Pressure dependence on the reaction propagation rate of PETN at high pressure
Foltz, M.F.
1993-04-01T23:59:59.000Z
The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.
Ismagilov, Rustem F.
Effects of Shear Rate on Propagation of Blood Clotting Determined Using Microfluidics and Numerical-ismagilov@uchicago.edu Abstract: This paper describes microfluidic experiments with human blood plasma and numerical simulations removed. In addition, these results demonstrate the utility of simplified mechanisms and microfluidics
How predictable : modeling rates of change in individuals and populations
Krumme, Katherine
2013-01-01T23:59:59.000Z
This thesis develops methodologies to measure rates of change in individual human behavior, and to capture statistical regularities in change at the population level, in three pieces: i) a model of individual rate of change ...
air change rate: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rydhof 2 Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study MIT - DSpace Summary: Abstract Background While air pollution...
air change rates: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rydhof 2 Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study MIT - DSpace Summary: Abstract Background While air pollution...
Message quantization in belief propagation: Structural results in the low-rate regime
Willsky, Alan S.
Motivated by distributed inference applications in unreliable communication networks, we adapt the popular (sum-product) belief propagation (BP) algorithm under the constraint of discrete-valued messages. We show that, in ...
Rate of environmental change determines stress response specificity
Elowitz, Michael
as to salt (13), calcium (14), heat, and other stresses (15). Bacteria also contain general stress responseRate of environmental change determines stress response specificity Jonathan W. Younga,1 , James C (received for review August 2, 2012) Cells use general stress response pathways to activate diverse tar- get
NFC Academic Access and Equipment Rates valid 7/1/13 to 6/30/14 RATES SUBJECT TO CHANGE
Amin, S. Massoud
NFC Academic Access and Equipment Rates valid 7/1/13 to 6/30/14 RATES SUBJECT TO CHANGE ACCESS/USE UNITS RATE ACCESS FEE monthly fee $29.20 LAB USAGE FEE per lab session $24.44 LAB USAGE MAX PER MONTH per month $224.72 EQUIPMENT INCLUDED EQUIPMENT UNITS RATE 50% Rate Reduction After 500 min
NFC Industrial Access and Equipment Rates valid 7/1/13 to 6/30/14 RATES SUBJECT TO CHANGE
Amin, S. Massoud
NFC Industrial Access and Equipment Rates valid 7/1/13 to 6/30/14 RATES SUBJECT TO CHANGE ACCESS/USE UNITS RATE ACCESS FEE monthly fee $91.00 LAB USAGE FEE per lab session $67.50 LAB USAGE MAX PER MONTH per month $631.00 EQUIPMENT INCLUDED EQUIPMENT UNITS RATE ALDATOMIC LAYER DEP ALD Savannah 200 minute
Michael Maziashvili
2012-11-23T23:59:59.000Z
We present Hilbert space representation for a relatively broad class of minimum-length deformed quantum mechanical models obtained by incorporating a space-time uncertainty relation into quantum mechanics. The correspondingly modified field theory is used for estimating the deviation of the light incoherence rate from distant astrophysical sources from the standard case.
Schmittner, Andreas
sensitivity and ocean heat uptake on the rate of future climate change. We apply a range of values for climate a significant effect on the rate of transient climate change for high values of climate sensitivity, while values of climate sensitivity and low values of ocean diffusivity. Such high rates of change could
Utility rate change propagation is now much faster | OpenEI Community
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser page
Ritchie, R.O.; Suresh, S.; Toplosky, J.
1980-01-01T23:59:59.000Z
The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.
Propagation of gravitational waves in a universe with slowly-changing equation of state
Edmund Schluessel
2014-06-17T23:59:59.000Z
An exact solution for the expansion of a flat universe with dark energy evolving according to a simple model is explored. The equation for weak primordial gravitational waves propagating in this universe is solved and explored; gravitational waves in a flat cosmology possessing both a "big bang" singularity and a "big rip" singularity can be described with confluent Heun functions. We develop approximation methods for confluent Heun equations in regimes of interest to gravitational wave astronomers and predict the diminution in gravitational wave amplitude in a universe with both a Big Bang and a Big Rip.
Ahmad Ghassemi
2009-10-01T23:59:59.000Z
Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.
ORIGINAL PAPER Environment and feeding change the ability of heart rate
ORIGINAL PAPER Environment and feeding change the ability of heart rate to predict metabolism 2010 / Published online: 12 August 2010 Ó Springer-Verlag 2010 Abstract The ability to use heart rate of physiological, behavioral, and environmental states. Keywords Steller sea lion Á Heart rate Á Oxygen consumption
ORIGINAL PAPER Environment and feeding change the ability of heart rate
ORIGINAL PAPER Environment and feeding change the ability of heart rate to predict metabolism 2010 Ó Springer-Verlag 2010 Abstract The ability to use heart rate (fh) to predict oxygen consumption, and environmental states. Keywords Steller sea lion Á Heart rate Á Oxygen consumption Á Heat increment of feeding Á
Heart Rate Regulation processed through wavelet analysis and change detection. Some case studies
Paris-Sud XI, Université de
Heart Rate Regulation processed through wavelet analysis and change detection. Some case studies-mail: veronique.billat@wanadoo.fr December 29, 2010 Abstract Heart rate variability (HRV) is an indicator of the regulation of the heart engine, Task Force (1996). This study compares the regulation of the heart in two
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates FY 15 PRR worksheet (PDF - 31K) FY...
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012
Lansky, Joshua
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012 Carlos structural changes in the composition of Mexico's trade and the parameters that affect it across five-of-payments constraint may account for the post-liberalization slowdown in Mexico's growth only during certain subperiods
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1...
Boyer, Edmond
fermentation patterns are unclear. Streptococcus bovis is a major ruminal bacteria, produces acetate, lactateEnergy condition affects fermentation rate of Streptococcus bovis without changing fermentation and ethanol from glucose. Only the production of acetate generates ATP. In cases of energy short age, S. bovis
Can Desert Dwellers Continue To Afford Lush Lawns: Analyzing Consumer Response to Rate Changes in
Fay, Noah
Can Desert Dwellers Continue To Afford Lush Lawns: Analyzing Consumer Response to Rate Changes of price and weather on wa- ter demand is important for Arizona. If the effect of weather is not well. In part, this is because few other studies use household data, and instead use data aggregated
Structural Change, the Real Exchange Rate, and the Balance of Payments Constraint in Mexico
Lansky, Joshua
Structural Change, the Real Exchange Rate, and the Balance of Payments Constraint in Mexico Carlos of a model of balance-of-payments-constrained growth for Mexico, with disaggregated exports (manufactured for the slowdown in Mexico's actual growth during the early phase of trade liberalization and macro stabilization
Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements
Hansen, René Rydhof
of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie
Power-system dynamic equivalents:coherency recognition via the rate of change of
Catholic University of Chile (Universidad CatÃ³lica de Chile)
.F.I.M.A. Indexing terms: Power systems and plant, Simulation, Time-varying parameters, Dynamic equivalents AbstractPower-system dynamic equivalents:coherency recognition via the rate of change of kinetic energy H of sections of a power system, its main drawback being the extensive computation times required to recognise
Global assessment of coral bleaching and required rates of adaptation under climate change
Oppenheimer, Michael
Global assessment of coral bleaching and required rates of adaptation under climate change S I M O, Australia Abstract Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef- building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012
Carlini, David
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012 Carlos in Mexico's growth only during certain subperiods of the post-liberalization era, and that the impact the recent crisis), Mexico stands out for having fully embraced trade liberalization and undergoing deep
Upper limit on the cross section for reactor antineutrinos changing 22Na decay rates
R. J. de Meijer; S. W. Steyn
2014-09-23T23:59:59.000Z
In this paper we present results of a long-term observation of the decay of 22Na in the presence of a nuclear fission reactor. The measurements were made outside the containment wall of and underneath the Koeberg nuclear power plant near Cape Town, South Africa. Antineutrino fluxes ranged from ~5*10^11 to 1.6*10^13 cm^-2 s^-1 during this period. We show that the coincidence summing technique provides a sensitive tool to measure a change in the total decay constant as well as the branching ratio between EC and beta+ decay of 22Na to the first excited state in 22Ne. We observe a relative change in count rate between reactor-ON and reactor-OFF equal to (-0.51+/-0.11)*10^-4. After evaluating possible systematic uncertainties we conclude that the effect is either due to a hidden instrumental cause or due to an interaction between antineutrinos and the 22Na nucleus. An upper limit of ~0.03 barn has been deduced for observing any change in the decay rate of 22Na due to antineutrino interactions.
Changes in the halo formation rates due to features in the primordial spectrum
Dhiraj Kumar Hazra
2013-02-07T23:59:59.000Z
Features in the primordial scalar power spectrum provide a possible roadway to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB angular power spectrum, these features can also alter the matter power spectrum and, thereby, the formation of the large scale structure. Carrying out a complete numerical analysis, we investigate the effects of primordial features on the formation rates of the halos. We consider a few different inflationary models that lead to features in the scalar power spectrum and an improved fit to the CMB data, and analyze the corresponding imprints on the formation of halos. Performing a Markov Chain Monte Carlo analysis with the WMAP seven year data and the SDSS halo power spectrum from LRG DR7 for the models of our interest, we arrive at the parameter space of the models allowed by the data. We illustrate that, inflationary potentials, such as the quadratic potential with sinusoidal modulations and the axion monodromy model, which generate certain repeated, oscillatory features in the inflationary perturbation spectrum, do not induce a substantial difference in the number density of halos at their best fit values, when compared with, say, a nearly scale invariant spectrum as is generated by the standard quadratic potential. However, we find that the number density and the formation rates of halos change by about 13-22% for halo masses ranging over 10^4-10^14 solar mass, for potential parameters that lie within 2-sigma around the best fit values arrived at from the aforesaid joint constraints. We briefly discuss the implications of our results.
Shahriar, Selim
$51.00 + $1 extra per person $33.00 + $1 extra per person Northshore Cab* 2 ppl $35.00 3 ppl $42.00 4 ppl $48.00 2 ppl $60.00 3 ppl $72.00 4 ppl $80.00 $35.00 (request flat rate) (4 ppl min) Best Taxi Services $60.00 $75.00 $60.00 minivan only (by ordinance) (4 ppl min) 303 Taxi Services** $33
ORIGINAL PAPER Determining the rate of change in a mixed deciduous forest
Boyer, Edmond
, growth, and mortality rate of the different species. Moreover, the type, frequen- cy, and intensity of the disturbance, e.g., wind, fire, avalanches, or flooding and the sensitivity of the present trees
Peters, Catherine A [Princeton University] [Princeton University
2013-05-15T23:59:59.000Z
This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE legacy waste problems.
Measuring kinetic energy changes in the mesoscale with low acquisition rates
Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2014-06-09T23:59:59.000Z
We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.
Allison, T.; Griffes, P.; Edwards, B.K.
1995-03-01T23:59:59.000Z
This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.
Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.
2013-02-15T23:59:59.000Z
This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site ? specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. ? Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. ? Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Um’s group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain movement accompanying dissolution in the unconsolidated media. The resultant movement
Fisk, William; Black, Douglas; Brunner, Gregory
2011-07-01T23:59:59.000Z
This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.
Wave Propagation in Lipid Monolayers
J. Griesbauer; A. Wixforth; M. F. Schneider
2010-05-26T23:59:59.000Z
Sound waves are excited on lipid monolayers using a set of planar electrodes aligned in parallel with the excitable medium. By measuring the frequency dependent change in the lateral pressure we are able to extract the sound velocity for the entire monolayer phase diagram. We demonstrate that this velocity can also be directly derived from the lipid monolayer compressibility and consequently displays a minimum in the phase transition regime. This minimum decreases from v0=170m/s for one component lipid monolayers down to vm=50m/s for lipid mixtures. No significant attenuation can be detected confirming an adiabatic phenomenon. Finally our data propose a relative lateral density oscillation of \\Delta\\rho/\\rho ~ 2% implying a change in all area dependent physical properties. Order of magnitude estimates from static couplings therefore predict propagating changes in surface potential of 1-50mV, 1 unit in pH (electrochemical potential) and 0.01{\\deg}K in temperature and fall within the same order of magnitude as physical changes measured during nerve pulse propagation. These results therefore strongly support the idea of propagating adiabatic sound waves along nerves as first thoroughly described by Kaufmann in 1989 and recently by Heimburg and Jackson, but claimed by Wilke already in 1912.
2013-01-01T23:59:59.000Z
participated in the Mexico City Air Pollution Campaign [33].as part of the Mexico City Air Pollution Campaign. In 2004,pollution, PM 2.5 , Ozone, Heart rate variability, Mexico
NA
2002-03-04T23:59:59.000Z
The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.
Propagation of polymer slugs through porous media
Lecourtier, J.; Chauveteau, G.
1984-09-01T23:59:59.000Z
This paper describes an experimental and theoretical study of the mechanisms governing polymer slug propagation through porous media. An analytical model taking into account the macromolecule exclusion from pore walls is proposed to predict rodlike polymer velocity in porous media and thus the spreading out of polydispersed polymer slugs. Under conditions where this wall exclusion is maximum, i.e. at low shear rates and polymer concentrations, the experiments show that xanthan propagation is effectively predicted by this model. At higher flow rates and polymer concentrations, the effects of hydrodynamic dispersion and viscous fingering are analyzed. A new fractionation method for determining molecular weight distribution of polymers used in EOR is proposed.
Petrov, P.; Voronkov, V.; Potapenko, K.; Ivanov, V. [Moscow State Technical University 'MAMI', Department of Autobody making and metal forging, B.Semenovskaya 38, 107023, Moscow (Russian Federation)
2011-05-04T23:59:59.000Z
In extrusion forging processes, the abrupt changes in strain rate follows the plastic deformation of a material within the deforming zone. To simulate accurately this effect, the specific experimental investigation of the plastic flow during the transient change in strain rate should be performed. The present paper deals with the investigation of this effect on the flow stress of an Al-Mg-Si alloy during its deformation at 350 deg. C. The investigation consists of two steps. Both steps are connected to the monotonic uniaxial compression loading of a cylindrical specimen. During the first step the flow behaviour of the alloy is investigated at the constant strain rate wihin the range of 0.1-50 s{sup -1} at the temperature range of 350-430 deg. C. During the second step the strain rate is abruptly increased or decreased from its current value at a fixed engineering strain of 17-21%. From the beginning of the test up to the strain of 17-21% the value of the strain rate is constant and equal to either 1 s{sup -1} or 10 s{sup -1}. At the strain of 17-21% the value of a strain rate is either increased to 10 s{sup -1} or decreased to 1 s{sup -1}.The results of the experimental investigations were used to determine the isothermal flow stress-strain curves of the Al-Mg-Si alloy as well as the heat effect of plastic deformation of the alloy. On basis of these curves, the strain rate sensitivity index m as a function of true strain and temperature was determined. This parameter allows to optimize a technological process of hot forging of the aluminium alloy as well as it is very important data for the construction of a phenomenological flow stress model.
Schlick, Tamar
Nucleotides and Mismatch Incorporation Rates Meredith C. Foley and Tamar Schlick* Department of Chemistry polymerase (pol ) utilizing dynamics simulation of the enzyme bound to incorrect incoming nucleotides nucleotide insertion opposite template adenine, with the exception of T:G, which may be more sensitive
Propagation of Ornamental Plants.
DeWerth, A. F.
1955-01-01T23:59:59.000Z
Propagation of Ornamental Plants I A. I?. DEWERTH, Head Department of Floriculture and Landscape Architecture Texas A. & M. College System THE MULTIPLICATION of ornamental plants is After sterilizing, firm the soil to within 1; receiving more...
Ramey, Garey; Fujita, Shigeru
2006-01-01T23:59:59.000Z
the labor force who want a job. Monthly Labor Review Cogley,G. , Watson, J. , June 2000. Job destruction and propagationJ. , June 2004. Gross job ?ows over the past two business
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
10012014 - 03312015 Mid-Year Change (if applicable) 10012014 - 09302015 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 70,091,227 CV-F13...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the FY Mid-Year Change 10012013 - 03312014 04012014 - 09302014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,441,557...
Xaplanteris, C. L., E-mail: cxaplanteris@yahoo.com [Plasma Physics Laboratory, IMS, NCSR “Demokritos”, Athens, Greece and Hellenic Army Academy, Vari Attica (Greece); Xaplanteris, L. C. [School of Physics, National and Kapodistrian University of Athens, Athens (Greece)] [School of Physics, National and Kapodistrian University of Athens, Athens (Greece); Leousis, D. P. [Technical High School of Athens, Athens (Greece)] [Technical High School of Athens, Athens (Greece)
2014-03-15T23:59:59.000Z
Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.
Dandona, Anil Kumar
1971-01-01T23:59:59.000Z
through 19. These 4. 0 FIGURE I ATER -OIL CAPILLARY PRESSURE CURVE W CA 0 I IJJ IK Pn 2. 0 CA UJ lL CL K o IO 0 . 20 . 40 . 60 . 80 I. O WATER SATURATION - FRACTION OF PORE VOLUME IO 0 . 20 . 40 . 60 . 80 I. O GAS SATURATION - FRACTION... injection of 0. 25 pore volumes of water. Except for the very low rates, all gas present in the system is trapped. At high water 0 u H 0 0 0 4J g 0 I-I I-1 M 0 z 0 0 Ql QJ 0 3 0 4J cd Q 'O QJ Q Ql 4J cd Q cc V Id 0 0 4J 0 cd O ca Ql...
Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio; Gomes da Silva, Marcelo; Silva Sthel, Marcelo; Vargas, Helion [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Mota, Leonardo [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany); Goncalves de Oliveira, Jurandi [Laboratorio de Melhoramento Genetico Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Miklos, Andras [Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany)
2011-06-01T23:59:59.000Z
This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.
Generation of multi-photon entanglement by propagation and detection
H. Hossein-Nejad; R. Stock; D. F. V. James
2009-03-02T23:59:59.000Z
We investigate the change of entanglement of photons due to propagation. We find that post-selected entanglement in general varies by propagation and, as a consequence, states with maximum bi- and tri-partite entanglement can be generated from propagation of unentangled photons. We generalize the results to n photons and show that entangled states with permutation symmetry can be generated from propagation of unentangled states. Generation of n-photon GHZ states is discussed as an example of a class of states with the desired symmetry.
Water-wave propagation through an infinite array of cylindrical structures
Water-wave propagation through an infinite array of cylindrical structures P. McIver Department is made into water-wave propagation through a doubly-periodic array of vertical cylinders extending for which wave propagation without change of amplitude is possible (`passing bands'), and for which
Propagation of seismic waves through liquefied soils
Taiebat, Mahdi; Jeremic, Boris; Dafalias, Yannis; Kaynia, Amir; Cheng, Zhao
2010-01-01T23:59:59.000Z
the mechanisms of wave propagation and ARTICLE IN PRESS M.Numerical analysis Wave propagation Earthquake Liquefactionenergy during any wave propagation. This paper summarizes
Gas Explosion Characterization, Wave Propagation
s & Dt^boooo^j RisÃ¸-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and...
Swallow, A. P.
1924-01-01T23:59:59.000Z
PECAN PROPAGATION IN TEXAS I SOIL AND CLIMATIC REQ:UIREMENTS The ideal condition for pecan production is to have the roots of the tree in perpetual, moderate moisture and the top in constant sunshine. Good pecan land should be fertile, deep, loose... it should be much deeper. Shallow soils cannot be relied upon to pro duce regular crops. Tight land prevents the growth of an extended root system, and is too uneven in its moisture content. The wood growing period of a pecan tree extends froInt the opening...
Kumar, Rahul Pradeep
2014-01-02T23:59:59.000Z
The existence of an optimum injection rate for wormhole propagation, and face dissolution at low injection rates during matrix acidizing are well established. However, little has been documented that describes how the presence of residual oil...
Kumar, Rahul Pradeep
2014-01-02T23:59:59.000Z
The existence of an optimum injection rate for wormhole propagation, and face dissolution at low injection rates during matrix acidizing are well established. However, little has been documented that describes how the presence of residual oil...
Nichols, John Edward
1986-01-01T23:59:59.000Z
representing typical field situations. One case simulates a high shear rate-low temperature fracture system typical of many shallow reservoirs. The second case models deep reservoir fracture treatment conditions of low shear rates and high tempera- tures... OF RESULTS 33 44 48 Temperature History Effects. High Shear Rate (HSR) and Low Shear Rate (LSR) Fluid Testing Methods and Their Results. 51 CONCLUSIONS RECOMMENDATIONS FOR FUTURE WORK 56 APPENDICES 57 APPENDIX A ? COMPOSITION OF DELAYED...
Image Compression by Back Propagation
Cottrell, Garrison W.
CHAPTER 9 Image Compression by Back Propagation: An Example of Extensional Programming* GARRISON W the case with the computatiolls associated with basic cognitive pro- cesses such as vision and audition techniques. The technique we employ is known as back propagation. developed by l1umelhart, Hinton
Woodruff, Dana L.; Southard, Susan S.; Cullinan, Valerie I.; Kohn, Nancy P.; Anderson, Michael G.; Vavrinec, John
2007-02-01T23:59:59.000Z
King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate for these impacts and prepare for post-construction restoration, King County began implementation of a multi-year eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements are a) pre-construction monitoring, i.e., documenting initial eelgrass conditions and degree of fluctuation over 5 years prior to construction, b) eelgrass transplanting, including harvesting, offsite propagating and stockpiling of local plantstock, and post-construction planting, and c) post-construction monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2006 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) in support of King County. Activities included continued propagation of eelgrass shoots and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. Approximately 1500 additional shoots were harvested from the marine outfall corridor in August 2006 to supplement the plants in the propagation tank at the PNNL Marine Sciences Laboratory in Sequim, Washington, bringing the total number of shoots to 4732. Eelgrass densities were monitored in the five experimental harvest plots established in the marine outfall corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. Net eelgrass density decreased from 2004 post-harvest to 2006 in all plots, despite density increases observed in 2005 in some plots and at some harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period did not correlate to the initial 2004 harvest rate. Continued monitoring should help project managers determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds.
Bezanilla, Francisco
channel voltage sensor+ether-à-go-go K Optical detection of rate-determining ion electrophysiological and optical approach. We find that a fluorescent probe attached near S4 in the voltage sensor.pnas.org/misc/reprints.shtml To order reprints, see: Notes: #12;Optical detection of rate-determining ion-modulated conformational
Phase-dependent propagation in a two-level system with intermediate states
Sharypov, A. V.; Eilam, A.; Wilson-Gordon, A. D.; Friedmann, H. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel)
2010-01-15T23:59:59.000Z
We study the phase-dependent propagation of a strong, resonant pump and two weak symmetrically detuned fields in a two-level system with population decay through a cascade of intermediate levels. As this system forms a closed loop, the propagation is phase-dependent. For an initial total phase PHI=0, there is constructive interference between the two weak fields, leading to parametric amplification on propagation. When PHI=pi, destructive interference occurs, leading to absorption of the weak fields on propagation. When the weak fields are initially equal in intensity, and PHI=0,pi, PHI remains constant on propagation. For other initial phases, PHI changes on propagation. Dramatic phase changes from pi to 0 can occur when the weak fields are initially unequal in intensity and PHI=pi.
Sound propagation around underwater seamounts
Sikora, Joseph J., III
2009-01-01T23:59:59.000Z
In the ocean, low frequency acoustic waves propagate with low attenuation and cylindrical spreading loss over long-ranges, making them an effective tool for underwater source localization, tomography, and communications. ...
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23T23:59:59.000Z
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Photon propagator for axion electrodynamics
Itin, Yakov [Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904 (Israel) and Jerusalem College of Technology, P.O.B. 16031, Jerusalem, 91160 (Israel)
2007-10-15T23:59:59.000Z
The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.
On the propagation of acceleration waves in thermoelastic micropolar
Boyer, Edmond
On the propagation of acceleration waves in thermoelastic micropolar medias Sobre la propagaciÂ´on of accelerating waves in a general nonlinear thermoelastic micropolar media are established. Deformation of mi(t) at each point. We call a surface S(t) an accele- rating wave (or a singular surface for a solution
Haby, Vincent A
1969-01-01T23:59:59.000Z
Laboratory study. Particle size. Field study. Source. . 26 . 26 Rate. . 28 Particle size. . . $0 Soil pH change with depth. Influence oi' Limestone on Ca and Ng at Different Soil Depths. . Influence of Limestone on Yields oi' Corn and Coastal... to increase the downward movement of Ca and Mg snd to reduce soil acidity as determined by pH measurements (2, 3, 4, 26, 45, 46, 54, 56). Adams et al. (3) using dolomitic lime- stone, have shown that on a Cecil sandy loam soil, N rates of 0, 400, snd 800...
Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires
Zubarev, Eugene
Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires David Solis, Jr., Wei-Shun Chang approach to visualize propagating surface plasmon polaritons through plasmon-exciton interactions between single gold nanowires and a thin film of a fluorescent polymer. A plasmon polariton was launched
Woodruff, Dana L.; Kohn, Nancy P.; Cullinan, Valerie I.; Southard, Susan S.; Vavrinec, John
2007-10-04T23:59:59.000Z
King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate these impacts and prepare for post-construction restoration, King County began implementing a multiyear eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements related to eelgrass are (a) pre-construction monitoring, i.e., documenting initial eelgrass conditions and degree of fluctuation over 5 years prior to construction, (b) eelgrass transplanting, including harvesting, offsite propagating, and stockpiling of local plants for post-construction planting, and (c) post-construction planting and subsequent monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2007 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) for King County. Activities included continued propagation of eelgrass shoots at the PNNL Marine Sciences Laboratory (MSL) in Sequim, Washington, and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. In addition, 490 eelgrass shoots were also harvested from the Marine Outfall Corridor in July 2007 to supplement the plants in the propagation tank at the MSL, bringing the total number of shoots to 1464. Eelgrass densities were monitored in four of five experimental harvest plots established in the Marine Outfall Corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. A net increase in eelgrass density from 2004 post-harvest to 2007 was observed in all plots, despite density decreases observed in 2006 in all plots and at most harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period was not related to initial 2004 harvest rate. Harvest rates of neighboring subplots did not appear to affect subplot eelgrass density (Woodruff et al. 2007). Three years post-harvest, eelgrass shoot densities were not significantly different from pre-harvest shoot densities at any harvest level. Additional plans are being discussed with King County to harvest all eelgrass from the construction corridor and hold in the propagation tanks at the MSL for post-construction planting. Under this plan, plants that would have been lost to construction will be held offsite until construction is completed. This strategy reduces and possibly eliminates the need to harvest eelgrass from donor beds located south of the construction area, allowing them to remain undisturbed. However, if eelgrass is harvested from donor beds, the monitoring of eelgrass growth at different harvest rates should help determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds.
Gain-assisted superluminal light propagation via incoherent pump field
M. Mahmoudi; S. Worya Rabiei; L. Safari; M. Sahrai
2008-08-03T23:59:59.000Z
We investigate the dispersion and the absorption properties of a weak probe field in a three-level Lambda-type atomic system. We use just an incoherent field for controlling the group velocity of light. It is shown that the slope of dispersion changes from positive to negative just with changing the intensity of the indirect incoherent pumping field. Gain-assisted superluminal light propagation appears in this system. No laser field is used in the pumping processes.
Greenaway, Alan
1 Green rating tools and climate resilient buildings Understanding the role of the built, as the requirement for a demonstrable level of best practice performance becomes more common, such green building targets1 , as well as for the long-term resilience and viability of both new and existing buildings. So
Broader source: Energy.gov [DOE]
One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...
The effects of lithology and initial fault angle in physical models of fault-propagation folds
McLain, Christopher Thomas
2001-01-01T23:59:59.000Z
Experimentally deformed physical rock models are used to examine the effects of changing mechanical stratigraphy and initial fault angle on the development of fault-propagation folds over a flat-ramp-flat thrust geometry. This study also...
Propagators for Noncommutative Field Theories
R. Gurau; V. Rivasseau; F. Vignes-Tourneret
2006-02-06T23:59:59.000Z
In this paper we provide exact expressions for propagators of noncommutative Bosonic or Fermionic field theories after adding terms of the Grosse-Wulkenhaar type in order to ensure Langmann-Szabo covariance. We emphasize the new Fermionic case and we give in particular all necessary bounds for the multiscale analysis and renormalization of the noncommutative Gross-Neveu model.
E × B shear pattern formation by radial propagation of heat flux waves
Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of) [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France)] [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)] [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)
2014-05-15T23:59:59.000Z
A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.
Schmidhuber, Juergen
Accelerated Learning in BackÂPropagation Nets In R. Pfeifer, Z. Schreter, Z. Fogelman, and L with backÂpropagation (bp) (Werbos, 1974)(Parker, 1985)(Rumelhart et al., 1986)(Almeida, 1987 be significantly faster than conventional bp. Keywords: BackÂpropagation, sparse coding, speed, learning rate
Nonlinear Saturation of Vertically Propagating Rossby Waves
Giannitsis, Constantine
The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...
Propagation Plane waves -High order Modes
Berlin,Technische UniversitÃ¤t
1 Propagation Â· Plane waves - High order Modes y x a ky = n a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } Propagation Â· Plane waves - High order Modes x n a p(x,y,t)=pn cos( y;4 Propagation Â· Circular duct Â Helical waves (spiralling waves) kc=m/a kz kH Projection: Propagation #12
Wave Propagation in Fractured Poroelastic Media
Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.
Coupled Parabolic Equations for Wave Propagation
Zhao, Hongkai
Coupled Parabolic Equations for Wave Propagation Kai Huang, Knut Solna and Hongkai Zhao #3; April simulation of wave propagation over long distances. The coupled parabolic equations are derived from a two algorithms are important in order to understand wave propagation in complex media. Resolving the wavelength
Solitary waves propagating over variable Roger Grimshaw
Solitary waves propagating over variable topography Roger Grimshaw Loughborough University waves that can propagate steadily over long distances. They were first observed by Russell in 1837 in a now famous report [26] on his observations of a solitary wave propagating along a Scottish canal
Wave propagation in axion electrodynamics
Yakov Itin
2007-06-20T23:59:59.000Z
In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.
Parallelisation of Wave Propagation Algorithms for Odour Propagation in Multi-Agent Systems
Vialle, StÃ©phane
Parallelisation of Wave Propagation Algorithms for Odour Propagation in Multi-Agent Systems Eugen-agent systems is based on the wave propagation model. This article discusses some sequential (recursive is introduced. Keywords: parallel algorithms, wave propagation model, multi-agent systems. 1 Introduction
BUDVYTIS et al.: LABEL PROPAGATION 1 Label propagation in complex video
Kim, Tae-Kyun
Propagation (PGP) Proposed Hybrid Model (PHM) Occlusion-aware labelling (Classifier injection off ) ProlongedBUDVYTIS et al.: LABEL PROPAGATION 1 Label propagation in complex video sequences using semi graphical model for label propagation in lengthy and complex video sequences. Given hand-labelled start
Temporally propagated optical pulses, and what they reveal about dispersion handling
Kinsler, Paul
2015-01-01T23:59:59.000Z
I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The approach generates exact coupled bi-directional equations, which can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. It also also allows a direct term-to-term comparison of an exact bi-directional theory with an approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxw...
WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE
Heggland, L.; Hansteen, V. H.; Carlsson, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); De Pontieu, B., E-mail: lars.heggland@astro.uio.no [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Organization ADBS, Building 252, Palo Alto, CA 94304 (United States)
2011-12-20T23:59:59.000Z
We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.
Intraclass Price Elasticity & Electric Rate Design
Gresham, K. E.
1987-01-01T23:59:59.000Z
Electric rate design relies on cost incurrance for pricing and pricing structures. However, as utilities move into a marketing mode, rate design needs to respond more to customer reactions to pricing changes. Intraclass price elasticities aid rate...
Excited States in Staggered Meson Propagators
MILC Collaboration; C. Bernard; T. Burch; C. DeTar; Steven Gottlieb; E. B. Gregory; U. M. Heller; J. Osborn; R. Sugar; D. Toussaint
2003-09-16T23:59:59.000Z
We report on preliminary results from multi-particle fits to meson propagators with three flavors of light dynamical quarks. We are able to measure excited states in propagators with pion quantum numbers, which we interpret as the pion 2S state, and is evidence of locality of the action. In the a_0 (0^{++}) propagators we find evidence for excited states which are probably the expected decay channels, pi+eta and K+Kbar.
Propagation Plane waves -High order Modes
Berlin,Technische UniversitÃ¤t
1 Propagation Â· Plane waves - High order Modes y x a One wave: p(x,y,t)=p0 cos(k y)e-jk x e j t vy(y,t)= 0 ; y=0,a xy } ky = n a Propagation Â· Plane waves - High order Modes x n a p(x,y,t)=pn cos( y + - +- + + - +- + - + + +- - - (m,n) #12;4 Propagation Â· Circular duct Â Helical waves (spiralling waves) kc=m/a kz k
Measurements and large eddy simulation of propagating premixed flames
Masri, A.R.; Cadwallader, B.J. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ibrahim, S.S. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)
2006-07-15T23:59:59.000Z
This paper presents an experimental and numerical study of unsteady turbulent premixed flames igniting in an initially stagnant mixture and propagating past solid obstacles. The objective here is to study the outstanding issue of flow-flame interactions in transient premixed combustion environments. Particular emphasis is placed on the burning rate and the structure of the flame front. The experimental configuration consists of a chamber with a square cross-section filled with a combustible mixture of propane-air ignited from rest. An array of baffle plates as well as geometrical obstructions of varying shapes and blockage ratios, are placed in the path of the flame as it propagates from the ignition source to the vented end of the enclosure. A range of flame propagation conditions are studied experimentally. Measurements are presented for pressure-time traces, high-speed images of the flame front, mean velocities obtained from particle imaging velocimetry and laser induced fluorescence images of the hydroxyl radical OH. Three-dimensional large eddy simulations (LES) are also made for a case where a square obstacle and an array of baffle plates are placed in the chamber. The dynamic Germano model and a simple flamelet combustion model are used at the sub-grid scale. The effects of grid size and sub-grid filter width are also discussed. Calculations and measurements are found to be in good agreement with respect to flame structure and peak overpressure. Turbulence levels increase significantly at the leading edge of the flame as it propagates past the array of baffle plates and the obstacle. With reference to the regime diagrams for turbulent premixed combustion, it is noted that the flame continues to lie in the zones of thin reactions or corrugated flamelets regardless of the stage of propagation along the chamber. (author)
Shock propagation and neutrino oscillation in supernova
K. Takahashi; K. Sato; H. E. Dalhed; J. R. Wilson
2003-02-26T23:59:59.000Z
The effect of the shock propagation on neutrino oscillation in supernova is studied paying attention to evolution of average energy of $\
Wave Propagation in Fractured Poroelastic Media
2014-06-22T23:59:59.000Z
Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petr´oleo (IGPUBA), UBA,
Light propagation and Imaging in Indefinite Metamaterials
Yao, Jie
2010-01-01T23:59:59.000Z
photolithography by polarized light,” Applied PhysicsZhang, “Imaging visible light using anisotropic metamaterialcross-sectional review of the light propagation of TE mode (
Wireless@Virginia Tech Antennas and Propagation
Beex, A. A. "Louis"
cutting- edge research at the intersection of engineering, science, and medicine. Please visit www and form factor requirements. The statistical nature of electromagnetic wave propagation combined
Evidence for Aseismic Deformation Rate Changes
Jellinek, Mark
. 1998 Ms8.2 Tonankai, Japan December 7, 1944 Leveling 1 day 7.8 Sagiya 1998, Linde & Sacks 2002 Mw8.3 Nankaido, Japan December 20, 1946 Tide gauges,water wells 3 days 7.9 Sato 1982, Linde & Sacks 2002 Mw9
Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions
Julian K. Benz; Richard N. Wright
2013-10-01T23:59:59.000Z
The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.
Beam Propagation Method Using a [(p -1)/p] Pade Approximant of the Propagator
Lu, Ya Yan
propagation method (BPM) is developed based on a direct approximation to the propagator using the [(p - 1)/p of the BPM. 1 Introduction The beam propagation method (BPM)14 is widely used in numerical simulation, the governing equation is a scalar Helmholtz equation. The BPM relies on approximating the Helmholtz equation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Tariff Rates FY 2015 Rates and Rate Schedules **Effective October 1, 2014** FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY...
Removing Propagation Redundant Constraints in Redundant Modeling
Stuckey, Peter J.
propagation redundant constraints in redundant modeling can speed up search by several order of magnitudes but not least, the choice of variables and the associated domains should lead to a smaller search space than search with various degrees of constraint propagation for pruning the search space. One common technique
Propagation testing multi-cell batteries.
Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer
2014-10-01T23:59:59.000Z
Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.
TIME REVERSAL IN CHANGING ENVIRONMENT GUILLAUME BAL AND RAM
Bal, Guillaume
TIME REVERSAL IN CHANGING ENVIRONMENT GUILLAUME BAL #3; AND RAM #19; ON VER #19; ASTEGUI y Abstract of the refocused signal as the backward propagation medium departs from the forward propagation medium, Wigner transform, changing environment. AMS subject classi#12;cations. 35R60 35L40 78A45 82D30 1
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2015 Rates and Rate Schedule - Current * 2010 Rates and Rate Schedule 2009 Rates and...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rates and Repayment Services Consolidated Rate Schedules FY 2015 Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process...
Topological Aspects of Wave Propagation
Carlos Valero
2014-06-13T23:59:59.000Z
In the context of wave propagation on a manifold X, the characteristic functions are real valued functions on cotangent bundle of X that specify the allowable phase velocities of the waves. For certain classes of differential operators (e.g Maxwell's Equations) the associated characteristic functions have singularities. These singularities account for phenomena like conical refraction and the transformation of longitudinal waves into transversal ones (or viceversa). For a specific class of differential operators on surface, we prove that the singularities of the characteristic functions can be accounted from purely topological considerations. We also prove that there is a natural way to desingularsize the characteristic functions, and observe that this fact and Morse Theory establishes a specific connection between singularities and critical points of these functions. The relation between characteristic functions and differential operators is obtained through what is known as the symbol of the operator. We establish a connection between these symbols and holomorphic vector fields, which will provide us with symbols whose characteristic functions have interesting singularity sets.
Non-unitary neutrino propagation from neutrino decay
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Oliveira, Roberto L.N.
2015-03-01T23:59:59.000Z
Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.
anisotropic ultrasound propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings...
action potential propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
for action potential propagation in excitable cells CERN Preprints Summary: Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of...
anomalous ultrasound propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The equations of fluid dynamics developed in paper I are applied to the study of the propagation of ultrasound waves. There is good agreement between the predicted propagation...
anisotropic propagation model: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rates and Repayment Services Rates Loveland Area Projects Firm Power Rates Open Access Transmission Tariff Rates Chart of Loveland Area Projects Historical Transmission Rates...
Mass inequality for the quark propagator
Dean Lee; Richard Thomson
2005-06-09T23:59:59.000Z
We show that for any gauge-fixing scheme with positive semi-definite functional integral measure, the inverse correlation length of the quark propagator is bounded below by one-half the pion mass.
Shock wave propagation in vibrofluidized granular materials
Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei
2005-11-29T23:59:59.000Z
Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.
Propagating wave pattern on a falling liquid curtain N. Le Grand-Piteira,1,2
Brunet, Philippe
curtain falling from a horizontal, wetted tube, maintained between two vertical wires. Since the upper different geometries: i liquid columns formed be- low a horizontal wetted tube 16,17 , ii liquid columns motion, when the flow rate is progressively reduced, coupled to the propagation of curtain undulations
The various manifestations of collisionless dissipation in wave propagation
Benisti, Didier; Morice, Olivier; Gremillet, Laurent [CEA, DAM, DIF, F-91297 Arpajon (France)
2012-06-15T23:59:59.000Z
The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
Dennis Simon; Julian Adamek; Aleksandar Rakic; Jens C. Niemeyer
2009-11-19T23:59:59.000Z
In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from successful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
Simon, Dennis; Rakic, Aleksandar; Niemeyer, Jens C
2009-01-01T23:59:59.000Z
In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from succesful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.
Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.
2009-02-25T23:59:59.000Z
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.
Warp propagation in astrophysical discs
Nixon, Chris
2015-01-01T23:59:59.000Z
Astrophysical discs are often warped, that is, their orbital planes change with radius. This occurs whenever there is a non-axisymmetric force acting on the disc, for example the Lense-Thirring precession induced by a misaligned spinning black hole, or the gravitational pull of a misaligned companion. Such misalignments appear to be generic in astrophysics. The wide range of systems that can harbour warped discs - protostars, X-ray binaries, tidal disruption events, quasars and others - allows for a rich variety in the disc's response. Here we review the basic physics of warped discs and its implications.
Propagation of three-dimensional electron-acoustic solitary waves
Shalaby, M.; El-Sherif, L. S. [Faculty of Science, Department of Physics, Ain Shams University, Cairo (Egypt); El-Labany, S. K. [Theoretical Physics Group, Faculty of Science, Department of Physics, Mansoura University, Damietta Branch, New Damietta 34517 (Egypt); Sabry, R. [Theoretical Physics Group, Faculty of Science, Department of Physics, Mansoura University, Damietta Branch, New Damietta 34517 (Egypt); Physics Department, College of Science and Humanitarian Studies, Alkharj University, Alkharj (Saudi Arabia)
2011-06-15T23:59:59.000Z
Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.
PHOTOSYNTHESIS AND GLOBAL CHANGE CAN CLIMATE DRIVEN CHANGES IN
Barron-Gafford, Greg
PHOTOSYNTHESIS AND GLOBAL CHANGE CAN CLIMATE DRIVEN CHANGES IN PHOTOSYNTHESIS BE USED TO PREDICT in photosynthesis, and thus substrate supply, influence the rate of ecosystem respiration (Re). Further- more in photosynthesis might result in concomitant changes in both the rate, and temperature-sensitivity, of Re. Re
Mid-frequency sound propagation through internal waves at short range with
Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic internal waves often are modeled as a background random process introducing small changes in the sound, during, and after the passage of a nonlinear internal wave on 18 August, 2006. Using oceanographic data
Gentine, Pierre
Harmonic propagation of variability in surface energy balance within a coupled energy balance. The amplitude of the noise is maximum at midday when the incoming radiative forcing results in changes in the surface energy balance through the modification of outgoing radiative, turbulent
Absorption free superluminal light propagation in a three level pump-probe system
M. Mahmoudi; S. Worya Rabiei; L. Ebrahimi Zohravi; M. Sahrai
2007-11-21T23:59:59.000Z
We investigate the dispersion and the absorption properties of a weak probe field in a three-level pump-probe atomic system. It is shown that the slope of dispersion changes from positive to negative just with the intensity of the coherent or indirect incoherent pumping fields. It is demonstrated that the absorption free superluminal light propagation is appeared in this system.
Aquatic manoeuvering with counter-propagating waves: a novel
Lauder, George V.
Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy Oscar M. Curet1 of these inward counter-propagating waves. In addition, we compare the flow structure and upward force generated by inward counter-propagating waves to standing waves, unidirectional waves, and outward counter-propagating
Wave-Based Sound Propagation for VR Applications Ravish Mehra
North Carolina at Chapel Hill, University of
Wave-Based Sound Propagation for VR Applications Ravish Mehra University of North Carolina to state-of-the-art wave solvers, enabling real-time, wave-based sound propagation in scenes spanning propagation accurately, it is important to develop interactive wave-based propagation techniques. We present
Western-UGP Transmission and Ancillary Services Rates Customer...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
changes noted in the following sections: Proposed Formula Rate for Scheduling, System Control and Dispatch Service, Proposed Rate for Regulation and Frequency Response Service,...
Markov transitions and the propagation of chaos
Gottlieb, A.
1998-12-01T23:59:59.000Z
The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.
Acoustic wave propagation through a supercooled liquid: A normal mode analysis
Yuki Matsuoka; Hideyuki Mizuno; Ryoichi Yamamoto
2012-10-17T23:59:59.000Z
The mechanism of acoustic wave propagation in supercooled liquids is not yet fully understood since the vibrational dynamics of supercooled liquids are strongly affected by their amorphous inherent structures. In this paper, the acoustic wave propagation in a supercooled model liquid is studied by using normal mode analysis. Due to the highly disordered inherent structure, a single acoustic wave is decomposed into many normal modes in broad frequency range. This causes the rapid decay of the acoustic wave and results in anomalous wavenumber dependency of the dispersion relation and the rate of attenuation.
Flame Propagation of Butanol Isomers/Air Mixtures
Veloo, Peter S.; Egolfopoulos, Fokion N.
2011-01-01T23:59:59.000Z
An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.
Heat pulse propagation in chaotic 3-dimensional magnetic fields
D. del-Castillo-Negrete; D. Blazevski
2014-09-10T23:59:59.000Z
Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum, $\\langle T \\rangle_{max}(t)$, the time delay of the temperature response as function of the radius, $\\tau$, and the radial heat flux $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$, are also studied as functions of the magnetic field stochasticity and $\\ell_B$. In all cases, the scaling of $\\langle T \\rangle_{max}$ with $t$ transitions from sub-diffusive, $\\langle T \\rangle_{max} \\sim t^{-1/4}$, at short times ($\\chi_\\parallel t 10^5$). A strong dependence on $\\epsilon$ is also observed on $\\tau$ and $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$. The radial propagation of pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, $\\tau$, in reversed shear configurations is an order of magnitude longer than the one in monotonic $q$-profiles.
Resonant Propagation of Entangled Rhodium Mossbauer Gammas
Yao Cheng; Zhongming Wang
2006-10-19T23:59:59.000Z
We report the resonant propagation of the long-lived Mossbauer gamma in the time-resolved Mossbauer spectroscopy. Recently, three entangled gammas emitted from the E3 rhodium Mossbauer transition has been proposed to interpret the extraordinary observations in the previous report. Further observation reported here is the dynamic beat of these entangled gammas at room temperature and 77K. Apparent beat anisotropy reveals their long-distance resonant propagation, which leads to suppressed Doppler shift of entangled photon transport in the Borrmann channel.
Resonant Propagation of Entangled Rhodium Mossbauer Gammas
Cheng, Y; Cheng, Yao; Wang, Zhongming
2006-01-01T23:59:59.000Z
We report the resonant propagation of the long-lived Mossbauer gamma in the time-resolved Mossbauer spectroscopy. Recently, three entangled gammas emitted from the E3 rhodium Mossbauer transition has been proposed to interpret the extraordinary observations in the previous report. Further observation reported here is the dynamic beat of these entangled gammas at room temperature and 77K. Apparent beat anisotropy reveals their long-distance resonant propagation, which leads to suppressed Doppler shift of entangled photon transport in the Borrmann channel.
Resonantly damped surface and body MHD waves in a solar coronal slab with oblique propagation
I. Arregui; J. Terradas; R. Oliver; J. L. Ballester
2007-08-28T23:59:59.000Z
The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a zero-$\\beta$ configuration and for parallel propagation of waves does not allow the existence of surface waves. When oblique propagation of perturbations is considered both surface and body waves are able to propagate. When the perpendicular wave number is larger than a certain value, the body kink mode becomes a surface wave. In addition, a sausage surface mode is found below the internal cut-off frequency. When non-uniformity in the equilibrium is included, surface and body modes are damped due to resonant absorption. In this paper, first, a normal-mode analysis is performed and the period, the damping rate, and the spatial structure of eigenfunctions are obtained. Then, the time-dependent problem is solved, and the conditions under which one or the other type of mode is excited are investigated.
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Reservoir
Gor, Gennady Yu
2012-01-01T23:59:59.000Z
Fracturing of the caprock during CO2 storage in deep saline aquifers can lead to leakage. Estimation of the rate of fracture propagation allows one to assess the leakage risk. Here we propose an analytical model for calculating the length of the fracture, which propagates due to the fluid outflow from a low-permeability aquifer. We present a self-similar solution of the pressure diffusion equation in the system of reservoir and fracture, allowing us to get the analytical expression for the fracture length as a function of time. We calculate the evolution of the fracture length for a characteristic aquifer. We show that the analytical solution provides an estimate from below for the fracture length, since the driving force for propagation grows with elevation.
Utility Rate Design Revision - A Frisbee Full of Boomerangs
Dannenmaier, J. H.
1979-01-01T23:59:59.000Z
Rising electricity prices have prompted investigation of utility rates and proposals for changed in their design. The purpose of this paper is to discuss the current design of electric rates, changes proposed, actual trends, and predictable results...
Information Propagation in the Bitcoin Network
Information Propagation in the Bitcoin Network Christian Decker ETH Zurich Â Distributed Computing Group Â www.disco.ethz.ch #12;What is Bitcoin? #12;What is Bitcoin? + #12;What is Bitcoin? + = #12;What 250 300 Price[USD] USD / Bitcoin exchange price 150$/BTC #12;What's it worth? Oct 2010 Feb 2011 Jun
Distributed Kalman Filter via Gaussian Belief Propagation
Dolev, Danny
Distributed Kalman Filter via Gaussian Belief Propagation Danny Bickson IBM Haifa Research Lab interpretations. First, we show equivalence to computing one iteration of the Kalman filter. Second, we show that the Kalman filter is a special case of the Gaussian information bottleneck algorithm, when the weight
Wave propagation in the magnetic sun
T. Hartlep; M. S. Miesch; N. N. Mansour
2008-05-03T23:59:59.000Z
This paper reports on efforts to simulate wave propagation in the solar interior. Presented is work on extending a numerical code for constant entropy acoustic waves in the absence of magnetic fields to the case where magnetic fields are present. A set of linearized magnetohydrodynamic (MHD) perturbation equations has been derived and implemented.
Wave propagation Remco Hartkamp (University of Twente)
Entekhabi, Dara
) waves Sound: 20 Hz 20 kHz Gas: P Liquid: P Plasma: P Solid: P & S #12;Stretched string example 1D wave Dispersion: Waves with different wavelengths propagate at different speeds 6 k c k k Shallow water: c gh mJ K material parameter (related to the strain saturation of the material) det FJ bulk modulus
Detonation propagation in a high loss configuration
Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH
2009-01-01T23:59:59.000Z
This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.
On the Vacuum Propagation of Gravitational Waves
Xiao Liu
2007-06-05T23:59:59.000Z
We show that, for any local, causal quantum field theory which couples covariantly to gravity, and which admits Minkowski spacetime vacuum(a) invariant under the inhomogeneous proper orthochronous Lorentz group, plane gravitational waves propagating in such Minkowski vacuum(a) do not dissipate energy or momentum via quantum field theoretic effects.
Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium
Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de [Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg (Germany); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Grigoryan, K.K.; Petrosyan, R.G. [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia)] [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia); Fritzsche, S. [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany) [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)
2013-06-15T23:59:59.000Z
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period ? is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods ? between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.
GTA TRIP GENERATION RATES, 1986 -1996 Eric J. Miller
Toronto, University of
GTA TRIP GENERATION RATES, 1986 - 1996 by Eric J. Miller Department of Civil Engineering University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. CHANGES IN GTA TRIP GENERATION RATES, 1986-96 . . . . . . . . . . . . . . . . . . . . . 2 2 Time Female Labour Force Participation Rate
Ma, Longzhou
2012-11-30T23:59:59.000Z
The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or SAGBOE damage process under hold-time fatigue and sustained loading conditions
Wave Propagation in Fractured Poroelastic Media - Department of ...
robiel
and sizes is essential since these factors control hydrocarbon production. ... saturation and fractal porosity (fractal frame properties). Wave Propagation in ...
Propagation of nonlinear waves in waveguides and application to nondestructive stress measurement
Nucera, Claudio
2012-01-01T23:59:59.000Z
of ultrasonic wave propagation to identify defects in investigation of elastic wave propagation in a cylinder. Modeling guided wave propagation with application to the
Lo, W.-C.
2009-01-01T23:59:59.000Z
1988, Bulk elastic wave propagation in partially saturated1986, Compressional wave propagation in liquid and/or gassaturation and seismic-wave propagation, Annu. Rev. Earth
Liou, K. N.
On the information content of the thermal infrared cooling rate profile from satellite instrument 2008; accepted 25 February 2008; published 13 June 2008. [1] This work investigates how remote sensing of the quantities required to calculate clear-sky cooling rate profiles propagates into cooling rate profile
Propagation of gravitational waves in multimetric gravity
Manuel Hohmann
2012-04-22T23:59:59.000Z
We discuss the propagation of gravitational waves in a recently discussed class of theories containing N >= 2 metric tensors and a corresponding number of standard model copies. Using the formalism of gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of gravitational waves may exist, depending on the parameters entering the equations of motion. This corresponds to E(2) representations N_2, N_3, III_5 and II_6. We finally apply our general discussion to a recently presented concrete multimetric gravity model and show that it is of class N_2, i.e., it allows only two tensor polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests of multimetric gravity theories using the upcoming gravitational wave experiments.
Method and apparatus for charged particle propagation
Hershcovitch, A.
1996-11-26T23:59:59.000Z
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.
Exact identity for nonlinear wave propagation Duncan Ralph,1
California at Santa Cruz, University of
Exact identity for nonlinear wave propagation Duncan Ralph,1 Onuttom Narayan,1 and Richard The propagation of waves in nonlinear media is of great importance in a variety of fields, from seismology. Despite their im- portance, exact results for nonlinear wave propagation are rare. Although the existence
Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation
Santolik, Ondrej
12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes
Otani, Yoshichika
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes O. Rousseau,1 M on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes wave propagation. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864480] In recent years
Matching of asymptotic expansions for the wave propagation in media
Paris-Sud XI, UniversitÃ© de
Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot Â p.1/38 inria-00528070 of asymptotic expansions for the wave propagation in media with thin slot Â p.2/38 inria-00528070,version1-21Oct
Sound wave propagation in weakly polydisperse granular materials
Luding, Stefan
Sound wave propagation in weakly polydisperse granular materials O. Mouraille, S. Luding NSM/DCT/TUDelft, Julianalaan 136, 2628 BL Delft, Netherlands Abstract Dynamic simulations of wave propagation are performed. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves
Gravity waves excited by jets: Propagation versus generation R. Plougonven
Plougonven, Riwal
Gravity waves excited by jets: Propagation versus generation R. Plougonven School of Mathematics imposed by the generation mechanism. In proceeding so, effects due to the propagation of the waves through simulations demonstrate that the propagation of inertia-gravity waves through horizontal deformation
Propagation of elastic waves through a lattice of cylindrical cavities
Propagation of elastic waves through a lattice of cylindrical cavities By S. Guo & P. Mc asymptotic homogenization to obtain low-frequency approximations to elastic wave propagation through periodic follows that of McIver (2007) who investigates acoustic-wave propagation through a lattice of rigid
FINITE VOLUME SCHEMES FOR DISPERSIVE WAVE PROPAGATION AND RUNUP
Boyer, Edmond
FINITE VOLUME SCHEMES FOR DISPERSIVE WAVE PROPAGATION AND RUNUP DENYS DUTYKH , THEODOROS KATSAOUNIS to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given require the computation of the wave generation [DD07, KDD07], propagation [TG97], interaction with solid
Wave propagation in highly inhomogeneous thin films: exactly solvable models
Boyer, Edmond
Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel
Shock wave propagation in composites and active Vinamra Agrawal
Shyamasundar, R.K.
Shock wave propagation in composites and active Vinamra Agrawal California Institute of Technology travel through a material. These waves are characterized as a discontinuity propagating through shock waves propagate in heterogeneous materials. Shock waves are also being used to o pulsed currents
Matching of asymptotic expansions for the wave propagation in media
Paris-Sud XI, UniversitÃ© de
Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot Â p.1/29 inria-00528072 The wavelength The width of the slot Â¡ Matching of asymptotic expansions for the wave propagation in media
Love wave propagation in layered magneto-electro-elastic structures
Wang, Ji
Love wave propagation in layered magneto-electro-elastic structures with initial stress J. Du, X that the initial stress has an important effect on the Love wave propagation in layered piezomagnetic at their interface. He concluded that shear surface waves propagate in the layer and attenuate along the thickness
Singular value decomposition methods for wave propagation analysis
Santolik, Ondrej
Singular value decomposition methods for wave propagation analysis O. SantoliÂ´k,1 M. Parrot, and F planarity. Simulations of Z-mode waves, which simultaneously propagate with different wave vectors, indicate the waves simultaneously propagate with wave vectors in two opposite hemispheres. Finally, we show
Propagating waves mediate information transfer in the motor cortex
Hatsopoulos, Nicholas
Propagating waves mediate information transfer in the motor cortex Doug Rubino1, Kay A Robbins2-delay reaching task, we found that these oscillations propagated as waves across the surface of the motor cortex oscillations propagated as waves across the primary motor (MI) and premotor (PMd) cortices as monkeys planned
Feedback stabilization of unstable propagating waves Eugene Mihaliuk,1
Showalter, Kenneth
Feedback stabilization of unstable propagating waves Eugene Mihaliuk,1 Tatsunari Sakurai,1 Florin Received 29 July 2001; revised manuscript received 10 March 2002; published 26 June 2002 Propagating wave s : 82.40.Ck, 47.54. r Propagating waves in active media arise from the cou- pling of a positive feedback
TIME-PERIODIC SOUND WAVE PROPAGATION COMPRESSIBLE EULER EQUATIONS
A PARADIGM FOR TIME-PERIODIC SOUND WAVE PROPAGATION IN THE COMPRESSIBLE EULER EQUATIONS BLAKE consistent with time-periodic sound wave propagation in the 3 Ã? 3 nonlinear compressible Euler equations description of shock-free waves that propagate through an oscillating entropy field without breaking or dis
Efficient Numerical Simulation for Long Range Wave Propagation 1
Solna, Knut
Efficient Numerical Simulation for Long Range Wave Propagation 1 Kai Huang 2 George Papanicolaou 3 for simulating wave propagation over long dis- tances with both weak and strong scatterers. In domains with weak heterogeneities the wave field is decomposed into forward propagating and back scattered modes using two coupled
Electromagnetic Waves Propagation in 3D Plasma Configurations
Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating
Detection of Cardiac Occlusions Using Viscoelastic Wave Propagation
Detection of Cardiac Occlusions Using Viscoelastic Wave Propagation H.T. Banks and J. R. Samuels driven viscoelastic (VE) waves propagated through biotissue to body surface sensors. We in- vestigate: Inverse problems, viscoelastic models, wave propagation in biotissue, statistical models. AMS Subject
Handwritten Digit Recognition with a Back-Propagation Network
Parker, Gary B.
Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D We present an application of back-propagation networks to hand- written digit recognition. Minimal. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) net- works
Handwritten Digit Recognition with a BackPropagation Network
LeCun, Yann
Handwritten Digit Recognition with a BackÂPropagation Network Y. Le Cun, B. Boser, J. S. Denker, D We present an application of backÂpropagation networks to handÂ written digit recognition. Minimal. 1 INTRODUCTION The main point of this paper is to show that large backÂpropagation (BP) netÂ works
A Kinematic Model of Wave Propagation John W. Cain1
Cain, John Wesley
A Kinematic Model of Wave Propagation John W. Cain1 1 Dept. of Mathematics, Virginia Commonwealth Abstract We present a purely kinematic model of wave propagation in an ex- citable medium, namely cardiac- putationally efficient kinematic model [7] of wave propagation, starting from a standard reaction
Electromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas
- propagating laser pulses and (ii) guiding of an ultra-short tightly focused laser pulse by a counterElectromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas G. Shvets Princeton for Quantenoptik, D-85748 Garching, Germany Abstract The interaction of counter-propagating laser pulses
Wave Propagation in Jointed Geologic Media
Antoun, T
2009-12-17T23:59:59.000Z
Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.
Nonlinear propagation of light in Dirac matter
Eliasson, Bengt [Institut fuer Theoretische Physik, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Shukla, P. K. [RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2011-03-15T23:59:59.000Z
The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
Carroll, Susan
2013-07-01T23:59:59.000Z
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
Craine, Roger; Martin, Vance L.
2009-01-01T23:59:59.000Z
Flows and US Interest Rates,” NBER Working Paper No 12560. [Working Paper # 2008 -03 The Interest Rate Conundrum Roger
Paris-Sud XI, UniversitÃ© de
Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures
3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi
Sarabandi, Kamal
3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms
Stefanopoulou, Anna
Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge, and (2) accumulation and transport of liquid water in the Gas Diffusion Layer (GDL) originally presented experimentally iden- tified parameter to match the rate of liquid water accumulation in the anode channel
Böcklin, Christoph, E-mail: boecklic@ethz.ch; Baumann, Dirk; Fröhlich, Jürg [Institute of Electromagnetic Fields, ETH Zurich, 8092 Zurich (Switzerland)
2014-02-14T23:59:59.000Z
A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.
Stimulated Raman scattering of laser in a plasma in the presence of a co-propagating electron beam
Parashar, J. [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)] [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)
2013-12-15T23:59:59.000Z
A relativistic electron beam co-propagating with a high power laser in plasma is shown to add to the growth of the stimulated Raman back scattering of the laser. The growth rate is sensitive to phase matching of electron beam with the plasma wave. In the case of phase mismatch, the growth rate drops by an order. The energy spread of the electron beam significantly reduces the effectiveness of the beam on the stimulated Raman process.
Anisotropic wave propagation in nematic liquid crystals
Paolo Biscari; Antonio DiCarlo; Stefano S. Turzi
2014-05-10T23:59:59.000Z
Despite the fact that quantitative experimental data have been available for more than forty years now, nematoacoustics still poses intriguing theoretical and experimental problems. In this paper, we prove that the main observed features of acoustic wave propagation through a nematic liquid crystal cell -- namely, the anisotropy of sound velocity and its frequency dependence -- may be plausibly explained by a first-gradient continuum theory characterized by a hyperelastic anisotropic response from an evolving relaxed configuration. We compare and contrast our proposal with a competing theory where the liquid crystal is modeled as an isotropically compressible, anisotropic second-gradient fluid.
Propagating torsion in the Einstein frame
Poplawski, Nikodem J. [Department of Physics, Indiana University, 727 East Third Street, Bloomington, Indiana 47405 (United States)
2006-11-15T23:59:59.000Z
The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.
Wave Packets Propagation in Quantum Gravity
Kourosh Nozari; S. H. Mehdipour
2005-07-03T23:59:59.000Z
Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.
Plasma control by modification of helicon wave propagation in low magnetic fields
Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)
2010-07-15T23:59:59.000Z
By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasma potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.
Haby, Vincent A
1969-01-01T23:59:59.000Z
significantly increased Ca to 18 inches, while only the 6-ton/acre rate of fine dolomitic lime- stone increased Ca into the same depth. All dolomitic treatments increased Mg to 18-inch depths. Sampling deeper than 18 inches in the 6 ton/acre dolomitic fine... formed soluble salts with the NO and were leached down as Ca(ND ) Limestone treatments did not produce significant increases in yield of corn or Coastal bermudagrass. The no-lime plots produced 70 bushels of corn and 9. 2 tons of oven-dry Coastal...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2015 BCP Annual Rate Process (FY 2016 Base Charge & Rate) Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 11, 2015 at 10:30 A.M. Conf Rms 3&4...
Method and apparatus for charged particle propagation
Hershcovitch, Ady (Mount Sinai, NY)
1996-11-26T23:59:59.000Z
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.
Pattern formation and propagation during microwave breakdown
Chaudhury, Bhaskar [Laboratoire Plasma et Conversion d'Energie (LAPLACE), INPT, UPS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Boeuf, Jean-Pierre [Laboratoire Plasma et Conversion d'Energie (LAPLACE), INPT, UPS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); LAPLACE, CNRS, F-31062 Toulouse (France); Zhu, Guo Qiang [Laboratoire Plasma et Conversion d'Energie (LAPLACE), INPT, UPS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Northwestern Polytechnique University, Xi'an 710072 (China)
2010-12-15T23:59:59.000Z
During microwave breakdown at atmospheric pressure, a sharp plasma front forms and propagates toward the microwave source at high velocities. Experiments show that the plasma front may exhibit a complex dynamical structure or pattern composed of plasma filaments aligned with the wave electric field and apparently moving toward the source. In this paper, we present a model of the pattern formation and propagation under conditions close to recent experiments. Maxwell's equations are solved together with plasma fluid equations in two dimensions to describe the space and time evolution of the wave field and plasma density. The simulation results are in excellent agreement with the experimental observations. The model provides a physical interpretation of the pattern formation and dynamics in terms of ionization-diffusion and absorption-reflection mechanisms. The simulations allow a good qualitative and quantitative understanding of different features such as plasma front velocity, spacing between filaments, maximum plasma density in the filaments, and influence of the discharge parameters on the development of well-defined filamentary plasma arrays or more diffuse plasma fronts.
Berlin,Technische UniversitÃ¤t
wave propagation has been treated. By observing nature, however, an undamped wave propagation is rather
Wang, Kangpeng; Ju, Yongfeng; He, Jin; Zhang, Long, E-mail: jwang@siom.ac.cn, E-mail: lzhang@siom.ac.cn; Wang, Jun, E-mail: jwang@siom.ac.cn, E-mail: lzhang@siom.ac.cn [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Yu [Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Blau, Werner J. [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)
2014-01-13T23:59:59.000Z
Laser propagation in a tandem structure comprising carbon nanotubes and phthalocyanines is studied by Z-scan method. Due to the different mechanisms of the two materials, the laser beam can be attenuated with different absorptivities, by changing the sequence of light passing through each material. Numerical simulations considering the effect of path length and the change of nonlinear coefficient within each material are conducted for understanding the distribution of laser intensity in the tandem system and hence, fitting of the asymmetric Z-scan curves. The results are helpful for the design of nonlinear optical devices comprising multiple nonlinear materials and mechanisms.
Absorption-free superluminal light propagation in a V-type system
Khaled Saaidi; Bahareh Ruzbahani; S. Worya Rabiei; Mohammad Mahmoudi
2010-05-19T23:59:59.000Z
Dispersion and absorption properties of a weak probe field in a three-level V-type atomic system is studied. By application of indirect incoherent pump fields the effect of populating upper levels on optical properties of the atomic medium in presence of a strong coherent pump field is investigated. It is shown that the slope of dispersion changes from positive to negative just by changing the intensity of the coherent or indirect incoherent pump fields. It is demonstrated that the absorption-free subluminal and superluminal light propagation appears in this system.
Research Rate Liaison Rate for outside academic &
Gilchrist, James F.
as of 12/9/13 External Rate Spark Plasma Sintering ) Spark Plasma Sintering > 24 hrs 2 8 Vacuum Hot Press
2012 Transmission Rate Schedules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
for Transmission and Ancillary Services Federal Register Notice -- Rate Order WAPA-141: Notice of Extension of Formula Rates for Transmission and Ancillary Services If you have any...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
69 Rate Order Western is proposing adjustments to the Salt Lake City Area Integrated Projects firm power rate and the Colorado River Storage Project Transmission and ancillary...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
DSW Multiple System Transmission Rate Process Federal Register Notice Withdrawing Rate Proposal (PDF) Formal Process Extension Federal Register Notice (PDF) Customer Savisngs Under...
Orthogonal-Phase-Velocity Propagation of Electromagnetic Plane Waves
Tom G. Mackay; Akhlesh Lakhtakia
2005-11-30T23:59:59.000Z
In an isotropic, homogeneous, nondissipative, dielectric-magnetic medium that is simply moving with respect to an inertial reference frame, planewave solutions of the Maxwell curl postulates can be such that the phase velocity and the time-averaged Poynting vector are mutually orthogonal. Orthogonal-phase-velocity propagation thus adds to the conventional positive-phase-velocity propagation and the recently discovered negative-phase-velocity propagation that is associated with the phenomenon of negative refraction.
Mixing of fermions and spectral representation of propagator
Kaloshin, A E
2015-01-01T23:59:59.000Z
We develop the spectral representation of propagator for $n$ mixing fermion fields in case of $\\mathsf{P}$-parity violation. Solving of the eigenstate problem for inverse matrix propagator allows to build the system of orthogonal projectors and to represent the matrix propagator as a sum of poles with positive and negative energy. The procedure of multiplicative renormalization is investigated, the renormalization matrices are obtained in a closed form without using of perturbation theory.
The Propagation of Photons in the Dilute Ionized Gas
Yijia Zheng
2013-05-02T23:59:59.000Z
The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.
Gonzalez-Rodriguez, David
Experimental studies of sediment transport rates due to near shore waves are often conducted in oscillating water tunnels (OWTs). In an OWT, the oscillatory motion produced by the piston propagates almost instantaneously ...
anomalous wave propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of wave vector and energy flow are also significantly different. It is found that waves exhibit different propagation behaviors in anisotropic media with different sign...
assuming nonparallel propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Bruce R. Sutherland Department of Mathematical and Statistical Sciences theories of the propagation of internal waves in continuously stratified fluid is reviewed and new...
aerodynamic noise propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
not known in full detail in experiments. For weak propagating microwaves, the detection process requires linear amplifiers which obscure the signal with random noise. Here, we...
Identifying crack initiation and propagation thresholds in brittle rock
propagation. RÃ©sumÃ© : Des travaux rÃ©cents au Â«Underground Research LaboratoryÂ» de l'AECL Ã Pinawa, Manitoba
Modeling broadband poroelastic propagation using an asymptotic approach
Vasco, Donald W.
2010-01-01T23:59:59.000Z
propagation, the frequency dependence of a disturbance in alower frequencies the scale length of the disturbance willthe frequency dependence of an elas- tic disturbance (109)
On the response of rubbers at high strain rates.
Niemczura, Johnathan Greenberg (University of Texas-Austin)
2010-02-01T23:59:59.000Z
In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.
Mechanisms of Ignition by Transient Energy Deposition: Regimes of Combustion Waves Propagation
Kiverin, Alexey D; Ivanov, Mikhail F; Liberman, Michael A
2013-01-01T23:59:59.000Z
Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source and the size of the hot spot. The main parameters which define regimes of the combustion waves facilitated by the transient deposition of thermal energy are: acoustic timescale, duration of the energy deposition, ignition time scale and size of the hot spot. The interplay between these parameters specifies the role of gasdynamical processes, the formation and steepness of the temperature gradient and speed of the spontaneous wave. The obtained results show how ignition of one or another regime of combustion wave depends on the value of energy, rate of the energy deposition and size of the hot spot, which is import...
Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Taheri Boroujeni, S.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)] [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)
2013-12-15T23:59:59.000Z
The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.
Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O{sub 3}
Ombrello, Timothy; Won, Sang Hee; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Engineering Quadrangle, Olden Street, Princeton, NJ 08544 (United States); Williams, Skip [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson AFB, OH 45433 (United States)
2010-10-15T23:59:59.000Z
The thermal and kinetic effects of O{sub 3} on flame propagation were investigated experimentally and numerically by using C{sub 3}H{sub 8}/O{sub 2}/N{sub 2} laminar lifted flames. Ozone produced by a dielectric barrier plasma discharge was isolated and measured quantitatively by using absorption spectroscopy. Significant kinetic enhancement by O{sub 3} was observed by comparing flame stabilization locations with and without O{sub 3} production. Experiments at atmospheric pressures showed an 8% enhancement in the flame propagation speed for 1260 ppm of O{sub 3} addition to the O{sub 2}/N{sub 2} oxidizer. Numerical simulations showed that the O{sub 3} decomposition and reaction with H early in the pre-heat zone of the flame produced O and OH, respectively, from which the O reacted rapidly with C{sub 3}H{sub 8} and produced additional OH. The subsequent reaction of OH with the fuel and fuel fragments, such as CH{sub 2}O, provided chemical heat release at lower temperatures to enhance the flame propagation speed. It was shown that the kinetic effect on flame propagation enhancement by O{sub 3} reaching the pre-heat zone of the flame for early oxidation of fuel was much greater than that by the thermal effect from the energy contained within O{sub 3}. For non-premixed laminar lifted flames, the kinetic enhancement by O{sub 3} also induced changes to the hydrodynamics at the flame front which provided additional enhancement of the flame propagation speed. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms and provided a foundation for the study of combustion enhancement by O{sub 2}(a{sup 1}{delta}{sub g}) in part II of this investigation. (author)
Epidemic Propagation In Overlaid Wireless Networks
Yanmaz, Evsen [Los Alamos National Laboratory
2008-01-01T23:59:59.000Z
Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.
Propagating and stationary superfluid turbulent fronts
Castiglione, J.; Murphy, P.J.; Tough, J.T.; Hayot, F. [Ohio State Univ., Columbus, OH (United States)] [and others
1995-09-01T23:59:59.000Z
The authors have observed that the critical heat current for the transition to superfluid turbulence in weakly nonuniform circular channels depends strongly on the flow direction. This observation is particularly surprising since no other property of the turbulence appears to have such a dependence. In a nonuniform channel the critical heat current is associated with a stationary front between the laminar and turbulent flow. The authors propose a new model for super-fluid turbulent fronts which explains the asymmetry of the critical heat currents in a simple way. The model is based on the subcritical nature of the transition, and the generic description of such a bifurcation by the Ginzburg-Landau equation. As a bonus, the model also explains a long-standing problem in superfluid physics-the nature of propagating fronts in uniform channels. The results of this analysis of both the uniform and nonuniform channel data also provide new information about the vortex line drift velocity.
Digital reverse propagation in focusing Kerr media
Goy, Alexandre; Psaltis, Demetri [Laboratoire d'Optique, School of Engineering, Ecole Polytechnique Federale de Lausanne (Switzerland)
2011-03-15T23:59:59.000Z
Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The reverse propagation method used in digital holography to form images from recorded holograms works even in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics 3, 211 (2009).]. Here, we report experimental results in focusing media.
Fractal Propagators in QED and QCD and Implications for the Problem of Confinement
S. Gulzari; Y. N. Srivastava; J. Swain; A. Widom
2006-12-09T23:59:59.000Z
We show that QED radiative corrections change the propagator of a charged Dirac particle so that it acquires a fractional anomalous exponent connected with the fine structure constant. The result is a nonlocal object which represents a particle with a roughened trajectory whose fractal dimension can be calculated. This represents a significant shift from the traditional Wigner notions of asymptotic states with sharp well-defined masses. Non-abelian long-range fields are more difficult to handle, but we are able to calculate the effects due to Newtonian gravitational corrections. We suggest a new approach to confinement in QCD based on a particle trajectory acquiring a fractal dimension which goes to zero in the infrared as a consequence of self-interaction, representing a particle which, in the infrared limit, cannot propagate.
Larson, N.M.
1984-02-01T23:59:59.000Z
This report describes a computer code (ALEX) developed to assist in AnaLysis of EXperimental data at the Oak Ridge Electron Linear Accelerator (ORELA). Reduction of data from raw numbers (counts per channel) to physically meaningful quantities (such as cross sections) is in itself a complicated procedure; propagation of experimental uncertainties through that reduction procedure has in the past been viewed as even more difficult - if not impossible. The purpose of the code ALEX is to correctly propagate all experimental uncertainties through the entire reduction procedure, yielding the complete covariance matrix for the reduced data, while requiring little additional input from the eperimentalist beyond that which is required for the data reduction itself. This report describes ALEX in detail, with special attention given to the case of transmission measurements (the code itself is applicable, with few changes, to any type of data). Application to the natural iron measurements of D.C. Larson et al. is described in some detail.
Numerical Construction of Likelihood Distributions and the Propagation of Errors
J. Swain; L. Taylor
1997-12-12T23:59:59.000Z
The standard method for the propagation of errors, based on a Taylor series expansion, is approximate and frequently inadequate for realistic problems. A simple and generic technique is described in which the likelihood is constructed numerically, thereby greatly facilitating the propagation of errors.
Some Techniques for Computing Wave Propagation in Optical Waveguides
Lu, Ya Yan
Some Techniques for Computing Wave Propagation in Optical Waveguides Ya Yan Lu Department and be separated again. For a general z-varying wave-guiding structure, the frequency domain propagation problem of Mathematics, City University of Hong Kong Kowloon, Hong Kong Abstract Optical wave-guiding structures
Propagation and reflection of internal waves B. R. Sutherlanda)
Sutherland, Bruce
Propagation and reflection of internal waves B. R. Sutherlanda) Department of Mathematical Sciences 01205-2 I. INTRODUCTION An internal wave is a disturbance propagating under the effects of buoyancy gravity waves incident upon a level where the Doppler-shifted frequency of the waves is comparable
On the uniqueness of loopy belief propagation fixed points
Heskes, Tom
those for convexity of the Bethe free energy. We compare them with (a strength ened version of algorithms as well as for other approximate free energies. 1 Introduction Loopy belief propagation is Pearl belief propagation correspond to extrema of the socalled Bethe free energy (Yedidia, 1 #12; Freeman
Wave Propagation Theory 2.1 The Wave Equation
2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher
Acoustic wave propagation in two-phase heterogeneous porous media
J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin
2015-03-19T23:59:59.000Z
The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.
A STUDY OF ULTRASONIC WAVE PROPAGATION IN BONES
zyserman
tion mechanisms; different models for the latter are introduced ... The aim of this report is to analyse the propagation of ultrasonic ... propagation depends on the values of different model ...... Santos J.E., Corberó J.M., Ravazzoli C.L., and Hens
Propagation Beam Consideration for 3D THz Computed Tomography
Boyer, Edmond
Propagation Beam Consideration for 3D THz Computed Tomography B. Recur, 1, J.P. Guillet, 2 I. Manek, "Refraction losses in terahertz computed tomography," Opt. Commun. 283, 20502055 (2010). 8. S. Nadar, H of the beam propagation is developed according to the physical properties of THz waves used in THz computed
Propagation of Nonclassical Radiation through a Semiconductor Slab
D. Yu. Vasylyev; W. Vogel; T. Schmielau; K. Henneberger; D. -G. Welsch
2008-02-20T23:59:59.000Z
Based on a microscopic derivation of the emission spectra of a bulk semiconductor we arrive at a clear physical interpretation of the noise current operators in macroscopic quantum electrodynamics. This opens the possibility to study medium effects on nonclassical radiation propagating through an absorbing or amplifying semiconductor. As an example, the propagation of an incident squeezed vacuum is analyzed.
Causal propagation of geometrical fields in relativistic cosmology
Van Elst, H; Elst, Henk van; Ellis, George F R
1999-01-01T23:59:59.000Z
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries $({\\cal M}, {\\bf g}, {\\bf u})$, which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities $v$ (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with $v = 0$ and four transverse characteristic eigenfields propagating with $|v| = 1$, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating ...
Roberts, Jr., Charles E.; Chadwell, Christopher J.
2004-09-21T23:59:59.000Z
The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.
Verma, Kanika; Sajal, Vivek, E-mail: vsajal@rediffmail.com; Varshney, Prateek; Kumar, Ravindra; Sharma, Navneet K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307, UP (India)] [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307, UP (India)
2014-02-15T23:59:59.000Z
Effects of transverse static magnetic field on stimulated Raman scattering (SRS) of the beat wave excited by two counter-propagating lasers are studied. Two counter-propagating lasers with frequency difference, ?{sub 1}??{sub 2}?2?{sub p}, drive a non resonant space charge beat mode at wave number k{sup ?}{sub 0}?k{sup ?}{sub 1}+k{sup ?}{sub 2} in a plasma, where k{sup ?}{sub 1} and k{sup ?}{sub 2} are wave vectors of lasers having frequencies ?{sub 1} and ?{sub 2}, respectively. The driven beat wave acts as a pump for SRS and excites parametrically a pair of plasma wave (?,k{sup ?}) and side band electromagnetic wave (?{sub 3},k{sup ?}{sub 3}) propagating in the sideward direction in such a way that momentum remains conserved. The growth rate of Raman process is maximum for side scattering at ?{sub s}=?/2 for lower values of applied magnetic field (?1?kG), which can be three fold by applying magnetic field ?5.0?kG. Thus, optimum value of magnetic field can be utilized to achieve maximum electron acceleration in counter propagating geometry of beat wave acceleration by reducing the growth rate of Raman process.
Open Systems Dynamics for Propagating Quantum Fields
Ben Q. Baragiola
2014-08-18T23:59:59.000Z
In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. Within the framework of open quantum systems, the light is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. Two major results are presented. The first is a master equation approach for a quantum system interacting with a traveling wave packet prepared with a definite number of photons. In contrast to quasi-classical states, such as coherent or thermal fields, these N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The second is a model for a three-dimensional light-matter interface for an atomic ensemble interacting with a paraxial laser beam and its application to the generation of QND spin squeezing. Both coherent and incoherent dynamics due to spatially inhomogeneous atom-light coupling across the ensemble are accounted for. Measurement of paraxially scattered light can generate squeezing of an atomic spin wave, while diffusely scattered photons lead to spatially local decoherence.
Propagator mixing renormalization for Majorana fermions
Bernd A. Kniehl
2014-06-17T23:59:59.000Z
We consider a mixed system of unstable Majorana fermions in a general parity-nonconserving theory and renormalize its propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization (WFR) matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. In contrast to the case of unstable Dirac fermions, the WFR matrices of the in and out states are uniquely fixed, while they again bifurcate in the sense that they are no longer related by pseudo-Hermitian conjugation. We present closed analytic expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions, as well as their expansions through two loops. In the case of stable Majorana fermions, the well-known one-loop results are recovered.
Cosmic axion background propagation in galaxies
Day, Francesca V
2015-01-01T23:59:59.000Z
Many extensions of the Standard Model include axions or axion-like particles (ALPs). Here we study ALP to photon conversion in the magnetic field of the Milky Way and starburst galaxies. By modelling the effects of the coherent and random magnetic fields, the warm ionized medium and the warm neutral medium on the conversion process, we simulate maps of the conversion probability across the sky for a range of ALP energies. In particular, we consider a diffuse cosmic ALP background (CAB) analogous to the CMB, whose existence is suggested by string models of inflation. ALP-photon conversion of a CAB in the magnetic fields of galaxy clusters has been proposed as an explanation of the cluster soft X-ray excess. We therefore study the phenomenology and expected photon signal of CAB propagation in the Milky Way. We find that, for the CAB parameters required to explain the cluster soft X-ray excess, the photon flux from ALP-photon conversion in the Milky Way would be unobservably small. The ALP-photon conversion prob...
Relativistic particle: Dirac observables and Feynman propagator
Freidel, Laurent; Girelli, Florian; Livine, Etera R. [Perimeter Institute, 31 Caroline St North, Waterloo, ON, N2L 2Y5 (Canada); SISSA, Via Beirut 2-4, 34014 Trieste (Italy); INFN, Sezione di Trieste (Italy); Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69364 Lyon Cedex 07 (France)
2007-05-15T23:59:59.000Z
We analyze the algebra of Dirac observables of the relativistic particle in four space-time dimensions. We show that the position observables become noncommutative and the commutation relations lead to a structure very similar to the noncommutative geometry of deformed special relativity (DSR). In this framework, it appears natural to consider the 4D relativistic particle as a five-dimensional massless particle. We study its quantization in terms of wave functions on the 5D light cone. We introduce the corresponding five-dimensional action principle and analyze how it reproduces the physics of the 4D relativistic particle. The formalism is naturally subject to divergences (due to the 5D representation), and we show that DSR arises as a natural regularization: the 5D light cone is regularized as the de Sitter space. We interpret the fifth coordinate as the particle's proper time while the fifth moment can be understood as the mass. Finally, we show how to formulate the Feynman propagator and the Feynman amplitudes of quantum field theory in this context in terms of Dirac observables. This provides new insights for the construction of observables and scattering amplitudes in DSR.
Li Liang; Huang Guoxiang [Department of Physics and Institute of Theoretical Physics, East China Normal University, Shanghai 200062 (China); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China and Institute of Nonlinear Physics, Zhejiang Normal University, Zhejiang 321004 (China)
2010-08-15T23:59:59.000Z
We present a systematic theoretical study to deal with linear and nonlinear light propagations in a Doppler-broadened three-level {Lambda} system via electromagnetically induced transparency (EIT), with incoherent population exchange between two lower energy levels taken into account. Through a careful analysis of base state and linear excitation, we show that the EIT condition of the system is given by |{Omega}{sub c}|{sup 2{gamma}}{sub 31}>>2{gamma}{sub 21{Delta}{omega}D}{sup 2}, where {Omega}{sub c} is half the Rabi frequency of the control field, {Delta}{omega}{sub D} is the Doppler width, and {gamma}{sub jl} is the decay rate of the coherence between states |j> and |l>. Under this condition, the effect of incoherent population exchange is insignificant, while dephasing dominates the decoherence of the system. This condition also ensures the validity of the weak nonlinear perturbation theory used in this work for solving the Maxwell-Bloch equations with inhomogeneous broadening. We then investigate the nonlinear propagation of the probe field and show that it is possible to form temporal optical solitons in the Doppler-broadened medium. Such solitons have ultraslow propagating velocity and can be generated in very low light power. The possibility of realizing (1+1)-dimensional and (2+1)-dimensional spatial optical solitons in the adiabatic regime of the system is also discussed.
Advanced Review Social change to avert further
Delaware, University of
(mostly, these are changes in the mix of energy sources to power societies around the world) and those that reduce energy intensity (mostly, i.e., changes in the rate of energy consumption by human beings in dif recognize two broad types of social change-- changes that either reduce energy intensity or reduce carbon
TV Weathercasters as Climate Change Communicators
TV Weathercasters as Climate Change Communicators Kris Wilson Ph.D. School of Journalism University. 2012) #12;TV Weathercasters as Climate Change Communicators On-line survey (n=571) (52% response rate change more frequently in the future #12;TV Weathercasters as Climate Change Communicators "As a TV
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Log NERSC-8 Trinity Benchmarks Change Log 09032013 Correction applied to MiniDFT web-page (to remove inconsistency with MiniDFT README). Capability Improvement measurements...
2007-01-01T23:59:59.000Z
Zhou, G. S. ?1980?. “Wave propagation method of site seismicUse of Exact Solutions of Wave Propagation Problems to Guidesolutions for body wave propagation through an elastic
Causal propagation of geometrical fields in relativistic cosmology
Henk van Elst; George F R Ellis
1998-10-18T23:59:59.000Z
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries $({\\cal M}, {\\bf g}, {\\bf u})$, which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities $v$ (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with $v = 0$ and four transverse characteristic eigenfields propagating with $|v| = 1$, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating with $|v| = \\sfrac{1}{2}$. The implications of this result are discussed in some detail and a parallel is drawn to the propagation of irregularities in the matter distribution. In a worked example, we specialise the equations to cosmological models in locally rotationally symmetric class II and include the constraints into the set of causally propagating dynamical variables.
Boyer, Edmond
Photoelastic study of acoustic wave propagation in grain packings Xavier Noblin, Guillaume Huillard. By means of photoelasticity, we success in visualizing in real time the propagation of acoustic waves case. Keywords: Granular material, mechanical wave propagation, photoelasticity, nonlinear behavior
Propagating Waves Recorded in the Steel, Moment-Frame Factor Building During Earthquakes
Kohler, Monica; Heaton, Thomas H.; Samuel C. Bradford
2007-01-01T23:59:59.000Z
M. D. Trifunac (2001b). Wave propagation in a seven-storySafak, E. (1999). Wave-propagation formulation of seismicC. Bradford Abstract Wave-propagation effects can be useful
Wave propagation and instabilities in monolithic and periodically structured elastomeric materials; revised manuscript received 3 October 2008; published 14 November 2008 Wave propagation in elastomeric states can influence wave propagation and hence interpretation of data. In the case of periodically
Shaw, Bruce E.
Initiation propagation and termination of elastodynamic ruptures associated with segmentation the initiation, propagation, and termination of ruptures and their relationship to fault geometry and shaking of terminations near fault ends; and persistent propagation directivity effects. Taking advantage of long
Propagating and reflecting of spin wave in permalloy nanostrip with 360° domain wall
Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2014-01-07T23:59:59.000Z
By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360° domain wall in a nanostrip. It is found that propagating spin wave can drive a 360° domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360° domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360° domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360° domain wall normal mode, the 360° domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360° domain wall, we observed the Doppler effect clearly. After passing through a 360° domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360° domain walls that spin wave passing through.
EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta 34517, Egypt and Department of Physics, College of Science, King Khalid University, Abha P.O. 9004 (Saudi Arabia)
2014-08-15T23:59:59.000Z
The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.
Infrared exponents of gluon and ghost propagators from Lattice QCD
O. Oliveira; P. J. Silva
2007-10-02T23:59:59.000Z
The compatibility of the pure power law infrared solution of QCD Dyson-Schwinger equations (DSE) and lattice data for the gluon and ghost propagators in Landau gauge is discussed. For the gluon propagator, the lattice data is compatible with the DSE infrared solution with an exponent $\\kappa\\sim0.53$, measured using a technique that suppresses finite volume effects and allows to model these corrections to the lattice data. For the ghost propagator, the lattice data does not seem to follow the infrared DSE power law solution.
Optical waves in crystal propagation and control of laser radiation
Yariv, A.; Yeh, P.
1983-01-01T23:59:59.000Z
As a text for a course in electro-optics for electrical engineering and applied physics students, it presents the propagation of laser radiation in various optical media and instructs in the analysis and design of electro-optical devices. The content of the book presupposes an introduction to Maxwell's equations in an intermediate course in electricity and magnetism as well as some mathematical background in Fourier integrals, matrix algebra, and differential equations. Contents, abridged: Electromagnetic fields. Propagation of laser beams. Jones calculus and its application to birefringent optical systems. Electromagnetic propagation in periodic media. Electro-optic devices. Acousto-optics. Indexes.
Photon propagation in noncommutative QED with constant external field
R. Fresneda; D. M. Gitman; A. E. Shabad
2015-01-20T23:59:59.000Z
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
Photon propagation in noncommutative QED with constant external field
Fresneda, R; Shabad, A E
2015-01-01T23:59:59.000Z
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout
Malins, Alex; Machida, Masahiko; Saito, Kimiaki
2015-01-01T23:59:59.000Z
Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...
MA 15910 Lesson 11 Notes (Calculus part of text) Section 3.3 Rates ...
Bailey, Charlotte M
2014-09-25T23:59:59.000Z
(Calculus part of text) Section 3.3 Rates of Change. Average Rate of Change. Suppose Mary kept a record of the total distance she traveled on a trip in ½ hour
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CPP-2 (Supersedes Schedule CPP-1) UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION CENTRAL VALLEY PROJECT SCHEDULE OF RATES FOR CUSTOM PRODUCT POWER Effective:...
Broader source: Energy.gov [DOE]
Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
charges or credits associated with the creation, termination, or modification to any tariff, contract, or rate schedule accepted or approved by the Federal Energy Regulatory...
Residential Solar Valuation Rates
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...
Simulation of anisotropic wave propagation in Vertical Seismic Profiles
Durussel, Vincent Bernard
2004-09-30T23:59:59.000Z
they are powerful tools to simulate seismic wave propagation in three-dimensional anisotropic subsurface models. The code is currently under development using a C++ object oriented programming approach because it provides high flexibility in the design of new...
Contributions to the direct time integration in wave propagation analyses
Noh, Gunwoo
2013-01-01T23:59:59.000Z
This thesis intends to contribute to the computational methods for wave propagations. We review an implicit time integration method, the Bathe method, that remains stable without the use of adjustable parameters when the ...
antisymmetric ghost propagator: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Page Last Page Topic Index 1 Roles of the color antisymmetric ghost propagator in the infrared QCD HEP - Lattice (arXiv) Summary: The results of Coulomb gauge and Landau gauge...
Infrared behavior of gluon and ghost propagators from asymmetric lattices
Attilio Cucchieri; Tereza Mendes
2006-04-18T23:59:59.000Z
We present a numerical study of the lattice Landau gluon and ghost propagators in three-dimensional pure SU(2) gauge theory. Data have been obtained using asymmetric lattices (V = 20^2 X 40, 20^2 X 60, 8^2 X 64, 8^2 X 140, 12^2 X 140 and 16^2 X 140) for the lattice coupling beta = 3.4, in the scaling region. We find that the gluon (respectively ghost) propagator is suppressed (respec. enhanced) at small momenta in the limit of large lattice volume V. By comparing these results with data obtained using symmetric lattices (V = 60^3 and 140^3), we find that both propagators suffer from systematic effects in the infrared region (p \\lesssim 650 MeV). In particular, the gluon (respec. ghost) propagator is less IR-suppressed (respec. enhanced) than in the symmetric case. We discuss possible implications of the use of asymmetric lattices.
Role of Plasma in Femtosecond Laser Pulse Propagation
Grauer, Rainer
and pulse compression 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos transitions and create domains with a modified refractive index. Nonlinear propagation of femtosec- ond
Modelling the Propagation of Forward and Opposed Smouldering Combustion
Rein, Guillermo; Torero, Jose L; Fernandez-Pello, Carlos
A computational study has been carried out to investigate smouldering ignition and propagation in polyurethane foam. The one-dimensional, transient, governing equations for smouldering combustion in a porous fuel are ...
Inter-sensor propagation delay estimation using sources of opportunity
Vincent, Rémy; Michel, Olivier; Lacoume, Jean-Louis
2015-01-01T23:59:59.000Z
Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field.
acoustic waves propagating: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...
The Influence of Basalt Layers on Seismic Wave Propagation
Hanssen, Peter
are to examine the effects of basalts on seismic wave propagation and the concequent implications for imaging sedimentary structures beneath them. From studies of basalt propertiesand borehole data in connection with foreward modelling and real data, I show...
adapting covariance propagation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the excitation H(cal D,cal H) and the field strength F(E,B). We study the propagation of electromagnetic waves in such a spacetime by Hadamard's method and arrive,...
Torsional waves propagation in an initially stressed dissipative cylinder
M. M. Selim
2009-03-28T23:59:59.000Z
The present paper has been framed to show the effect of damping on the propagation of torsional waves in an initially stressed, dissipative, incompressible cylinder of infinite length. A governing equation has been formulated on Biot's incremental deformation theory. The velocities of torsional waves are obtained as complex ones, in which real part gives the phase velocity of propagation and corresponding imaginary part gives the damping. The study reveals that the damping of the medium has strong effect in the propagation of torsional wave. Since every medium has damping so it is more realistic to use the damped wave equation instead of the undamped wave equation. The study also shows that the velocity of propagation of such waves depend on the presence of initial stress. The influences of damping and initial stresses are shown separately.
Wave propagation in periodic lattices with defects of smaller dimension
A. A. Kutsenko
2013-05-20T23:59:59.000Z
The procedure of evaluating of the spectrum for discrete periodic operators perturbed by operators of smaller dimensions is obtained. This result allows to obtain propagative, guided, localised spectra for different kind of physical operators on graphs with defects.
Intense ion beam propagation in a reactor sized chamber
Vay, J.L.; Deutsch, C.
2000-01-01T23:59:59.000Z
beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.
Simulation and design optimization of wave propagation in heterogeneous materials
Saà-Seoane, Joel
2014-01-01T23:59:59.000Z
Propagation of waves through heterogeneous structured materials has been the focus of considerable research in recent years. These materials consist of quasi periodic geometries combining two or more piecewise homogeneous ...
Journal of Computational Acoustics, FREQUENCY DOMAIN WAVE PROPAGATION MODELLING
Sheen, Dongwoo
#11;ect de gas, brine or oil and gas-brine or gas-oil pore uids on seismic velocities. NumericalJournal of Computational Acoustics, f c IMACS FREQUENCY DOMAIN WAVE PROPAGATION MODELLING
Stability of Propagating Fronts in Damped Hyperbolic Equations
Stability of Propagating Fronts in Damped Hyperbolic Equations Th. Gallay, G. Raugel Analyse Num'erique et EDP CNRS et Universit'e de ParisÂSud FÂ91405 Orsay Cedex, France Thierry.Gallay
Modeling of crack initiation, propagation and coalescence in rocks
Gonçalves da Silva, Bruno Miguel
2009-01-01T23:59:59.000Z
Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...
Femto-photography: capturing and visualizing the propagation of light
Velten, Andreas
We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at ...
Wythe, Kathy
2008-01-01T23:59:59.000Z
and a wide range of academic areas are investigating the different compo- nents. More recently, they are taking information gleaned from the global climate models and applying them to research questions pertaining to Texas. Dr. Bruce Mc...Carl, Regents Professor of agricultural economics at Texas A&M University, has researched the economics of climate change for the last 20 years. McCarl, as a lead CHANGING CLIMATES tx H2O | pg. McCarl ] tx H2O | pg. 4 Changing Climates author...
Relation Between Heart Rate and Problem Behaviors
Freeman, Rachel L.; Horner, Robert H.; Reichle, Joe
1999-01-01T23:59:59.000Z
American Journal on Mental Retardation, 1999, Vol. 104, No. 4, 330-345 Relation Between Heart Rate and Problem Behaviors Rachel L. Freeman and Robert H. Horner University of Oregon Joe Reichle University of Minnesota A new... methodological approach for understanding self-injury, aggression, and property destruction exhibited by individuals with severe developmental disabilities was evaluated in this descriptive study. Measures of heart-rate changes before, during, and after...
Ultrasonic wave propagation in random and periodic particulate composites
Henderson, Benjamin Kyle
1996-01-01T23:59:59.000Z
ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfilltnent of the requirements for the degree... of MASTER OF SCIENCE May 1996 Major Subject: Aerospace Engineering ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to Texas ASM University in partial fulfillment...
Electrically heated particulate filter propagation support methods and systems
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2011-06-07T23:59:59.000Z
A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.
Circular polarization of obliquely propagating whistler wave magnetic field
Bellan, P. M. [Applied Physics, Caltech, Pasadena California 91125 (United States)] [Applied Physics, Caltech, Pasadena California 91125 (United States)
2013-08-15T23:59:59.000Z
The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.
Captive propagation and brood behavior of greater prairie chickens
Drake, David
1994-01-01T23:59:59.000Z
CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1994 Major Subject: Wildlife and Fisheries Sciences CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...
Nondestructive testing using stress waves: wave propagation in layered media
Ortega, Jose Alberto
2013-02-22T23:59:59.000Z
NONDESTRUCTIVE TESTING USING STRESS WAVES: WAVE PROPAGATION IN LAYERED MEDIA A Senior Honors Thesis by JOSE ALBERTO ORTEGA Submitted to the Office of Honors Program & Academic Scholarships Texas A&M University in partial fulfillment... of the requirement of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2002 Group: Engineering NONDESTRUCTIVE TESTING USI WAVE PROPAGATION IN LA A Senior Honors The ~pe -C JOSE ALBERTO ORTI /CI Submitted to the Office of Honors Program k. Academic...
73Working with Rates Because things change in the
years Problem 6 - 416 gamma-ray bursts spotted in 52 weeks Problem 7 - 3000 kilometers traveled in 200 in 800 years = 2 novas/year Problem 6 - 416 gamma-ray bursts spotted in 52 weeks = 8 gamma-ray bursts
Temporal Coordination and Adaptation to Rate Change in Music Performance
Cottrell, Garrison W.
with both simple and complex rhythmic sequences (e.g., Large & Kolen, 1994; Large & Palmer, 2002; Mates
Cost Bases for Incentive Rates Applicable to Industrial Loads
Stover, C. N.
great deal of attention and increased acceptance. This represents a substantial change in attitude, particularly on the part of the regulatory commissions; a few years ago any proposal related to an incentive type rate would not have been... in rate discrimination as between customer classes. Over the last few years many utilities have experienced changes that have resulted in increased interest in incentive rates by the utility, by its customer, and by the regulatory commission. In most...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPowerRates
Power Rates Announcements (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPowerRates
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2015 Firm Power Rates & Rate Schedules The Pick-Sloan Missouri Basin Program--Eastern Division: Firm Electric Service Pick Sloan Missouri River -Eastern Division Rates Effective...
Determination of Properties of Composite Materials from the Lamb Wave Propagation
Kreinovich, Vladik
Determination of Properties of Composite Materials from the Lamb Wave Propagation: Probabilistic the Lamb waves propagate. Their propagation is de- termined by the dynamic elastic constants Â£Â¥Â¤Â¦Â¨Â§ , so we the ultrasound waves propagate in this composite material, and to reconstruct the values Â£ Â¤Â¦Â§ from the results
Time reversed wave propagation experiments in chaotic micro-structured cavities
Sprik, Rudolf
Time reversed wave propagation experiments in chaotic micro-structured cavities Rudolf Sprik a Chimie Industrielles, Paris, France Abstract The elastic wave propagation in strongly scattering solid; Elastic wave propagation The propagation of waves through systems with strong scatterers is ubiquitous
Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation
Thompson, LuAnne
Thompson/Ocean 420/Winter 2004 2D waves 1 Two-dimensional wave propagation So far we have talked about wave propagation in one-dimension. For two or three spatial dimensions, we vectorize our ideas propagation. For surface waves, there is no vertical propagation, and we are only concerned with the two
An Empirical Study of Learning Speed in BackPropagation Networks
Fahlman, Scott E.
the basic ideas of connectionism or backÂpropagation learning. See [3] for a brief overview of this areaAn Empirical Study of Learning Speed in BackÂPropagation Networks Scott E. Fahlman September 1988 of the backÂpropagation algorithm. However, backÂpropagation learning is too slow for many applications
Fourier Analysis of Sawtooth Heat Pulse Propagation and Comparison with Other Methods Using JET Data
Fourier Analysis of Sawtooth Heat Pulse Propagation and Comparison with Other Methods Using JET Data
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rates & Repayment Services Power Reporting MISCELLANEOUS REPORTING Power Supply Report October 2014 (59kb pdf) September 2014 (58kb pdf) August 2014 (47kb pdf) July 2014 (57kb pdf)...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Regulation and Frequency Response DollarsKW-month 4.56 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and Frequency Response DollarsKW-month 3.98 4.17 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
On Thermonuclear Reaction Rates
H. J. Haubold; A. M. Mathai
1996-12-02T23:59:59.000Z
Nuclear reactions govern major aspects of the chemical evolution od galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the case of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are also discussed.
Propagation of High Frequency Waves in the Quiet Solar Atmosphere
Aleksandra Andi?
2008-10-13T23:59:59.000Z
High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.
How much laser power can propagate through fusion plasma?
Pavel M. Lushnikov; Harvey A. Rose
2006-03-28T23:59:59.000Z
Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.
Minimizing Variation in Outdoor CPV Power Ratings: Preprint
Muller, M.; Marion, B.; Rodriguez, J.; Kurtz, S.
2011-07-01T23:59:59.000Z
The CPV community has agreed to have both indoor and outdoor power ratings at the module level. The indoor rating provides a repeatable measure of module performance as it leaves the factory line while the outdoor rating provides a measure of true performance under real world conditions. The challenge with an outdoor rating is that the spectrum, temperature, wind speed, etc are constantly in flux and therefore the resulting power rating varies from day to day and month to month. This work examines different methodologies for determining the outdoor power rating with the goal of minimizing variation even if data are collected under changing meteorological conditions.
Performance Analysis of Coded V-BLAST with Optimum Power and Rate Allocation
Loyka, Sergey
propagation effect, a number of efforts have been reported to improve the perfor- mance of the uncoded V-BLASTPerformance Analysis of Coded V-BLAST with Optimum Power and Rate Allocation Victoria Kostina in the coded V-BLAST are studied analytically. Outage probabilities and system capacities of these strategies
2007 Wholesale Power Rate Case Initial Proposal : Direct Testimony.
United States. Bonneville Power Administration.
2005-11-01T23:59:59.000Z
The purpose of our testimony is to sponsor the rate design portions of Bonneville Power Administration's (BPA) Wholesale Power Rate Development Study (WPRDS), WP-07-E-BPA-05, and associated portions of the Wholesale Power Rate Schedules and GRSPs (WP-07-E-BPA-07). Our testimony is organized in eight sections. The first section outlines the purpose of our testimony. Section 2 describes BPA's Demand Rates, including subsections on the definition of the Demand Rate, the method for computing the Demand Rates, and differences from the currently effective WP-02 Demand Rate. Section 3 describes BPA's Load Variance Rate, with subsections on the definition and purpose of the Load Variance Rate, application of the Load Variance Rate, how the Load Variance Rate is calculated, and the differences from the WP-02 Load Variance Rate. Section 4 describes the steps involved in developing BPA's energy rates and differences from the WP-02 rate case. Section 5 discusses discontinuation of the Stepped Up Multi-Year Block Rate. Section 6 describes a minor change to the Unauthorized Increase Rates and the Excess Factoring Rates. Section 7 describes the Targeted Adjustment Charge. Section 8 addresses the Operating Reserves Credit.
Propagation velocities of gas rings in collisional ring galaxies
E. I. Vorobyov; D. Bizyaev
2003-01-27T23:59:59.000Z
The propagation velocity of the first gas ring in collisional ring galaxies, i.e. the velocity at which the maximum in the radial gas density profile propagates radially in the galactic disk, is usually inferred from the radial expansion velocity of gas in the first ring. Our numerical hydrodynamics modeling of ring galaxy formation however shows that the maximum radial expansion velocity of gas in the first ring ($v_{gas}$) is invariably below the propagation velocity of the first gas ring itself ($v_{ring}$). Modeling of the Cartwheel galaxy indicates that the outer ring is currently propagating at $v_{ring} \\approx$ 100 km/s, while the maximum radial expansion velocity of gas in the outer ring is currently $v_{gas} \\approx$ 65 km/s. Modeling of the radial B-V/V-K color gradients of the Cartwheel ring galaxy also indicates that the outer ring is propagating at $v_{ring} \\ge $ 90 km/s. We show that a combined effect of inclination, finite thickness, and warping of the Cartwheel's disk might be responsible for the lack of angular difference in the peak positions found for the azimuthally averaged $H\\alpha$, K and B surface brightness profiles of the Cartwheel's outer ring. Indeed, the radial $H\\alpha$ surface brightness profiles obtained along the Cartwheel's major axis, where effects of inclination and finite thickness are minimized, do peak exterior to those at K- and B-bands. The angular difference in peak positions implies $v_{ring}$ = 110 km/s, which is in agreement with the model predictions. We briefly discuss the utility of radio continuum emission and spectral line equivalent widths for determining the propagation velocity of gas rings in collisional ring galaxies.
The fundamental solution of the unidirectional pulse propagation equation
Babushkin, I. [Institute of Mathematics, Humboldt University, Rudower Chaussee 25, 12489 Berlin (Germany)] [Institute of Mathematics, Humboldt University, Rudower Chaussee 25, 12489 Berlin (Germany); Bergé, L. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France)
2014-03-15T23:59:59.000Z
The fundamental solution of a variant of the three-dimensional wave equation known as “unidirectional pulse propagation equation” (UPPE) and its paraxial approximation is obtained. It is shown that the fundamental solution can be presented as a projection of a fundamental solution of the wave equation to some functional subspace. We discuss the degree of equivalence of the UPPE and the wave equation in this respect. In particular, we show that the UPPE, in contrast to the common belief, describes wave propagation in both longitudinal and temporal directions, and, thereby, its fundamental solution possesses a non-causal character.
Heat pulse propagation in chaotic three-dimensional magnetic fields
Del-Castillo-Negrete, Diego [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Blazevski, Daniel [Institute for Mechanical Systems, ETH, Zurich (Switzerland)
2014-06-01T23:59:59.000Z
Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ?), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.
Spherical Wave Propagation in a Nonlinear Elastic Medium
Korneev, Valeri A.
2009-07-01T23:59:59.000Z
Nonlinear propagation of spherical waves generated by a point-pressure source is considered for the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic theory advanced by Murnaghan is used where general equations of motion are put in the form of vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear field component to the primary wave in the far field is proportional to ln(r) where r is a propagation distance. Near-field components of the primary field do not contribute to the far field of nonlinear component.
Light propagation in generally covariant electrodynamics and the Fresnel equation
Friedrich W. Hehl; Yuri N. Obukhov; Guillermo F. Rubilar
2002-03-28T23:59:59.000Z
Within the framework of generally covariant (pre-metric) electrodynamics, we specify a local vacuum spacetime relation between the excitation $H=({\\cal D},{\\cal H})$ and the field strength $F=(E,B)$. We study the propagation of electromagnetic waves in such a spacetime by Hadamard's method and arrive, with the constitutive tensor density $\\kappa\\sim\\partial H/\\partial F$, at a Fresnel equation which is algebraic of 4th order in the wave covector. We determine how the different pieces of $\\kappa$, in particular the axion and the skewon pieces, affect the propagation of light.
Graviton propagators in supergravity and noncommutative gauge theory
Kitazawa, Yoshihisa [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Particle and Nuclear Physics, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Nagaoka, Satoshi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)
2007-02-15T23:59:59.000Z
We investigate the graviton propagator in the type IIB supergravity background which is dual to 4 dimensional noncommutative gauge theory. We assume that the boundary is located not at the infinity but at the noncommutative scale where the string frame metric exhibits the maximum. We argue that the Neumann boundary condition is the appropriate boundary condition to be adopted at the boundary. We find that the graviton propagator behaves just as that of the 4 dimensional massless graviton. On the other hand, the nonanalytic behaviors of the other Kaluza-Klein modes are not significantly affected by the Neumann boundary condition.
Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and
1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes · Due to Climate Change Land Cover / Land Use Change Interaction of Climate and Land Cover Change · Resolution Space Time Hydro-Climatic Change · Variability vs. Change (Trends) · Point data
Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)
Jordan, D.; Kurtz, S.; Hansen, C.
2014-04-01T23:59:59.000Z
Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.
THE PROPAGATION OF NEUTRINO-DRIVEN JETS IN WOLF-RAYET STARS
Nagakura, Hiroki, E-mail: hiroki@heap.phys.waseda.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, JapanAND (Japan) [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, JapanAND (Japan); Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)
2013-02-20T23:59:59.000Z
We numerically investigate the jet propagation through a rotating collapsing Wolf-Rayet star with detailed central engine physics constructed based on the neutrino-driven collapsar model. The collapsing star determines the evolution of the mass accretion rate, black hole mass, and spin, all of which are important ingredients for determining the jet luminosity. We reveal that neutrino-driven jets in rapidly spinning Wolf-Rayet stars are capable of breaking out from the stellar envelope, while those propagating in slower rotating progenitors fail to break out due to insufficient kinetic power. For progenitor models with successful jet breakouts, the kinetic energy accumulated in the cocoon could be as large as {approx}10{sup 51} erg and might significantly contribute to the luminosity of the afterglow emission or to the kinetic energy of the accompanying supernova if nickel production takes place. We further analyze the post-breakout phase using a simple analytical prescription and conclude that the relativistic jet component could produce events with an isotropic luminosity L {sub p(iso)} {approx} 10{sup 52} erg s{sup -1} and isotropic energy E {sub j(iso)} {approx} 10{sup 54} erg. Our findings support the idea of rapidly rotating Wolf-Rayet stars as plausible progenitors of GRBs, while slowly rotational ones could be responsible for low-luminosity or failed GRBs.
Wythe, Kathy
2008-01-01T23:59:59.000Z
these data with predictions from the IPCC. Professor of geography at Texas State University, Dr. David Butler, does climate change research mainly in the Rocky Moun- tains with U.S. Geological Survey funding. He has also done research on how climate...://wiid.twdb.state.tx.us Detailed information about individual water wells. This system uses a geographic information system-based tool to show locations of water wells and download data on water levels and water quality. Reports that were developed about on-site conditions...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference MaterialsChange Log
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference MaterialsChange
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change Number
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change20-02-01
Wire, G. L.; Mills, W. J.
2002-08-01T23:59:59.000Z
Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventional deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.
Coupling schemes for modeling hydraulic fracture propagation using the XFEM
Peirce, Anthony
Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we
Lifted First-Order Belief Propagation Parag Singla Pedro Domingos
Prasad, Sanjiva
applied to very small artificial problems. In this paper we propose the first lifted version of a scalable). (Limited lifted aspects are present in some earlier systems, like Pfeffer et al.'s (1999) SPOOK.) PooleLifted First-Order Belief Propagation Parag Singla Pedro Domingos Department of Computer Science
Propagation of a shockrelated disturbance in the Earth's magnetosphere
Santolik, Ondrej
and intensification of the current is recorded at the Earth's surface as a sudden increase in the geomagnetic field the propagation processes that is not directly obtainable from point measurements made by (even several and earthward motion of the magnetopause. At the same time, the magnetopause current is intensified. The motion
On the Ergodic Theorem for non-linear wave propagation
Luiz C. L. Botelho
2012-07-02T23:59:59.000Z
We present a complete study of the ergodic theorem for the difficult problem of non-linear wave propagations through cylindrical measures /path integrals and the famous Ruelle-Amrein-Geogerscu-Enss (R.A.G.E.) theorem on the caracterization of continuous spectrum of self-adjoint operators.
Diffusive propagation of wave packets in a fluctuating periodic potential
Eman Hamza; Yang Kang; Jeffrey Schenker
2010-10-05T23:59:59.000Z
We consider the evolution of a tight binding wave packet propagating in a fluctuating periodic potential. If the fluctuations stem from a stationary Markov process satisfying certain technical criteria, we show that the square amplitude of the wave packet after diffusive rescaling converges to a superposition of solutions of a heat equation.
Wave propagation and shock formation in different magnetic structures
Rebecca Centeno; Manuel Collados; Javier Trujillo Bueno
2008-10-20T23:59:59.000Z
Velocity oscillations "measured" simultaneously at the photosphere and the chromosphere -from time series of spectropolarimetric data in the 10830 A region- of different solar magnetic features allow us to study the properties of wave propagation as a function of the magnetic flux of the structure (i.e. two different-sized sunspots, a tiny pore and a facular region). While photospheric oscillations have similar characteristics everywhere, oscillations measured at chromospheric heights show different amplitudes, frequencies and stages of shock development depending on the observed magnetic feature. The analysis of the power and the phase spectra, together with simple theoretical modeling, lead to a series of results concerning wave propagation within the range of heights of this study. We find that, while the atmospheric cut-off frequency and the propagation properties of the different oscillating modes depend on the magnetic feature, in all the cases the power that reaches the high chromosphere above the atmospheric cut-off comes directly from the photosphere by means of linear vertical wave propagation rather than from non-linear interaction of modes.
New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation
Ph. Mota; G. S. Denicol; T. Koide; T. Kodama
2007-01-19T23:59:59.000Z
The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.
Peierls-Nabarro Barrier and Protein Loop Propagation
Adam K. Sieradzan; Antti Niemi; Xubiao Peng
2014-10-28T23:59:59.000Z
When a self-localized quasiparticle excitation propagates along a discrete one dimensional lattice, it becomes subject to a dissipation that converts the kinetic energy into lattice vibrations. Eventually the kinetic energy does no longer enable the excitation to cross over the minimum energy barrier between neighboring sites, and the excitation becomes localized within a lattice cell. In the case of a protein, the lattice structure consists of the C-alpha backbone. The self-localized quasiparticle excitation is the elemental building block of loops. It can be modeled by a kink which solves a variant of the discrete non-linear Schroedinger equation (DNLS). We study the propagation of such a kink in the case of protein G related albumin-binding domain, using the UNRES coarse-grained molecular dynamics force field. We estimate the height of the energy barriers the kink needs to cross over, in order to propagate along the backbone lattice. We analyse how these barriers gives rise to both stresses and reliefs which control the kink movement. For this, we deform a natively folded protein structure by parallel translating the kink along the backbone away from its native position. We release the transposed kink, and we follow how it propagates along the backbone towards the native location. We observe that the dissipative forces which are exerted on the kink by the various energy barriers, have a pivotal role in determining how a protein folds towards its native state.
STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS
Kasman, Alex
STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS STÂ´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two
Remote multi-color excitation using femtosecond propagating surface
Potma, Eric Olaf
Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold away from a micrometer sized focused laser spot. We attribute the observed remote nonlinear signal of unwanted heating effects at the target site and represents an attractive approach for surface
Full wave simulations of lower hybrid wave propagation in tokamaks
Wright, John C.
Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron
Axisymmmetric empty space: light propagation, orbits and dark matter
Sergio Giardino
2014-09-18T23:59:59.000Z
This study presents a axisymmetric solution of the Einstein equations for empty space. The geometry is studied by determining its Petrov classification and Killing vectors. Light propagation, orbital motion and asymptotic and Newtonian limits are also studied. Additionally, cosmological applications of the geometry as an alternative model for the inflationary universe and as a substitute for dark matter and quintessence are also outlined.
Robust Airline Schedule Planning: Minimizing Propagated Delay in ...
2011-10-06T23:59:59.000Z
highly brittle, performing poorly in practice as delays propagate rapidly throughout the network. The. Bureau of .... In contrast to airline recovery, where the objective is to achieve the best ..... weather conditions, air traffic flow management, passenger delays, equipment failure, and so on. ...... Airport Handling Manual. 2010.
ESTIMATION OF DELAY PROPAGATION IN AVIATION SYSTEM USING BAYESIAN NETWORK
delays is a major long-term objective of the Federal Aviation Administration (FAA). As demand1 ESTIMATION OF DELAY PROPAGATION IN AVIATION SYSTEM USING BAYESIAN NETWORK Ning Xu, George Donohue problems in the current aviation system. Methods are needed to analyze the manner in which micro
ROOF CHARACTERISATION RELATED TO FIRE PROPAGATION RISK BY A NUMERICAL
Paris-Sud XI, Université de
ROOF CHARACTERISATION RELATED TO FIRE PROPAGATION RISK BY A NUMERICAL APPROACH L. Fournier1 , A by thé roof: - one is thé use of intumescent strips on thé roof, - thé other consists of extending thé fire walls (typically 70 cm or 1 m) above thé roof levé1 in order to prevent thé flame from being blown
High-power, high-intensity laser propagation and interactions
Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2014-05-15T23:59:59.000Z
This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.
Dam-Breach Flood Wave Propagation Using Dimensionless Parameters
Ponce, V. Miguel
Dam-Breach Flood Wave Propagation Using Dimensionless Parameters Victor M. Ponce, M.ASCE1 ; Ahmad to study the sensitivity of dam-breach flood waves to breach-outflow hydrograph volume, peak discharge the channel. A dam-breach Froude number is defined to enable analysis through a wide range of site and flow
DNA ARRAY DECODING FROM NONLINEAR MEASUREMENTS BY BELIEF PROPAGATION
DNA ARRAY DECODING FROM NONLINEAR MEASUREMENTS BY BELIEF PROPAGATION Mona A. Sheikh, Shriram Compressed Sensing (CS) and demonstrate its utility in DNA array decoding. In a CS DNA microarray, the array spots identify DNA sequences that are shared between multiple organisms, thereby reduc- ing the number
Geometrical Properties and Propagation for the Proca Field Theory
Luca Fabbri
2009-08-28T23:59:59.000Z
We consider the Proca field with dynamical term given by the exterior derivative with respect to the most general connection; the most general Proca field equations are given, and a discussion about the propagation and the geometrical properties are presented: it is shown that this generalization is inconsistent. So the standard theory is already the most general Proca Theory possible.
Back Propagation is Sensitive to Initial Conditions John F. Kolen
Pollack, Jordan B.
Back Propagation is Sensitive to Initial Conditions John F. Kolen Jordan B. Pollack Laboratory Columbus, Ohio 43210, USA kolenj@cis.ohiostate.edu, pollack@cis.ohiostate.edu TR 90JKBPSIC ABSTRACT. Kolen Jordan B. Pollack Laboratory for Artificial Intelligence Research Computer and Information Science
Back Propagation is Sensitive to Initial Conditions John F. Kolen
Pollack, Jordan B.
Back Propagation is Sensitive to Initial Conditions John F. Kolen Jordan B. Pollack Laboratory Columbus, Ohio 43210, USA kolen-j@cis.ohio-state.edu, pollack@cis.ohio-state.edu TR 90-JK-BPSIC ABSTRACT. Kolen Jordan B. Pollack Laboratory for Artificial Intelligence Research Computer and Information Science
Propagation and Re ection of Internal Waves B. R. Sutherland
Sutherland, Bruce
the frequency spectrum of the waves. I INTRODUCTION An internal wave is a disturbance propagating under the e a level where the Doppler-shifted frequency of the waves is comparable with the background buoyancy frequency. Although linear theory predicts that the waves should re ect if the Doppler-shifted frequency
Radio Wave Propagation in Potato Fields John Thelen
Kuzmanov, Georgi
Radio Wave Propagation in Potato Fields John Thelen Wageningen University Email: John nodes. This paper reports on an extensive set of measurements taken in a potato field, where the foliage of the potato crop is significant. We observed a reduction of 15 dB in signal strength at 15 m between nodes
Localized structures and front propagation in the Lengyel-Epstein model
Jensen, O.; Pannbacker, V.O.; Mosekilde, E.; Dewel, G.; Borckmans, P. (Physics Department, Technical University of Denmark, 2800 Lyngby (Denmark) Service de Chimie-Physique, Code Postal 231 Universite Libre de Bruxelles, 1050 Brussels (Belgium))
1994-08-01T23:59:59.000Z
Pattern selection, localized structure formation, and front propagation are analyzed within the framework of a model for the chlorine dioxide--iodine--malonic acid reaction that represents a key to understanding recently obtained Turing structures. This model is distinguished from previously studied, simple reaction-diffusion models by producing a strongly subcritical transition to stripes. The wave number for the modes of maximum linear gain is calculated and compared with the dominant wave number for the finally selected, stationary structures grown from the homogeneous steady state or developed behind a traveling front. The speed of propagation for a front between the homogeneous steady state and a one-dimensional (1D) Turing structure is obtained. This velocity shows a characteristic change in behavior at the crossover between the subcritical and supercritical regimes for the Turing bifurcation. In the subcritical regime there is an interval where the front velocity vanishes as a result of a pinning of the front to the underlying structure. In 2D, two different nucleation mechanisms for hexagonal structures are illustrated on the Lengyel-Epstein and the Brusselator model. Finally, the observation of 1D and 2D spirals with Turing-induced cores is reported.
Selfing rate Expectedproportion
Gardner, Andy
.2 0.4 0.6 0.8 1 20 9 5 4 3 2 1 50 40 20 10 30 DCIS tissue has indicated that it shows the same changes, a mother's fitness depends on reducing competition among her sons for mates. Thus, just enough sons should
Infrared Gluon and Ghost Propagators from Lattice QCD. Results from large asymmetric lattices
O. Oliveira; P. J. Silva
2006-11-15T23:59:59.000Z
We report on the infrared limit of the quenched lattice Landau gauge gluon and ghost propagators as well as the strong coupling constant computed from large asymmetric lattices. The infrared lattice propagators are compared with the pure power law solutions from Dyson-Schwinger equations (DSE). For the gluon propagator, the lattice data is compatible with the DSE solution. The preferred measured gluon exponent being $\\sim 0.52$, favouring a null zero momentum propagator. The lattice ghost propagator shows finite volume effects and, for the volumes considered, the propagator does not follow a pure power law. Furthermore, the strong coupling constant is computed and its infrared behaviour investigated.
Kozlov, G I [Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow (Russian Federation)
1999-11-30T23:59:59.000Z
The relationships governing the propagation of pyrolysis and combustion waves along an electric-discharge CO{sub 2}-laser beam in propane and propane - air mixtures were investigated. It was shown that, after the preliminary conversion of propane in the pyrolysis waves, the average velocity of the combustion wave along the laser beam increases by a factor of 6 - 7. It was established that the velocity of the combustion wave along the beam is proportional to the chain-branching rate constant and that the wave appears as a result of consecutive ignition of the mixture along the beam (analogous to an electric breakdown wave). (laser applications and other topics in quantum electronics)
Cost Bases for Incentive Rates Applicable to Industrial Loads
Stover, C. N.
1987-01-01T23:59:59.000Z
Incentive rates applicable to industrial customers are presently receiving a great deal of attention and increased acceptance. This represents a substantial change in attitude, particularly on the part of the ...
Characteristics of spot-market rate indexes for truckload transportation
Bignell, Andrew (Andrew Souglas)
2013-01-01T23:59:59.000Z
In the truckload transportation industry in the United States, a number of indexes are published that attempt to measure changes in rates, but no single index has emerged as an industry standard. Industry participants, ...
DEFORMATION OF SUPERPLASTIC ALLOYS AT RELATIVELY LOW STRAIN RATES
Grivas, Dionysios
2011-01-01T23:59:59.000Z
load change test during a creep test or a strain rate changethe desired microstructures. Creep tests were performed on a5. The strains in the creep test were Because the measured
Hunter, Steven L. (Livermore, CA)
2002-01-01T23:59:59.000Z
A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergy InnovationRecentPreviouspower-rates
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |
Charged-Particle Thermonuclear Reaction Rates: IV. Comparison to Previous Work
Christian Iliadis; Richard Longland; Art Champagne; Alain Coc
2010-04-23T23:59:59.000Z
We compare our Monte Carlo reaction rates (see Paper II of this series) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions considered here. The changes are caused by (i) our new Monte Carlo method of computing reaction rates (see Paper I of this series), and (ii) newly available nuclear physics information (see Paper III of this series).
Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes and
Post, Wilfred M.
2000-01-01T23:59:59.000Z
Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration
Obliquely propagating waves in the magnetized strongly coupled one-component plasma
Kählert, Hanno; Kalman, Gabor J. [Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, Massachusetts 02467 (United States)] [Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, Massachusetts 02467 (United States); Ott, Torben; Bonitz, Michael [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany)] [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany); Reynolds, Alexi [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)] [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)
2013-05-15T23:59:59.000Z
The quasi-localized charge approximation is used to calculate the wave spectrum of the magnetized three-dimensional strongly coupled one-component plasma at arbitrary angles ? between the wave vector and the magnetic field axis. Three frequency branches are identified whose interplay is strongly determined by ?=?{sub c}/?{sub p}, the ratio of the cyclotron frequency ?{sub c}, and the plasma frequency ?{sub p}. The frequency dispersion relations for the three principal modes along the magnetic field cross in the case ?<1, which strongly affects the transition from parallel to perpendicular wave propagation. For ?>1, the frequencies of the different branches are well separated, and the long-wavelength dispersion in the intermediate and upper branch changes sign as ? is varied from 0 to ?/2. In addition to the frequencies, we also investigate the waves' polarization properties.
Coherent Control of Resonant Two-Photon Transitions by Counter-Propagating Ultrashort Pulse Pairs
Lee, Woojun; Kim, Kyungtae; Ahn, Jaewook
2015-01-01T23:59:59.000Z
We describe optimized coherent control methods for two-photon transitions in atoms of a ladder-type three-state energy configuration. Our approach is based on the spatial coherent control scheme which utilizes counter-propagating ultrashort laser pulses to produce complex excitation patterns in an extended space. Since coherent control requires constructive interference of constituent transition pathways, applying it to an atomic transition with a specific energy configuration requires specially designed laser pulses. Here, we show, in an experimental demonstration, that the two-photon transition with an intermediate resonant energy state can be coherently controlled and retrieved out from the resonance-induced background, when phase-flipping of the laser spectrum near the resonant intermediate transition is used. A simple reason for this behavior is the fact that the transition amplitude function (to be added to give an overall two-photon transition) changes its sign at the intermediate resonant frequency, t...
Case for Change National and World Trends
Weiblen, George D
sustainable solutions. Workforce requirements have changed demanding a higher degree of technological address university goals of student retention, graduation rates, flexibility, learning, and responsive student services. We prepare learners for civic leadership and professions to sustainably manage
Guided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coating
Kuo, Chi-Wei 1982-
2012-11-16T23:59:59.000Z
Three kinds of propagating waves physically admissible in a tubular section are derived to establish their dispersion characteristics in response to the presence of multi-layered viscoelastic coatings. One is the longitudinal wave that propagates...
Bhakta, Aditya (Aditya S.)
2010-01-01T23:59:59.000Z
This thesis analyzes the influence of a self-induced natural convection flow on the propagation of a high energy laser beam. The two configurations considered are of a vertical laser beam (propagation direction opposite ...
Electric field control of domain wall propagation in Pt/Co/GdOx films
Bauer, Uwe
The influence of a gate voltage on domain wall (DW) propagation is investigated in ultrathin Pt/Co/gadolinium oxide (GdOx) films with perpendicular magnetic anisotropy. The DW propagation field can be enhanced or retarded ...
Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators
Bracco, M.E.; Eiras, A.; Krein, G. [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 Sao Paulo, Sao Paulo (Brazil)] [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 Sao Paulo, Sao Paulo (Brazil); Wilets, L. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)
1994-03-01T23:59:59.000Z
The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.
Electrochemical Corrosion Rate Sensors for Waste Incineration Applications
Covino, B.S., Jr.; Bullard, S.J.; Matthes, S.A.; Holcomb, G.R.; Ziomek-Moroz, M.; Eden, D.A. (Honeywell Intercorr)
2007-03-01T23:59:59.000Z
Electrochemical corrosion rate sensors work in high temperature waste incineration applications where ash is deposited. The ash serves as the electrolyte for electrochemical measurements, such as liner polarization resistance, electrochemical noise, and harmonic distortion analyses. Results to date have shown that these types of sensors respond qualitatively to changes in temperature, gas composition, alloy composition, and type of ash. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. More recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Ideas for research that may help resolve these issues are presented.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign In About |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign
[FIXED RATE GUARANTEED OBLIGATIONS]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong,Women @JoinEnergy ZEROFIXED RATE GUARANTEED
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the Stage for the Next SolarRate
Propagating spectroscopy of backward volume spin waves in a metallic FeNi film
Sato, N.; Ishida, N.; Kawakami, T. [Department of Physics, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); Sekiguchi, K., E-mail: koji-s@phys.keio.ac.jp [Department of Physics, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); JST-PRESTO, Gobancho 7, Chiyoda-ku, Tokyo 102-0076 (Japan)
2014-01-20T23:59:59.000Z
We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.
Steinbock, Oliver
Electrochemical Waves on Patterned Surfaces: Propagation through Narrow Gaps and Channels propagation through narrow gaps and long channels. In channels, the wave velocity decreases with decreasing dynamically similar phenomena such as propagating fronts, target patterns, and rotating spiral waves. Pattern
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
E. Khomenko; M. Collados; T. Felipe
2008-01-25T23:59:59.000Z
We present results of non-linear, 2D, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the vA propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cut-off, non-linear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cut-off, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.
Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2010-12-15T23:59:59.000Z
Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)
Propagation of gravitational waves in the nonperturbative spinor vacuum
Vladimir Dzhunushaliev; Vladimir Folomeev
2014-09-02T23:59:59.000Z
The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists the fixed phase difference between the $h_{yy,zz}$ and $h_{yz}$ components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of experimental verification of the obtained effects as a tool to investigate nonperurbative quantum field theories.
Time propagation of constrained coupled Gaussian wave packets
T. Fabcic; J. Main; G. Wunner
2007-11-14T23:59:59.000Z
The dynamics of quantum systems can be approximated by the time propagation of Gaussian wave packets. Applying a time dependent variational principle, the time evolution of the parameters of the coupled Gaussian wave packets can be calculated from a set of ordinary differential equations. Unfortunately, the set of equations is ill-behaved in most practical applications, depending on the number of propagated Gaussian wave packets, and methods for regularization are needed. We present a general method for regularization based on applying adequate nonholonomic inequality constraints to the evolution of the parameters, keeping the equations of motion well-behaved. The power of the method is demonstrated for a non-integrable system with two degrees of freedom.
Propagation of ultra-short solitons in stochastic Maxwell's equations
Kurt, Levent, E-mail: LKurt@gc.cuny.edu [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States)] [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States); Schäfer, Tobias [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)] [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)
2014-01-15T23:59:59.000Z
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.
Fresnel analysis of the wave propagation in nonlinear electrodynamics
Yuri N. Obukhov; Guillermo F. Rubilar
2002-04-05T23:59:59.000Z
We study the wave propagation in nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of general nonlinear Lagrangian models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains non-trivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Longitudinally propagating arc wave in the pre-onset optical aurora V. M. Uritsky,1
California at Berkeley, University of
Longitudinally propagating arc wave in the pre-onset optical aurora V. M. Uritsky,1 J. Liang,1 E aurora the longitudinally propagating arc wave (LPAW) associated with flapping oscillations, and K. H. Glassmeier (2009), Longitudinally propagating arc wave in the pre-onset optical aurora
Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling
North Carolina at Chapel Hill, University of
Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling-3 cal acoustic techniques for sound propagation that computes how4 sound waves travel in space reducing the overall computation.19 1 Introduction20 Sound propagation techniques determine how sound waves
North Carolina at Chapel Hill, University of
Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex numerical techniques.18 1 Introduction19 Sound propagation techniques are used to model how sound waves20 applications use geometric sound propagation40 techniques, which assume that sound waves travels like rays
Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures
Giurgiutiu, Victor
1 Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures Victor Giurgiutiu, Jingjing Bao, Wei Zhao University of South Carolina ABSTRACT Active sensor wave propagation technique is a relatively new method for in-situ nondestructive evaluation (NDE). Elastic waves propagating in material
Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow
Kelley, Dan
Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow are resistant to heaving. The beamwise method provides accurate predictions of wave propagation angle for cases 2005). Determining the wave propagation di- rection, so that one may in turn identify potential lo
Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors
Giurgiutiu, Victor
Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors and principles used for generation and propagation of ultrasonic guided waves (Lamb waves) using piezoelectric wafer active sensors (PWAS). Keywords: Ultrasonic, Lamb waves, Damage detection, NDE, Wave propagation
Water-wave propagation through an infinite array of floating structures
Water-wave propagation through an infinite array of floating structures Benjamin G. Carter and P Kingdom May 30, 2012 Abstract The frequency-domain problem of water-wave propagation through affect wave forces. The study of wave propagation through lattices has a long history in many research
Wave-Based Sound Propagation in Large Open Scenes using an Equivalent Source Formulation
North Carolina at Chapel Hill, University of
Wave-Based Sound Propagation in Large Open Scenes using an Equivalent Source Formulation RAVISH We present a novel approach for wave-based sound propagation suitable for large, open spaces spanning or simulation systems, present a significant chal- lenge for interactive, wave-based sound propagation
SH Wave Propagation in Semiconductor/Piezoelectric Structures Jianke Du, Xiaoying Jin, Ji Wang
Wang, Ji
SH Wave Propagation in Semiconductor/Piezoelectric Structures Jianke Du, Xiaoying Jin, Ji Wang Acoustic wave propagating in a piezoelectric crystal is usually accompanied by an electric field. When of the initial stress on the propagation of SH surface wave has remarkable importance for design of devices
The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin
Elias, Damian Octavio
The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin. PLoS ONE 7(2): e31203
Approximations to wave propagation through doubly-periodic arrays of scatterers
Approximations to wave propagation through doubly-periodic arrays of scatterers P. Mc Abstract The propagation of waves through a doubly-periodic array of identical rigid scatterers of matched asymptotic expansions is used to obtain the dispersion relation corresponding to wave propagation
The Propagation of Rayleigh Waves in Layered Piezoelectric Structures with Viscosity
Wang, Ji
The Propagation of Rayleigh Waves in Layered Piezoelectric Structures with Viscosity Jinxiang Shen frequency and wave propagation. With the known major properties such as the quality factor, we can obtain, filters, and delay lines made by surface acoustic waves propagating along the surface of piezoelectric
Waves and propagation failure in discrete space models with nonlinear coupling and
Waves and propagation failure in discrete space models with nonlinear coupling and feedback Markus by the linearisation ahead of the wave front. Wave propagation (and failure) is studied when the homogeneous dynamics are bistable. Simulations show that waves may propagate in either direction, or may be pinned. A Lyapunov
Propagation of a solitary fission wave A. G. Osborne, G. D. Recktenwald, and M. R. Deinerta)
Deinert, Mark
Propagation of a solitary fission wave A. G. Osborne, G. D. Recktenwald, and M. R. Deinerta waves can arise that will propagate at constant velocity. Numerical studies have shown that fission the conditions required for a solitary fission wave to propagate at constant velocity. The results place strict
Wave propagation in a seven-story reinforced concrete building I. Theoretical modelsq
Southern California, University of
Wave propagation in a seven-story reinforced concrete building I. Theoretical modelsq M natural to use wave propagation methods. In this paper (Part I), we review several two-dimensional wave/s and bx/bz 1 for EW vibrations. The velocity of shear waves propagating through the slabs is estimated
Wave propagation across acoustic / Biot's media: a finite-difference method
Boyer, Edmond
Wave propagation across acoustic / Biot's media: a finite-difference method Guillaume Chiavassa1 Marseille, France. Abstract. Numerical methods are developed to simulate the wave propagation in het- erogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in
PROPAGATION OF A-WAVE IN A PLANE PLATE EXPERIMENTAL STUDY
Paris-Sud XI, UniversitÃ© de
PROPAGATION OF A-WAVE IN A PLANE PLATE EXPERIMENTAL STUDY LoÃ¯c MARTINEZ Jean DUCLOS Alain TINEL ABSTRACT The propagation of the A-wave is investigated theoretically on a plane brass plate completly a wide development over these ten last years. These studies show that an incident plane wave propagating
Supplementary Information for Generation and reversal of surface flows by propagating waves
Loss, Daniel
Supplementary Information for Generation and reversal of surface flows by propagating waves-4) and Supplementary Figures 1-8. Generation and reversal of surface flows by propagating waves localized time-periodic perturbations of water surface generate waves propagating away from the plungers
Epstein, Irving R.
Discontinuously propagating waves in the bathoferroin-catalyzed BelousovÂZhabotinsky reaction new types of discontinuously propagating waves are reported in the bathoferroin-catalyzed Belousov at higher temperatures 40 Â°C . All these waves propagate discontinuously in a saltatory fashion. Other
On the effective plate thickness of monolayer graphene from flexural wave propagation
Lin, Xi
On the effective plate thickness of monolayer graphene from flexural wave propagation Sung Youb Kim utilize classical molecular dynamics to study flexural, or transverse wave propagation in monolayer) mode of wave propagation in a thin plate with plate thickness of h Â¼ 0:104 nm. Finally, we find
EFFECT OF CONTACT VISCOSITY AND ROUGHNESS ON INTERFACE STIFFNESS AND WAVE PROPAGATION
Boyer, Edmond
EFFECT OF CONTACT VISCOSITY AND ROUGHNESS ON INTERFACE STIFFNESS AND WAVE PROPAGATION Anil Misra1 and asperity properties compete in determining the stiffness behavior, and consequently, the wave propagation widely used to investigate plane wave propagation through contacts between two rough solids [see
Review Article Propagating waves in thalamus, cortex and the thalamocortical system
Destexhe, Alain
Review Article Propagating waves in thalamus, cortex and the thalamocortical system: Experiments-sensitive dye Multi-electrode array Population dynamics Propagating waves Oscillations Sensory cortices Spiking neural networks a b s t r a c t Propagating waves of activity have been recorded in many species
Experimental Measurements of the Propagation of Large Amplitude Shear Alfv n Waves
California at Los Angles, University of
1 Experimental Measurements of the Propagation of Large Amplitude Shear Alfv n Waves Walter perturbation when Bwave/B0 exceeds 10-3 even when the wave propagates below the cyclotron frequency ions. We present data of the wave propagation in which the temporal history of the vector magnetic
Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media
Boyer, Edmond
Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media Q.-A. Ta numerical experiments that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings
PARAMETRIC STUDIES OF WAVE PROPAGATION THROUGH IMPERFECT INTERFACES USING MICROMECHANICS BASED
Paris-Sud XI, UniversitÃ© de
PARAMETRIC STUDIES OF WAVE PROPAGATION THROUGH IMPERFECT INTERFACES USING MICROMECHANICS BASED, University of Missouri-Kansas City, Kansas City, MO 64110 ABSTRACT. Plane wave propagation through contact to investigate the plane wave propagation through contact between two rough solids [see for example 1
NOTES AND CORRESPONDENCE Dissipative Losses in Nonlinear Internal Waves Propagating across the
Smyth, William David
NOTES AND CORRESPONDENCE Dissipative Losses in Nonlinear Internal Waves Propagating across, however, dissipative ef- fects are negligible and the wave may be considered freely propagating. We of an individual wave propagating onto the con- tinental shelf (Fig. 1). In particular, we follow the lead- ing
Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice
Paris-Sud XI, UniversitÃ© de
Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice O. Richoux of the propagation of an acoustic wave through a normally distributed disordered lattice made up of Helmholtz propagation in random media, waveguide, scattering of acoustic waves. PACS 11.80.La ; 42.25.Dd ; 43.20.Mv ; 43
THz Sommerfeld wave propagation on a single metal wire Tae-In Jeon,a
THz Sommerfeld wave propagation on a single metal wire Tae-In Jeon,a Jiangquan Zhang, and D an experimental and theoretical study of THz Sommerfeld wave propagation on a single copper wire. THz pulses increasing interest on the guided wave propagation of THz pulses, and much effort and progress on THz
Backward wave propagation in left-handed media with isotropic and anisotropic
Mojahedi, Mohammad
Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors medium is investigated from a purely wave propagation point of view. The functional form for the index-velocity vectors are antiparallel. It is shown that, in the case considered, the backward-wave propagation can
EE-335 -EM Wave Propagation 4 Lecture pp: 287-295 7-1:2
Kaiser, Todd J.
4-1 EE-335 - EM Wave Propagation 4 Lecture pp: 287-295 7-1:2 This is a typical wireless complex and the propagation constant gets replaced with the wave number k (lossless) Âµ =-= kk 22 #12 communication scheme: Generator Transmission Line Transmitting Antenna Radiation Pattern Free Space Propagation
Topology drives calcium wave propagation in 3D astrocyte networks Jules Lallouette, Hugues Berry
Boyer, Edmond
Topology drives calcium wave propagation in 3D astrocyte networks Jules Lallouette, Hugues Berry themselves inter-connected as networks and communicate via chemical wave propagation. How astrocyte wave work, we investigate the influence of the character- istics of the network topology on wave propagation
RELATION OF THE WAVE{PROPAGATION METRIC TENSOR TO THE CURVATURES
Cerveny, Vlastislav
RELATION OF THE WAVE{PROPAGATION METRIC TENSOR TO THE CURVATURES OF THE SLOWNESS AND RAY The contravariant components of the wave{propagation metric tensor equal half the second{order partial derivatives. The relations of the wave{ propagation metric tensor to the curvature matrix and Gaussian curvature
Convectively Coupled Waves Propagating along an Equatorial ITCZ JULIANA DIAS AND OLIVIER PAULUIS
Pauluis, Olivier M.
Convectively Coupled Waves Propagating along an Equatorial ITCZ JULIANA DIAS AND OLIVIER PAULUIS waves propagate at the moist gravity wave speed (about 15 m s21 ), whereas for a narrow ITCZ, the propagation speed is comparable to the dry gravity wave (about 50 m s21 ). It is also shown that a Kelvin wave
http://rcc.its.psu.edu/hpc Influence of Temperature on Guided Wave Propagation
BjÃ¸rnstad, Ottar Nordal
http://rcc.its.psu.edu/hpc Influence of Temperature on Guided Wave Propagation Manton J. Guers Ph-established technique for studying ultrasonic wave propagation in both conventional and guided wave applications in the mechanical properties influences the guided wave propagation. In order to analysis the transient results
Trigger-Wave Propagation in Arbitrary Metrics in Asynchronous Cellular Logic Arrays
Dudek, Piotr
Trigger-Wave Propagation in Arbitrary Metrics in Asynchronous Cellular Logic Arrays Przemyslaw image processing tasks using trigger-wave propagation in a medium with a hardware-controlled metric. The principles of wave propagation in cellular four-connected logic arrays emulating different distance measure
PROPAGATION OF ALFVN WAVES AT THE PLASMA SHEET BOUNDARY Robert L. Lysak and Yan Song
Lysak, Bob
PROPAGATION OF ALFVÃ?N WAVES AT THE PLASMA SHEET BOUNDARY LAYER Robert L. Lysak and Yan Song School conversion or by localized plasma flows in the tail. The generation and propagation of these waves is studied nonlinear MHD simulations of wave propagation at the boundary layer. INTRODUCTION Recent observations from
High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves
Paris-Sud XI, UniversitÃ© de
773 High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves that, under certain circumstances, a pressure wave of large amplitude which propagates in a fluid feature of such a shock wave propagation inside an initially collapsed tube is the presence ofwavelets
The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue
Glass, Leon
The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue propagation without breakup, plane wave breakup into spiral waves and plane wave block. In the theoretical with the propagation of an electrical wave through the cardiac tissue in a coordinated manner. The wave of activity
Journal of Mining Science, Vol. 45, No. 5, 2009 MODELING THE ELASTIC WAVE PROPAGATION
Alexandrov, Victor
427 Journal of Mining Science, Vol. 45, No. 5, 2009 MODELING THE ELASTIC WAVE PROPAGATION UDC 622.7 + 622 The wave propagation analysis revealed that the low-frequency pendulum wave propagating in a 2D block medium with periodic structure due to the action of local impulse has a two-wave
Propagation of Intercellular Calcium Waves in Retinal Astrocytes and Mu ller Cells
Newman, Eric A.
Propagation of Intercellular Calcium Waves in Retinal Astrocytes and MuÂ¨ ller Cells Eric A. Newman. Experiments were conducted to determine the mechanism of Ca2 wave propagation between glial cells in an intact fluo-4. Mechanical stimulation of astrocyte somata evoked Ca2 waves that propagated through both
Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling
Guddati, Murthy N.
Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling Md of the truncated exterior. Development of an accurate ABC for transient elastic wave propagation problems are obtained by factoring the wave equation into outward and inward propagating operators and permitting only
Industrial scale in vitro propagation by Somatic Embryogenesis Applied research project
Uppsala Universitet
, packaging, hygiene, textile and other fiber related industries. SweTree Technologies has 32 employees1 Industrial scale in vitro propagation by Somatic Embryogenesis Applied research project Swe up the industrial scale in vitro propagation system for Norway spruce. The propagation process
Wooldridge, Margaret S.
Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. Â© 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis
Energy Management Through Innovative Rates
Williams, M. L.
1982-01-01T23:59:59.000Z
of energy efficiency in the industrial sector and specific rate design alternatives for doing so....
Propagation of uncertainties in the nuclear DFT models
Markus Kortelainen
2014-09-04T23:59:59.000Z
Parameters of the nuclear density functional theory (DFT) models are usually adjusted to experimental data. As a result they carry certain theoretical error, which, as a consequence, carries out to the predicted quantities. In this work we address the propagation of theoretical error, within the nuclear DFT models, from the model parameters to the predicted observables. In particularly, the focus is set on the Skyrme energy density functional models.
Wave propagation in periodic networks of thin fibers
S. Molchanov; B. Vainberg
2009-08-02T23:59:59.000Z
We will discuss a one-dimensional approximation for the problem of wave propagation in networks of thin fibers. The main objective here is to describe the boundary (gluing) conditions at branching points of the limiting one-dimensional graph. The results will be applied to Mach-Zehnder interferometers on chips and to periodic chains of the interferometers. The latter allows us to find parameters which guarantee the transparency and slowing down of wave packets.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)
2010-03-16T23:59:59.000Z
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency
Daisuke Akamatsu; Yoshihiko Yokoi; Manabu Arikawa; Satoshi Nagatsuka; Takahito Tanimura; Akira Furusawa; Mikio Kozuma
2008-01-27T23:59:59.000Z
We have succeeded in observing ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. Squeezed vacuum pulses (probe lights) were incident on a laser cooled 87Rb gas together with an intense coherent light (control light). A homodyne method sensitive to the vacuum state was employed for detecting the probe pulse passing through the gas. A delay of 3.1us was observed for the probe pulse having a temporal width of 10 us.
QCD plasma parameters and the gauge-dependent gluon propagator
Kobes, R.; Kunstatter, G.; Rebhan, A. (Department of Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba (Canada) Institut fuer Theoretische Physik, Technische Universitaet Wien, Wiedner Haupstrasse 8-10, A-1040 Vienna (Austria))
1990-06-18T23:59:59.000Z
We derive the Ward identities that determine the gauge dependence of the QCD dispersion relations obtained from the ordinary gluon propagator in a certain class of gauges. These identities hold for complex structure functions at both zero and finite temperature. A direct consequence of our analysis is that the gauge dependence of the gluon-plasma damping constant obtained in recent one-loop calculations is due to an inconsistent approximation scheme.
Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma
Abbas, Gohar; Bashir, M. F. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Department of Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan)
2012-07-15T23:59:59.000Z
Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.
Propagation of Gravitational Waves in Generalized TeVeS
Eva Sagi
2010-01-11T23:59:59.000Z
Efforts are underway to improve the design and sensitivity of gravitational waves detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity (TeVeS) with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more transverse modes and two trace modes. Additionally, the propagation speeds are different from c.
Propagation of Waves in Networks of Thin Fibers
S. Molchanov; B. Vainberg
2009-02-14T23:59:59.000Z
The paper contains a simplified and improved version of the results obtained by the authors earlier. Wave propagation is discussed in a network of branched thin wave guides when the thickness vanishes and the wave guides shrink to a one dimensional graph. It is shown that asymptotically one can describe the propagating waves, the spectrum and the resolvent in terms of solutions of ordinary differential equations on the limiting graph. The vertices of the graph correspond to junctions of the wave guides. In order to determine the solutions of the ODE on the graph uniquely, one needs to know the gluing conditions (GC) on the vertices of the graph. Unlike other publications on this topic, we consider the situation when the spectral parameter is greater than the threshold, i.e., the propagation of waves is possible in cylindrical parts of the network. We show that the GC in this case can be expressed in terms of the scattering matrices related to individual junctions. The results are extended to the values of the spectral parameter below the threshold and around it.
A k-space method for nonlinear wave propagation
Yun Jing; Greg. T. Clement
2011-07-06T23:59:59.000Z
A k-space method for nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme [Mast et al., IEEE Tran. Ultrason. Ferroelectr. Freq. Control 48, 341-354 (2001)]. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to the finite element method. It is found that, in order to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant-Friedrichs-Lewy number can be as small as 0.4. As a result, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient than the conventional finite element method or finite-difference time-domain method for the conditions studied here. However, although the present method is highly accurate for weakly inhomogeneous media, it is found to be less accurate for strongly inhomogeneous media. A possible remedy to this limitation is discussed.
Propagation of electromagnetic waves in a structured ionosphere
Murphy, T.
1996-06-01T23:59:59.000Z
The ionosphere is a birefringent medium which strongly affects the transmission of very high frequency (vhf) radio signals. These effects must be understood in detail if one wishes to look at the propagation of wide bandwidth coherent signals through the ionosphere. We develop a general perturbative solution of Maxwell`s equations for vhf signals propagating in the ionosphere, subject only to mild restrictions on the ionospheric structure. This solution can be extended to give the propagating field to any desired degree of precision. The case of a laminar ionosphere with harmonic waves is developed in greater detail, and we show how to calculate the ray path in this case. This solution is used to elucidate the effects of refraction on the phase of the signal, and we calculate the spatial- and frequency-coherence functions. The electric field for a laminar ionosphere without waves is analyzed to clarify the physical origins of the terms modifying the signal phase. We then calculate the solution in this case for the Appleton-Hartree model of the ionospheric dielectric function and express the result as a series in inverse powers of frequency. We conclude by calculating the ray path for a model ionosphere using the Appleton-Hartree dielectric function and a parabolic layer for the electron density.
Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media
Vorobiev, O; Antoun, T
2009-12-11T23:59:59.000Z
This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.
Adaptive two-regime method: Application to front propagation
Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom)] [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom); Flegg, Mark, E-mail: mark.flegg@monash.edu [School of Mathematical Sciences, Faculty of Science, Monash University Wellington Road, Clayton, Victoria 3800 (Australia)] [School of Mathematical Sciences, Faculty of Science, Monash University Wellington Road, Clayton, Victoria 3800 (Australia)
2014-03-28T23:59:59.000Z
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.
Effects of crowding on growth rate and symbiosis in green hydra
Thorp, James H.; Barthalamus, George T.
1975-01-01T23:59:59.000Z
every 4 days. A significant inverse relationship between population density and population growth rate exists. In addition, hydras were found to increase or decrease their growth rates in response to rapid changes of density after acclimation to fixed...
Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont
Williams, M. M.
1981-01-01T23:59:59.000Z
As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...
California PG&E E-19 Rate Structure -- demand charge structure...
correctly? Do the upcoming schema changes address these issues? Thanks for your help. -Allan Groups: Utility Rate Login to post comments Allandaly's blog Comments Allandaly...
Analysis of SaO? & heart rate from the combined PBG/PBA study
Dawes, Derek Shawn
2001-01-01T23:59:59.000Z
States Air Force Base in San Antonio, Texas. The findings indicate that while SaO? level changes are not statistically significant, heart rate changes are considerable when transitioning to increased Gz level....
National Utility Rate Database: Preprint
Ong, S.; McKeel, R.
2012-08-01T23:59:59.000Z
When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.
Ideological change in nuclear witnesses
Garcia-Bahne, B.
1985-01-01T23:59:59.000Z
This research examines factors associated with atomic veterans maintaining or changing their ideology in relation to their radiation exposure as a function of having witnessed nuclear weapons testing. The study also examined inconsistency (incongruence between physician ratings of self-reported symptoms and perceived health), and current attitudes towards the government. Data were collected with atomic veterans through 16 interviews and a questionnaire with 128 respondents. Three hypotheses were formulated. (1) Ideological change is associated with a high need for structure and high openness; low ideological change with low openness and a high need for structure. Findings failed to substantially support this hypothesis. (2) High ideological change is associated with a high need for structure and high acknowledgement; least ideological change, with a high need for structure and low acknowledgement. Findings failed to substantially support this hypothesis. (3) High ideological change and a high need for structure are both expected with high openness and inconsistency. Low ideological change and a high need for structure are associated with low openness and inconsistency. Current faith in the government is associated with low openness and inconsistency. Findings confirmed the third part. Trends and significant supplementary variables are discussed.
John J. Moore, Douglas E. Burkes, Collin D. Donohoue, Marissa M. Reigel, J. Rory Kennedy
2009-05-18T23:59:59.000Z
The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.
Upper Great Plains Rates information
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Ancillary Services Rate Data (2.4mb pdf) Transmission and Ancillary Services 2011 Rate True-up Calculation (3.4mb pdf) Power Reporting Miscellaneous Information If you have any...
Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation
Pyrak-Nolte, Laura J. [Purdue University
2013-04-27T23:59:59.000Z
Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a â??sub-porosityâ? within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The â??sub-porosityâ? may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.
Propagation of a cloud of hot electrons in the regime of fast relaxation
Foroutan, G.R.; Li, B.; Robinson, P.A.; Cairns, I.H.; Moslehi-Fard, M. [School of Physics, University of Sydney, New South Wales 2006, Sydney (Australia) and Faculty of Physics, Tabriz University, Tabriz 51664 (Iran); School of Physics, University of Sydney, New South Wales 2006, Sydney (Australia); Faculty of Physics, Tabriz University, Tabriz 51664 (Iran, Islamic Republic of)
2005-04-15T23:59:59.000Z
The propagation of a cloud of hot electrons and generation of Langmuir waves are investigated using numerical simulation of the quasilinear equations and analytical gas-dynamic theory. The validity of the gas-dynamic theory is investigated and the accuracy of Ryutov and Sagdeev's gas-dynamic equations is explored. It is found that inclusion of spontaneous emission terms in the gas-dynamic equations is necessary for self-consistency of analytical solutions. Results of numerical simulations show that the electron distribution function relaxes to a plateau state and excites Langmuir waves. Evolution of the upper boundary and the height of the plateau are investigated and it is found at a given time and location there are three different regions in the electron beam distribution which correspond to unrelaxed, partially relaxed, and completely relaxed states. In the completely relaxed region there is a good agreement between the results of numerical simulation and the predictions of gas-dynamic theory. As the beam propagates at a given location slower electrons arriving later excite Langmuir waves at lower velocities and reabsorb the waves generated at slightly higher velocities. Hence the upper boundary of the plateau is not constant and moves to lower velocities with time. Results of numerical simulations show there is an abrupt change in reabsorption of waves near the upper boundary such that damping is maximal near this velocity and decreases very rapidly for higher velocities. The coordinate extent of the beam and waves increases with time but their profiles remain similar at all times and this situation enables a self-similar solution to be used. For the total wave energy density good consistency is found between the numerical results and gas-dynamic theory. In the case of an initially unstable beam distribution function, Langmuir wave pile-up near the injection site is observed and it is found that its efficiency depends on temperature and the mean injection velocity of the beam distribution function. These piled-up waves are slowly damped out due to weak Landau damping at the tail of cold background distribution function and propagate very slowly at their group velocity.
2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.
United States. Bonneville Power Administration.
2006-11-01T23:59:59.000Z
This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.
Quantum gravitational corrections to propagator in arbitrary spacetimes
T. Padmanabhan
1997-03-18T23:59:59.000Z
The action for a relativistic free particle of mass m receives a contribution $-m R(x,y)$ from a path of length R(x,y) connecting the events $x^i$ and $y^i$. Using this action in a path integral, one can obtain the Feynman propagator for a spinless particle of mass m in any background spacetime. If one of the effects of quantizing gravity is to introduce a minimum length scale $L_P$ in the spacetime, then one would expect the segments of paths with lengths less than $L_P$ to be suppressed in the path integral. Assuming that the path integral amplitude is invariant under the `duality' transformation ${\\cal R}\\to L_P^2/R$, one can calculate the modified Feynman propagator in an arbitrary background spacetime. It turns out that the key feature of this modification is the following: The proper distance $(\\Delta x)^2$ between two events, which are infinitesimally separated, is replaced by $\\Delta x^2 + L_P^2$; that is the spacetime behaves as though it has a `zero-point length' of $L_P$. This equivalence suggests a deep relationship between introducing a `zero-point-length' to the spacetime and postulating invariance of path integral amplitudes under duality transformations. In the Schwinger's proper time description of the propagator, the weightage for a path with proper time s becomes $m(s+L_P^2/s)$ rather than as ms. As to be expected, the ultraviolet behavior of the theory is improved significantly and divergences will disappear if this modification is taken into account. Implications of this result are discussed.
Oblique propagation of nonlinear electrostatic waves in dense astrophysical magnetoplasmas
Masood, W.; Siddiq, M. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000, Islamabad (Pakistan); Rizvi, H. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan)
2011-10-15T23:59:59.000Z
Nonlinear quantum ion-acoustic waves in dense dissipative as well as non-dissipative magnetized plasmas are investigated employing the quantum hydrodynamic model. In this regard, Zakharov Kuznetsov Burgers equation is derived in quantum plasmas, for the first time, using the small amplitude perturbation expansion method. The unique features of nonlinear electrostatic structures in pure electron-ion quantum magnetoplasma are highlighted and the parametric domain of the applicability of the model is unequivocally expressed. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock and solitary structures in dense astrophysical systems where the quantum effects are expected to dominate.
Energy dissipation in wave propagation in general relativistic plasma
Ajanta Das; S. Chatterjee
2009-11-03T23:59:59.000Z
Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.
Nucleation and propagation of phase mixtures in a bistable chain
Vainchtein, Anna; Van Vleck, Erik
2009-04-29T23:59:59.000Z
Nucleation and propagation of phase mixtures in a bistable chain Anna Vainchtein* Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Erik S. Van Vleck† Department of Mathematics, University of Kansas, Lawrence...-to-nearest-neighbor interactions. w h wc a phase I phase II FIG. 2. The biquadratic NN interaction potential Eq. #1;3#2; . ANNA VAINCHTEIN AND ERIK S. VAN VLECK PHYSICAL REVIEW B 79, 144123 #1;2009#2; 144123-2 wn = un ? un?1 #7; , is below #1;phase I#2; or above #1;phase II#2...
Propagation of Nd-laser pulses through crystalline silicon wafers
Kirichenko, N A; Kuzmin, P G; Shcherbina, M E [Wave Research Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2011-07-31T23:59:59.000Z
Propagation of pulses from an Nd:YAG laser (wavelength, 1.064 {mu}m; pulse duration, 270 ns; pulse energy, 225 {mu}J) through crystalline silicon wafers is studied experimentally. Mathematical modelling of the process is performed: the heat conduction equation is solved numerically, the temperature dependences of the absorption and refraction of a substance, as well as generation of nonequilibrium carriers by radiation are taken into account. The constructed model satisfactorily explains the experimentally observed intensity oscillations of transmitted radiation. (interaction of laser radiation with matter)
Excitation of two atoms by a propagating single photon pulse
Navneeth Ramakrishnan; Yimin Wang; Valerio Scarani
2014-11-13T23:59:59.000Z
We describe the interaction of two two-level atoms in free space with propagating modes of the quantized electromagnetic field, using the time-dependent Heisenberg-Langevin method. For single- photon pulses, we consider the effect of the pulse's spatial and temporal profiles on the atomic excitation. In particular, we find the ideal shape for a pulse to put exactly one excitation in any desired state of the bi-atomic system. Furthermore, we analyze the differences in the atomic dynamics between the cases of Fock state pulses and coherent state pulses.
Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California
Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California
Gopman, D. B., E-mail: daniel.gopman@physics.nyu.edu; Kent, A. D. [Department of Physics, New York University, New York, New York 10003 (United States); Bedau, D. [Department of Physics, New York University, New York, New York 10003 (United States); HGST San Jose Research Center, San Jose, California 95135 (United States); Mangin, S. [Institut Jean Lamour, UMR CNRS 7198 Université de Lorraine, Nancy, France 54506 (France); Fullerton, E. E. [CMRR, University of California at San Diego, La Jolla, California 92093 (United States); Katine, J. A. [HGST San Jose Research Center, San Jose, California 95135 (United States)
2014-03-21T23:59:59.000Z
We present a study of the temperature dependence of the switching fields in Co/Ni-based perpendicularly magnetized spin-valves. While magnetization reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is typically marked by a single sharp step change in resistance, low temperature measurements can reveal a series of resistance steps, consistent with non-uniform magnetization configurations. We propose a model that consists of domain nucleation, propagation, and annihilation to explain the temperature dependence of the switching fields. Interestingly, low temperature (<30?K) step changes in resistance that we associate with domain nucleation have a bimodal switching field and resistance step distribution, attributable to two competing nucleation pathways.
Anders Nysteen; Dara P. S. McCutcheon; Jesper Mørk
2015-02-21T23:59:59.000Z
We analytically treat the scattering of two counter-propagating photons on a two-level emitter embedded in an optical waveguide. We find that the non-linearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quantified via a reduction in coincident clicks in a Hong-Ou-Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce suitable fidelity measures which account for these changes, and find that high values can still be achieved even when accounting for all properties of the scattered photonic state.
XI International Symposium on Self-Propagating High-Temperature Synthesis Â SHS 2011 1 FIRST of Ceramics International Association on Self-Propagating High Temperature Synthesis (SHS-AS) Official Symposium on Self-Propagating High-Temperature Synthesis Â SHS 2011 #12;XI International Symposium on Self-Propagating
XI International Symposium on Self-Propagating High-Temperature Synthesis Â SHS 2011 1 SECOND of Ceramics International Association on Self-Propagating High Temperature Synthesis (SHS-AS) Official Symposium on Self-Propagating High-Temperature Synthesis Â SHS 2011 #12;XI International Symposium on Self-Propagating
Propagating Waves in a Monolayer of Gas-Fluidized Rods
L. J. Daniels; D. J. Durian
2010-11-12T23:59:59.000Z
We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ $N^{0.72 \\pm 0.04}$, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow.
Magnetohydrodynamics wave propagation in the neighbourhood of two dipoles
J. A. McLaughlin; A. W. Hood
2007-12-11T23:59:59.000Z
This paper is the third in a series of investigations by the authors. The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a 2D $\\beta=0$ plasma in the neighbourhood of two dipoles. We use both numerical simulations (two-step Lax-Wendroff scheme) and analytical techniques (WKB approximation). It is found that the propagation of the linear fast wave is dictated by the Alfv\\'en speed profile and that close to the null, the wave is attracted to the neutral point. However, it is also found that in this magnetic configuration some of the wave can escape the refraction effect; this had not been seen in previous investigations by the authors. The wave split occurs near the regions of very high Alfv\\'en speed (found near the loci of the two dipoles). Also, for the set-up investigated it was found that 40% of the wave energy accumulates at the null. Ohmic dissipation will then extract the wave energy at this point. The Alfv\\'en wave behaves in a different manner in that part of the wave accumulates along the separatrices and part escapes. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. The phenomenon of wave accumulation at a specific place is a feature of both wave types, as is the result that a fraction of the wave can now escape the numerical box when propagating in this magnetic configuration.
Influence of Dark Matter on Light Propagation in Solar System
Hideyoshi Arakida
2009-11-17T23:59:59.000Z
We investigated the influence of dark matter on light propagation in the solar system. We assumed the spherical symmetry of spacetime and derived the approximate solution of the Einstein equation, which consists of the gravitational attractions caused by the central celestial body, i.e. the Sun, and the dark matter surrounding it. We expressed the dark matter density in the solar system in the following simple power-law form, $\\varrho(t, r) = \\rho(t)(\\ell/r)^k$, where $t$ is the coordinate time; $r$, the radius from the central body; $\\ell$, the normalizing factor; $k$, the exponent characterizing $r$-dependence of dark matter density; and $\\rho(t)$, the arbitrary function of time $t$. On the basis of the derived approximate solution, we focused on light propagation and obtained the additional corrections of the gravitational time delay and the relative frequency shift caused by the dark matter. As an application of our results, we considered the secular increase in the astronomical unit reported by Krasinsky and Brumberg (2004) and found that it was difficult to provide an explanation for the observed $d{\\rm AU}/dt = 15 \\pm 4 ~[{\\rm m/century}]$.
Double porosity modeling in elastic wave propagation for reservoir characterization
Berryman, J. G., LLNL
1998-06-01T23:59:59.000Z
Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.
MHD Wave Propagation in the Neighbourhood of Two Null Points
J. A. McLaughlin; A. W. Hood
2007-12-11T23:59:59.000Z
The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a zero $\\beta$ plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low $\\beta$ solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.
Synthetic observations of wave propagation in a sunspot umbra
Felipe, T; Khomenko, E
2014-01-01T23:59:59.000Z
Spectropolarimetric temporal series from Fe I $\\lambda$ 6301.5 \\AA\\ and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I $\\lambda$ 6301.5 \\AA\\ line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic field oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the li...
Minimizing Variation in Outdoor CPV Power Ratings (Presentation)
Muller, M.
2011-04-01T23:59:59.000Z
Presented at the 7th International Conference on Concentrating Photovoltaic Systems (CPV-7), 4-6 April 2011, Las Vegas, Nevada. The CPV community has agreed to have both indoor and outdoor power ratings at the module level. The indoor rating provides a repeatable measure of module performance as it leaves the factory line while the outdoor rating provides a measure of true performance under real world conditions. The challenge with an outdoor rating is that the spectrum, temperature, wind speed, etc are constantly in flux and therefore the resulting power rating varies from day to day and month to month. This work examines different methodologies for determining the outdoor power rating with the goal of minimizing variation even if data are collected under changing meteorological conditions.
Environmental Change Institute Environmental Change Institute
Oxford, University of
Environmental Change Institute 2012/13 eci Environmental Change Institute #12;ii Environmental 06 Educating environmental leaders 08 Centre for interdisciplinary doctoral training 10 A thriving, Dumfriesshire (ECI) #12;1 The Environmental Change Institute has 21 years' experience in helping governments
Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing
E-Print Network 3.0 - acts propagation studies Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the Amery Ice Shelf, East Antarctica Summary: An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East... receivers and seismometers...
E-Print Network 3.0 - acoustic wave propagation Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
N... .Schmidt, H., "Propagation of seismic and acoustic waves in horizontally stratified media... wave-number-integration approach to ... Source: Leonard, John J. - Computer...
all-to-all quark propagators: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
which reproduce the numerical data for the propagators are analyzed using a generalized Maximum Entropy Method. K. Langfeld; H. Reinhardt; J. Gattnar 2001-11-09 12 Improving...
Rate Adjustments and Public Involvement
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CRSP Transmission 9162013 WAPA-161 FRN, CRSP transmission and ancillary services rates extension Letter announcing two-year extension to CRSP transmission and ancillary...
Sustainable Building Rating Systems Summary
Fowler, Kimberly M.; Rauch, Emily M.
2006-07-01T23:59:59.000Z
The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.
Foroutan, G. [Department of Physics, Faculty of Science, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Khalilpour, H.; Moslehi-Fard, M. [Faculty of Physics, Tabriz University, Tabriz 51664 (Iran, Islamic Republic of); Li, B.; Robinson, P. A. [School of Physics, University of Sydney, Sydney NSW 2006 (Australia)
2008-12-15T23:59:59.000Z
The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.
Vasco, D.W.
2011-10-01T23:59:59.000Z
Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.
Infrared finite ghost propagator in the Feynman gauge
A. C. Aguilar; J. Papavassiliou
2007-12-05T23:59:59.000Z
We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal form factor of the non-perturbative gluon-ghost vertex, which, contrary to what happens in the Landau gauge, contributes non-trivially to the gap equation of the ghost. The detailed study of the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the ghost self-energy to reach a finite value in the infrared, without having to assume any additional properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of this result and possible future directions are briefly outlined.
The propagation of kinetic energy across scales in turbulent flows
Cardesa, José I; Dong, Siwei; Jiménez, Javier
2015-01-01T23:59:59.000Z
A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence, at Reynolds numbers in the range $Re_{\\lambda}=107-384$. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive, as inferred from the agreement between the total travel time from a given scale to the smallest dissipative motions, and the time estimated from successive jumps through intermediate scales. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a `velocity' that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.
Analysis of Errors in a Special Perturbations Satellite Orbit Propagator
Beckerman, M.; Jones, J.P.
1999-02-01T23:59:59.000Z
We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.
The Influence of Instantons on the Quark Propagator
Daniel Trewartha; Waseem Kamleh; Derek Leinweber; Peter Moran
2012-12-03T23:59:59.000Z
We use over-improved stout-link smearing to investigate the presence and nature of instantons on the lattice. We find that smearing can remove short-range effects with little damage to the long-range structure of the gauge field, and that after around 50 sweeps this process is complete. There are more significant risks for very high levels of smearing beyond 100 sweeps. We are thus able to produce gauge configurations dominated by instanton effects. We then calculate the overlap quark propagator on these configurations, and thus the non-perturbative mass function. We find that smeared configurations reproduce the majority of dynamical mass generation, and conclude that instantons are primarily responsible for the dynamical generation of mass.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Stavroula Foteinopoulou
2003-12-12T23:59:59.000Z
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed negatively refractive phenomena. They found that in the PC system, negative refraction is neither a prerequisite nor guarantees left-handed behavior. They examined carefully the condition to obtain left-handed behavior in the PC. They proposed a wedge type of experiment, in accordance with the experiment performed on the traditional LHM, to test these conditions. They found that for certain frequencies the PC shows left-handed behavior and acts in some respects like a homogeneous medium with a negative refractive index. they used the realistic PC system for this case to show how negative refraction occurs at the interface between a material with a positive and a material with a negative refractive index. Their findings indicate that the formation of the negatively refracted beam is not instantaneous and involves a transient time. With this time-dependent analysis, they were able to address previous controversial issues about negative refraction concerning causality and the speed of light limit. Finally, they attempt a systematic study of anomalous refractive phenomena that can occur at the air-PC interface. They observe cases where only a single refracted beam (in the positive or negative direction) is present, as well as cases with birefringence. they classify these different effects according to their origin and type of propagation (left-handed or not). For a complete study of the system, they also obtain expressions for the energy and group velocities, and show their equality. For cases with very low index contrast, band folding becomes an artificiality. They discuss the validity of their findings when they move to the limit of photonic crystals with a low index modulation.
Electromagnetic Pulse Propagation over Nonuniform Earth Surface: Numerical Simulation
Alexei V. Popov; Vladimir V. Kopeikin
2007-04-14T23:59:59.000Z
We simulate EM pulse propagation along the nonuniform earth surface using so called time-domain parabolic equation. To solve it by finite differences, we introduce a time-domain analog of the impedance boundary condition and a nonlocal BC of transparency reducing open computational domain to a strip of finite width. Numerical examples demonstrate influence of soil conductivity on the wide-band pulse waveform. For a high-frequency modulated EM pulse, we develop an asymptotic approach based on the ray structure of the monochromatic wave field at carrier frequency. This radically diminishes the computation costs and allows for pulsed wave field calculation in vast domains measured by tens of thousands wavelengths.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
N. Schunck; J. D. McDonnell; D. Higdon; J. Sarich; S. M. Wild
2015-03-19T23:59:59.000Z
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces [see Duguet et al., this issue], energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Seismic pulse propagation with constant Q and stable probability distributions
Francesco Mainardi; Massimo Tomirotti
2010-08-07T23:59:59.000Z
The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with index of stability determined by the order of the fractional time derivative in the evolution equation.
Solar rotation rate and its gradients during cycle 23
H. M. Antia; Sarbani Basu; S. M. Chitre
2008-05-22T23:59:59.000Z
Available helioseismic data now span almost the entire solar activity cycle 23 making it possible to study solar-cycle related changes of the solar rotation rate in detail. In this paper we study how the solar rotation rate, in particular, the zonal flows change with time. In addition to the zonal flows that show a well known pattern in the solar convection zone, we also study changes in the radial and latitudinal gradients of the rotation rate, particularly in the shear layer that is present in the immediate sub-surface layers of the Sun. In the case of the zonal-flow pattern, we find that the band indicating fast rotating region close to the equator seems to have bifurcated around 2005. Our investigation of the rotation-rate gradients show that the relative variation in the rotation-rate gradients is about 20% or more of their average values, which is much larger than the relative variation in the rotation rate itself. These results can be used to test predictions of various solar dynamo models.
Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball
Sarira Sahu; Nissim Fraija; Yong-Yeon Keum
2009-11-10T23:59:59.000Z
The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order $M^{-4}_W$. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5-30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.
Strain rate sensitive constitutive equations
Nelson, Charles Edward
1971-01-01T23:59:59.000Z
1 Computed Constants For Far'ous . Baterials 47 LIST OF FIGURFS Pace Figure I Comparison of Rate Data For Commercially Pure Aluminum Figure 2 Dynamic Loading Regimes 17 Figure 3 Yield Criteria 32 Figure 4 Uni-axial Stress-Strain Rate...
RECYCLING RATE STUDY Prepared by
Laughlin, Robert B.
NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries
Constraints on the non-standard interaction in propagation from atmospheric neutrinos
Fukasawa, Shinya
2015-01-01T23:59:59.000Z
The sensitivity of the atmospheric neutrino experiments to the non-standard flavor-dependent interaction in neutrino propagation is studied under the assumption that the only nonvanishing components of the non-standard matter effect are the electron and tau neutrino components $\\epsilon_{ee}$, $\\epsilon_{e\\tau}$, $\\epsilon_{\\tau\\tau}$ and that the tau-tau component satisfies the constraint $\\epsilon_{\\tau\\tau}=|\\epsilon_{e\\tau}|^2/(1+\\epsilon_{ee})$ which is suggested from the high energy behavior for atmospheric neutrino data. It is shown that the Superkamiokande (SK) data for 4438 days constrains $|\\tan\\beta|\\equiv|\\epsilon_{e\\tau}/(1+\\epsilon_{ee})|\\lesssim 0.8$ at 2.5$\\sigma$ (98.8\\%) CL whereas the future Hyperkamiokande experiment for the same period of time as SK will constrain as $|\\tan\\beta|\\lesssim 0.3$ at 2.5$\\sigma$CL from the energy rate analysis and the energy spectrum analysis will give even tighter bounds on $\\epsilon_{ee}$ and $|\\epsilon_{e\\tau}|$.
Zhan Shi; Hendra I. Nurdin
2014-10-12T23:59:59.000Z
Recent work has shown that deploying two nondegenerate optical parametric amplifiers (NOPAs) separately at two distant parties in a coherent feedback loop generates stronger Einstein-Podolski-Rosen (EPR) entanglement between two propagating continuous-mode output fields than a single NOPA under same pump power, decay rate and transmission losses. The purpose of this paper is to investigate the stability and EPR entanglement of a dual-NOPA coherent feedback system under the effect of phase shifts in the transmission channel between two distant parties. It is shown that, in the presence of phase shifts, EPR entanglement worsens or can vanish, but can be improved to some extent in certain scenarios by adding a phase shifter at each output with a certain value of phase shift. In ideal cases, in the absence of transmission and amplification losses, existence of EPR entanglement and whether the original EPR entanglement can be recovered by the additional phase shifters are decided by values of the phase shifts in the path.
Climate change cripples forests
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...
Climate change cripples forests
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural...
Innovative Rates Program. Final report
Not Available
1982-06-21T23:59:59.000Z
Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)
WP-07 Power Rate Case (rates/ratecases)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates > Rate Cases > Rates
Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint
Burch, J.
2012-06-01T23:59:59.000Z
In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.
Comparison of experimental and simulated thermal ratings of drain-back solar water heaters
Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins (United States)); Schaefer, P.J.; Beckman, W.A.; Klein, S.A. (Univ. of Wisconsin, Madison (United States))
1993-05-01T23:59:59.000Z
Short-term experimental tests of drain-back solar water heaters are compared to ratings obtained using TRNSYS to determine if computer simulations can effectively replace laboratory thermal ratings of solar domestic hot water heating systems. The effectiveness of TRNSYS in predicting changes in rating due to limited changes in collector area, collector flow rate, recirculation flow rate, storage tank volume, and storage tank design is validated to within [plus minus]10 percent. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards.
Quantized Media with Absorptive Scatterers and Modified Atomic Emission Rates
L. G. Suttorp; A. J. van Wonderen
2011-02-14T23:59:59.000Z
Modifications in the spontaneous emission rate of an excited atom that are caused by extinction effects in a nearby dielectric medium are analyzed in a quantummechanical model, in which the medium consists of spherical scatterers with absorptive properties. Use of the dyadic Green function of the electromagnetic field near a a dielectric sphere leads to an expression for the change in the emission rate as a series of multipole contributions for which analytical formulas are obtained. The results for the modified emission rate as a function of the distance between the excited atom and the dielectric medium show the influence of both absorption and scattering processes.
Dynamic screening correction for solar p-p reaction rates
Mussack, Katie; 10.1088/0004-637X/729/2/96
2011-01-01T23:59:59.000Z
The solar abundance controversy inspires renewed investigations of the basic physics used to develop solar models. Here we examine the correction to the proton-proton reaction rate due to dynamic screening effects. Starting with the dynamic screening energy from the molecular-dynamics simulations of Mao et al., we compute a reaction-rate correction for dynamic screening. We find that, contrary to static screening theory, this dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential.
Kelvin--Helmholtz instability of magnetohydrodynamic waves propagating on solar surges
Zhelyazkov, I; Srivastava, A K; Mishonov, T
2014-01-01T23:59:59.000Z
In the present paper, we study the evolutionary conditions for Kelvin--Helmholtz (KH) instability in a high-temperature solar surge observed in NOAA AR11271 using the Solar Dynamics Observatory data on 2011 August 25. We study the propagation of normal MHD modes in a flux tube considering the two cases, notably of untwisted magnetic flux tube and the twisted one. The numerical solution to the dispersion relation shows that the kink ($m = 1$) wave traveling in an untwisted flux tube becomes unstable if the jet speed exceeds $1060$ km\\,s$^{-1}$ -- a speed which is inaccessible for solar surges. A weak twist (the ratio of azimuthal to longitudinal magnetic field component) of the internal magnetic field in the range of $0.025$--$0.2$ does not change substantially the critical flow velocity. Thus, one implies that, in general, the kink mode is stable against the KH instability. It turns out, however, that the $m = -2$ and $m = -3$ MHD modes can become unstable when the twist parameter has values between $0.2$ and...
Supernova rates and stellar populations
F. Mannucci
2007-08-03T23:59:59.000Z
We discuss the results about the nature of type Ia Supernovae that can be derived by studying their rates in different stellar populations. While the evolution of SN photometry and spectra can constrain the explosion mechanism, the SN rate depends on the progenitor system. We review the current available data on rates as a function of parent galaxy color, morphology, star formation rate, radio luminosity and environment. By studying the variation of the rates with the color of the parent galaxy, a strong evidence was established that type Ia SNe come from both young and old stars. The dependence of the rates with the radio power of the parent galaxy is best reproduced by a bimodal distribution of delay time between the formation of the progenitor and its explosion as a SN. Cluster early-type galaxies show higher type Ia SN rate with respect to field galaxies, and this effect can be due either to traces of young stars or to differences in the delay time distribution.
Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips
2012-03-13T23:59:59.000Z
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
PREVENTING NETWORK INSTABILITY CAUSED BY PROPAGATION OF CONTROL PLANE POISON MESSAGES*
Shayman, Mark A.
PREVENTING NETWORK INSTABILITY CAUSED BY PROPAGATION OF CONTROL PLANE POISON MESSAGES* Xiaojiang Du to as "poison message failure propagation": Some or all of the network elements have a software or protocol `bug' which is activated on receipt of a certain network control/management message (the poison message
A theoretical approach of the propagation through geometrical constraints in cardiac
Boyer, Edmond
is considered so that cardiac waves propagate through a thin strand, which is connected to a large mass of cells. At this interface, waves can slow down or even be blocked depending on the width of the strand. We present] and nonlinear dynamics are widely used to study the impulse (action potential) propagation in cardiac cells
Precomputed Wave Simulation for Real-Time Sound Propagation of Dynamic Sources in Complex Scenes
North Carolina at Chapel Hill, University of
Precomputed Wave Simulation for Real-Time Sound Propagation of Dynamic Sources in Complex Scenes of North Carolina at Chapel Hill Abstract We present a method for real-time sound propagation that captures all wave effects, including diffraction and reverberation, for multi- ple moving sources and a moving
Source and Listener Directivity for Interactive Wave-based Sound Propagation
North Carolina at Chapel Hill, University of
Source and Listener Directivity for Interactive Wave-based Sound Propagation Ravish Mehra, Lakulish realistic acoustic effects produced by wave-based sound propagation for directional sources and listeners at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave
Trace formula for systems with spin from the coherent state propagator
de Aguiar, Marcus A. M.
Trace formula for systems with spin from the coherent state propagator A. D. Ribeiroa Instituto de November 2007 We present a detailed derivation of the trace formula for a general Hamiltonian with two the semiclassical formula for the propagator in a basis formed by the product of a canonical and a spin coherent
One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home
Al Hanbali, Ahmad
One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home propagation through the earth, governed by the acoustic wave equation. Downward continuation is a technique, Citadel T100 As part of the application called migration or reflection seismic imaging, we model wave