportation Day-June 22, 2015 June 18, 2015 - 1:05pm Addthis Drivers can learn about fuel efficiency in the Green Racing Simulator which models a hybrid race car. Photo: courtesy of Argonne National Laboratory Drivers can learn about fuel efficiency in the Green Racing Simulator which models a hybrid race

  9. Solar Decathlon 2015: The Next Generation of Clean Energy Leaders |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Next Generation of Clean Energy Leaders Solar Decathlon 2015: The Next Generation of Clean Energy Leaders September 3, 2015 - 10:30am Addthis Teams gather to hear the final results at the U.S. Department of Energy Solar Decathlon 2013. Many former Solar Decathlon participants have gone on to pursue careers in clean energy and sustainable housing. Photo by Stefano Paltera, U.S. Department of Energy Solar Decathlon Teams gather to hear the final results at the U.S.

  10. July 24, 2009, Visiting Speakers Program - The Next Generation of (Safety) Regulation for HRO's by Christopher Hart

    Office of Environmental Management (EM)

    Regulating HRO's: Next Generation July 24, 2009 Federal Aviation Administration 1 Federal Aviation Administration The Next Generation of (Safety) Regulation for HRO's Presentation to: HSS Visiting Speakers Program Name: Christopher A. Hart Date: July 24, 2009 Aviation Safety Experience - Conventional Wisdom: More vigorous regulation and enforcement will result in improved safety - Lesson Learned from Experience: There is a mishap rate plateau beyond which further improvement necessitates a more

  11. DeSoto Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name DeSoto Next Generation Solar Energy Center Solar Power Plant Facility DeSoto Next Generation...

  12. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Engines | Department of Energy Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines PDF icon erosion-resistant_nanocoatings.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 2013 R&D 100 Award Winners New and Emerging

  13. Next Generation Natural Gas Vehicle (NGNGV) Program Brochure

    SciTech Connect (OSTI)

    Elling, J.

    2000-10-26

    The Department of Energy's Office of Transportation Technologies is initiating the Next Generation Natural Gas Vehicle (NGNGV) Program to develop commercially viable medium- and heavy-duty natural gas vehicles. These new vehicles will incorporate advanced alternative fuel vehicle technologies that were developed by DOE and others.

  14. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  15. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This fact sheet provides information on the Alaska Native governments selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  16. Report from the Next Generation High Performance Computing Task Force

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy Advisory Board Report of the Task Force on Next Generation High Performance Computing August 18, 2014 U.S. Department of Energy 1 Final Version for Approval Charge to the SEAB High Performance Computing Task Force ......................................................... 4 Executive Summary ...................................................................................................................... 4 Key Findings

  17. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This fact sheet provides information on Tribes in the lower 48 states selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  18. NNSA Next Generation Safeguards Initiative | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Next Generation Safeguards Initiative | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  19. LLNL to deliver next-generation supercomputer | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration LLNL to deliver next-generation supercomputer | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  20. Meeting the Next Generation of Nuclear Nonproliferation Specialists |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Meeting the Next Generation of Nuclear Nonproliferation Specialists | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  1. LANL, Sandia, Cray Set to Build Next Generation NNSA Supercomputer |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration LANL, Sandia, Cray Set to Build Next Generation NNSA Supercomputer | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  2. Presented at the Second International Meeting on Next Generation Safeguards

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Second International Meeting on Next Generation Safeguards | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  3. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  4. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of erosion-resistant (ER) nanocoat- ings designed for gas turbine engine applications. ... By reducing fuel use and increasing engine lifetimes, erosion- resistant (ER) nanocoatings ...

  5. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  6. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    SciTech Connect (OSTI)

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  7. Next Generation Luminaire (NGL) Downlight Demonstration Project, Hilton Columbus Downtown

    SciTech Connect (OSTI)

    Davis, R. G.; Perrin, T. E.

    2014-09-30

    At the Hilton Columbus Downtown hotel in Ohio, DOE's Better Buildings Alliance conducted a demonstration of Next Generation Luminaires-winning downlights installed in all guest rooms and suites prior to the hotel's 2012 opening. After a post-occupancy assessment, the LED downlights not only provided the aesthetic appearance and dimming functionality desired, but also provided 50% energy savings relative to a comparable CFL downlight and enabled the lighting power to be more than 20% below that allowed by code.

  8. Research and Development of Next Generation Scada Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Development of Next Generation Scada Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  9. Next Generation of Direct Detection Dark Matter Experiments Announced |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Next Generation of Direct Detection Dark Matter Experiments Announced High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources News Archives Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301)

  10. Project Profile: Next-Generation Parabolic Trough Collectors and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CSP Applications | Department of Energy Parabolic Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo Abengoa Solar, under the CSP R&D FOA, is developing the technology needed to build a competitive parabolic trough industry for the U.S. utility market. Approach Rows of parabolic trough collectors The research team aims to develop alternative collector structures,

  11. Discovery of Next Generation RAF Inhibitors that Dissociate Paradoxical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activation from Inhibition of the MAPK Pathway | Stanford Synchrotron Radiation Lightsource Discovery of Next Generation RAF Inhibitors that Dissociate Paradoxical Activation from Inhibition of the MAPK Pathway Monday, February 29, 2016 Genes encoding members of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway are frequently mutated in human cancer. RAS (a small GTPase) and RAF (a serine/Threonine kinase) are two major nodes on this important

  12. Silicon Nanowire Anodes for Next Generation Energy Storage

    Energy Savers [EERE]

    Silicon Nanowire Anodes for Next Generation Energy Storage Ionel C. Stefan, Principal Investigator Yoni Cohen, Program Manager Amprius, Inc. June 16-20, 2014 ES126 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Start date: October 2011 * End date: September 2014 * Percent complete: 85% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: $8,215,077 - DOE share: $4,998,336 -

  13. Next Generation Luminaire (NGL) Downlight Demonstration Project: St.

    Energy Savers [EERE]

    Anthony's Hospital | Department of Energy Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital The U.S. DOE conducts demonstration projects documenting the performance of LED luminaires relative to conventional technologies to increase market adoption of energy-efficient LED systems and to stimulate ongoing product development. These demonstration projects evaluate various aspects of

  14. Next-Generation LED Package Architectures Enabled by Thermally Conductive

    Energy Savers [EERE]

    Transparent Encapsulants | Department of Energy LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Lead Performer: Momentive Performance Materials Quartz, Inc. DOE Total Funding: $1,497,255 Cost Share: $512,700 Project Term: 10/1/2014 - 3/31/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This

  15. Research & Development Roadmap: Next-Generation Low Global Warming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Refrigerants | Department of Energy Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Refrigerants are used in a wide variety of heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment. The current generation of refrigerants, hydrofluorocarbons (HFCs), have significant global warming potential (GWP) when released to the atmosphere. This research and development (R&D)

  16. Natural Oils - The Next Generation of Diesel Engine Lubricants?

    Office of Environmental Management (EM)

    Oils - The Next Generation of Diesel Engine Lubricants? JOE PEREZ 1 & SHAWN WHITACRE 2 1 The Pennsylvania State University 2 National Renewable Energy Laboratory USDOE DEER 2002 Conference, , San Diego, CA (August 2002) OUTLINE * Introduction * Current Technology - CI-4 - Environmentally Acceptable/Friendly Fluid * Renewable Technology and Resources * Experimental Progress * Needs INTRODUCTION Future Diesel Engine Emission Regulations - * Ultra-low Sulfur Fuels * Aftertreatment Systems *

  17. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    David W. Gandy; John P. Shingledecker

    2011-04-11

    Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

  18. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect (OSTI)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  19. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  20. Next-generation nuclear fuel withstands high-temperature accident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions U.S. DEPARTMENT OF ENERGY IDAHO FALLS, IDAHO, 83403 For Immediate Release: Sept. 25, 2013 Media Contacts: Teri Ehresman, 208-526-7785 teri.ehresman@inl.gov Bill Cabage (ORNL), 865-574-4399, cabagewh@ornl.gov Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer and more efficient nuclear fuel is on the horizon. A team of researchers at the U.S. Department of Energy's Idaho National Laboratory (INL) and Oak Ridge National Laboratory

  1. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  2. UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code

    Office of Scientific and Technical Information (OSTI)

    7240 CHEETAH: A Next Generation Thermochemical Code L. Fried P. Suers November 1994 , L *_ Work performed under the auspices of the U . S . Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. DISCLAIMER "his document was prepared a s an account o f work sponsored by an agency of the United States Government. Neither t h e United states Government nor khe University of California nor any of t h e i r employees, makes any warranty, express or

  3. Inspiring the Next Generation of Computational Thinkers | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Inspiring the Next Generation of Computational Thinkers Author: Justin H.S. Breaux January 13, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version The City of Chicago and the U.S. Department of Energy's (DOE's) Argonne National Laboratory came together this winter for a My Brother's Keeper event, a one-day hands-on workshop connecting the dots between computational thinking and science, technology, engineering and math (STEM) careers for 8th

  4. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  5. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  6. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  7. EERE Success Story-Next-Generation Sensor Fish to Provide Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish EERE Success Story-Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live ...

  8. Corrosion in Very High-Temperature Molten Salt for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems This presentation was ...

  9. Next-Generation Sensor Fish to Provide Data That Will Help Protect...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish June 4, 2014 - ...

  10. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Development of a new light truck, in-line...

  11. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new...

  12. Investing in the Next Generation of U.S. Nuclear Energy Leaders...

    Office of Environmental Management (EM)

    the Next Generation of U.S. Nuclear Energy Leaders Investing in the Next Generation of U.S. ... power continues to be part of our clean energy mix while leveraging the strong ...

  13. Next Generations Safeguards Initiative: The Life of a Cylinder

    SciTech Connect (OSTI)

    Morgan, James B; White-Horton, Jessica L

    2012-01-01

    The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

  14. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  15. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  16. Jefferson Lab injector development for next generation parity violation experiments

    SciTech Connect (OSTI)

    J. Grames, J. Hansknect, M. Poelker, R. Suleiman

    2011-05-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  17. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect (OSTI)

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  18. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  19. Final Report for "Analyzing and visualizing next generation climate data"

    SciTech Connect (OSTI)

    Pletzer, Alexander

    2012-11-13

    The project "Analyzing and visualizing next generation climate data" adds block-structured (mosaic) grid support, parallel processing, and 2D/3D curvilinear interpolation to the open-source UV-CDAT climate data analysis tool. Block structured grid support complies to the Gridspec extension submitted to the Climate and Forecast metadata conventions. It contains two parts: aggregation of data spread over multiple mosaic tiles (M-SPEC) and aggregation of temporal data stored in different files (F-SPEC). Together, M-SPEC and F-SPEC allow users to interact with data stored in multiple files as if the data were in a single file. For computational expensive tasks, a flexible, multi-dimensional, multi-type distributed array class allows users to process data in parallel using remote memory access. Both nodal and cell based interpolation is supported; users can choose between different interpolation libraries including ESMF and LibCF depending on the their particular needs.

  20. 24 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts

    Broader source: Energy.gov [DOE]

    DOE awards more than $30 million to the following universities to train the next generation of industrial energy efficiency experts.

  1. Report of the Task Force on Next Generation High Performance Computing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Next Generation High Performance Computing Report of the Task Force on Next Generation High Performance Computing The SEAB Task Force on Next Generation High Performance Computing (TFHPC) was established by the Secretary of Energy on December 20, 2014 to review the mission and national capabilities related to next generation high performance computing. The Task Force's findings and recommendations are framed by three broad considerations including a "new"

  2. Next-Generation Germanium Spectrometer Background Reduction Techniques at 2 MeV

    SciTech Connect (OSTI)

    Brodzinski, Ronald L.

    2005-04-01

    The Majorana project, a next-generation 76Ge neutrinoless double-beta decay experiment being undertaken by a large international collaboration, has the goal of measuring the neutrinoless double-beta decay rate by observing monochromatic events at 2039 keV in 500 kg of isotopically enriched 76Ge gamma-ray spectrometers. In order to achieve the desired sensitivity limit, the background in the 2037-2041 keV region must be reduced to <1 event per year in the entire germanium array. The effects of various background reduction techniques, and the combination thereof, to produce a huge 76Ge spectrometer array with virtually zero background are discussed.

  3. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratorys Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCTs Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpines power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

  4. Alternative multimedia regulatory programs for next-generation refineries

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

    2000-06-22

    The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

  5. Next Generation Solar Collectors for CSP - FY13 Q1 | Department of Energy

    Office of Environmental Management (EM)

    Next Generation Solar Collectors for CSP - FY13 Q1 Next Generation Solar Collectors for CSP - FY13 Q1 This document summarizes the progress of this 3M project, funded by SunShot, for the first quarter of fiscal year 2013. PDF icon progress_report_sunshot_3m_fy13_q1.pdf More Documents & Publications Next-Generation Solar Collectors for CSP - FY13 Q2 Next Generation Solar Collectors for CSP - FY12 Q4 ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS

  6. Planning the Next Generation of Arctic Ecosystem Experiments

    SciTech Connect (OSTI)

    Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

    2011-01-01

    Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

  7. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; et al

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopymore » in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.« less

  8. Next generation processes for NGL/LPG recovery

    SciTech Connect (OSTI)

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  9. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    SciTech Connect (OSTI)

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, Derek; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, David G.; Ketzer, B.; Klein, Franz J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, Vincent; McKinnon, Brian; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, Alessandro; Salgado, Carlos; Santopinto, E.; Sarantsev, Andrey V.; Sato, Toru; Schlüter, T.; da Silva, M. L.L.; Stankovic, I.; Strakovsky, Igor; Szczepaniak, Adam; Vassallo, A.; Walford, Natalie K.; Watts, Daniel P.

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.

  10. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  11. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  12. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  13. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  14. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  15. Design studies for the next generation electron ion colliders

    SciTech Connect (OSTI)

    Sayed, Hisham Kamal; Bogacz, Slawomir A.; Krafft, Geoffrey A.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 311 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large ? function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  16. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  17. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015 09:37 A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials

  18. DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of

    Energy Savers [EERE]

    Energy Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest

  19. DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |

    Energy Savers [EERE]

    Department of Energy DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the

  20. Next Generation Lunch: Revealing the World's First 3D Printed Car (text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    version) | Department of Energy Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Below is the text version for the Next Generation Lunch: Revealing the World's First 3D Printed Car Video. FILE NAME: AEMC_09172014_luncheonaddress_nextgeneration SPEAKER: Ladies and gentleman, welcome and good afternoon. Please give a warm welcome to Dr. Mark Johnson, U.S. Department of Energy.

  1. Air-Cooled Condensers for Next Generation Power Plants | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Air-Cooled Condensers for Next Generation Power Plants Air-Cooled Condensers for Next Generation Power Plants Power plants presentation by Greg Mines at the 2013 Annual Peer Review in Colorado. PDF icon aircooledcondensers_peerreview2013.pdf More Documents & Publications Hybrid and Advanced Air Cooling Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems Air-cooled Condensers in Next-generation Conversion Systems

  2. Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM Education Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM Education January 27, 2015 - 12:56pm Addthis Upholding Dr. King’s Dream and Inspiring the Next Generation Through STEM Education Joshua Sneideman Joshua Sneideman Albert Einstein Distinguished Educator Fellow According to the Reverend Dr. Martin Luther King, Jr., "The function of education is

  3. Energy Department Announces $4.4 Million to Support Next-Generation

    Office of Environmental Management (EM)

    Advanced Hydropower Manufacturing | Department of Energy 4 Million to Support Next-Generation Advanced Hydropower Manufacturing Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing September 23, 2014 - 2:30pm Addthis The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies. Significant advancements in

  4. Department of Energy to Invest More than $21 Million for Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Projects | Department of Energy More than $21 Million for Next Generation Solar Energy Projects Department of Energy to Invest More than $21 Million for Next Generation Solar Energy Projects November 8, 2007 - 4:31pm Addthis 25 Cutting Edge Projects Target Enhanced Solar Energy Efficiency WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that the Department will invest $21.7 million in next generation photovoltaic (PV) technology to help

  5. Letter to NEAC to Review the Next Generation Nuclear Plant Activities |

    Office of Environmental Management (EM)

    Department of Energy to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the

  6. AMO FOA Targets Advanced Components for Next-Generation Electric Machines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOA Targets Advanced Components for Next-Generation Electric Machines AMO FOA Targets Advanced Components for Next-Generation Electric Machines March 19, 2015 - 10:21am Addthis AMO's Next Generation Electric Machines (NGEM) program announced up to $20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy applications. This Financial Opportunity

  7. DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation

    Office of Environmental Management (EM)

    Drivetrains | Department of Energy Funds Advanced Magnet Lab and NREL to Develop Next-Generation Drivetrains DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation Drivetrains October 1, 2012 - 11:43am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. Investing in next generation drivetrains can help lower the cost and improve the reliability of wind turbines, particularly in larger offshore applications. This includes both

  8. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    SciTech Connect (OSTI)

    Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

  9. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  10. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  11. Energy Department Announces $4.4 Million to Support Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Support Next-Generation Advanced Hydropower Manufacturing Energy Department Announces 4.4 Million ... the application of advanced materials and manufacturing techniques to ...

  12. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Post, M.; Saur, G.; Peters, M.

    2013-11-01

    This report includes 18 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 2 of 2013.

  13. U.S. Department of Energy awards $200 million for next-generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CORAL) initiative, the U.S. Department of Energy (DOE) announced a 200 million investment to deliver a next-generation supercomputer, known as Aurora, to the Argonne...

  14. Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...

    Open Energy Info (EERE)

    expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of...

  15. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  16. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

  17. Energy Department Announces Funding to Develop Improved Next Generation HVAC Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to support research and development of the next generation of heating, ventilating, and air conditioning technologies.

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together such a well-structured and productive forum.

  19. Energy Reductions Using Next-Generation Remanufacturing Techniques

    SciTech Connect (OSTI)

    Sordelet, Daniel; Racek, Ondrej

    2012-02-24

    The goal of this project was to develop a radically new surface coating approach that greatly enhances the performance of thermal spray coatings. Rather than relying on a roughened grit blasted substrate surface for developing a mechanical bond between the coating and substrate, which is the normal practice with conventional thermal spraying, a hybrid approach of combining a focused laser beam to thermally treat the substrate surface in the vicinity of the rapidly approaching thermally-sprayed powder particles was developed. This new surface coating process is targeted primarily at enabling remanufacturing of components used in engines, drive trains and undercarriage systems; thereby providing a substantial global opportunity for increasing the magnitude and breadth of parts that are remanufactured through their life cycle, as opposed to simply being replaced by new components. The projected benefits of a new remanufacturing process that increases the quantity of components that are salvaged and reused compared to being fabricated from raw materials will clearly vary based on the specific industry and range of candidate components that are considered. At the outset of this project two different metal processing routes were considered, castings and forgings, and the prototypical components for each process were liners and crankshafts, respectively. The quantities of parts used in the analysis are based on our internal production of approximately 158,000 diesel engines in 2007. This leads to roughly 1,000,000 liners (assuming a mixture of 6- and 8-cylinder engines) and 158,000 crankshafts. Using energy intensity factors for casting and forgings, respectively, of 4450 and 5970 Btu-hr/lb along with the energy-induced CO2 generation factor of 0.00038 lbs CO2/Btu, energy savings of over 17 trillion BTUs and CO2 reductions of over 6.5 million lbs could potentially be realized by remanufacturing the above mentioned quantities of crankshafts and liners. This project supported the Industrial Technologies Program's initiative titled 'Industrial Energy Efficiency Grand Challenge.' To contribute to this Grand Challenge, we. pursued an innovative processing approach for the next generation of thermal spray coatings to capture substantial energy savings and green house gas emission reductions through the remanufacturing of steel and aluminum-based components. The primary goal was to develop a new thermal spray coating process that yields significantly enhanced bond strength. To reach the goal of higher coating bond strength, a laser was coupled with a traditional twin-wire arc (TWA) spray gun to treat the component surface (i.e., heat or partially melt) during deposition. Both ferrous and aluminum-based substrates and coating alloys were examined to determine what materials are more suitable for the laser-assisted twin-wire arc coating technique. Coating adhesion was measured by static tensile and dynamic fatigue techniques, and the results helped to guide the identification of appropriate remanufacturing opportunities that will now be viable due to the increased bond strength of the laser-assisted twin-wire arc coatings. The feasibility of the laser-assisted TWA (LATWA) process was successfully demonstrated in this current effort. Critical processing parameters were identified, and when these were properly controlled, a strong, diffusion bond was developed between the substrate and the deposited coating. Consequently, bond strengths were nearly doubled over those typically obtained using conventional grit-blast TWA coatings. Note, however, that successful LATWA processing was limited to ferrous substrates coated with steel coatings (e.g., 1020 and 1080 steel). With Al-based substrates, it was not possible to avoid melting a thin layer of the substrate during spraying, and this layer re-solidified to form a band of intermetallic phases at the substrate/coating interface, which significantly diminished the coating adhesion. The capability to significantly increase the bond strength with ferrous substrates and coatings may open new reman

  20. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  1. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  2. Next Generation Networking | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Next Generation Networking Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S.

  3. Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers PDF icon yahoo_passive_cooling.pdf More Documents & Publications Award Selections for Industrial Technologies Program Recovery Act Funding ITP_Data_Centers.xls SeaMicro Volume Server Power Reduction

  4. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    SciTech Connect (OSTI)

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadenin

  5. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop degradation-resistant nano-coatings of AlMgB14 and AlMgB14 (titanium diboride) TiB2 that result in improved surface hardness and reduced friction for industrial hydraulic and tooling systems.

  6. Advances in Design of the Next Generation Hydride Bed | Department of

    Office of Environmental Management (EM)

    Energy Design of the Next Generation Hydride Bed Advances in Design of the Next Generation Hydride Bed Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. PDF icon Advances in Design of the Next Generation Hydride Bed More Documents & Publications Tritium Aging Studies of LaNi4.15Al0.85 (LANA.85) Determination of In-Vitro Lung Solubility and Intake-To-Dose Conversion Factors for Tritiated LaNi4.25Al0.75 Hydride Safe Disposition of

  7. Nx-TEC: Next-Generation Thermionic Solar Energy Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nx-TEC: Next-Generation Thermionic Solar Energy Conversion Nx-TEC: Next-Generation Thermionic Solar Energy Conversion This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_melosh.pdf More Documents & Publications Next-Generation Thermionic Solar Energy Conversion - FY13 Q2 Download the SunShot Initiative 2014 Portfolio 2014 SunShot Initiative Portfolio

  8. DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory

  9. EERE Success Story-DOE Supports PG&E Development of Next Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Hybrid Electric Trucks | Department of Energy Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks EERE Success Story-DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 - 1:04pm Addthis EERE Success Story—DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating

  10. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace PDF icon deer11_ruth.pdf More Documents & Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins

  11. DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks | Department of Energy DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 - 1:04pm Addthis DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating that plug-in electric vehicles can provide significant benefits to

  12. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    SciTech Connect (OSTI)

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  13. Improvements in Next Generation Sequencing ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Fiske, Haley [Illumina

    2013-03-22

    Haley Fiske on "Improvements in Next-Generation Sequencing" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  14. Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary

    Reports and Publications (EIA)

    2000-01-01

    The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

  15. JCESR and NASA team up to conduct research for next generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NASA team up to conduct research for next generation batteries to be used in space News Release Media Contacts Ben Schiltz Joint Center for Energy Storage Research Argonne...

  16. Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries

    Broader source: Energy.gov [DOE]

    This edition of the Geek-Up highlights the potential boost that cyanobacteria could deliver to biofuels and examines how computer design tools are advancing the next generation of electric drive vehicle batteries.

  17. Forensic DNA Standards for Next Generation Sequencing Platforms ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Vallone, Peter [NIST

    2013-03-22

    Peter Vallone on "Forensic DNA Standards for Next Generation Sequencing Platforms" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  18. Project Profile: High-Temperature Thermal Array for Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power ... The technology, called the high-temperature thermal array, aims to achieve the SunShot ...

  19. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  20. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  1. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  2. The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing is composed of SEAB members and independent experts charged with reviewing the mission and...

  3. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  4. DOE Launches First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC- The U.S. Department of Energy's (DOE) Office of Science and Internet2 announced today that the first segment of a next-generation, nationwide network has gone live, marking a key...

  5. Energy Department Announces Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    The Energy Department announced winners of its seventh annual Next Generation LuminairesTM (NGL) design competition for indoor and outdoor lighting during the LIGHTFAIR® International trade show in New York.

  6. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials that self-assemble spontaneously form nanostructures down to the molecular scale, which would revolutionize

  7. Secretary Chu Announces $45 Million to Support Next Generation of Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Designs | Department of Energy 5 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces $45 Million to Support Next Generation of Wind Turbine Designs November 23, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the selection of Clemson University to receive up to $45 million under the American Recovery and Reinvestment Act for a wind energy test facility that will enhance the performance, durability,

  8. Secretary Chu Announces More than $37 Million for Next Generation Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 37 Million for Next Generation Lighting Secretary Chu Announces More than $37 Million for Next Generation Lighting January 15, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced more than $37 million in funding from the American Recovery and Reinvestment Act to support high-efficiency solid-state lighting projects. Solid-state lighting, which uses light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) instead of

  9. Investing in the next generation: The Office of Nuclear Energy Issues

    Energy Savers [EERE]

    Requests for Scholarship and Fellowship Applications. | Department of Energy Investing in the next generation: The Office of Nuclear Energy Issues Requests for Scholarship and Fellowship Applications. Investing in the next generation: The Office of Nuclear Energy Issues Requests for Scholarship and Fellowship Applications. As President Obama recognized in the State of the Union on January 28th, 2014, the best way to grow the economy and create jobs is to prepare students with the skills

  10. Building a next-generation community ice sheet model: meeting summary

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet model: meeting summary No abstract prepared. Authors: Lipscomb, William [1] ; Price, Stephen [1] ; Bueler, Ed [2] ; Holland, David [3] ; Johnson, Jesse [4] + Show Author Affiliations Los Alamos National Laboratory UNIV OF ALASKA NEW YORK UNIV UNIV OF MONTANA Publication Date:

  11. Building a next-generation community ice sheet model: meeting summary

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet model: meeting summary × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  12. Department of Energy Announces Funding to Support the Next Generation of

    Energy Savers [EERE]

    American Scientists and Engineers | Department of Energy to Support the Next Generation of American Scientists and Engineers Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers March 10, 2011 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the launch of two new fellowship programs designed to attract the country's best and brightest scientific minds to work on advanced clean energy

  13. DOE Announces Up to $5 Million to Support the Next Generation of Advanced

    Energy Savers [EERE]

    Automotive Designers and Engineers | Department of Energy Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers DOE Announces Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers February 16, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced up to $5 million in funding to support Graduate Automotive Technology Education (GATE) Centers of Excellence. The GATE Centers will focus

  14. NASA Expert Discusses NextGen - the Next Generation Air Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System on Nov. 18 | Jefferson Lab Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NEWPORT NEWS, Va., Nov. 7, 2008 -- The U.S. Department of Energy's Jefferson Lab invites the public to an evening lecture about the nation's Next Generation Air Transportation System on Tuesday, Nov. 18. Although today's National Airspace System offers one of the safest means of transportation, it has evolved into a large, complex, distributed and loosely integrated network

  15. Project Profile: High-Temperature Thermal Array for Next-Generation Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Power Production | Department of Energy Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos National Laboratory logo The Los Alamos National Laboratory (LANL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe-based technology designed to bridge the heliostat reflector field and the power cycle by

  16. GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects

    SciTech Connect (OSTI)

    Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

    2005-08-01

    We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

  17. Corrosion in Very High-Temperature Molten Salt for Next Generation CSP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_garciadiaz.pdf More Documents & Publications Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for

  18. Demonstrating and Validating a Next Generation Model-Based Controller for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficient, Low Emissions Diesel Engines | Department of Energy and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Demonstrating and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Fully model-based, practically-mapless engine control concept is viable PDF icon deer09_allain.pdf More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion

  19. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7a_plugpwr.pdf More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  20. Using Experience to Train the Next Generation of Workers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using Experience to Train the Next Generation of Workers Using Experience to Train the Next Generation of Workers July 5, 2011 - 1:46pm Addthis Bob Wilds working at a winding machine. | Photo Courtesy of Waukesha Electric Systems Bob Wilds working at a winding machine. | Photo Courtesy of Waukesha Electric Systems Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs Bob Wilds has worked at Waukesha Electric Systems for the last 12 years as a coil winder.

  1. Paving the path for next-generation nuclear energy | Department of Energy

    Energy Savers [EERE]

    Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy

  2. Next-Generation Sensor Fish to Provide Data That Will Help Protect Real,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Live Fish | Department of Energy Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish June 4, 2014 - 1:12pm Addthis Pacific Northwest National Laboratory has redesigned the Sensor Fish, a small device deployed to study the conditions faced by fish swimming through hydropower installations. Danger to fish is a major concern when building or refurbishing hydropower facilities. In

  3. Race to Zero Student Design Competition: Inspiring the Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Scientists | Department of Energy Race to Zero Student Design Competition: Inspiring the Next Generation of Building Scientists Race to Zero Student Design Competition: Inspiring the Next Generation of Building Scientists April 23, 2015 - 3:15pm Addthis Race to Zero Student Design Competition 1 of 6 Race to Zero Student Design Competition Sam Rashkin (right), Chief Architect for the Building Technologies Office, talks to team members from Georgia Institute of Technology during the

  4. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    SciTech Connect (OSTI)

    Pepper S. E.

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  5. New Superconducting Magnet Will Lead to Next Generation of Wind Turbine

    Office of Environmental Management (EM)

    Generators | Department of Energy Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators New Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators September 12, 2014 - 11:08am Addthis AML Superconductivity and Magnetics, in conjunction with the U.S. Department of Energy's (DOE's) Argonne National Laboratory, recently announced that their superconducting magnet system passed a landmark reliability test, demonstrating its potential suitability

  6. U.S. Department of Energy Awards $200 Million for Next- Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercomputer at Argonne National Laboratory | Department of Energy 200 Million for Next- Generation Supercomputer at Argonne National Laboratory U.S. Department of Energy Awards $200 Million for Next- Generation Supercomputer at Argonne National Laboratory April 9, 2015 - 12:29pm Addthis Under Secretary for Science and Energy Orr Announces Next Steps in Pursuit of Exascale Supercomputing to Accelerate Major Scientific Discoveries and Engineering Breakthroughs. Argonne, Ill. - Today, U.S.

  7. Department of Energy Announces Funding to Support the Next Generation of

    Office of Environmental Management (EM)

    American Scientists and Engineers | Department of Energy Funding to Support the Next Generation of American Scientists and Engineers Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers March 10, 2011 - 3:22pm Addthis Fellowship Programs to Support Innovative Research and Ensure U.S. Leadership in Clean Energy WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the launch of two new fellowship programs designed

  8. Energy Department Awards $10.5 Million for Next-Generation Marine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems December 28, 2015 - 2:21pm Addthis The Energy Department today announced six organizations selected to receive up to $10.5 million to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related improvements. As part of its MHK

  9. Energy Department Announces $10.5 Million for Next-Generation Marine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy $10.5 Million for Next-Generation Marine Energy Systems Energy Department Announces $10.5 Million for Next-Generation Marine Energy Systems April 28, 2015 - 10:00am Addthis The Energy Department today announced $10.5 million in available funding to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related testing of these systems. Such advances will help these devices harness even more

  10. Department of Energy Awards $300,000 to Albuquerque’s Next Generation Economy Community Reuse Organization

    Broader source: Energy.gov [DOE]

    Department of Energy Awards $300,000 to Albuquerque’s Next Generation Economy Community Reuse Organization

  11. Next Generation Electromagnetic Pump Analysis Tools (PLM DOC-0005-2188). Final Report

    SciTech Connect (OSTI)

    Stregy, Seth; Dasilva, Ana; Yilmaz, Serkan; Saha, Pradip; Loewen, Eric

    2015-10-29

    This report provides the broad historical review of EM Pump development and details of MATRIX development under this project. This report summarizes the efforts made to modernize the legacy performance models used in previous EM Pump designs and the improvements made to the analysis tools. This report provides information on Tasks 1, 3, and 4 of the entire project. The research for Task 4 builds upon Task 1: Update EM Pump Databank and Task 3: Modernize the Existing EM Pump Analysis Model, which are summarized within this report. Where research for Task 2: Insulation Materials Development and Evaluation identified parameters applicable to the analysis model with Task 4, the analysis code was updated, and analyses were made for additional materials. The important design variables for the manufacture and operation of an EM Pump that the model improvement can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development of the next-generation EM Pump analysis tools during this two-year program provides information in three broad areas: Status of analysis model development; Improvements made to older simulations; and Comparison to experimental data.

  12. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    SciTech Connect (OSTI)

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  13. U.S. Department of Energy Partners with the Next Generation Lighting

    Energy Savers [EERE]

    Industry Alliance | Department of Energy Partners with the Next Generation Lighting Industry Alliance U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance Image containing the DOE logo and the NGLIA logo. The DOE logo is a green ring containing the words 'Department of Energy United States of America', and in the center of the ring is a shield containing images representing various energy sources, with the head of an eagle on top of the shield; to the right

  14. Empowering the Next Generation: Connecting the U.S. and African Nations

    Energy Savers [EERE]

    through Technical Exchanges | Department of Energy Empowering the Next Generation: Connecting the U.S. and African Nations through Technical Exchanges Empowering the Next Generation: Connecting the U.S. and African Nations through Technical Exchanges July 31, 2014 - 2:55pm Addthis Director Dot Harris meets with Subramania I. Sritharan PhD, P.E., Central State University, and John J. Qu, Ph.D., George Mason University, fellow participants at the May 2014 U.S.-Africa Energy Ministerial in

  15. Department of Energy Announces $40 Million to Develop the Next Generation

    Energy Savers [EERE]

    Nuclear Plant | Department of Energy 0 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 8, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the Next

  16. DOE Makes Available $8 Million for Pre-Conceptual Design of Next Generation

    Energy Savers [EERE]

    Nuclear Plants | Department of Energy Available $8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants DOE Makes Available $8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants September 28, 2006 - 9:01am Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced that DOE's Idaho National Laboratory (INL) will make awards valued at about $8 million to three companies to perform engineering studies and develop a pre-conceptual design to

  17. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace PDF icon deer12_ruth.pdf More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Passive Catalytic

  18. Five Years of Building the Next Generation of Reactors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Years of Building the Next Generation of Reactors Five Years of Building the Next Generation of Reactors August 15, 2012 - 5:17pm Addthis Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light

  19. Department of Energy Announces $40 Million to Develop the Next Generation

    Office of Environmental Management (EM)

    Nuclear Plant | Department of Energy $40 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 9, 2010 - 12:47pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the

  20. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  1. Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices

    ScienceCinema (OSTI)

    Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela

    2015-02-20

    Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.

  2. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect (OSTI)

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  3. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    SciTech Connect (OSTI)

    none,

    2008-03-01

    This roadmap to Next Generation Hydrocarbon Biorefineries outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  4. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  5. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  6. Proceedings of the April 2011 Computational Needs for the Next Generation Electric Grid Workshop Available

    Broader source: Energy.gov [DOE]

    The proceedings from the DOE's April 2011 workshop, Computational Needs for the Next Generation Electric Grid, are now available. The workshop brought together some of the Nations leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system.

  7. Energy Department Invests Nearly $8 Million to Develop Next-Generation HVAC Systems for Buildings

    Broader source: Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to advance research and development of next-generation heating, ventilating, and air conditioning (HVAC) technologies, supporting the Administration's goal of saving money by saving energy, and phasing down the use of chemicals that have a devastating effect on the global climate.

  8. Pantex College Pre-hire program helps recruit next generation employees |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Pantex College Pre-hire program helps recruit next generation employees | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  9. Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices

    SciTech Connect (OSTI)

    Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela

    2014-10-02

    Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.

  10. NNSA and MEXT to Co-host Second International Meeting on Next Generation

    National Nuclear Security Administration (NNSA)

    Safeguards | National Nuclear Security Administration MEXT to Co-host Second International Meeting on Next Generation Safeguards | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  11. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Peters, M.

    2015-05-14

    This publication includes 43 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2014.

  12. EAC Recommendations for DOE Action Regarding Development of the Next Generation Grid Operating System (Energy Management System)- October 17, 2012

    Broader source: Energy.gov [DOE]

    EAC Recommendations for DOE Action Regarding Development of the Next Generation Grid Operating System, approved at the October 15-16, 2012 EAC Meeting.

  13. Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008

    SciTech Connect (OSTI)

    Mason, T. O.; Chang, R. P. H.; Freeman, A. J.; Marks, T. J.; Poeppelmeier, K. R.

    2008-11-01

    The objective of this project was to enable next-generation, efficient, easily manufacturable, and durable organic photovoltaics through interface and electrode engineering.

  14. Report on the September 2011 Meeting of the Next Generation Safegaurds Professional Network

    SciTech Connect (OSTI)

    Gitau, Ernest TN; Benz, Jacob M.

    2011-12-19

    The Next Generation Safeguards Professional Network (NGSPN) was established in 2009 by Oak Ridge National Laboratory targeted towards the engagement of young professionals employed in safeguards across the many national laboratories. NGSPN focuses on providing a mechanism for young safeguards professionals to connect and foster professional relationships, facilitating knowledge transfer between current safeguards experts and the next generation of experts, and acting as an entity to represent the interests of the international community of young and mid-career safeguards professionals. This is accomplished in part with a yearly meeting held at a national laboratory site. In 2011, this meeting was held at Pacific Northwest National Laboratory. This report documents the events and results of that meeting.

  15. High Performance Silicon Monoxide (SiO) Electrode for Next Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Ion Batteries - Energy Innovation Portal High Performance Silicon Monoxide (SiO) Electrode for Next Generation Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Park, S.-J., Zhao, H., Ai, G., Wang, C., Song, X., Yuca, N., Battaglia, V. S., Yang, W., Liu, G. "Side Chain Conducting and Phase Separated Polymeric Binders for High Performance Silicon Anodes in Lithium Ion Batteries," Journal of

  16. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation You Can Depend On(tm) This presentation does not contain any confidential, proprietary, or otherwise restricted information. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine This presentation does not contain any confidential, proprietary, or otherwise restricted information. Michael J Ruth Cummins Inc 19 June 2014 Project ID:ACE061 2 Innovation You Can Depend On(tm) This presentation does not contain any confidential, proprietary, or otherwise restricted information. Next

  17. FACT SHEET U.S. Department of Energy Next Generation ARM to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation ARM to Improve Climate Modeling and Science For more than 20 years, the Atmospheric Radiation Measurement (ARM) Climate Research Facility has blazed the trail in providing the world's atmospheric scientists with continuous observations of cloud and aerosol properties and their impacts on Earth's energy balance. The result is an unprecedented data set that has proved invaluable for understanding the atmosphere and improving the predictive capabilities of earth system models. To

  18. Interns - Growing the next generation of employees | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Interns - Growing the next ... Interns - Growing the next generation of employees Posted: August 13, 2015 - 3:42pm M. Brown is serving her internship in the Environmental Projects department at Pantex. Summer is a time to embark on new adventures, and for 32 college students, the CNS Summer Internship Program is their chosen venture. During the 10 week program from June 1 to August 6, the interns are involved in various activities designed to provide an enriching experience that

  19. Project Profile: Next-Generation Low-Cost Reflector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Reflector Project Profile: Next-Generation Low-Cost Reflector PPG logo PPG, under the Baseload CSP FOA, is producing a durable first-surface mirror with improved optical performance and geometry design to reduce the unit cost of the reflector subcomponent in a concentrating solar power (CSP) application. Approach Illustration of a rectangle with four layers. PPG Industries is creating an ultra-large, front-surface glass mirror with an inorganic protective hardcoat. This approach is

  20. Research and Development Roadmap For Next-Generation Low-GWP Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development Roadmap For Next-Generation Low-Global Warming Potential Refrigerants July 2011 i NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  1. Microsoft Word - Research and Development Roadmap for Next-Generation Appliances

    Energy Savers [EERE]

    Research & Development Roadmap for Next-Generation Appliances W. Goetzler, T. Sutherland, K. Foley October 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or

  2. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

    2014-04-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

  3. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  4. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  5. JCESR and NASA team up to conduct research for next generation batteries to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be used in space | JCESR and NASA team up to conduct research for next generation batteries to be used in space News Release Media Contacts Ben Schiltz Joint Center for Energy Storage Research Argonne National Laboratory 630-252-5640 phone 630-252-5274 fax bschiltz@anl.gov Katherine Knurek Martin NASA Glenn Research Center 216-433-2406 phone 216-433-8143 fax katherine.martin@nasa.gov Argonne, Ill., Cleveland, Ohio, March 19, 2014 - The DOE Joint Center for Energy Storage Research (JCESR) and

  6. RESULTS OF ANALYSIS OF NGS CONCENTRATE DRUM SAMPLES [Next Generation Solvent

    SciTech Connect (OSTI)

    Peters, T.; Williams, M.

    2013-09-13

    Savannah River National Laboratory (SRNL) prepared two drums (50 gallons each in ?Drum#2? and ?Drum#4?) of NGS-MCU (Next Generation Solvent-Modular CSSX Unit) concentrate for future use at MCU in downblending the BOBCalixC6 based solvent to produce NGS-MCU solvent. Samples of each drum were sent for analysis. The results of all the analyses indicate that the blend concentrate is of the correct composition and should produce a blended solvent at MCU of the desired formulation.

  7. Sample Results From The Next Generation Solvent Program Real Waste Extraction-Scrub-Strip Testing

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  8. SAMPLE RESULTS FROM THE NEXT GENERATION SOLVENT PROGRAM REAL WASTE EXTRACTION-SCRUB-STRIP TESTING

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.

    2013-06-03

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  9. Next-Generation "Giant" Quantum Dots: Performance-Engineered for

    Energy Savers [EERE]

    Lighting | Department of Energy "Giant" Quantum Dots: Performance-Engineered for Lighting Next-Generation "Giant" Quantum Dots: Performance-Engineered for Lighting Lead Performer: Los Alamos National Laboratory - Los Alamos, NM Partners: Cree, Inc. - Durham, NC DOE Total Funding: $1,000,366 Cost Share: $250,006 Project Term: 7/1/15 - 6/30/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project seeks to

  10. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  11. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  12. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    SciTech Connect (OSTI)

    Burbank, Roberta L.; Frazar, Sarah L.; Gitau, Ernest TN; Shergur, Jason M.; Scholz, Melissa A.; Undem, Halvor A.

    2014-03-28

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSIs ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSIs long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  13. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    SciTech Connect (OSTI)

    Fondeur, F.; Fink, S.

    2011-12-08

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  14. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Wiegel, Detlef

    2011-04-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  15. Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011

    Broader source: Energy.gov [DOE]

    The April 2011 DOE workshop, “Computational Needs for the Next Generation Electric Grid,” brought together some of the Nation’s leading researchers and experts to identify computational challenges...

  16. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The first experiment was inserted in the ATR in August 2009 and started its irradiation in September 2009. It is anticipated to complete its irradiation in early calendar 2011. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and the irradiation experience to date.

  17. Materials Innovation for Next-Generation T&D Grid Components. Workshop Summary Report

    SciTech Connect (OSTI)

    Taylor, Emmanuel; Kramer, Caroline; Marchionini, Brian; Sabouni, Ridah; Cheung, Kerry; Lee, Dominic F

    2015-10-01

    The Materials Innovations for Next-Generation T&D Grid Components Workshop was co-sponsored by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the Oak Ridge National Laboratory (ORNL) and held on August 26 27, 2015, at the ORNL campus in Oak Ridge, Tennessee. The workshop was planned and executed under the direction of workshop co-chair Dr. Kerry Cheung (DOE) and co-chair Dr. Dominic Lee (ORNL). The information contained herein is based on the results of the workshop, which was attended by nearly 50 experts from government, industry, and academia. The research needs and pathways described in this report reflect the expert opinions of workshop participants, but they are not intended to represent the views of the entire electric power community.

  18. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect (OSTI)

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  19. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-07-15

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  20. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore » acceleration of ions and electrons.« less

  1. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  2. DISCOVERY OF A NEW MEMBER OF THE INNER OORT CLOUD FROM THE NEXT GENERATION VIRGO CLUSTER SURVEY

    SciTech Connect (OSTI)

    Chen, Ying-Tung; Ip, Wing-Huen; Kavelaars, J. J.; Gwyn, Stephen; Ferrarese, Laura; Ct, Patrick; Jordn, Andrs; Suc, Vincent; Cuillandre, Jean-Charles

    2013-09-20

    We report the discovery of 2010 GB{sub 174}, a likely new member of the Inner Oort Cloud (IOC). 2010 GB{sub 174} is 1 of 91 trans-Neptunian objects and Centaurs discovered in a 76 deg{sup 2} contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS)a moderate ecliptic latitude survey reaching a mean limiting magnitude of g' ? 25.5using MegaPrime on the 3.6 m Canada-France-Hawaii Telescope. 2010 GB{sub 174} is found to have an orbit with a semi-major axis of a ? 350.8 AU, an inclination of i ? 21.6, and a pericenter of q ? 48.5 AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km (H{sub V} ? 6.2 mag) to be ? 11, 000. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that 'rediscovered' the IOC object Sedna) gives, for an assumed a power-law luminosity function for IOC objects, a slope of ? ? 0.7 0.2. With only two detections in this region this slope estimate is highly uncertain.

  3. Third International Meeting on Next Generation Safeguards:Safeguards-by-Design at Enrichment Facilities

    SciTech Connect (OSTI)

    Long, Jon D.; McGinnis, Brent R; Morgan, James B; Whitaker, Michael; Lockwood, Mr. Dunbar; Shipwash, Jacqueline L

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working Group. The working group participants were tasked with providing recommendations for facility operators and designers, while promoting the IAEA's objectives of: (1) avoiding costly and time-consuming redesign work or retrofits of new nuclear facilities and (2) providing for more effective and efficient implementation of international safeguards.

  4. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

  5. Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-09-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  6. Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process

    SciTech Connect (OSTI)

    Moyer, Bruce A; Delmau, Laetitia Helene; Duncan, Nathan C; Ensor, Dale; Hill, Talon G; Lee, Denise L; Roach, Benjamin D; Sloop Jr, Frederick {Fred} V; Williams, Neil J

    2013-01-01

    The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG.

  7. The Next Generation Air Particle Detectors for the United States Navy

    SciTech Connect (OSTI)

    Robert Hayes and Craig Marianno

    2007-06-24

    Design and testing of the United States Navys next generation air particle detector (NGAPD) is presently underway. The NGAPD is intended for use in nuclear applications for the United States Navy and is being designed to detect airborne Co-60 with a reduction in false alarms and improved ease of use. Features being developed include gamma compensation, low maintenance, commercial off-the-shelf electronics, and spectrum simulation for quality assurance and functional testing applications. By supplying a spectrum simulator, the radon stripping algorithm can be running when a simulated anthropogenic source spectrum (e.g., from Co-60 or transuranics) is superimposed on the radon progeny spectrum. This will allow alarm levels to be tested when the air flow is running and the radon stripping algorithm is providing the instrument response output. Modern units evaluate source spectra with the air flow off and the radon spectrum absent thereby not testing the true system performance which comes out of the radon stripping algorithm. Testing results of the preliminary prototype show promise along with computer simulations of source spectra. Primary testing results taken to date include gamma compensation, thermal insults, vibration and spectrum simulation.

  8. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    SciTech Connect (OSTI)

    Burks, M

    2008-06-13

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field.

  9. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  10. INVESTIGATION OF PLUTONIUM AND URANIUM UPTAKE INTO MCU SOLVENT AND NEXT GENERATION SOLVENT

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-01-06

    At the request of the Savannah River Remediation (SRR) customer, the Savannah River National Laboratory (SRNL) examined the plutonium (Pu) and uranium (U) uptake into the Next Generation Solvent (NGS) that will be used at the Salt Waste Processing Facility (SWPF). SRNL examined archived samples of solvent used in Extraction-Scrub-Strip (ESS) tests, as well as samples from new tests designed explicitly to examine the Pu and U uptake. Direct radiocounting for Pu and U provided the best results. Using the radiocounting results, we found that in all cases there were <3.41E-12 g Pu/g of NGS and <1.17E-05 g U/g of NGS in multiple samples, even after extended contact times and high aqueous:organic volume phase ratios. These values are conservative as they do not allow for release or removal of the actinides by scrub, strip, or solvent wash processes. The values do not account for extended use or any increase that may occur due to radiolytic damage of the solvent.

  11. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    SciTech Connect (OSTI)

    Katzenberger, John; Arnott, James; Wright, Alyson

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6, on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  12. An evaluation of possible next-generation high temperature molten-salt power towers.

    SciTech Connect (OSTI)

    Kolb, Gregory J.

    2011-12-01

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  13. The Next Generation of Heavy Ion Sources (447th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Okamura, Masahiro

    2009-03-04

    Imagine if, by staying in your lane when driving on the expressway, you could help fight cancer or provide a new, clean energy source. You would clench the steering wheel with both hands and stay in your lane, right? Unlike driving on the expressway where you intentionally avoid hitting other cars, scientists sometimes work to steer particle beams into head-on collisions with other oncoming particle beams. However, the particles must be kept "in their lanes" for cleaner, more frequent collisions. Some scientists propose starting the whole process by using lasers to heat a fixed target as a way to get particles with higher charge, which are more steerable. These scientists believe the new methods could be used to develop particle beams for killing cancer cells or creating usable energy from fusion. Join Masahiro Okamura of Brookhaven's Collider-Accelerator Department for the 447th Brookhaven Lecture, titled "The Next Generation of Heavy Ion Sources." Okamura will explain how lasers can be used to create plasma, neutral mixtures of positive ions and negative electrons, from different materials, and how using this plasma leads to beams with higher charge states and currents. He will also discuss how this efficient, simpler method of producing particle beams might be used for cancer therapy, to develop new energy sources, or in synchrotrons.

  14. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  15. Next Generation of Renewable Electricity Policy: How Rapid Change is Breaking Down Conventional Policy Categories

    SciTech Connect (OSTI)

    Couture, T. D.; Jacobs, D.; Rickerson, W.; Healey, V.

    2015-02-01

    A number of policies have been used historically in order to stimulate the growth of the renewable electricity sector. This paper examines four of these policy instruments: competitive tendering, sometimes called renewable electricity auctions, feed-in tariffs, net metering and net billing, and tradable renewable energy certificates. In recent years, however, a number of changes to both market circumstances and to policy priorities have resulted in numerous policy innovations, including the emergence of policy hybrids. With no common language for these evolving policy mechanisms, policymakers have generally continued to use the same traditional policy labels, occasionally generating confusion as many of these new policies no longer look, or act, like their traditional predecessors. In reviewing these changes, this paper makes two separate but related claims: first, policy labels themselves are breaking down and evolving. As a result, policy comparisons that rely on the conventional labels may no longer be appropriate, or advisable. Second, as policymakers continue to adapt, we are in effect witnessing the emergence of the next generation of renewable electricity policies, a change that could have significant impacts on investment, as well as on market growth in both developed and developing countries.

  16. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect (OSTI)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  17. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  18. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    SciTech Connect (OSTI)

    Smith, Tara E.; Scherman, Carl; Martin, David; Suggs, Patricia

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  19. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  20. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  1. Rapid evaluation and quality control of next generation sequencing data with FaQCs

    SciTech Connect (OSTI)

    Lo, Chien -Chi; Chain, Patrick S. G.

    2014-12-01

    Background: Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Results: Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly process large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. Conclusion: FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.

  2. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    SciTech Connect (OSTI)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  3. Rapid evaluation and quality control of next generation sequencing data with FaQCs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lo, Chien -Chi; Chain, Patrick S. G.

    2014-12-01

    Background: Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Results: Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly processmore » large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. Conclusion: FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.« less

  4. Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program

    SciTech Connect (OSTI)

    Boyer, Brian D; Whitaker, J. Michael; White-Horton, Jessica L.; Durbin, Karyn R.

    2012-07-12

    Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

  5. April 5 PSERC Webinar: Seamless Bulk Electric Grid Management: A Platform for Designing the Next Generation EMS

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar that will address the feasibility of a flexible platform that is needed when designing the framework for the next generation Energy Management System (EMS) and analytics.

  6. DOE Awards More Than $30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts

    Broader source: Energy.gov [DOE]

    Secretary Steven Chu announces more than $30 million for 24 universities in 23 states across the country to train undergraduate- and graduate-level engineering students in manufacturing efficiency to help them become the nation's next generation of industrial energy efficiency experts.

  7. EAC Recommendations for DOE Action on the Development of the Next Generation Grid Operating System - October 17, 2012

    Office of Environmental Management (EM)

    Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: October 17, 2012 RE: Recommendations on Development of the Next Generation Grid Operating System (Energy Management System). _________________________________________________________________________ The purpose of this memorandum is to respectfully recommend to the U.S. Department of Energy (DOE) a roadmap for the

  8. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect (OSTI)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for both the PBMR and prismatic design. The main focus of this report is the RPV for both design concepts with emphasis on material selection.

  9. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  10. Next-generation Algorithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience

    SciTech Connect (OSTI)

    Burchett, Deon L.; Chen, Richard Li-Yang; Phillips, Cynthia A.; Richard, Jean-Philippe

    2015-05-01

    This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years of Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed edge-failure resilient network design problem (DRNDP). This problem entails the design of a directed multi-commodity flow network that is capable of fulfilling a specified percentage of demands in the event that any G arcs are destroyed, where G is a constant parameter. We present a formulation of DRNDP and solve it in a branch-column-cut framework. We present computational results.

  11. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task Air-Cooled Condensers in Next- Generation Conversion Systems. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  12. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  13. The Next Generation Nuclear Plant - Insights Gained from the INEEL Point Design Studies

    SciTech Connect (OSTI)

    Philip E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-08-01

    This paper provides the results of an assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebble-bed fuel helium gas reactor. Insights gained regarding the strengths and weaknesses of the two designs are also discussed. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. Two major modifications of the current Gas Turbine- Modular Helium Reactor (GT-MHR) design were needed to obtain a prismatic block design with a 1000 C outlet temperature: reducing the bypass flow and better controlling the inlet coolant flow distribution to the core. The total power that could be obtained for different core heights without exceeding a peak transient fuel temperature of 1600 C during a high or low-pressure conduction cooldown event was calculated. With a coolant inlet temperature of 490 C and 10% nominal core bypass flow, it is estimated that the peak power for a 10-block high core is 686 MWt, for a 12-block high core is 786 MWt, and for a 14-block core is about 889 MWt. The core neutronics calculations showed that the NGNP will exhibit strongly negative Doppler and isothermal temperature coefficients of reactivity over the burnup cycle. In the event of rapid loss of the helium gas, there is negligible core reactivity change. However, water or steam ingress into the core coolant channels can produce a relatively large reactivity effect. Two versions of an annular pebble-bed NGNP have also been developed, a 300 and a 600 MWt module. From this work we learned how to design passively safe pebble bed reactors that produce more than 600 MWt. We also found a way to improve both the fuel utilization and safety by modifying the pebble design (by adjusting the fuel zone radius in the pebble to optimize the fuel-to-moderator ratio). We also learned how to perform design optimization calculations by using a genetic algorithm that automatically selects a sequence of design parameter sets to meet specified fitness criteria increasingly well. In the pebble-bed NGNP design work, we use the genetic algorithm to direct the INEELs PEBBED code to perform hundreds of code runs in less than a day to find optimized design configurations. And finally, we learned how to calculate cross sections more accurately for pebble bed reactors, and we identified research needs for the further refinement of the cross section calculations.

  14. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    SciTech Connect (OSTI)

    Thompson, Neil

    2010-10-20

    The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to the FEL interaction and starts to convert into a density modulation, or bunching, at the seed wavelength. However, this bunching also has components at higher harmonics which retain the longitudinal coherence of the initial seed. The beam passes through a magnetic chicane, which shears the longitudinal phase space to maximise the bunching at the required harmonic, then a further undulator which is tuned to this harmonic. If this second undulator is short it acts as a further modulator, and because the beam is pre-bunched at the modulator resonance there is a strong coherent burst of radiation which acts to modulate the electron beam energy in much the same way the input laser seed field acted in the first modulator. This second modulator is followed by a second bunching chicane and then a final long radiator tuned to a yet higher harmonic of the laser seed - the final output wavelength. Alternatively, the second undulator can be the radiator itself, in which case only one harmonic conversion from seed wavelength to final output is necessary. We initially consider the case of a 400kW peak power HHG seed source at wavelength 12nm (currently considered the cutoff wavelength for sufficient seed power to dominate shot noise in the electron beam) which is converted in either one or two stages or harmonic conversion to FEL emission at 1nm. We then consider the implications of a factor of ten reduction in seed power to 40kW.

  15. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  16. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report

    SciTech Connect (OSTI)

    Dreicer, M; Anzelon, G; Essner, J; Dougan, A; Doyle, J; Boyer, B; Hypes, P; Sokova, E; Wehling, F

    2008-10-17

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. Other university/organizations represented: University of California in LA, Stanford University, and the IAEA. Four of the students that completed this intensive course participated in a 2-month internship at LLNL. The conclusions of the two pilot courses and internships was a NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The Poster sessions were designed to provide a forum for sharing the results of their summer projects and providing experience in presenting their work to a varied audience of students, faculty and laboratory staff. The success of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of their two pilot efforts in the coming years.

  17. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  18. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  19. Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

    SciTech Connect (OSTI)

    Barth, Matthew; Boriboonsomsin, Kanok

    2014-12-31

    The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for driving performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicles controller area network bus through the vehicles on-board diagnostic connector, it does not modify or interfere with the vehicles controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.

  20. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  1. July 24, 2009, Visiting Speakers Program - The Next Generation of Regulation for High-Reliability Organizations by HON. John Bresland

    Office of Environmental Management (EM)

    Next Generation of Regulation for High-Reliability Organizations National Academy of Public Administration Washington, DC July 24, 2009 John Bresland Chairman United States Chemical Safety Board www.csb.gov What is a High Reliability Organization? * Management commitment * The right equipment * The right people * Standard procedures and training * Accountability * Employee feedback * Emergency response preparation * Leadership - must "walk the walk" www.csb.gov 2 * 3 www.csb.gov Are

  2. OpenEI Community - utility rate

    Open Energy Info (EERE)

    title"" >After several months of development and testing, the next generation web service for the utility rate database is finally here I encourage you to check out...

  3. NERI Final Project Report: On-Line Intelligent Self-Diagnostic Monitoring System for Next Generation Nuclear Power Plants

    SciTech Connect (OSTI)

    Bond, Leonard J.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Sisk, Daniel R.; Hatley, Darrel D.; Watkins, Kenneth S.; Chai, Jangbom; Kim, Wooshik

    2003-06-20

    This project provides a proof-of-principle technology demonstration for SDMS, where a distributed suite of sensors is integrated with active components and passive structures of types expected to be encountered in next generation nuclear power reactor and plant systems. The project employs state-of-the-art operational sensors, advanced stressor-based instrumentation, distributed computing, RF data network modules and signal processing to improve the monitoring and assessment of the power reactor system and gives data that is used to provide prognostics capabilities.

  4. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    SciTech Connect (OSTI)

    Campbell, Catherine

    2012-06-01

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  5. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Campbell, Catherine [Noblis

    2013-03-22

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    SciTech Connect (OSTI)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the first stage D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) predicted equivalent DF for MCU from this testing is greater than 3,500 assuming 95% efficiency during extraction and 80% efficiency during scrub and strip. Hydraulically, the system performed very well in all tests. Target flows were easily obtained and stable throughout testing. Though some issues were encountered with plugging in the coalescer, they were not related to the solvent. No hydraulic upsets due to the solvent were experienced during any of the tests conducted. The first extraction coalescer element used in testing developed high pressure drop that made it difficult to maintain the target flow rates. Analysis showed an accumulation of sodium aluminosilicate solids. The coalescer was replaced with one from the same manufacturers lot and pressure drop was no longer an issue. Concentrations of Isopar L and Modifier were measured using semi-volatile organic analysis (SVOA) and high performance liquid chromatography (HPLC) to determine the amount of solvent carryover. For low-flow (0.27 gpm aqueous) conditions in stripping, SVOA measured the Isopar L post-contactor concentration to be 25 mg/L, HPLC measured 39 mg/L of Modifier. For moderate-flow (0.54 gpm aqueous) conditions, SVOA measured the Isopar L postcontactor to be ~69 mg/L, while the HPLC measured 56 mg/L for Modifier. For high-flow (0.8 gpm aqueous) conditions, SVOA measured the Isopar L post-contactor to be 39 mg/L. The post-coalescer (pre-decanter) measurements by SVOA for Isopar L were all less than the analysis detection limit of 10 mg/L. The HPLC measured 18, 22 and 20 mg/L Modifier for the low, medium, and high-low rates respectively. In extraction, the quantity of pre-coalescer Isopar L carryover measured by SVOA was ~280-410 mg/L at low flow (4 gpm aqueous), ~400-450 mg/L at moderate flow (8 gpm aqueous), and ~480 mg/L at high flow (12 gpm aqueous). The amount of post coalescer (pre-decanter) Isopar L carryover measured by SVOA was less than 45 mg/L for all flow rates. HPLC results for Modifier were 182, 217 and 22

  7. Recent SuperB Design Choices Improve Next-Generation e e___ B-Factory Collider

    SciTech Connect (OSTI)

    Wittmer, W.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; Bolzon, B.; Brunetti, L.; Jeremie, A.; Biagini, M.E.; Boni, R.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /Saclay

    2011-08-19

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the {Upsilon}(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}*{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  8. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    SciTech Connect (OSTI)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  9. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  10. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    SciTech Connect (OSTI)

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing based FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)

  11. Critical view to ''IGEX {sup 76}Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments''

    SciTech Connect (OSTI)

    Klapdor-Kleingrothaus, H.V.; Dietz, A. [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, D-69029 Heidelberg (Germany); Krivosheina, I. V. [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, D-69029 Heidelberg (Germany); Radiophysical-Research Institute, Nishnii-Novgorod (Russian Federation)

    2004-10-01

    Recently, a paper entitled 'The IGEX {sup 76}Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments' has been published [Phys. Rev. D 65, 092007 (2002)]. In view of the recently reported evidence for neutrinoless double-beta decay [Mod. Phys. Lett. A 16, 2409 (2001).; Found. Phys. 31, 1181 (2002); Phys. Lett. B 586, 198 (2004).], it is particularly unfortunate that the IGEX paper is rather incomplete in its presentation. We would like to point out in this Comment that and why it would be highly desirable to make more details about the experimental conditions and the analysis of IGEX available. We list some of the main points, which require further explanation. We also point to an arithmetic mistake in the analysis of the IGEX data, the consequence of which are too high half-life limits given in that paper.

  12. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

  13. Thermal And Spectroscopic Analyses Of Next Generation Caustic Side Solvent Extraction Solvent Contacted With 3, 8, And 16 Molar Nitric Acid

    SciTech Connect (OSTI)

    Fondeur, F. F.; Fink, S. D.

    2011-12-07

    A new solvent system referred to as Next Generation Solvent or NGS, has been developed at Oak Ridge National Laboratory for the removal of cesium from alkaline solutions in the Caustic Side Solvent Extraction process. The NGS is proposed for deployment at MCU{sup a} and at the Salt Waste Processing Facility. This work investigated the chemical compatibility between NGS and 16 M, 8 M, and 3 M nitric acid from contact that may occur in handling of analytical samples from MCU or, for 3 M acid, which may occur during contactor cleaning operations at MCU. This work shows that reactions occurred between NGS components and the high molarity nitric acid. Reaction rates are much faster in 8 M and 16 M nitric acid than in 3 M nitric acid. In the case of 16 M and 8 M nitric acid, the nitric acid reacts with the extractant to produce initially organo-nitrate species. The reaction also releases soluble fluorinated alcohols such as tetrafluoropropanol. With longer contact time, the modifier reacts to produce a tarry substance with evolved gases (NO{sub x} and possibly CO). Calorimetric analysis of the reaction product mixtures revealed that the organo-nitrates reaction products are not explosive and will not deflagrate.

  14. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  15. Next Generation Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... library ready to support public use. 2. ORNL's concept ... energy simulations and economics assessments, and ... to International Journal of HVAC&R. 14 | Building ...

  16. Next Generation Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Therefore, 56 this chapter focuses on providing quantitative ... However, the qualitative summary of 59 impacted economy ... underscored in a 2013 study led by the TMS on ICME 75 ...

  17. Next Generation Household Refrigerator

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: Whirlpool - Benton Harbor, MI

  18. Next Generation Inverter

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  20. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  1. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2004-09-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the first year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The first year activities were focused on the installation, set-up, and use of advanced equipment for the metalorganic chemical vapor deposition growth of III-nitride films and the characterization of these materials (Task 1) and the design, fabrication, testing of nitride LEDs (Task 4). As a progress highlight, we obtained improved quality of {approx} 2 {micro}m-thick GaN layers (as measured by the full width at half maximum of the asymmetric (102) X-ray diffraction peak of less than 350 arc-s) and higher p-GaN:Mg doping level (free hole carrier higher than 1E18 cm{sup -3}). Also in this year, we have developed the growth of InGaN/GaN active layers for long-wavelength green light emitting diodes, specifically, for emission at {lambda} {approx} 540nm. The effect of the Column III precursor (for Ga) and the post-growth thermal annealing effect were also studied. Our LED device fabrication process was developed and initially optimized, especially for low-resistance ohmic contacts for p-GaN:Mg layers, and blue-green light emitting diode structures were processed and characterized.

  2. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiatives Plutonium Assay Challenge

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  3. Towards Next Generation TATB-based Explosives by Understanding Voids and Microstructure from 10 nm to 1 cm

    SciTech Connect (OSTI)

    Willey, T M; Overturf, G

    2009-03-26

    TATB-based explosives have been investigated on length scales spanning several orders of magnitude, from just under 10 nm to larger than 1 cm. This has been accomplished using a combination of ultra-small angle x-ray scattering (USAXS), ultra-small angle neutron scattering (USANS), and x-ray computed tomography (XRCT). USAXS determines distributions the smallest structures including hot-spot voids from hundreds of nanometers to a few microns, USANS extends this range to about 10 microns, and two variants of XRCT cover sizes from microns to centimeters. Several examples are presented for LX-17, a triaminotrinitrobenzene based plastic bonded explosive using Kel-F 800. As an extension of previous USAXS results, in these proceedings, an alternate binder results in a more uniform microstructure for the PBX, useful towards design of next-generation TATB-based explosives. These data are an important step to understanding microstructural mechanisms that affect the mechanical properties of TATB-based explosives, and provide complete a comprehensive characterization of the structure of LX-17 from nanometers to centimeters that can be used as empirical input to computational models of detonation, and in determining the relationship between voids and microstructure to detonation properties.

  4. Monolayers of MoS{sub 2} as an oxidation protective nanocoating material

    SciTech Connect (OSTI)

    Sen, H. Sener; Sahin, H.; Peeters, F. M.; Durgun, E.

    2014-08-28

    First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS{sub 2} monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS{sub 2} monolayer is prevented by a very high diffusion barrier indicating that MoS{sub 2} can serve as a protective layer for oxidation. The analysis is extended to WS{sub 2} and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS{sub 2} and WS{sub 2} monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material.

  5. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2006-01-01

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the second year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The second year activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on green LED active region as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda} {approx}540nm green LEDs. We have also studied the thermal annealing effect on blue and green LED active region during the p-type layer growth. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {Omega}-cm) and improved optical quality green LED active region emitting at {lambda} {approx}540nm by electroluminescence. The active region of the green LEDs was found to be much more sensitive to the thermal annealing effect during the p-type layer growth than that of the blue LEDs. We have designed grown, fabricated green LED structures for both 520 nm and 540 nm for the evaluation of second year green LED development.

  6. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    SciTech Connect (OSTI)

    Ball, Sydney J; Corradini, M.; Fisher, Stephen Eugene; Gauntt, R.; Geffraye, G.; Gehin, Jess C; Hassan, Y.; Moses, David Lewis; Renier, John-Paul; Schultz, R.; Wei, T.

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  7. Surface Morphology and Topology of TiO{sub 2} Nanocoating on Metal Substrates at Different Molar Concentrations and Speed

    SciTech Connect (OSTI)

    Achoi, Mohd F.; Nor, Asiah M.; Abdullah, S.; Rusop, M.

    2011-03-30

    Mild steel is low carbon steel content of carbon less than 0.25 wt%. This type of steels is low cost to produce while has good toughness and outstanding ductility. Nanocoated mild steel surface is greatly many applications such as in automobile body component, pipelines, wall of operation's room and operation's theatre. Anatase TiO{sub 2} coating were successfully synthesized by optimize the sol-gel solution wherein glacial acetic acid and controlling of annealing temperature. In this paper initial study of TiO{sub 2} nanocoating on mild steel surface was presented. TiO{sub 2} nanocoating was prepared by spin coating technique. Spin coating technique is low processing temperature and ease of compositional modifications. The sol-gel concentration and speed (rpm) of spin coating were varied to produce different surface morphology and topology of samples. The surface phase, morphology and topology of coating were investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) while the roughness of coating was determined by Surface Profiler (SP).

  8. Nanocoating for High-efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Cook, Bruce

    2011-06-22

    Characterization of the AlMgB14-based coatings revealed their semi-crystalline nature; as a single phase, AlMgB14 appears amorphous. Combining this material with TiB2 through comminution of very fine-scale powders (~100 nm), produces a bulk solid that exceeds the hardness of its respective constituent phases. Through physical vapor deposition processing, the resulting nanocomposite coating combines the wear resistance characteristic of hard materials (e.g. the AlMgB14) with a regenerating lubricant. Within the top layers (10-20 nm) of the nanocomposite coating, the same TiB2 phase used to enhance the strength and provide ductility to the otherwise brittle AlMgB14 material reacts with available oxygen to form boron oxide. As the atoms of TiB2 continue to react, layers of boric acid begin to form at the surface. This affords an exceptionally low coefficient of friction (as low as 0.02) to the coating. Physical vapor deposition processing parameters were evaluated and optimized during the project to minimize the difficulties common to transitioning a laboratory-scale process or technology to a salable product. Coating process times and temperatures, process gas flows and ramp rates, and a number of other adjustable parameters were optimized based on the results of testing and coating characterization. The overriding goal of all of these efforts was a repeatable coating process that yields the benefits observed in the laboratory, independent of the intended product or market.

  9. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect (OSTI)

    Forsberg, Charles W; Gorensek, M. B.; Herring, S.; Pickard, P.

    2008-03-01

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

  10. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  11. Final report for SciDAC grant Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution.

    SciTech Connect (OSTI)

    Larson, Vincent

    2015-02-21

    This is a final report for a SciDAC grant supported by BER, "Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution." The project implemented a novel technique for coupling small-scale dynamics and microphysics into a community climate model. The technique uses subcolumns that are sampled in Monte Carlo fashion from a distribution of subgrid variability. The resulting global simulations show several improvements over the status quo.

  12. The potential for detecting gamma-ray burst afterglows from population III stars with the next generation of infrared telescopes

    SciTech Connect (OSTI)

    Macpherson, D. [ICRAR, University of Western Australia, Crawley, WA 6009 (Australia); Coward, D. M. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Zadnik, M. G., E-mail: damien.macpherson@icrar.org [Department of Imaging and Applied Physics, Curtin University, Perth, WA 6845 (Australia)

    2013-12-10

    We investigate the detectability of a proposed population of gamma-ray bursts (GRBs) from the collapse of Population III (Pop III) stars. The James Webb Space Telescope (JWST) and Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be able to observe the late time infrared afterglows. We have developed a new method to calculate their detectability, which takes into account the fundamental initial mass function and formation rates of Pop III stars, from which we find the temporal variability of the afterglows and ultimately the length of time JWST and SPICA can detect them. In the range of plausible Pop III GRB parameters, the afterglows are always detectable by these instruments during the isotropic emission, for a minimum of 55 days and a maximum of 3.7 yr. The average number of detectable afterglows will be 2.96 10{sup 5} per SPICA field of view (FOV) and 2.78 10{sup 6} per JWST FOV. These are lower limits, using a pessimistic estimate of Pop III star formation. An optimal observing strategy with SPICA could identify a candidate orphan afterglow in ?1.3 yr, with a 90% probability of confirmation with further detailed observations. A beamed GRB will align with the FOV of the planned GRB detector Energetic X-ray Imaging Survey Telescope once every 9 yr. Pop III GRBs will be more easily detected by their isotropic emissions (i.e., orphan afterglows) rather than by their prompt emissions.

  13. A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0

    SciTech Connect (OSTI)

    Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

    2013-11-13

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  14. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    SciTech Connect (OSTI)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-10-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHEs) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  15. WE-E-18A-08: Towards a Next-Generation Electronic Portal Device for Simultaneous Imaging and Dose Verification in Radiotherapy

    SciTech Connect (OSTI)

    Blake, S; Vial, P; Holloway, L; Kuncic, Z

    2014-06-15

    Purpose: This work forms part of an ongoing study to develop a next-generation electronic portal imaging device (EPID) for simultaneous imaging and dose verification in radiotherapy. Monte Carlo (MC) simulations were used to characterize the imaging performance of a novel EPID that has previously been demonstrated to exhibit a water-equivalent response. The EPID ' s response was quantified in several configurations and model parameters were empirically validated against experimental measurements. Methods: A MC model of a novel a-Si EPID incorporating an array of plastic scintillating fibers was developed. Square BCF-99-06A scintillator fibers with PMMA cladding (Saint-Gobain Crystals) were modelled in a matrix with total area measuring 150150 mm{sup 2}. The standard electromagnetic and optical physics Geant4 classes were used to simulate radiation transport from an angled slit source (6 MV energy spectrum) through the EPID and optical photons reaching the photodiodes were scored. The prototype's modulation transfer function (MTF) was simulated and validated against experimental measurements. Several optical transport parameters, fiber lengths and thicknesses of an air gap between the scintillator and photodiodes were investigated to quantify their effects on the prototype's detection efficiency, sensitivity and MTF. Results: Simulated EPID response was more sensitive to variations in geometry than in the optical parameters studied. The MTF was particularly sensitive to the introduction of a 0.51.0 mm air gap between the scintillator and photodiodes, which lowered the MTF relative to that simulated without the gap. As expected, increasing the fiber length increased the detector efficiency and sensitivity while decreasing the MTF. Conclusion: A model of a novel water-equivalent EPID has been developed and benchmarked against measurements using a physical prototype. We have demonstrated the feasibility of this new device and are continuing to optimize the design to achieve an imaging response that warrants the development of a next-generation prototype.

  16. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect (OSTI)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental program to test the full size strip (V5) and extraction (V10) centrifugal contactors and the associated strip and extraction effluent coalescers to determine the hydraulic and mass transfer characteristics with the NGS. The test program evaluated the amount of organic carryover and the droplet size of the carryover phases using several analytical methods. Provisions were also made to enable an evaluation of coalescer performance. Stage efficiency and mass distribution ratios were determined using Cs mass transfer measurements. Using 20 millimolar (mM) extractant (instead of 50 mM), the nominal D(Cs) measured was 16.0-17.5. The data indicate that equilibrium is achieved rapidly and maintained throughout sampling. The data showed good stage efficiency for extraction (Tests 1A-1D), ranging from 98.2% for Test 1A to 90.5% for Test 1D. No statistically-significant differences were noted for operations at 12 gpm aqueous flow when compared with either 4 gpm or 8 gpm of aqueous flow. The stage efficiencies equal or exceed those previously measured using the baseline CSSX solvent system. The nominal target for scrub Cs distribution values are {approx}1.0-2.5. The first scrub test yielded an average scrub value of 1.21 and the second scrub test produced an average value of 0.78. Both values are considered acceptable. Stage efficiency was not calculated for the scrub tests. For stripping behavior, six tests were completed in a manner to represent the first strip stage. For three tests at the baseline flow ratios (O:A of 3.75:1) but at different total flow rates, the D(Cs) values were all similar at {approx}0.052. Similar behavior was observed for two tests performed at an O:A ratio of 7:1 instead of 3.75:1. The data for the baseline strip tests exhibited acceptable stage efficiency, ranging from 82.0% for low flow to 89-90% for medium and high flow. The difference in efficiency may be attributable to the low volume in the contactor housing at lower flow rates. The concentrations of Isopar L{reg_sign} and Modifier were measured using semi-volatile organic analysis (SVOA

  17. Finishing Using Next Generation Technologies

    SciTech Connect (OSTI)

    Van Tonder, Andries

    2010-06-03

    Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  18. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Saving Energy: The Next Generation

    Broader source: Energy.gov [DOE]

    Have you heard of America’s Home Energy Education Challenge? It’s a challenge—designed to get students in grades 3-8 to help their families and communities embrace home energy efficiency.

  20. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene; Sloop Jr, Frederick {Fred} V; Williams, Neil J; Birdwell Jr, Joseph F; Lee, Denise L; Leonard, Ralph; Fink, Samuel D; Peters, Thomas B.; Geeting, Mark W

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

  1. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    SciTech Connect (OSTI)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundations Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energys Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for Development of the Next-Generation CAVE Virtual Environment (NG-CAVE), enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  2. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect (OSTI)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

  3. Articles about Next-Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is that most projections put the operation and maintenance (O&M) costs of offshore wind farms between 2 to 5 times the current average costs for land-based wind farms. One way...

  4. Next generation Programming Models-042114.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Types of Parallelism Memory Data Representation Acceler ator affinity Motivation DEGAS Extensions to Fortran(CAF 2.0), C (Habanero C and UPC) and Python Tasks and Asynch...

  5. California: Next-Generation Geothermal Demonstration Launched...

    Energy Savers [EERE]

    Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine...

  6. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  7. Next Generation Resource Manager Protoryping Environment

    Energy Science and Technology Software Center (OSTI)

    2013-08-19

    ngrm-proto is a package of proff-of-concept utilities intended to demonstrate concepts that will be developed full in the FLUX resource manager.

  8. NNSA Next Generation Safeguards Initiative | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  9. Behavior-Based Safety- The Next Generation

    Broader source: Energy.gov [DOE]

    Presenters: Roger Staten, Hazel Darby, Frank Cannon, Savannah River Remediation, LLC, Savannah River Remediation, Savannah River Nuclear Solutions, LLC Track 2-6

  10. Celebrating The Next Generation of Energy Entrepreneurs

    Broader source: Energy.gov [DOE]

    Recognizing innovative, bold-thinking student entrepreneurs who are working to advance clean energy technologies.

  11. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band ...

  12. Introducing Mira, Argonne's Next-Generation Supercomputer

    SciTech Connect (OSTI)

    2013-03-19

    Mira, the new petascale IBM Blue Gene/Q system installed at the ALCF, will usher in a new era of scientific supercomputing. An engineering marvel, the 10-petaflops machine is capable of carrying out 10 quadrillion calculations per second.

  13. Next Generation Luminaires Design Competition Announces 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Class for its Slot 2 & 4 LED-Direct and Bi-Direct family of surface mounted and pendant linear luminaires. More information on all the winning entries is available at http:...

  14. Ames Lab 101: Next Generation Power Lines

    ScienceCinema (OSTI)

    Russell, Alan

    2012-08-29

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  15. Next Generation Luminaire (NGL) Downlight Demonstration Project...

    Energy Savers [EERE]

    The U.S. DOE conducts demonstration projects documenting the performance of LED luminaires relative to conventional technologies to increase market adoption of energy-efficient LED ...

  16. EcoCAR the Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managed by THE LATEST ADVANCED VEHICLE TECHNOLOGY COMPETITION 2011 MERIT REVIEW KRISTEN DE LA ROSA FRANK FALCONE ARGONNE NATIONAL LABORATORY MAY 12, 2011 Project ID: T1013 This presentation does not contain any proprietary, confidential, or otherwise restricted information Timeline * Started August 2008 * Ends June 2011 * 88% Complete * Year 3 (vehicle refinement year) completion June 2011 Barriers * Vehicle System Analysis * Development of computer powertrain modeling tools * Vehicle

  17. HIGS2: The Next Generation Compton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a reduced gamma-ray beam intensity on target). PV in circularly polarized photon breakup of the deuteron Naive dimensional analysis suggests that the PV asymmetry involved...

  18. Investing in the next generation: The Office of Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    educational and research opportunities to prepare NS&E students for nuclear energy professions, in support of NE's mission. NE is seeking applicants for undergraduate...

  19. Microsoft Word - Research and Development Roadmap for Next-Generation...

    Energy Savers [EERE]

    ... support Manufacturers - prototyping, designfield support Validation and Testing ... interference with the molecular mean free path; thus reducing the material's conductivity. ...

  20. Next-Generation Lithium Metal Anode Engineering via Atomic Layer...

    Office of Scientific and Technical Information (OSTI)

    Number: SC0001160 Resource Type: Journal Article Resource Relation: Journal Name: ACS Nano; Journal Volume: In Press; Related Information: NEES partners with University of...

  1. NOvA: Building a Next Generation Neutrino Experiment

    ScienceCinema (OSTI)

    Perko, John; Williams, Ron; Miller, Bill;

    2014-05-30

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  2. Summary for the Next Generation Nuclear Plant Project in Review

    SciTech Connect (OSTI)

    L.E. Demick

    2010-08-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  3. Summary for the Next Generation Nuclear Plant Project in Review

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  4. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  5. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon cspreviewmeeting042313...

  6. Batteries - Next-generation Li-ion batteries Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    the Other Technical Areas Being Discussed * Main point: we should consider next-gen Li-ion and beyond Li-ion together as a single portfolio of work, in which risk and...

  7. Department of Energy Announces Funding to Support the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy. These programs will increase American economic competitiveness and support job growth by promoting science, technology, engineering, and math (STEM) education, an...

  8. Multiscale Toxicology- Building the Next Generation Tools for Toxicology

    SciTech Connect (OSTI)

    Retterer, S. T.; Holsapple, M. P.

    2013-10-31

    A Cooperative Research and Development Agreement (CRADA) was established between Battelle Memorial Institute (BMI), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Lawrence Livermore National Laboratory (LLNL) with the goal of combining the analytical and synthetic strengths of the National Laboratories with BMI?s expertise in basic and translational medical research to develop a collaborative pipeline and suite of high throughput and imaging technologies that could be used to provide a more comprehensive understanding of material and drug toxicology in humans. The Multi-Scale Toxicity Initiative (MSTI), consisting of the team members above, was established to coordinate cellular scale, high-throughput in vitro testing, computational modeling and whole animal in vivo toxicology studies between MSTI team members. Development of a common, well-characterized set of materials for testing was identified as a crucial need for the initiative. Two research tracks were established by BMI during the course of the CRADA. The first research track focused on the development of tools and techniques for understanding the toxicity of nanomaterials, specifically inorganic nanoparticles (NPs). ORNL?s work focused primarily on the synthesis, functionalization and characterization of a common set of NPs for dissemination to the participating laboratories. These particles were synthesized to retain the same surface characteristics and size, but to allow visualization using the variety of imaging technologies present across the team. Characterization included the quantitative analysis of physical and chemical properties of the materials as well as the preliminary assessment of NP toxicity using commercially available toxicity screens and emerging optical imaging strategies. Additional efforts examined the development of high-throughput microfluidic and imaging assays for measuring NP uptake, localization, and toxicity in vitro. The second research track within the MSTI CRADA focused on the development of ex vivo animal models for examining druginduced cardiotoxicity. ORNL's role in the second track was limited initially, but was later expanded to include the development of microfluidic platforms that might facilitate the translation of Cardiac 'Microwire' technologies developed at the University of Toronto into a functional platform for drug screening and predictive assessment of cardiotoxicity via highthroughput measurements of contractility. This work was coordinated by BMI with the Centre for the Commercialization of Regenerative Medicine (CCRM) and the University of Toronto (U Toronto). This partnership was expanded and culminated in the submission of proposal to Work for Others (WFO) agencies to explore the development of a broader set of microphysiological systems, a so call human-on-a-chip, that could be used for toxicity screening and the evaluation of bio-threat countermeasures.

  9. New ALS Technique Guides IBM in Next-Generation Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chip, which then form transistors," says Jed Pitera, a research staff member in science and technology at IBM Research-Almaden. "But it's also really hard to do the...

  10. Simulations for a next-generation UHECR observatory

    SciTech Connect (OSTI)

    Oikonomou, Foteini; Abdalla, Filipe B.; Kotera, Kumiko E-mail: kotera@iap.fr

    2015-01-01

    We explore the potential of a future, ultra-high energy cosmic ray (UHECR) experiment, that is able to overcome the limitation of low statistics, to detect anisotropy in the arrival directions of UHECRs. We concentrate on the lower energy range of future instruments (E?>50EeV), where, if the UHECR source number density is not too low, the sources should be numerous enough to imprint a clustering pattern in the sky, and thus possibly in the UHECR arrival directions. Under these limits, the anisotropy signal should be dominated by the clustering of astrophysical sources per se in the large-scale structures, and not the clustering of events around individual sources. We study the potential for a statistical discrimination between different astrophysical models which we parametrise by the number density of UHECR sources, the possible bias of the UHECR accelerators with respect to the galaxy distribution, and the unknown fraction of UHECRs that have been deflected by large angles. We demonstrate that an order-of-magnitude increase in statistics would allow to discriminate between a variety of astrophysical models, provided that a sub-sample of light elements can be extracted, and that it represents a fraction ?>70% of the overall flux, sensitive to the UHECR source number density. Discrimination should be possible even without knowledge of the composition of the UHECRs, as long as the data are proton-dominated. We find that an anisotropy at the 99.7% level should be detectable when the number of detected events exceeds 2000 beyond 50 EeV, as long as the composition is proton dominated, and the number density of UHECR sources is relatively high, n-bar ?10{sup ?3}Mpc{sup ?3}. If the UHECR sources are strongly biased relative to the galaxy distribution, as are for example galaxy clusters, in which the sources might be embedded, an anisotropy at the 99.7% level should be detectable once the number of detected events exceeds 1000, if the fraction of protons at the highest energies is ?>60%.

  11. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  12. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steelmaking (September 2007) More Documents & Publications Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry Paired Straight Hearth Furnace...

  13. Next-Generation Search Engines for Information Retrieval

    SciTech Connect (OSTI)

    Devarakonda, Ranjeet; Hook, Leslie A; Palanisamy, Giri; Green, James M

    2011-01-01

    In the recent years, there have been significant advancements in the areas of scientific data management and retrieval techniques, particularly in terms of standards and protocols for archiving data and metadata. Scientific data is rich, and spread across different places. In order to integrate these pieces together, a data archive and associated metadata should be generated. Data should be stored in a format that can be retrievable and more importantly it should be in a format that will continue to be accessible as technology changes, such as XML. While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. One such system, Mercury, a metadata harvesting, data discovery, and access system, built for researchers to search to, share and obtain spatiotemporal data used across a range of climate and ecological sciences. Mercury is open-source toolset, backend built on Java and search capability is supported by the some popular open source search libraries such as SOLR and LUCENE. Mercury harvests the structured metadata and key data from several data providing servers around the world and builds a centralized index. The harvested files are indexed against SOLR search API consistently, so that it can render search capabilities such as simple, fielded, spatial and temporal searches across a span of projects ranging from land, atmosphere, and ocean ecology. Mercury also provides data sharing capabilities using Open Archive Initiatives Protocol for Metadata Handling (OAI-PMH). In this paper we will discuss about the best practices for archiving data and metadata, new searching techniques, efficient ways of data retrieval and information display.

  14. Breakout Session: Open Innovation: SunShot Catalyst & Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    problem solvers and entrepreneurs who rapidly create transformative economic change and social impact. The federal government has taken notice of growing market mechanisms that...

  15. Air-cooled Condensers in Next-generation Conversion Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

  16. The Next Generation of Hydropower Engineers and Scientists | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to help meet its energy needs, a new generation of engineers and scientists is finding ways to make hydropower technologies more efficient, environmentally friendly and cost

  17. Multiscale Toxicology - Building the Next Generation Tools for Toxicology

    SciTech Connect (OSTI)

    Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.; Waters, Katrina M.

    2012-09-01

    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNLs focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterials or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.

  18. Next Generation Robust Low Noise Seismometer for Nuclear Monitoring

    SciTech Connect (OSTI)

    Abramovich, Igor A.

    2013-06-20

    Implementation of the proposed seismometers turned out to be much more challenging than anticipated. The noise levels achieved are indeed well below those ever featured by any electrochemical sensor and just very nearly miss reaching the original objectives. However, while noise-wise the instruments could still prove their usefulness, especially considering their robustness and no-maintenance operation, the implementation of the proposed noise-reduction concept resulted in much larger and heavier devices than originally expected. Moreover, these large dimensions relate only to single-component vertical sensors. While building similar horizontal component is possible, the resulting three-component instrument would be way too large and heavy to be of any practical use. The prototype instruments developed and built retained the inherent advantages of the electrochemical seismometers: no maintenance operation; ability to perform with large installation tilts; and, unfortunately, to a much lesser extent in terms of robustness.

  19. Energy Department Announces New Investments to Train Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nationwide, and promote education in the areas of science, technology, engineering and math, Secretary of Energy Steven Chu today announced more than 47 million in scholarships, ...

  20. Upholding Dr. King's Dream and Inspiring the Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    The kids were also able to meet science, technology, engineering and math professionals who volunteered their time to engage more students in STEM fields. Director Dot Harris, who ...

  1. Investing in the next generation: The Office of Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to succeed in our new economy - particularly in science, technology, engineering and math or "STEM." The President also declared that, "the all-of-the-above energy strategy ...

  2. Department of Energy Announces Funding to Support the Next Generation...

    Energy Savers [EERE]

    These programs will increase American economic competitiveness and support job growth by promoting science, technology, engineering, and math (STEM) education, an essential part of ...

  3. The Next Generation of Photo-Detectors for Particle Astrophysics

    SciTech Connect (OSTI)

    Wagner, Robert G.; Byrum, Karen L.; Sanchez, Mayly; Vaniachine, Alexandre V.; Siegmund, Oswald; Otte, Nepomuk A.; Ramberg, Erik; Hall, Jeter; Buckley, James

    2009-04-01

    We advocate support of research aimed at developing alternatives to the photomultiplier tube for photon detection in large astroparticle experiments such as gamma-ray and neutrino astronomy, and direct dark matter detectors. Specifically, we discuss the development of large area photocathode microchannel plate photomultipliers and silicon photomultipliers. Both technologies have the potential to exhibit improved photon detection efficiency compared to existing glass vacuum photomultiplier tubes.

  4. The next generation of photo-detector for particle astrophysics.

    SciTech Connect (OSTI)

    Wagner, R. G.; Byrum, K. L.; Sanchez, M.; Vaniachine, A. V.; Siegmund, O.; Otte, N.A.; Ramberg, E.; Hall, J.; Buckley, J.; High Energy Physics; Univ. of California at Berkeley; FNAL; Washington Univ.

    2009-06-02

    We advocate support of research aimed at developing alternatives to the photomultiplier tube for photon detection in large astroparticle experiments such as gamma-ray and neutrino astronomy, and direct dark matter detectors. Specifically, we discuss the development of large area photocathode microchannel plate photomultipliers and silicon photomultipliers. Both technologies have the potential to exhibit improved photon detection efficiency compared to existing glass vacuum photomultiplier tubes.

  5. NERSC Launches Next-Generation Code Optimization Effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With the promise of exascale supercomputers looming on the horizon, much of the roadmap is dotted with questions about hardware design and how to make these systems energy...

  6. Building the next generation of scalable manycore applications...

    Office of Scientific and Technical Information (OSTI)

    manycore applications and libraries. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-02-01 OSTI Identifier: 1109324 Report Number(s): SAND2011-1154C...

  7. Building America Top Innovations 2013 Profile ? Next Generation...

    Energy Savers [EERE]

    structural strength to support building load, so no additional framing other than the king studs on each side of the door or window is needed to carry the load. The space above...

  8. NNSA Kicks Off Next Generation Safeguards Initiative | National...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... safeguards, which protect against proliferation. "Effective nuclear safeguards are the ...

  9. Nanomaterials: Organic and Inorganic for Next-Generation Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Integrating Nanomaterial Applications in the Field of Sustainable Biomaterials ITP Nanomanufacturing:...

  10. Next-Generation Subsea Technology |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Innovation Fuels Offshore Oil and Gas Exploration Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Global Innovation Fuels Offshore Oil and Gas Exploration Christof Sihler 2014.05.29 Oil and gas exploration is pushing out into deeper waters further offshore - up to 3000m deep and over 100km away from the coast. In

  11. Next Generation Advanced Framing - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated ...

  12. Come see the Next Generation of Vehicles on Sustainable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Transportation Day Drives Innovation Forward Zero to 60 in under five seconds. Concept to reality in just six weeks. Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life

  13. Department of Energy Announces Funding to Support the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fellows whose academic careers have focused on ... start-up company, or writing grant proposals for ... Tapping Top University Draft Picks to Engineer Solar ...

  14. White House Steps Up Commitment to Cultivating Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in overcrowded living conditions positively affect residents' health and young people's performance in school. To view the full White House Factsheet, visit their website....

  15. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  16. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wednesday, April 1, 2015 at 1:00 p.m. - 2:00 p.m. EDT. Attendance is not mandatory and will not positively or negatively impact the overall review of any applicant submissions. ...

  17. Next-Generation Wireless Instrumentation Integrated with Mathematical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Can be used in producing aluminum or other metal production facilities that use electrolytic cells, e.g., zinc and nickel. Capabilities Provides wireless communications, allowing ...

  18. Recruiting and training the next generation of national security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but she has deep family roots in Los Alamos. Her great-grandfather was the chef at Fuller Lodge for nearly two decades beginning in 1943, and her grandparents worked for the...

  19. Nicole Lambiase: Aspiring Astronaut Turned Next-generation Car Designer

    Broader source: Energy.gov [DOE]

    How participating in the EcoCAR competition convinced one student to switch career paths and put her talents toward designing advanced vehicles.

  20. Next generation sequencing (NGS)technologies and applications

    SciTech Connect (OSTI)

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  1. Michigan: Universities Train Next Generation of Automotive Engineers

    Broader source: Energy.gov [DOE]

    EERE is supporting a strong American workforce to develop, build, repair, and respond to electric vehicles to make them as convenient and affordable as current conventional vehicles.

  2. Energy Department Announces Winners of Next Generation Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Serviceability for its M36 LED My White color-tuning luminaire, and Outstanding for Versatility for its Olivio LED Sistema 2 pole-mounted pedestrian-scale luminaire. ...

  3. Energy Department Invests $60 Million to Train Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Energy Department announced today more than 60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91...

  4. Notice of Intent: Upcoming Funding Opportunity for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NGEMs combine high power density, high RPM motors with integrated power electronics. Specifically, this upcoming FOA will facilitate efforts to integrate Medium Voltage (MV) class ...

  5. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Broader source: Energy.gov (indexed) [DOE]

    Motors | Department of Energy This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) natural gas infrastructure; and (3) general industrial

  6. NEXT GENERATION NEUTRON SCINTILLATORS BASED ON SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect (OSTI)

    Cai-Lin Wang

    2008-06-30

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/{sup 6}LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and {sup 6}Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/{sup 6}LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional {sup 6}Li-glass and ZnS/{sup 6}LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag{sup +}, Eu{sup 3+} or Ce{sup 3+} QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  7. EcoCAR the Next Generation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti013_delarosa_2011_o.pdf More Documents & Publications EcoCAR the Next Challenge EcoCAR 2 Plugging into the Future PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

  8. National labs collaborate to shape development of next-generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to...

  9. Next Generation Advanced Framing- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America researchers garnered a Top Innovation award for research into simple, cost-effective ways to implement advanced framing techniques.

  10. Next Generation Logistics Systems for Delivering Optimal Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the supply chain of multiple, high- impact biomass sources, and to develop practices that manage biomass variability to deliver a consistent feedstock optimized for performance ...

  11. Building a Diverse Workforce From the Next Generation of Leaders

    Broader source: Energy.gov [DOE]

    The Minority Educational Institutions Student Partnership Program gives students valuable experience while also helping the Department develop a pipeline of future employment candidates.

  12. Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Building a next-generation community ice sheet model: meeting...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  14. Research & Development Roadmap for Next-Generation Appliances

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Foley, Kevin

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on the proposed initiatives.

  15. DOE Project Taps HPC for Next-Generation Climate Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    complete climate and Earth system model to address the most challenging and demanding climate change issues. Eight Department of Energy (DOE) national laboratories, including...

  16. EERE Success Story-California: Next-Generation Geothermal Demonstratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Because of existing infrastructure, this EGS reservoir demonstrates that stimulating hot rock on the margins of existing hydrothermal fields can secure higher field productivity at ...

  17. Bush Administration Moves Forward to Develop Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Japan, South Africa, South Korea, Switzerland, the United Kingdom, and the United States. ... on Sodium Cooled Fast Reactors China and Russia to Join the Generation IV International ...

  18. Next-Generation Thermionic Solar Energy Conversion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Stanford University and the SLAC National Accelerator Laboratory are 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  19. NERSC, Cray Move Forward With Next-Generation Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    do." "NERSC and Cray share a common vision around the convergence of supercomputing and big data, and Cori will embody that overarching technical direction with a number of...

  20. Energy-Efficient Glass Melting - Next Generation Melter

    SciTech Connect (OSTI)

    2006-08-01

    This factsheet describes an R&D project focused on an oxy-gas-fired submerged combustion melter for glass industry that offers decreased operating and capital costs, decreased energy use, simple design, and high reliability.