Utility rate change propagation is now much faster | OpenEI Community
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CXNuonYuchengRichlands,projectUrat Rear BannerUtility Rate Home >
Multilayer network modeling of change propagation for engineering change management
Pasqual, Michael C
2010-01-01T23:59:59.000Z
Engineering change management is a critical and challenging process within product development. One pervasive source of difficulty for this process is the phenomenon of change propagation, by which a change to one part or ...
Multilayer Network Model for Analysis and Management of Change Propagation
de Weck, Olivier L.
1 Multilayer Network Model for Analysis and Management of Change Propagation Michael C. Pasqual · Olivier L. de Weck Abstract A pervasive problem for engineering change management is the phenomenon and management of change propagation using the model. The repository includes a few novel tools and metrics, most
Pressure dependence on the reaction propagation rate of PETN at high pressure
Foltz, M.F.
1993-04-01T23:59:59.000Z
The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.
Ismagilov, Rustem F.
Effects of Shear Rate on Propagation of Blood Clotting Determined Using Microfluidics and Numerical-ismagilov@uchicago.edu Abstract: This paper describes microfluidic experiments with human blood plasma and numerical simulations removed. In addition, these results demonstrate the utility of simplified mechanisms and microfluidics
How predictable : modeling rates of change in individuals and populations
Krumme, Katherine
2013-01-01T23:59:59.000Z
This thesis develops methodologies to measure rates of change in individual human behavior, and to capture statistical regularities in change at the population level, in three pieces: i) a model of individual rate of change ...
Christian Sadel
2015-06-15T23:59:59.000Z
We show that the Anderson model has a transition from localization to delocalization at exactly 2 dimensional growth rate on antitrees with normalized edge weights which are certain discrete graphs. The kinetic part has a one-dimensional structure allowing a description through transfer matrices which involve some Schur complement. For such operators we introduce the notion of having one propagating channel and extend theorems from the theory of one-dimensional Jacobi operators that relate the behavior of transfer matrices with the spectrum. These theorems are then applied to the considered model. In essence, in a certain energy region the kinetic part averages the random potentials along shells and the transfer matrices behave similar as for a one-dimensional operator with random potential of decaying variance. At $d$ dimensional growth for $d>2$ this effective decay is strong enough to obtain absolutely continuous spectrum, whereas for some uniform $d$ dimensional growth with $denergy region. At exactly uniform $2$ dimensional growth also some singular continuous spectrum appears, at least at small disorder. As a corollary we also obtain a change from singular spectrum ($d\\leq 2$) to absolutely continuous spectrum ($d\\geq 3)$ for random operators of the type $\\mathcal{P}_r \\Delta_d \\mathcal{P}_r+\\lambda \\mathcal{V}$ on $\\mathbb{Z}^d$, where $\\mathcal{P}_r$ is an orthogonal radial projection, $\\Delta_d$ the discrete adjacency operator (Laplacian) on $\\mathbb{Z}^d$ and $\\lambda \\mathcal{V}$ a random potential.
Message quantization in belief propagation: Structural results in the low-rate regime
Willsky, Alan S.
Motivated by distributed inference applications in unreliable communication networks, we adapt the popular (sum-product) belief propagation (BP) algorithm under the constraint of discrete-valued messages. We show that, in ...
Rate of environmental change determines stress response specificity
Elowitz, Michael
as to salt (13), calcium (14), heat, and other stresses (15). Bacteria also contain general stress responseRate of environmental change determines stress response specificity Jonathan W. Younga,1 , James C (received for review August 2, 2012) Cells use general stress response pathways to activate diverse tar- get
Michael Maziashvili
2012-11-23T23:59:59.000Z
We present Hilbert space representation for a relatively broad class of minimum-length deformed quantum mechanical models obtained by incorporating a space-time uncertainty relation into quantum mechanics. The correspondingly modified field theory is used for estimating the deviation of the light incoherence rate from distant astrophysical sources from the standard case.
Leakage Rate and Hydraulic Head Change Evaluation through Conduits in Deep Storage Aquifers
Islam, Jinia
2015-04-13T23:59:59.000Z
mathematical model for estimating leakage rate by hydraulic head change evaluation through different conduits or leakage pathways coupled with an injection well. The leakage rate is estimated using Darcy’s law by evaluating hydraulic head change between...
Ritchie, R.O.; Suresh, S.; Toplosky, J.
1980-01-01T23:59:59.000Z
The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.
Ahmad Ghassemi
2009-10-01T23:59:59.000Z
Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.
ORIGINAL PAPER Environment and feeding change the ability of heart rate
ORIGINAL PAPER Environment and feeding change the ability of heart rate to predict metabolism 2010 / Published online: 12 August 2010 Ó Springer-Verlag 2010 Abstract The ability to use heart rate of physiological, behavioral, and environmental states. Keywords Steller sea lion Á Heart rate Á Oxygen consumption
ORIGINAL PAPER Environment and feeding change the ability of heart rate
ORIGINAL PAPER Environment and feeding change the ability of heart rate to predict metabolism 2010 Ó Springer-Verlag 2010 Abstract The ability to use heart rate (fh) to predict oxygen consumption, and environmental states. Keywords Steller sea lion Á Heart rate Á Oxygen consumption Á Heat increment of feeding Á
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates FY 15 PRR worksheet (PDF - 31K) FY...
Heart Rate Regulation processed through wavelet analysis and change detection. Some case studies
Paris-Sud XI, Université de
Heart Rate Regulation processed through wavelet analysis and change detection. Some case studies-mail: veronique.billat@wanadoo.fr December 29, 2010 Abstract Heart rate variability (HRV) is an indicator of the regulation of the heart engine, Task Force (1996). This study compares the regulation of the heart in two
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012
Lansky, Joshua
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012 Carlos structural changes in the composition of Mexico's trade and the parameters that affect it across five-of-payments constraint may account for the post-liberalization slowdown in Mexico's growth only during certain subperiods
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and PACI Final FRN for Rate Order No. WAPA-139 - Notice of Order Temporarily Extending Formula Rates for Power, Transmission and Ancillary Services (PDF - 49K) Final FRN for Rate...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
- 392K) Final FRN for Rate Order No. WAPA-139 - Notice of Order Temporarily Extending Formula Rates for Power, Transmission and Ancillary Services (PDF - 49K) Final FRN for Rate...
Global assessment of coral bleaching and required rates of adaptation under climate change
Oppenheimer, Michael
Global assessment of coral bleaching and required rates of adaptation under climate change S I M O, Australia Abstract Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef- building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent
Can Desert Dwellers Continue To Afford Lush Lawns: Analyzing Consumer Response to Rate Changes in
Fay, Noah
Can Desert Dwellers Continue To Afford Lush Lawns: Analyzing Consumer Response to Rate Changes of price and weather on wa- ter demand is important for Arizona. If the effect of weather is not well. In part, this is because few other studies use household data, and instead use data aggregated
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012
Carlini, David
Structural Change, the Real Exchange Rate, and the Balance of Payments in Mexico, 1960-2012 Carlos in Mexico's growth only during certain subperiods of the post-liberalization era, and that the impact the recent crisis), Mexico stands out for having fully embraced trade liberalization and undergoing deep
Structural Change, the Real Exchange Rate, and the Balance of Payments Constraint in Mexico
Lansky, Joshua
Structural Change, the Real Exchange Rate, and the Balance of Payments Constraint in Mexico Carlos of a model of balance-of-payments-constrained growth for Mexico, with disaggregated exports (manufactured for the slowdown in Mexico's actual growth during the early phase of trade liberalization and macro stabilization
Changes in the Enzymatic Hydrolysis Rate of Avicel Cellulose With Conversion
California at Riverside, University of
Changes in the Enzymatic Hydrolysis Rate of Avicel Cellulose With Conversion Bin Yang, Deidre M: 10.1002/bit.20942 Abstract: The slow down in enzymatic hydrolysis of cellulose with conversion has reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete
Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements
Hansen, René Rydhof
of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie
Changes in exchange rates and oil prices for Saudi Arabia and other OPEC members
Cooper, R.L.
1994-12-31T23:59:59.000Z
When the U.S. dollar weakens significantly against currencies of other major trading nations, oil-exporting countries often become concerned about both loss of purchasing power for their imports as well as capital losses on dollar-denominated assets. This paper addresses these issues by (1) examining previous studies, (2) reviewing the historical oil price movements of oil denominated in different G-7 currencies, (3) performing a causality test between changes in exchange rates and the price of oil, (4) using an analytical model to relate changes in exchange rates and the price of oil through the world oil market; and (5) evaluating the gains and losses in terms of purchasing power of Saudi Arabia and other members of the Organization of the Petroleum Exporting Countries for selected historical periods.
Energy Science and Technology Software Center (OSTI)
003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2 http://www.exelisvis.com/ProductsServices/IDL.aspx
Upper limit on the cross section for reactor antineutrinos changing 22Na decay rates
R. J. de Meijer; S. W. Steyn
2014-09-23T23:59:59.000Z
In this paper we present results of a long-term observation of the decay of 22Na in the presence of a nuclear fission reactor. The measurements were made outside the containment wall of and underneath the Koeberg nuclear power plant near Cape Town, South Africa. Antineutrino fluxes ranged from ~5*10^11 to 1.6*10^13 cm^-2 s^-1 during this period. We show that the coincidence summing technique provides a sensitive tool to measure a change in the total decay constant as well as the branching ratio between EC and beta+ decay of 22Na to the first excited state in 22Ne. We observe a relative change in count rate between reactor-ON and reactor-OFF equal to (-0.51+/-0.11)*10^-4. After evaluating possible systematic uncertainties we conclude that the effect is either due to a hidden instrumental cause or due to an interaction between antineutrinos and the 22Na nucleus. An upper limit of ~0.03 barn has been deduced for observing any change in the decay rate of 22Na due to antineutrino interactions.
MNC Industrial Access and Equipment Rates valid 8/1/14 to 7/31/15 RATES SUBJECT TO CHANGE
Ciocan-Fontanine, Ionut
/USE UNITS RATE MONTHLY MAX ACCESS FEE PAN cleanroom, Keller cleanroom, Keller Areas 1-3 monthly fee $95.00 $95.00 LAB USAGE FEE PAN cleanroom, Keller cleanroom, Keller Areas 1-3 per lab session $70.00 $560
MNC Academic Access and Equipment Rates valid 8/1/14 to 7/31/15 RATES SUBJECT TO CHANGE
Ciocan-Fontanine, Ionut
/USE Locations UNITS RATE MONTHLY MAX ACCESS FEE PAN cleanroom, Keller cleanroom, Keller Areas 1-3 monthly fee $30.00 $30.00 LAB USAGE FEE PAN cleanroom, Keller cleanroom, Keller Areas 1-3 per lab session $26
Patzek, Tadeusz W.
The University of Texas at Austin ITS Rate Change Policies Office of the Chief Information Officer: Draft/Community Input/Endorsed/Approved 2 The University of Texas at Austin 1.1. Direct labor costs
Allain, Rhett
with the Concept of Electric Potential and the Concept of Rate of Change. (Under the direction of Robert J on rate of change and 11 items on electric potential this is the Rate And Potential Test (RAPT the relationship between student difficulties with rate of change and electric potential. The second area
A Bayesian Hierarchical Model for Reconstructing Sea Levels: From Raw Data to Rates of Change
Cahill, Niamh; Horton, Benjamin P; Parnell, Andrew C
2015-01-01T23:59:59.000Z
We present a holistic Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with fully quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical ({\\delta}13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) A Bayesian transfer function for the calibration of foraminifera into tidal elevation, which is flexible enough to formally accommodate additional proxies (in this case bulk-sediment {\\delta}13C values); (2) A chronology developed from an existing Bchron age-depth model, and (3) An existing errors-in-variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. We illustrate our approach using a case study of Common Era sea-level variability from New Jersey, U.S.A. We develop a new Bayesian transfer function (B-TF), with and without the {\\delta}13C proxy and compare our results to those from a widely...
Changes in the halo formation rates due to features in the primordial spectrum
Dhiraj Kumar Hazra
2013-02-07T23:59:59.000Z
Features in the primordial scalar power spectrum provide a possible roadway to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB angular power spectrum, these features can also alter the matter power spectrum and, thereby, the formation of the large scale structure. Carrying out a complete numerical analysis, we investigate the effects of primordial features on the formation rates of the halos. We consider a few different inflationary models that lead to features in the scalar power spectrum and an improved fit to the CMB data, and analyze the corresponding imprints on the formation of halos. Performing a Markov Chain Monte Carlo analysis with the WMAP seven year data and the SDSS halo power spectrum from LRG DR7 for the models of our interest, we arrive at the parameter space of the models allowed by the data. We illustrate that, inflationary potentials, such as the quadratic potential with sinusoidal modulations and the axion monodromy model, which generate certain repeated, oscillatory features in the inflationary perturbation spectrum, do not induce a substantial difference in the number density of halos at their best fit values, when compared with, say, a nearly scale invariant spectrum as is generated by the standard quadratic potential. However, we find that the number density and the formation rates of halos change by about 13-22% for halo masses ranging over 10^4-10^14 solar mass, for potential parameters that lie within 2-sigma around the best fit values arrived at from the aforesaid joint constraints. We briefly discuss the implications of our results.
Changes in the halo formation rates due to features in the primordial spectrum
Hazra, Dhiraj Kumar, E-mail: dhiraj@apctp.org [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India)
2013-03-01T23:59:59.000Z
Features in the primordial scalar power spectrum provide a possible roadway to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB angular power spectrum, these features can also alter the matter power spectrum and, thereby, the formation of the large scale structure. Carrying out a complete numerical analysis, we investigate the effects of primordial features on the formation rates of the halos. We consider a few different inflationary models that lead to features in the scalar power spectrum and an improved fit to the CMB data, and analyze the corresponding imprints on the formation of halos. Performing a Markov Chain Monte Carlo analysis with the WMAP seven year data and the SDSS halo power spectrum from LRG DR7 for the models of our interest, we arrive at the parameter space of the models allowed by the data. We illustrate that, inflationary potentials, such as the quadratic potential with sinusoidal modulations and the axion monodromy model, which generate certain repeated, oscillatory features in the inflationary perturbation spectrum, do not induce a substantial difference in the number density of halos at their best fit values, when compared with, say, a nearly scale invariant spectrum as is generated by the standard quadratic potential. However, we find that the number density and the formation rates of halos change by about 13–22% for halo masses ranging over 10{sup 4}–10{sup 14} M{sub s}un, for potential parameters that lie within 2-? around the best fit values arrived at from the aforesaid joint constraints. We briefly discuss the implications of our results.
Experimental study of turbulent flame kernel propagation
Mansour, Mohy [National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Peters, Norbert; Schrader, Lars-Uve [Institute of Combustion Technology, Aachen (Germany)
2008-07-15T23:59:59.000Z
Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)
Measuring kinetic energy changes in the mesoscale with low acquisition rates
Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2014-06-09T23:59:59.000Z
We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.
Allison, T.; Griffes, P.; Edwards, B.K.
1995-03-01T23:59:59.000Z
This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.
Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.
2013-02-15T23:59:59.000Z
This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site ? specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. ? Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. ? Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Um’s group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain movement accompanying dissolution in the unconsolidated media. The resultant movement
Wolf, Jennifer Rosemary
2011-01-01T23:59:59.000Z
2008). Both net photosynthesis and dark respiration arecan acclimate. When net photosynthesis or dark respirationhigher rates of net photosynthesis and dark respiration than
Ramey, Garey; Fujita, Shigeru
2006-01-01T23:59:59.000Z
the labor force who want a job. Monthly Labor Review Cogley,G. , Watson, J. , June 2000. Job destruction and propagationJ. , June 2004. Gross job ?ows over the past two business
Wellington da Cruz
2000-06-02T23:59:59.000Z
We consider a simple action for a fractional spin particle and a path integral representation for the propagator is obtained in a gauge such that the constraint embodied in the Lagrangian is not an obstacle. We obtain a propagator for the particle in a constant electromagnetic field via the path integral representation over velocities, which is characterized by arbitrary boundary conditions and the absence of time derivatives following integration over bosonic variables.
Shock wave propagation in composites and active Vinamra Agrawal
Shyamasundar, R.K.
Shock wave propagation in composites and active Vinamra Agrawal California Institute of Technology Under the application of high strain rate loading, like impact of a projectile on a target, shock waves travel through a material. These waves are characterized as a discontinuity propagating through
Petrov, P.; Voronkov, V.; Potapenko, K.; Ivanov, V. [Moscow State Technical University 'MAMI', Department of Autobody making and metal forging, B.Semenovskaya 38, 107023, Moscow (Russian Federation)
2011-05-04T23:59:59.000Z
In extrusion forging processes, the abrupt changes in strain rate follows the plastic deformation of a material within the deforming zone. To simulate accurately this effect, the specific experimental investigation of the plastic flow during the transient change in strain rate should be performed. The present paper deals with the investigation of this effect on the flow stress of an Al-Mg-Si alloy during its deformation at 350 deg. C. The investigation consists of two steps. Both steps are connected to the monotonic uniaxial compression loading of a cylindrical specimen. During the first step the flow behaviour of the alloy is investigated at the constant strain rate wihin the range of 0.1-50 s{sup -1} at the temperature range of 350-430 deg. C. During the second step the strain rate is abruptly increased or decreased from its current value at a fixed engineering strain of 17-21%. From the beginning of the test up to the strain of 17-21% the value of the strain rate is constant and equal to either 1 s{sup -1} or 10 s{sup -1}. At the strain of 17-21% the value of a strain rate is either increased to 10 s{sup -1} or decreased to 1 s{sup -1}.The results of the experimental investigations were used to determine the isothermal flow stress-strain curves of the Al-Mg-Si alloy as well as the heat effect of plastic deformation of the alloy. On basis of these curves, the strain rate sensitivity index m as a function of true strain and temperature was determined. This parameter allows to optimize a technological process of hot forging of the aluminium alloy as well as it is very important data for the construction of a phenomenological flow stress model.
Behavior Propagation in Cognitive Radio Networks: A Social Network Approach
Qiu, Robert Caiming
cliques when the spectrum occupancies change. The behavior dynamics have significant impacts on the perfor1 Behavior Propagation in Cognitive Radio Networks: A Social Network Approach Husheng Li, Ju Bin differential equation are used to explicitly describe the dynamics of behavior propagation. The analytic
Rhew, Chanhee
2014-05-27T23:59:59.000Z
/Marketing Loan Gains; hereafter LDP/MLG), Direct Payments 19 (DP), and Counter-Cyclical Payments (CCP). Despite their important implications, such policies as Average Crop Revenue Election (ACRE), Acreage Reduction Program (ARP), and Conservation... conditions lead to modification of the formulation for ENRs. LDP/MLG is in play when market price is lower than the predetermined Loan Rate (LR). CCP can be paid to eligible producers when the ‘effective price’ (market price + DP) does not exceed Target...
Generation of multi-photon entanglement by propagation and detection
H. Hossein-Nejad; R. Stock; D. F. V. James
2009-03-02T23:59:59.000Z
We investigate the change of entanglement of photons due to propagation. We find that post-selected entanglement in general varies by propagation and, as a consequence, states with maximum bi- and tri-partite entanglement can be generated from propagation of unentangled photons. We generalize the results to n photons and show that entangled states with permutation symmetry can be generated from propagation of unentangled states. Generation of n-photon GHZ states is discussed as an example of a class of states with the desired symmetry.
Xaplanteris, C. L., E-mail: cxaplanteris@yahoo.com [Plasma Physics Laboratory, IMS, NCSR “Demokritos”, Athens, Greece and Hellenic Army Academy, Vari Attica (Greece); Xaplanteris, L. C. [School of Physics, National and Kapodistrian University of Athens, Athens (Greece)] [School of Physics, National and Kapodistrian University of Athens, Athens (Greece); Leousis, D. P. [Technical High School of Athens, Athens (Greece)] [Technical High School of Athens, Athens (Greece)
2014-03-15T23:59:59.000Z
Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.
Dandona, Anil Kumar
1971-01-01T23:59:59.000Z
through 19. These 4. 0 FIGURE I ATER -OIL CAPILLARY PRESSURE CURVE W CA 0 I IJJ IK Pn 2. 0 CA UJ lL CL K o IO 0 . 20 . 40 . 60 . 80 I. O WATER SATURATION - FRACTION OF PORE VOLUME IO 0 . 20 . 40 . 60 . 80 I. O GAS SATURATION - FRACTION... injection of 0. 25 pore volumes of water. Except for the very low rates, all gas present in the system is trapped. At high water 0 u H 0 0 0 4J g 0 I-I I-1 M 0 z 0 0 Ql QJ 0 3 0 4J cd Q 'O QJ Q Ql 4J cd Q cc V Id 0 0 4J 0 cd O ca Ql...
Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio; Gomes da Silva, Marcelo; Silva Sthel, Marcelo; Vargas, Helion [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Mota, Leonardo [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany); Goncalves de Oliveira, Jurandi [Laboratorio de Melhoramento Genetico Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Miklos, Andras [Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany)
2011-06-01T23:59:59.000Z
This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.
Swallow, A. P.
1924-01-01T23:59:59.000Z
PECAN PROPAGATION IN TEXAS I SOIL AND CLIMATIC REQ:UIREMENTS The ideal condition for pecan production is to have the roots of the tree in perpetual, moderate moisture and the top in constant sunshine. Good pecan land should be fertile, deep, loose... it should be much deeper. Shallow soils cannot be relied upon to pro duce regular crops. Tight land prevents the growth of an extended root system, and is too uneven in its moisture content. The wood growing period of a pecan tree extends froInt the opening...
Image Compression by Back Propagation
Cottrell, Garrison W.
CHAPTER 9 Image Compression by Back Propagation: An Example of Extensional Programming* GARRISON W the case with the computatiolls associated with basic cognitive pro- cesses such as vision and audition techniques. The technique we employ is known as back propagation. developed by l1umelhart, Hinton
On the propagation of a coupled saturation and pressure front
Vasco, D. W.
2010-12-01T23:59:59.000Z
Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.
Woodruff, Dana L.; Southard, Susan S.; Cullinan, Valerie I.; Kohn, Nancy P.; Anderson, Michael G.; Vavrinec, John
2007-02-01T23:59:59.000Z
King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate for these impacts and prepare for post-construction restoration, King County began implementation of a multi-year eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements are a) pre-construction monitoring, i.e., documenting initial eelgrass conditions and degree of fluctuation over 5 years prior to construction, b) eelgrass transplanting, including harvesting, offsite propagating and stockpiling of local plantstock, and post-construction planting, and c) post-construction monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2006 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) in support of King County. Activities included continued propagation of eelgrass shoots and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. Approximately 1500 additional shoots were harvested from the marine outfall corridor in August 2006 to supplement the plants in the propagation tank at the PNNL Marine Sciences Laboratory in Sequim, Washington, bringing the total number of shoots to 4732. Eelgrass densities were monitored in the five experimental harvest plots established in the marine outfall corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. Net eelgrass density decreased from 2004 post-harvest to 2006 in all plots, despite density increases observed in 2005 in some plots and at some harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period did not correlate to the initial 2004 harvest rate. Continued monitoring should help project managers determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds.
Higher order light propagation volumes
Martin, Timothy Ly; Martin, Timothy Ly
2012-01-01T23:59:59.000Z
1.1 Introduction . . . . . . . . . 1.2 Light Propagation4.1.1 Injection of Virtual Point Lights and Geometryof the Stanford bunny, lit by an area light, rendered using
Sound propagation around underwater seamounts
Sikora, Joseph J., III
2009-01-01T23:59:59.000Z
In the ocean, low frequency acoustic waves propagate with low attenuation and cylindrical spreading loss over long-ranges, making them an effective tool for underwater source localization, tomography, and communications. ...
Photon propagator for axion electrodynamics
Itin, Yakov [Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904 (Israel) and Jerusalem College of Technology, P.O.B. 16031, Jerusalem, 91160 (Israel)
2007-10-15T23:59:59.000Z
The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23T23:59:59.000Z
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Nichols, John Edward
1986-01-01T23:59:59.000Z
representing typical field situations. One case simulates a high shear rate-low temperature fracture system typical of many shallow reservoirs. The second case models deep reservoir fracture treatment conditions of low shear rates and high tempera- tures... OF RESULTS 33 44 48 Temperature History Effects. High Shear Rate (HSR) and Low Shear Rate (LSR) Fluid Testing Methods and Their Results. 51 CONCLUSIONS RECOMMENDATIONS FOR FUTURE WORK 56 APPENDICES 57 APPENDIX A ? COMPOSITION OF DELAYED...
Phase-dependent propagation in a two-level system with intermediate states
Sharypov, A. V.; Eilam, A.; Wilson-Gordon, A. D.; Friedmann, H. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel)
2010-01-15T23:59:59.000Z
We study the phase-dependent propagation of a strong, resonant pump and two weak symmetrically detuned fields in a two-level system with population decay through a cascade of intermediate levels. As this system forms a closed loop, the propagation is phase-dependent. For an initial total phase PHI=0, there is constructive interference between the two weak fields, leading to parametric amplification on propagation. When PHI=pi, destructive interference occurs, leading to absorption of the weak fields on propagation. When the weak fields are initially equal in intensity, and PHI=0,pi, PHI remains constant on propagation. For other initial phases, PHI changes on propagation. Dramatic phase changes from pi to 0 can occur when the weak fields are initially unequal in intensity and PHI=pi.
Bezanilla, Francisco
channel voltage sensor+ether-à-go-go K Optical detection of rate-determining ion electrophysiological and optical approach. We find that a fluorescent probe attached near S4 in the voltage sensor.pnas.org/misc/reprints.shtml To order reprints, see: Notes: #12;Optical detection of rate-determining ion-modulated conformational
Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires
Zubarev, Eugene
Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires David Solis, Jr., Wei-Shun Chang approach to visualize propagating surface plasmon polaritons through plasmon-exciton interactions between single gold nanowires and a thin film of a fluorescent polymer. A plasmon polariton was launched
Gain-assisted superluminal light propagation via incoherent pump field
M. Mahmoudi; S. Worya Rabiei; L. Safari; M. Sahrai
2008-08-03T23:59:59.000Z
We investigate the dispersion and the absorption properties of a weak probe field in a three-level Lambda-type atomic system. We use just an incoherent field for controlling the group velocity of light. It is shown that the slope of dispersion changes from positive to negative just with changing the intensity of the indirect incoherent pumping field. Gain-assisted superluminal light propagation appears in this system. No laser field is used in the pumping processes.
Woodruff, Dana L.; Kohn, Nancy P.; Cullinan, Valerie I.; Southard, Susan S.; Vavrinec, John
2007-10-04T23:59:59.000Z
King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate these impacts and prepare for post-construction restoration, King County began implementing a multiyear eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements related to eelgrass are (a) pre-construction monitoring, i.e., documenting initial eelgrass conditions and degree of fluctuation over 5 years prior to construction, (b) eelgrass transplanting, including harvesting, offsite propagating, and stockpiling of local plants for post-construction planting, and (c) post-construction planting and subsequent monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2007 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) for King County. Activities included continued propagation of eelgrass shoots at the PNNL Marine Sciences Laboratory (MSL) in Sequim, Washington, and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. In addition, 490 eelgrass shoots were also harvested from the Marine Outfall Corridor in July 2007 to supplement the plants in the propagation tank at the MSL, bringing the total number of shoots to 1464. Eelgrass densities were monitored in four of five experimental harvest plots established in the Marine Outfall Corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. A net increase in eelgrass density from 2004 post-harvest to 2007 was observed in all plots, despite density decreases observed in 2006 in all plots and at most harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period was not related to initial 2004 harvest rate. Harvest rates of neighboring subplots did not appear to affect subplot eelgrass density (Woodruff et al. 2007). Three years post-harvest, eelgrass shoot densities were not significantly different from pre-harvest shoot densities at any harvest level. Additional plans are being discussed with King County to harvest all eelgrass from the construction corridor and hold in the propagation tanks at the MSL for post-construction planting. Under this plan, plants that would have been lost to construction will be held offsite until construction is completed. This strategy reduces and possibly eliminates the need to harvest eelgrass from donor beds located south of the construction area, allowing them to remain undisturbed. However, if eelgrass is harvested from donor beds, the monitoring of eelgrass growth at different harvest rates should help determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds.
Propagators for Noncommutative Field Theories
R. Gurau; V. Rivasseau; F. Vignes-Tourneret
2006-02-06T23:59:59.000Z
In this paper we provide exact expressions for propagators of noncommutative Bosonic or Fermionic field theories after adding terms of the Grosse-Wulkenhaar type in order to ensure Langmann-Szabo covariance. We emphasize the new Fermionic case and we give in particular all necessary bounds for the multiscale analysis and renormalization of the noncommutative Gross-Neveu model.
The Propagation of Ornamental Plants.
DeWerth, A. F.
1970-01-01T23:59:59.000Z
Mist Propagation ............................................................................................................... 28 Mist Systems... equal to twice the size of the seed which will result in the seed being covered at about the depth of the seed. Water the seedbed thoroughly with water applied with a mist nozzle so the seed will not be washed out of the soil. When the seedlings...
The effects of lithology and initial fault angle in physical models of fault-propagation folds
McLain, Christopher Thomas
2001-01-01T23:59:59.000Z
Experimentally deformed physical rock models are used to examine the effects of changing mechanical stratigraphy and initial fault angle on the development of fault-propagation folds over a flat-ramp-flat thrust geometry. This study also...
Haby, Vincent A
1969-01-01T23:59:59.000Z
Laboratory study. Particle size. Field study. Source. . 26 . 26 Rate. . 28 Particle size. . . $0 Soil pH change with depth. Influence oi' Limestone on Ca and Ng at Different Soil Depths. . Influence of Limestone on Yields oi' Corn and Coastal... to increase the downward movement of Ca and Mg snd to reduce soil acidity as determined by pH measurements (2, 3, 4, 26, 45, 46, 54, 56). Adams et al. (3) using dolomitic lime- stone, have shown that on a Cecil sandy loam soil, N rates of 0, 400, snd 800...
Schmidhuber, Juergen
Accelerated Learning in BackÂPropagation Nets In R. Pfeifer, Z. Schreter, Z. Fogelman, and L with backÂpropagation (bp) (Werbos, 1974)(Parker, 1985)(Rumelhart et al., 1986)(Almeida, 1987 be significantly faster than conventional bp. Keywords: BackÂpropagation, sparse coding, speed, learning rate
E × B shear pattern formation by radial propagation of heat flux waves
Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of) [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France)] [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)] [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)
2014-05-15T23:59:59.000Z
A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.
Broader source: Energy.gov [DOE]
One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...
Wave Propagation in Fractured Poroelastic Media
Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.
Wave Propagation in Fractured Poroelastic Media
Santos, Juan
Wave Propagation in Fractured Poroelastic Media WCCM, MS170: Advanced Computational Techniques and natural or artificial hydraulic fracturing caused by a pressurized fluid. Seismic wave propagation through. Martinez Corredor (UNLP). Wave Propagation in Fractured Poroelastic Media p. #12;Fractured media. I
BUDVYTIS et al.: LABEL PROPAGATION 1 Label propagation in complex video
Kim, Tae-Kyun
Propagation (PGP) Proposed Hybrid Model (PHM) Occlusion-aware labelling (Classifier injection off ) ProlongedBUDVYTIS et al.: LABEL PROPAGATION 1 Label propagation in complex video sequences using semi graphical model for label propagation in lengthy and complex video sequences. Given hand-labelled start
Plate damage identification using wave propagation and impedance methods.
Wait, J. R. (Jeannette R.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)
2004-01-01T23:59:59.000Z
This paper illustrates an integrated approach for identifying structural damage in an aluminum plate. Piezoelectric (PZT) materials are used to actuatehense the dynamic response of the structure. Two damage identification techniques are integrated in this study, including Lamb wave propagations and impedance methods. In Lamb wave propagations, one PZT launches an elastic wave through the structure, and responses are measured by an array of PZT sensors. The changes in both wave attenuation and reflection are used to detect and locate the damage. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Both methods operate in high frequency ranges at which there are measurable changes in structural responses even for incipient damage such as small cracks or loose connections. This paper summarizes two methods used for damage identification, experimental procedures, and additional issues that can be used as a guideline for future investigations.
Jasek, Noreen Ann
1991-01-01T23:59:59.000Z
dh/dl is the hydraulic gradient where h is the hydraulic head and 1 is the length of the flow path over which the head change is measured. Because both h and 1 have units of length, dh/dl itself is unitless. The deterministic flow equation used... of the steep gradients causing the step- like configuration have been related to two mechanisms: ground water barriers or gradual permeability variations. This study was designed to determine if either or both of the mechanisms could produce the observed...
Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2011-02-15T23:59:59.000Z
Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length. (author)
WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE
Heggland, L.; Hansteen, V. H.; Carlsson, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); De Pontieu, B., E-mail: lars.heggland@astro.uio.no [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Organization ADBS, Building 252, Palo Alto, CA 94304 (United States)
2011-12-20T23:59:59.000Z
We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.
Universal scaling of forest fire propagation
Bernard, Porterie; Pierre, Clerc Jean; Nouredine, Zekri; Zekri, Lotfi
2008-01-01T23:59:59.000Z
In this paper we use a variant of the Watts-Strogatz small-world model to predict wildfire behavior near the critical propagation/nonpropagation threshold. We find that forest fire patterns are fractal and that critical exponents are universal, which suggests that the propagation/nonpropagation transition is a second-order transition. Universality tells us that the characteristic critical behaviour of propagation in real (amorphous) forest landscapes can be extracted from the simplest network model.
Excited States in Staggered Meson Propagators
MILC Collaboration; C. Bernard; T. Burch; C. DeTar; Steven Gottlieb; E. B. Gregory; U. M. Heller; J. Osborn; R. Sugar; D. Toussaint
2003-09-16T23:59:59.000Z
We report on preliminary results from multi-particle fits to meson propagators with three flavors of light dynamical quarks. We are able to measure excited states in propagators with pion quantum numbers, which we interpret as the pion 2S state, and is evidence of locality of the action. In the a_0 (0^{++}) propagators we find evidence for excited states which are probably the expected decay channels, pi+eta and K+Kbar.
Wireless@Virginia Tech Antennas and Propagation
Beex, A. A. "Louis"
cutting- edge research at the intersection of engineering, science, and medicine. Please visit www and form factor requirements. The statistical nature of electromagnetic wave propagation combined
Light propagation and Imaging in Indefinite Metamaterials
Yao, Jie
2010-01-01T23:59:59.000Z
photolithography by polarized light,” Applied PhysicsZhang, “Imaging visible light using anisotropic metamaterialcross-sectional review of the light propagation of TE mode (
Shock propagation and neutrino oscillation in supernova
K. Takahashi; K. Sato; H. E. Dalhed; J. R. Wilson
2003-02-26T23:59:59.000Z
The effect of the shock propagation on neutrino oscillation in supernova is studied paying attention to evolution of average energy of $\
Measurements and large eddy simulation of propagating premixed flames
Masri, A.R.; Cadwallader, B.J. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ibrahim, S.S. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)
2006-07-15T23:59:59.000Z
This paper presents an experimental and numerical study of unsteady turbulent premixed flames igniting in an initially stagnant mixture and propagating past solid obstacles. The objective here is to study the outstanding issue of flow-flame interactions in transient premixed combustion environments. Particular emphasis is placed on the burning rate and the structure of the flame front. The experimental configuration consists of a chamber with a square cross-section filled with a combustible mixture of propane-air ignited from rest. An array of baffle plates as well as geometrical obstructions of varying shapes and blockage ratios, are placed in the path of the flame as it propagates from the ignition source to the vented end of the enclosure. A range of flame propagation conditions are studied experimentally. Measurements are presented for pressure-time traces, high-speed images of the flame front, mean velocities obtained from particle imaging velocimetry and laser induced fluorescence images of the hydroxyl radical OH. Three-dimensional large eddy simulations (LES) are also made for a case where a square obstacle and an array of baffle plates are placed in the chamber. The dynamic Germano model and a simple flamelet combustion model are used at the sub-grid scale. The effects of grid size and sub-grid filter width are also discussed. Calculations and measurements are found to be in good agreement with respect to flame structure and peak overpressure. Turbulence levels increase significantly at the leading edge of the flame as it propagates past the array of baffle plates and the obstacle. With reference to the regime diagrams for turbulent premixed combustion, it is noted that the flame continues to lie in the zones of thin reactions or corrugated flamelets regardless of the stage of propagation along the chamber. (author)
Topological Invariants and Anyonic Propagators
Wellington da Cruz
1998-03-05T23:59:59.000Z
We obtain the Hausdorff dimension, $h=2-2s$, for particles with fractional spins in the interval, $0\\leq s \\leq 0.5$, such that the manifold is characterized by a topological invariant given by, ${\\cal W}=h+2s-2p$. This object is related to fractal properties of the path swept out by fractional spin particles, the spin of these particles, and the genus (number of anyons) of the manifold. We prove that the anyonic propagator can be put into a path integral representation which gives us a continuous family of Lagrangians in a convenient gauge. The formulas for, $h$ and ${\\cal W}$, were obtained taking into account the anyon model as a particle-flux system and by a qualitative inference of the topology.
Beam Propagation Method Using a [(p -1)/p] Pade Approximant of the Propagator
Lu, Ya Yan
propagation method (BPM) is developed based on a direct approximation to the propagator using the [(p - 1)/p of the BPM. 1 Introduction The beam propagation method (BPM)14 is widely used in numerical simulation, the governing equation is a scalar Helmholtz equation. The BPM relies on approximating the Helmholtz equation
Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions
Julian K. Benz; Richard N. Wright
2013-10-01T23:59:59.000Z
The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.
Removing Propagation Redundant Constraints in Redundant Modeling
Stuckey, Peter J.
propagation redundant constraints in redundant modeling can speed up search by several order of magnitudes but not least, the choice of variables and the associated domains should lead to a smaller search space than search with various degrees of constraint propagation for pruning the search space. One common technique
Propagation testing multi-cell batteries.
Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer
2014-10-01T23:59:59.000Z
Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.
Intraclass Price Elasticity & Electric Rate Design
Gresham, K. E.
1987-01-01T23:59:59.000Z
Electric rate design relies on cost incurrance for pricing and pricing structures. However, as utilities move into a marketing mode, rate design needs to respond more to customer reactions to pricing changes. Intraclass price elasticities aid rate...
Evidence for Aseismic Deformation Rate Changes
Jellinek, Mark
. 1998 Ms8.2 Tonankai, Japan December 7, 1944 Leveling 1 day 7.8 Sagiya 1998, Linde & Sacks 2002 Mw8.3 Nankaido, Japan December 20, 1946 Tide gauges,water wells 3 days 7.9 Sato 1982, Linde & Sacks 2002 Mw9
Non-unitary neutrino propagation from neutrino decay
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Oliveira, Roberto L.N.
2015-03-01T23:59:59.000Z
Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.
Ultrashort Pulse Propagation in the Linear Regime
Wang, Jieyu
2010-07-14T23:59:59.000Z
First, we investigate the Bouguer-Lambert-Beer (BLB) law as applied to the transmission of ultrashort pulses through water in the linear absorption regime. We present a linear theory for propagation of ultrashort laser ...
ULTRASHORT LASER PULSE PROPAGATION IN WATER
Byeon, Joong-Hyeok
2010-01-16T23:59:59.000Z
We simulate ultrashort pulse propagation through water by numerical methods, which is a kind of optical communication research. Ultrashort pulses have been known to have non Beer-Lambert behavior, whereas continuous waves ...
TIME REVERSAL IN CHANGING ENVIRONMENT GUILLAUME BAL AND RAM
Bal, Guillaume
TIME REVERSAL IN CHANGING ENVIRONMENT GUILLAUME BAL #3; AND RAM #19; ON VER #19; ASTEGUI y Abstract of the refocused signal as the backward propagation medium departs from the forward propagation medium, Wigner transform, changing environment. AMS subject classi#12;cations. 35R60 35L40 78A45 82D30 1
Ultrashort pulse propagation and the Anderson localization
Silvia Gentilini; Andrea Fratalocchi; Luca Angelani; Giancarlo Ruocco; Claudio Conti
2008-10-09T23:59:59.000Z
We investigate the dynamics of a 10 fs light pulse propagating in a random medium by the direct solution of the 3D Maxwell equations. Our approach employs molecular dynamics to generate a distribution of spherical scatterers and a parallel finite-difference time-domain code for the vectorial wave propagation. We calculate the disorder-averaged energy velocity and the decay time of the transmitted pulse Versus the localization length for an increasing refractive index.
Shock wave propagation in vibrofluidized granular materials
Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei
2005-11-29T23:59:59.000Z
Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.
Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP
McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C
2006-05-09T23:59:59.000Z
We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
Dennis Simon; Julian Adamek; Aleksandar Rakic; Jens C. Niemeyer
2009-11-19T23:59:59.000Z
In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from successful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
Simon, Dennis; Rakic, Aleksandar; Niemeyer, Jens C
2009-01-01T23:59:59.000Z
In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from succesful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.
Propagating wave pattern on a falling liquid curtain N. Le Grand-Piteira,1,2
Brunet, Philippe
curtain falling from a horizontal, wetted tube, maintained between two vertical wires. Since the upper different geometries: i liquid columns formed be- low a horizontal wetted tube 16,17 , ii liquid columns motion, when the flow rate is progressively reduced, coupled to the propagation of curtain undulations
Warp propagation in astrophysical discs
Nixon, Chris
2015-01-01T23:59:59.000Z
Astrophysical discs are often warped, that is, their orbital planes change with radius. This occurs whenever there is a non-axisymmetric force acting on the disc, for example the Lense-Thirring precession induced by a misaligned spinning black hole, or the gravitational pull of a misaligned companion. Such misalignments appear to be generic in astrophysics. The wide range of systems that can harbour warped discs - protostars, X-ray binaries, tidal disruption events, quasars and others - allows for a rich variety in the disc's response. Here we review the basic physics of warped discs and its implications.
Markov transitions and the propagation of chaos
Gottlieb, A.
1998-12-01T23:59:59.000Z
The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.
Gentine, Pierre
Harmonic propagation of variability in surface energy balance within a coupled energy balance. The amplitude of the noise is maximum at midday when the incoming radiative forcing results in changes in the surface energy balance through the modification of outgoing radiative, turbulent
Absorption free superluminal light propagation in a three level pump-probe system
M. Mahmoudi; S. Worya Rabiei; L. Ebrahimi Zohravi; M. Sahrai
2007-11-21T23:59:59.000Z
We investigate the dispersion and the absorption properties of a weak probe field in a three-level pump-probe atomic system. It is shown that the slope of dispersion changes from positive to negative just with the intensity of the coherent or indirect incoherent pumping fields. It is demonstrated that the absorption free superluminal light propagation is appeared in this system.
Dynamical Event during Slow Crack Propagation
Ma {sup o}loy, Knut Jorgen; Schmittbuhl, Jean
2001-09-03T23:59:59.000Z
We address the role of material heterogeneities on the propagation of a slow rupture at laboratory scale. With a high speed camera, we follow an in-plane crack front during its propagation through a transparent heterogeneous Plexiglas block. We obtain two major results. First, the slip along the interface is strongly correlated over scales much larger than the asperity sizes. Second, the dynamics is scale dependent. Locally, mechanical instabilities are triggered during asperity depinning and propagate along the front. The intermittent behavior at the asperity scale is in contrast with the large scale smooth creeping evolution of the average crack position. The dynamics is described on the basis of a Family-Vicsek scaling.
Resonant Propagation of Entangled Rhodium Mossbauer Gammas
Yao Cheng; Zhongming Wang
2006-10-19T23:59:59.000Z
We report the resonant propagation of the long-lived Mossbauer gamma in the time-resolved Mossbauer spectroscopy. Recently, three entangled gammas emitted from the E3 rhodium Mossbauer transition has been proposed to interpret the extraordinary observations in the previous report. Further observation reported here is the dynamic beat of these entangled gammas at room temperature and 77K. Apparent beat anisotropy reveals their long-distance resonant propagation, which leads to suppressed Doppler shift of entangled photon transport in the Borrmann channel.
Resonant Propagation of Entangled Rhodium Mossbauer Gammas
Cheng, Y; Cheng, Yao; Wang, Zhongming
2006-01-01T23:59:59.000Z
We report the resonant propagation of the long-lived Mossbauer gamma in the time-resolved Mossbauer spectroscopy. Recently, three entangled gammas emitted from the E3 rhodium Mossbauer transition has been proposed to interpret the extraordinary observations in the previous report. Further observation reported here is the dynamic beat of these entangled gammas at room temperature and 77K. Apparent beat anisotropy reveals their long-distance resonant propagation, which leads to suppressed Doppler shift of entangled photon transport in the Borrmann channel.
Pulse propagation in decorated random chains
Upendra Harbola; Alexandre Rosas; Aldo H. Romero; Katja Lindenberg
2010-05-05T23:59:59.000Z
We study pulse propagation in one-dimensional chains of spherical granules decorated with small randomly-sized granules placed between bigger monodisperse ones. Such "designer chains" are of interest in efforts to control the behavior of the pulse so as to optimize its propagation or attenuation, depending on the desired application. We show that a recently proposed effective description of simple decorated chains can be extended to predict pulse properties in chains decorated with small granules of randomly chosen radii. Furthermore, we also show that the binary collision approximation can again be used to provide analytic results for this system.
Heat pulse propagation in chaotic 3-dimensional magnetic fields
D. del-Castillo-Negrete; D. Blazevski
2014-09-10T23:59:59.000Z
Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum, $\\langle T \\rangle_{max}(t)$, the time delay of the temperature response as function of the radius, $\\tau$, and the radial heat flux $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$, are also studied as functions of the magnetic field stochasticity and $\\ell_B$. In all cases, the scaling of $\\langle T \\rangle_{max}$ with $t$ transitions from sub-diffusive, $\\langle T \\rangle_{max} \\sim t^{-1/4}$, at short times ($\\chi_\\parallel t 10^5$). A strong dependence on $\\epsilon$ is also observed on $\\tau$ and $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$. The radial propagation of pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, $\\tau$, in reversed shear configurations is an order of magnitude longer than the one in monotonic $q$-profiles.
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Reservoir
Gor, Gennady Yu
2012-01-01T23:59:59.000Z
Fracturing of the caprock during CO2 storage in deep saline aquifers can lead to leakage. Estimation of the rate of fracture propagation allows one to assess the leakage risk. Here we propose an analytical model for calculating the length of the fracture, which propagates due to the fluid outflow from a low-permeability aquifer. We present a self-similar solution of the pressure diffusion equation in the system of reservoir and fracture, allowing us to get the analytical expression for the fracture length as a function of time. We calculate the evolution of the fracture length for a characteristic aquifer. We show that the analytical solution provides an estimate from below for the fracture length, since the driving force for propagation grows with elevation.
Distributed Kalman Filter via Gaussian Belief Propagation
Dolev, Danny
Distributed Kalman Filter via Gaussian Belief Propagation Danny Bickson IBM Haifa Research Lab interpretations. First, we show equivalence to computing one iteration of the Kalman filter. Second, we show that the Kalman filter is a special case of the Gaussian information bottleneck algorithm, when the weight
November 2012 Wave propagation in complex media,
Snieder, Roel
of the novel multi-component marine seismic data which have recently been available for offshore exploration to seismic imaging Advisor: Prof. Roel Snieder Committee Members: Prof. Thomas Furtak Prof. Yaoguo Li Prof on September 5, 2012 #12;#12;WAVE PROPAGATION IN COMPLEX MEDIA, SCATTERING THEORY, AND APPLICATION TO SEISMIC
Optical Method for Detecting Shock Propagation
Texas at Arlington, University of
, and in detonation and combustion research. A new optical technique is developed which is able to resolve the shock light ray and the line normal to shock front = density = time interval between light pulses - Subscripts. Similarly, in detonation and combustion research, the speed of the propagating detonation wave or flame
On the Vacuum Propagation of Gravitational Waves
Xiao Liu
2007-06-05T23:59:59.000Z
We show that, for any local, causal quantum field theory which couples covariantly to gravity, and which admits Minkowski spacetime vacuum(a) invariant under the inhomogeneous proper orthochronous Lorentz group, plane gravitational waves propagating in such Minkowski vacuum(a) do not dissipate energy or momentum via quantum field theoretic effects.
Detonation propagation in a high loss configuration
Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH
2009-01-01T23:59:59.000Z
This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.
Western-UGP Transmission and Ancillary Services Rates Customer...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
changes noted in the following sections: Proposed Formula Rate for Scheduling, System Control and Dispatch Service, Proposed Rate for Regulation and Frequency Response Service,...
Ma, Longzhou
2012-11-30T23:59:59.000Z
The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or SAGBOE damage process under hold-time fatigue and sustained loading conditions
General Properties and Termination Conditions for Soft Constraint Propagation
Rossi, Francesca
General Properties and Termination Conditions for Soft Constraint Propagation S. Bistarelli (bista for its termination. 1. Introduction Soft constraints allow to model faithfully many reallife problems [14], probabilistic [10] and partial [11] constraints. The constraint propagation techniques usually
Information Propagation in Clustered Multilayer Networks
Zhuang, Yong
2015-01-01T23:59:59.000Z
In today's world, individuals interact with each other in more complicated patterns than ever. Some individuals engage through online social networks (e.g., Facebook, Twitter), while some communicate only through conventional ways (e.g., face-to-face). Therefore, understanding the dynamics of information propagation among humans calls for a multi-layer network model where an online social network is conjoined with a physical network. In this work, we initiate a study of information diffusion in a clustered multi-layer network model, where all constituent layers are random networks with high clustering. We assume that information propagates according to the SIR model and with different information transmissibility across the networks. We give results for the conditions, probability, and size of information epidemics, i.e., cases where information starts from a single individual and reaches a positive fraction of the population. We show that increasing the level of clustering in either one of the layers increas...
Method and apparatus for charged particle propagation
Hershcovitch, A.
1996-11-26T23:59:59.000Z
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.
Handwritten Digit Recognition with a Back-Propagation Network
Parker, Gary B.
Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D We present an application of back-propagation networks to hand- written digit recognition. Minimal. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) net- works
Handwritten Digit Recognition with a BackPropagation Network
LeCun, Yann
Handwritten Digit Recognition with a BackÂPropagation Network Y. Le Cun, B. Boser, J. S. Denker, D We present an application of backÂpropagation networks to handÂ written digit recognition. Minimal. 1 INTRODUCTION The main point of this paper is to show that large backÂpropagation (BP) netÂ works
Electromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas
- propagating laser pulses and (ii) guiding of an ultra-short tightly focused laser pulse by a counterElectromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas G. Shvets Princeton for Quantenoptik, D-85748 Garching, Germany Abstract The interaction of counter-propagating laser pulses
Pulse Areas in Multi-Soliton Propagation
Elizabeth Groves; B. D. Clader; J. H. Eberly
2008-11-12T23:59:59.000Z
The prospect of self-consistent propagation of more than two pulses contemporaneously through multi-resonant media raises open questions: whether soliton solutions exist, and whether a useful generalization of two-level pulse Area can be found. We answer these questions positively for the case of four pulses interacting in combined V and Lambda fashion with an idealized pair of atomic D-lines.
Nonlinear Characteristics of Wave Propagation over Vegetation
Venkattaramanan, Aravinda
2014-04-28T23:59:59.000Z
2 Experimental setup of Asano et al. (1988) ................................................. 23 3 Description of Norwegian Kelp (Dubi and Torum 1994) .......................... 33 4 Experimental Setup of Dubi and Torum (1994... artificial kelp 13 experiments conducted by Asano et al. (1988). Kobayashi et al. (1993) assumed the vegetation motion was infinitesimally small in comparison to wave amplitude and argued that the wave height decays exponentially as the wave propagates...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Doing Business Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-16 Rate Case OS-14 Rate Case FRN...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Doing Business Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-16 Rate Case OS-14 Rate Case FRN...
Stefanopoulou, Anna
Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge, and (2) accumulation and transport of liquid water in the Gas Diffusion Layer (GDL) originally presented experimentally iden- tified parameter to match the rate of liquid water accumulation in the anode channel
Commitment Institutional Change Principle
Broader source: Energy.gov [DOE]
Commitment can be a crucial element that helps federal agencies inject and emphasize sustainability in their organizational culture. Institutions and people change when they have made definite commitments to change, especially when those commitments relate to future conditions. Research shows that explicit commitments improve the rate at which people adopt energy-efficient behaviors.
Carroll, Susan
2013-07-01T23:59:59.000Z
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
Stimulated Raman scattering of laser in a plasma in the presence of a co-propagating electron beam
Parashar, J. [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)] [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)
2013-12-15T23:59:59.000Z
A relativistic electron beam co-propagating with a high power laser in plasma is shown to add to the growth of the stimulated Raman back scattering of the laser. The growth rate is sensitive to phase matching of electron beam with the plasma wave. In the case of phase mismatch, the growth rate drops by an order. The energy spread of the electron beam significantly reduces the effectiveness of the beam on the stimulated Raman process.
Neutrino emission in the jet propagation process
Xiao, D.; Dai, Z. G., E-mail: dzg@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)
2014-07-20T23:59:59.000Z
Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ??r {sup –?} with index ?, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ?PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger ? corresponds to greater neutrino flux at the high-energy end (?PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.
Nonlinear Biochemical Signal Processing via Noise Propagation
Kyung Hyuk Kim; Hong Qian; Herbert M. Sauro
2013-09-10T23:59:59.000Z
Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced bimodality. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.
Method and apparatus for charged particle propagation
Hershcovitch, Ady (Mount Sinai, NY)
1996-11-26T23:59:59.000Z
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.
Scheel, Arnd
fronts in solid and gaseous combustion have stimulated a variety of different approaches to interface on the interface, to seemingly chaotic motion of the interface. In a slightly different context, front and pulse-Zhabotinsky reaction. Propagation and reflective or annihilation collision of 2-dimensional pulse trains has also been
Plasma control by modification of helicon wave propagation in low magnetic fields
Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)
2010-07-15T23:59:59.000Z
By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasma potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.
Kostic, Milivoje M.
(parabolic differential equation), allowing infinite speed of thermal energy propagation (i.e., a change mass-energy equivalence with `thermon' quasi-particle leading to inertia of heat transfer. Thermal research and applications, related to the conclusions deduced and open questions posed. www.kostic.niu.edu/Nature_of_Thermal_and_Mechanical_Energy
The Propagation of Photons in the Dilute Ionized Gas
Yijia Zheng
2013-05-02T23:59:59.000Z
The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.
Wang, Kangpeng; Ju, Yongfeng; He, Jin; Zhang, Long, E-mail: jwang@siom.ac.cn, E-mail: lzhang@siom.ac.cn; Wang, Jun, E-mail: jwang@siom.ac.cn, E-mail: lzhang@siom.ac.cn [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Yu [Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Blau, Werner J. [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)
2014-01-13T23:59:59.000Z
Laser propagation in a tandem structure comprising carbon nanotubes and phthalocyanines is studied by Z-scan method. Due to the different mechanisms of the two materials, the laser beam can be attenuated with different absorptivities, by changing the sequence of light passing through each material. Numerical simulations considering the effect of path length and the change of nonlinear coefficient within each material are conducted for understanding the distribution of laser intensity in the tandem system and hence, fitting of the asymmetric Z-scan curves. The results are helpful for the design of nonlinear optical devices comprising multiple nonlinear materials and mechanisms.
Remote multi-color excitation using femtosecond propagating surface
Potma, Eric Olaf
Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold away from a micrometer sized focused laser spot. We attribute the observed remote nonlinear signal
Modeling broadband poroelastic propagation using an asymptotic approach
Vasco, Donald W.
2010-01-01T23:59:59.000Z
propagation, the frequency dependence of a disturbance in alower frequencies the scale length of the disturbance willthe frequency dependence of an elas- tic disturbance (109)
O. Oliveira; P. J. Silva
2012-10-30T23:59:59.000Z
In the past years a good comprehension of the infrared gluon propagator has been achieved, with a good qualitative agreement between lattice results and Dyson-Schwinger equations. However, lattice simulations have been performed at physical volumes which are close to 20 fm but using a large lattice spacing. The interplay between volume effects and lattice spacing effects has not been investigated. Here we aim to fill this gap and address how the two effects change the gluon propagator in the infrared region. Furthermore, we provide infinite volume extrapolations which take into account the finite volume and finite lattice spacing. We also report on preliminary results for the gluon propagator at finite temperature.
Epidemic Propagation In Overlaid Wireless Networks
Yanmaz, Evsen [Los Alamos National Laboratory
2008-01-01T23:59:59.000Z
Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.
Propagating and stationary superfluid turbulent fronts
Castiglione, J.; Murphy, P.J.; Tough, J.T.; Hayot, F. [Ohio State Univ., Columbus, OH (United States)] [and others
1995-09-01T23:59:59.000Z
The authors have observed that the critical heat current for the transition to superfluid turbulence in weakly nonuniform circular channels depends strongly on the flow direction. This observation is particularly surprising since no other property of the turbulence appears to have such a dependence. In a nonuniform channel the critical heat current is associated with a stationary front between the laminar and turbulent flow. The authors propose a new model for super-fluid turbulent fronts which explains the asymmetry of the critical heat currents in a simple way. The model is based on the subcritical nature of the transition, and the generic description of such a bifurcation by the Ginzburg-Landau equation. As a bonus, the model also explains a long-standing problem in superfluid physics-the nature of propagating fronts in uniform channels. The results of this analysis of both the uniform and nonuniform channel data also provide new information about the vortex line drift velocity.
Pulse propagation in a hyper-lattice
Joseph W. Dickey
2009-07-21T23:59:59.000Z
The classical dynamics and pulse propagation are presented for a series of lattice-like structures whose spatial dimensionality ranges from one to four: four representing a hyper lattice. The lattices are connected one-dimensional wave bearing systems of varying lengths and can illuminate some aspects of higher dimension structures. Short pulses are launched at an arbitrary point, reverberate throughout the entire structure, and detected at another point. Some aspects of increasing dimensionality are illustrated with particular emphasis on the transition from three to four spatial dimensions. In a hypothetical four dimension world where only three are observable, the classical conservation laws and causality do not hold. The lack of causality is illustrated at each step in dimensionality by showing the unexpected pulse returns from the next higher dimension.
Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Taheri Boroujeni, S.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)] [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)
2013-12-15T23:59:59.000Z
The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.
Mechanisms of Ignition by Transient Energy Deposition: Regimes of Combustion Waves Propagation
Kiverin, Alexey D; Ivanov, Mikhail F; Liberman, Michael A
2013-01-01T23:59:59.000Z
Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source and the size of the hot spot. The main parameters which define regimes of the combustion waves facilitated by the transient deposition of thermal energy are: acoustic timescale, duration of the energy deposition, ignition time scale and size of the hot spot. The interplay between these parameters specifies the role of gasdynamical processes, the formation and steepness of the temperature gradient and speed of the spontaneous wave. The obtained results show how ignition of one or another regime of combustion wave depends on the value of energy, rate of the energy deposition and size of the hot spot, which is import...
Research Rate Liaison Rate for outside academic &
Gilchrist, James F.
as of 12/9/13 External Rate Spark Plasma Sintering ) Spark Plasma Sintering > 24 hrs 2 8 Vacuum Hot Press
Larson, N.M.
1984-02-01T23:59:59.000Z
This report describes a computer code (ALEX) developed to assist in AnaLysis of EXperimental data at the Oak Ridge Electron Linear Accelerator (ORELA). Reduction of data from raw numbers (counts per channel) to physically meaningful quantities (such as cross sections) is in itself a complicated procedure; propagation of experimental uncertainties through that reduction procedure has in the past been viewed as even more difficult - if not impossible. The purpose of the code ALEX is to correctly propagate all experimental uncertainties through the entire reduction procedure, yielding the complete covariance matrix for the reduced data, while requiring little additional input from the eperimentalist beyond that which is required for the data reduction itself. This report describes ALEX in detail, with special attention given to the case of transmission measurements (the code itself is applicable, with few changes, to any type of data). Application to the natural iron measurements of D.C. Larson et al. is described in some detail.
Haby, Vincent A
1969-01-01T23:59:59.000Z
significantly increased Ca to 18 inches, while only the 6-ton/acre rate of fine dolomitic lime- stone increased Ca into the same depth. All dolomitic treatments increased Mg to 18-inch depths. Sampling deeper than 18 inches in the 6 ton/acre dolomitic fine... formed soluble salts with the NO and were leached down as Ca(ND ) Limestone treatments did not produce significant increases in yield of corn or Coastal bermudagrass. The no-lime plots produced 70 bushels of corn and 9. 2 tons of oven-dry Coastal...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
for Transmission and Ancillary Services Federal Register Notice -- Rate Order WAPA-141: Notice of Extension of Formula Rates for Transmission and Ancillary Services If you have any...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
points established by contract, in accordance with approved policies and procedures. Formula Rate: The formula rate for CPP includes three components: Component 1: The customer...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
69 Rate Order Western is proposing adjustments to the Salt Lake City Area Integrated Projects firm power rate and the Colorado River Storage Project Transmission and ancillary...
2012 Transmission Rate Schedules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...
Propagation Beam Consideration for 3D THz Computed Tomography
Boyer, Edmond
Propagation Beam Consideration for 3D THz Computed Tomography B. Recur, 1, J.P. Guillet, 2 I. Manek, "Refraction losses in terahertz computed tomography," Opt. Commun. 283, 20502055 (2010). 8. S. Nadar, H of the beam propagation is developed according to the physical properties of THz waves used in THz computed
On the uniqueness of loopy belief propagation fixed points
Heskes, Tom
those for convexity of the Bethe free energy. We compare them with (a strength ened version of algorithms as well as for other approximate free energies. 1 Introduction Loopy belief propagation is Pearl belief propagation correspond to extrema of the socalled Bethe free energy (Yedidia, 1 #12; Freeman
Numerical Construction of Likelihood Distributions and the Propagation of Errors
J. Swain; L. Taylor
1997-12-12T23:59:59.000Z
The standard method for the propagation of errors, based on a Taylor series expansion, is approximate and frequently inadequate for realistic problems. A simple and generic technique is described in which the likelihood is constructed numerically, thereby greatly facilitating the propagation of errors.
Propagation of Nonclassical Radiation through a Semiconductor Slab
D. Yu. Vasylyev; W. Vogel; T. Schmielau; K. Henneberger; D. -G. Welsch
2008-02-20T23:59:59.000Z
Based on a microscopic derivation of the emission spectra of a bulk semiconductor we arrive at a clear physical interpretation of the noise current operators in macroscopic quantum electrodynamics. This opens the possibility to study medium effects on nonclassical radiation propagating through an absorbing or amplifying semiconductor. As an example, the propagation of an incident squeezed vacuum is analyzed.
Variational Structure of Inverse Problems in Wave Propagation and Vibration
Variational Structure of Inverse Problems in Wave Propagation and Vibration James G. Berryman in wave propagation (traveltime tomography) and two examples in vibration (the plucked string and free.'' For vibrating systems, the apparently very complex behavior of an excited string, drumhead, or the Earth can
A STUDY OF ULTRASONIC WAVE PROPAGATION IN BONES
zyserman
tion mechanisms; different models for the latter are introduced ... The aim of this report is to analyse the propagation of ultrasonic ... propagation depends on the values of different model ...... Santos J.E., Corberó J.M., Ravazzoli C.L., and Hens
Dam-Breach Flood Wave Propagation Using Dimensionless Parameters
Ponce, V. Miguel
Dam-Breach Flood Wave Propagation Using Dimensionless Parameters Victor M. Ponce, M.ASCE1 ; Ahmad Taher-shamsi2 ; and Ampar V. Shetty3 Abstract: An analytical model of flood wave propagation is used to study the sensitivity of dam-breach flood waves to breach-outflow hydrograph volume, peak discharge
Wave Propagation Theory 2.1 The Wave Equation
2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher
Acoustic wave propagation in two-phase heterogeneous porous media
J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin
2015-03-19T23:59:59.000Z
The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.
On the response of rubbers at high strain rates.
Niemczura, Johnathan Greenberg (University of Texas-Austin)
2010-02-01T23:59:59.000Z
In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Change Log Change Log NERSC-8 Trinity Benchmarks Change Log 09032013 Correction applied to MiniDFT web-page (to remove inconsistency with MiniDFT README). Capability...
Causal propagation of geometrical fields in relativistic cosmology
Van Elst, H; Elst, Henk van; Ellis, George F R
1999-01-01T23:59:59.000Z
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries $({\\cal M}, {\\bf g}, {\\bf u})$, which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities $v$ (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with $v = 0$ and four transverse characteristic eigenfields propagating with $|v| = 1$, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating ...
Relativistic particle: Dirac observables and Feynman propagator
Freidel, Laurent; Girelli, Florian; Livine, Etera R. [Perimeter Institute, 31 Caroline St North, Waterloo, ON, N2L 2Y5 (Canada); SISSA, Via Beirut 2-4, 34014 Trieste (Italy); INFN, Sezione di Trieste (Italy); Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69364 Lyon Cedex 07 (France)
2007-05-15T23:59:59.000Z
We analyze the algebra of Dirac observables of the relativistic particle in four space-time dimensions. We show that the position observables become noncommutative and the commutation relations lead to a structure very similar to the noncommutative geometry of deformed special relativity (DSR). In this framework, it appears natural to consider the 4D relativistic particle as a five-dimensional massless particle. We study its quantization in terms of wave functions on the 5D light cone. We introduce the corresponding five-dimensional action principle and analyze how it reproduces the physics of the 4D relativistic particle. The formalism is naturally subject to divergences (due to the 5D representation), and we show that DSR arises as a natural regularization: the 5D light cone is regularized as the de Sitter space. We interpret the fifth coordinate as the particle's proper time while the fifth moment can be understood as the mass. Finally, we show how to formulate the Feynman propagator and the Feynman amplitudes of quantum field theory in this context in terms of Dirac observables. This provides new insights for the construction of observables and scattering amplitudes in DSR.
Cosmic axion background propagation in galaxies
Day, Francesca V
2015-01-01T23:59:59.000Z
Many extensions of the Standard Model include axions or axion-like particles (ALPs). Here we study ALP to photon conversion in the magnetic field of the Milky Way and starburst galaxies. By modelling the effects of the coherent and random magnetic fields, the warm ionized medium and the warm neutral medium on the conversion process, we simulate maps of the conversion probability across the sky for a range of ALP energies. In particular, we consider a diffuse cosmic ALP background (CAB) analogous to the CMB, whose existence is suggested by string models of inflation. ALP-photon conversion of a CAB in the magnetic fields of galaxy clusters has been proposed as an explanation of the cluster soft X-ray excess. We therefore study the phenomenology and expected photon signal of CAB propagation in the Milky Way. We find that, for the CAB parameters required to explain the cluster soft X-ray excess, the photon flux from ALP-photon conversion in the Milky Way would be unobservably small. The ALP-photon conversion prob...
Propagator mixing renormalization for Majorana fermions
Bernd A. Kniehl
2014-06-17T23:59:59.000Z
We consider a mixed system of unstable Majorana fermions in a general parity-nonconserving theory and renormalize its propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization (WFR) matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. In contrast to the case of unstable Dirac fermions, the WFR matrices of the in and out states are uniquely fixed, while they again bifurcate in the sense that they are no longer related by pseudo-Hermitian conjugation. We present closed analytic expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions, as well as their expansions through two loops. In the case of stable Majorana fermions, the well-known one-loop results are recovered.
Mechanical Surface Waves Accompany Action Potential Propagation
Ahmed El Hady; Benjamin B. Machta
2014-10-05T23:59:59.000Z
Many studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the Action Potential (AP). Despite a large and diverse body of experimental evidence, there is no theoretical consensus either for the physical basis of this mechanical wave nor its interdependence with the electrical signal. In this manuscript we present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model these surface waves are driven by the traveling wave of electrical depolarization that characterizes the AP, altering the compressive electrostatic forces across the membrane as it passes. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model for these AWs allows us to predict, in terms of elastic constants, axon radius and axoplasmic density and viscosity, the shape of the AW that should accompany any traveling wave of voltage, including the AP predicted by the Hodgkin and Huxley (HH) equations. We show that our model makes predictions that are in agreement with results in experimental systems including the garfish olfactory nerve and the squid giant axon. We expect our model to serve as a framework for understanding the physical origins and possible functional roles of these AWs in neurobiology.
Li Liang; Huang Guoxiang [Department of Physics and Institute of Theoretical Physics, East China Normal University, Shanghai 200062 (China); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China and Institute of Nonlinear Physics, Zhejiang Normal University, Zhejiang 321004 (China)
2010-08-15T23:59:59.000Z
We present a systematic theoretical study to deal with linear and nonlinear light propagations in a Doppler-broadened three-level {Lambda} system via electromagnetically induced transparency (EIT), with incoherent population exchange between two lower energy levels taken into account. Through a careful analysis of base state and linear excitation, we show that the EIT condition of the system is given by |{Omega}{sub c}|{sup 2{gamma}}{sub 31}>>2{gamma}{sub 21{Delta}{omega}D}{sup 2}, where {Omega}{sub c} is half the Rabi frequency of the control field, {Delta}{omega}{sub D} is the Doppler width, and {gamma}{sub jl} is the decay rate of the coherence between states |j> and |l>. Under this condition, the effect of incoherent population exchange is insignificant, while dephasing dominates the decoherence of the system. This condition also ensures the validity of the weak nonlinear perturbation theory used in this work for solving the Maxwell-Bloch equations with inhomogeneous broadening. We then investigate the nonlinear propagation of the probe field and show that it is possible to form temporal optical solitons in the Doppler-broadened medium. Such solitons have ultraslow propagating velocity and can be generated in very low light power. The possibility of realizing (1+1)-dimensional and (2+1)-dimensional spatial optical solitons in the adiabatic regime of the system is also discussed.
Causal propagation of geometrical fields in relativistic cosmology
Henk van Elst; George F R Ellis
1998-10-18T23:59:59.000Z
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries $({\\cal M}, {\\bf g}, {\\bf u})$, which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities $v$ (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with $v = 0$ and four transverse characteristic eigenfields propagating with $|v| = 1$, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating with $|v| = \\sfrac{1}{2}$. The implications of this result are discussed in some detail and a parallel is drawn to the propagation of irregularities in the matter distribution. In a worked example, we specialise the equations to cosmological models in locally rotationally symmetric class II and include the constraints into the set of causally propagating dynamical variables.
Shaw, Bruce E.
Initiation propagation and termination of elastodynamic ruptures associated with segmentation the initiation, propagation, and termination of ruptures and their relationship to fault geometry and shaking of terminations near fault ends; and persistent propagation directivity effects. Taking advantage of long
Material contrast does not predict earthquake rupture propagation Ruth A. Harris
Day, Steven M.
Material contrast does not predict earthquake rupture propagation direction Ruth A. Harris U) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake (2005), Material contrast does not predict earthquake rupture propagation direction, Geophys. Res. Lett
Optical waves in crystal propagation and control of laser radiation
Yariv, A.; Yeh, P.
1983-01-01T23:59:59.000Z
As a text for a course in electro-optics for electrical engineering and applied physics students, it presents the propagation of laser radiation in various optical media and instructs in the analysis and design of electro-optical devices. The content of the book presupposes an introduction to Maxwell's equations in an intermediate course in electricity and magnetism as well as some mathematical background in Fourier integrals, matrix algebra, and differential equations. Contents, abridged: Electromagnetic fields. Propagation of laser beams. Jones calculus and its application to birefringent optical systems. Electromagnetic propagation in periodic media. Electro-optic devices. Acousto-optics. Indexes.
Photon propagation in noncommutative QED with constant external field
R. Fresneda; D. M. Gitman; A. E. Shabad
2015-01-20T23:59:59.000Z
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
Photon propagation in noncommutative QED with constant external field
Fresneda, R; Shabad, A E
2015-01-01T23:59:59.000Z
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
Propagating and reflecting of spin wave in permalloy nanostrip with 360° domain wall
Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2014-01-07T23:59:59.000Z
By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360° domain wall in a nanostrip. It is found that propagating spin wave can drive a 360° domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360° domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360° domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360° domain wall normal mode, the 360° domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360° domain wall, we observed the Doppler effect clearly. After passing through a 360° domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360° domain walls that spin wave passing through.
Roberts, Jr., Charles E.; Chadwell, Christopher J.
2004-09-21T23:59:59.000Z
The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.
2013-10-11T23:59:59.000Z
Oct 11, 2013 ... A spherical weather balloon is being inflated with helium at a rate of 82 cubic meters per minute. Find the rate at which its radius is increasing.
Inter-sensor propagation delay estimation using sources of opportunity
Vincent, Rémy; Michel, Olivier; Lacoume, Jean-Louis
2015-01-01T23:59:59.000Z
Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field.
Modeling of crack initiation, propagation and coalescence in rocks
Gonçalves da Silva, Bruno Miguel
2009-01-01T23:59:59.000Z
Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...
Femto-photography: capturing and visualizing the propagation of light
Velten, Andreas
We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at ...
Contributions to the direct time integration in wave propagation analyses
Noh, Gunwoo
2013-01-01T23:59:59.000Z
This thesis intends to contribute to the computational methods for wave propagations. We review an implicit time integration method, the Bathe method, that remains stable without the use of adjustable parameters when the ...
Acoustical wave propagation in buried water filled pipes
Kondis, Antonios, 1980-
2005-01-01T23:59:59.000Z
This thesis presents a comprehensive way of dealing with the problem of acoustical wave propagation in cylindrically layered media with a specific application in water-filled underground pipes. The problem is studied in ...
Time-resolved Characterization of Ultrashort Pulse Propagation
Springer, Matthew M
2013-12-05T23:59:59.000Z
The propagation of ultrashort femtosecond laser pulses in linear dielectric materials is determined in the time, space, and frequency domains by linear Maxwell optics through dispersion and di?raction. For intense pulses, pulse...
Role of Plasma in Femtosecond Laser Pulse Propagation
Grauer, Rainer
and pulse compression 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos transitions and create domains with a modified refractive index. Nonlinear propagation of femtosec- ond
Modelling the Propagation of Forward and Opposed Smouldering Combustion
Rein, Guillermo; Torero, Jose L; Fernandez-Pello, Carlos
A computational study has been carried out to investigate smouldering ignition and propagation in polyurethane foam. The one-dimensional, transient, governing equations for smouldering combustion in a porous fuel are ...
Intense ion beam propagation in a reactor sized chamber
Vay, J.L.; Deutsch, C.
2000-01-01T23:59:59.000Z
beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.
Stability of Propagating Fronts in Damped Hyperbolic Equations
Stability of Propagating Fronts in Damped Hyperbolic Equations Th. Gallay, G. Raugel Analyse Num'erique et EDP CNRS et Universit'e de ParisÂSud FÂ91405 Orsay Cedex, France Thierry.Gallay
LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS...
Office of Scientific and Technical Information (OSTI)
LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY-AN ENSEMBLE STUDY Re-direct...
Simulation and design optimization of wave propagation in heterogeneous materials
Saà-Seoane, Joel
2014-01-01T23:59:59.000Z
Propagation of waves through heterogeneous structured materials has been the focus of considerable research in recent years. These materials consist of quasi periodic geometries combining two or more piecewise homogeneous ...
Journal of Computational Acoustics, FREQUENCY DOMAIN WAVE PROPAGATION MODELLING
Sheen, Dongwoo
#11;ect de gas, brine or oil and gas-brine or gas-oil pore uids on seismic velocities. NumericalJournal of Computational Acoustics, f c IMACS FREQUENCY DOMAIN WAVE PROPAGATION MODELLING
Inomoto, Michiaki; Tanabe, Hiroshi; Ono, Yasushi [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)] [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Kuwahata, Akihiro [Graduate School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)] [Graduate School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Collaboration: TS Group
2013-06-15T23:59:59.000Z
Large-amplitude electromagnetic fluctuations of ion-cyclotron-frequency range are detected in a laboratory experiment inside the diffusion region of a magnetic reconnection with a guide field. The fluctuations have properties similar to kinetic Alfvén waves propagating obliquely to the guide field. Temporary enhancement of the reconnection rate is observed during the occurrence of the fluctuations, suggesting a relationship between the modification in the local magnetic structure given by these fluctuations and the intermittent fast magnetic reconnection.
Electrically heated particulate filter propagation support methods and systems
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2011-06-07T23:59:59.000Z
A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.
Convective cell development and propagation in a mesoscale convective complex
Ahn, Yoo-Shin
1987-01-01T23:59:59.000Z
CONVECTIVE CELL DEVELOPMENT AND PROPAGATION IN A MESOSCALE CONVECTIVE COMPLEX A Thesis by YOO-SHIN AHN Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1987 Major Subject: Meteorology CONVECTIVE CELL DEVELOPMENT AND PROPAGATION IN A MESOSCALE CONVECTIVE COMPLEX A Thesis by TOO-SHIN AHN Approved as to style and content by: Kenneth C. Brundidge (Chairman of Committee) Phanindrsmohan Das...
Special generalized densities and propagators: a geometric account
Daniel Canarutto
2015-09-03T23:59:59.000Z
Starting from a short review of spaces of generalized sections of vector bundles, we give a concise systematic description, in precise geometric terms, of Leray densities, principal value densities, propagators and elementary solutions of field equations in flat spacetime. We then sketch a partly original geometric presentation of free quantum fields and show how propagators arise from their graded commutators in the boson and fermion cases.
Captive propagation and brood behavior of greater prairie chickens
Drake, David
1994-01-01T23:59:59.000Z
CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1994 Major Subject: Wildlife and Fisheries Sciences CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...
Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout
Malins, Alex; Machida, Masahiko; Saito, Kimiaki
2015-01-01T23:59:59.000Z
Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...
An Empirical Study of Learning Speed in BackPropagation Networks
Fahlman, Scott E.
the basic ideas of connectionism or backÂpropagation learning. See [3] for a brief overview of this areaAn Empirical Study of Learning Speed in BackÂPropagation Networks Scott E. Fahlman September 1988 of the backÂpropagation algorithm. However, backÂpropagation learning is too slow for many applications
Fourier Analysis of Sawtooth Heat Pulse Propagation and Comparison with Other Methods Using JET Data
Fourier Analysis of Sawtooth Heat Pulse Propagation and Comparison with Other Methods Using JET Data
Relation Between Heart Rate and Problem Behaviors
Freeman, Rachel L.; Horner, Robert H.; Reichle, Joe
1999-01-01T23:59:59.000Z
American Journal on Mental Retardation, 1999, Vol. 104, No. 4, 330-345 Relation Between Heart Rate and Problem Behaviors Rachel L. Freeman and Robert H. Horner University of Oregon Joe Reichle University of Minnesota A new... methodological approach for understanding self-injury, aggression, and property destruction exhibited by individuals with severe developmental disabilities was evaluated in this descriptive study. Measures of heart-rate changes before, during, and after...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)sets safety recordPotential partnerships and funding fromEnergyPowerRates
Power Rates Announcements (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)sets safety recordPotential partnerships and funding fromEnergyPowerRates
Current BPA Power Rates (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6 Shares ofdefault Sign InFeb-15 Mar-15 Apr-15 May-15Public Rates
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)
2014-09-30T23:59:59.000Z
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide evidence that the leading points model can provide useful predictions of turbulent flame speed over a wide range of operating conditions and flow geometries.
Temporal Coordination and Adaptation to Rate Change in Music Performance
Cottrell, Garrison W.
with both simple and complex rhythmic sequences (e.g., Large & Kolen, 1994; Large & Palmer, 2002; Mates
73Working with Rates Because things change in the
years Problem 6 - 416 gamma-ray bursts spotted in 52 weeks Problem 7 - 3000 kilometers traveled in 200 in 800 years = 2 novas/year Problem 6 - 416 gamma-ray bursts spotted in 52 weeks = 8 gamma-ray bursts
Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation
Cai, Long
such a kinematic framework, bridging cell and tissue behaviors at an intermediate, mesoscopic, level of cell spatiotemporally in three models of tissue morphogenesis, gaining insight into morphogenetic mechanisms. Our analysis and continuum field theories11 and extended these methods for tissues composed of discrete cells
Spatial damping of propagating sausage waves in coronal cylinders
Guo, Ming-Zhe; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-01-01T23:59:59.000Z
Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber $k$ at given real angular frequencies $\\omega$. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of $\\omega_{\\rm c}$, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for $\\omega$ much lower than $\\omega_{\\rm c}$. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping ...
Relativistic conformal symmetry of neural field propagation in the brain
Juan M. Romero; Carlos Trenado; Berenice Aguilar; Miriam Tirradentro
2013-08-25T23:59:59.000Z
In this paper, we address a neural field equation that characterizes spatio-temporal propagation of a neural population pulse. Due that the human brain is a complex system whose constituents interaction give rise to fundamental states of consciousness and behavior, it is crucial to gain insight into its functioning even at relativistic scales. To this end, we study the action of the relativistic conformal group on the accounted neural field propagation equation. In particular, we obtain an exact solution for the field propagation equation when the space-time is 3 or 4 dimensional. Furthermore, in the 4 dimensional case and the large distance limit, it is shown that the neural population pulse becomes a Yukawa potential.
How much laser power can propagate through fusion plasma?
Pavel M. Lushnikov; Harvey A. Rose
2006-03-28T23:59:59.000Z
Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.
Continuous Change Institutional Change Principle
Broader source: Energy.gov [DOE]
ecause it takes time to establish institutional change, federal agencies need multiyear plans that continuously work to achieve, reinforce, and improve significant and persistent sustainability goals.
Propagation velocities of gas rings in collisional ring galaxies
E. I. Vorobyov; D. Bizyaev
2003-01-27T23:59:59.000Z
The propagation velocity of the first gas ring in collisional ring galaxies, i.e. the velocity at which the maximum in the radial gas density profile propagates radially in the galactic disk, is usually inferred from the radial expansion velocity of gas in the first ring. Our numerical hydrodynamics modeling of ring galaxy formation however shows that the maximum radial expansion velocity of gas in the first ring ($v_{gas}$) is invariably below the propagation velocity of the first gas ring itself ($v_{ring}$). Modeling of the Cartwheel galaxy indicates that the outer ring is currently propagating at $v_{ring} \\approx$ 100 km/s, while the maximum radial expansion velocity of gas in the outer ring is currently $v_{gas} \\approx$ 65 km/s. Modeling of the radial B-V/V-K color gradients of the Cartwheel ring galaxy also indicates that the outer ring is propagating at $v_{ring} \\ge $ 90 km/s. We show that a combined effect of inclination, finite thickness, and warping of the Cartwheel's disk might be responsible for the lack of angular difference in the peak positions found for the azimuthally averaged $H\\alpha$, K and B surface brightness profiles of the Cartwheel's outer ring. Indeed, the radial $H\\alpha$ surface brightness profiles obtained along the Cartwheel's major axis, where effects of inclination and finite thickness are minimized, do peak exterior to those at K- and B-bands. The angular difference in peak positions implies $v_{ring}$ = 110 km/s, which is in agreement with the model predictions. We briefly discuss the utility of radio continuum emission and spectral line equivalent widths for determining the propagation velocity of gas rings in collisional ring galaxies.
Light propagation in generally covariant electrodynamics and the Fresnel equation
Friedrich W. Hehl; Yuri N. Obukhov; Guillermo F. Rubilar
2002-03-28T23:59:59.000Z
Within the framework of generally covariant (pre-metric) electrodynamics, we specify a local vacuum spacetime relation between the excitation $H=({\\cal D},{\\cal H})$ and the field strength $F=(E,B)$. We study the propagation of electromagnetic waves in such a spacetime by Hadamard's method and arrive, with the constitutive tensor density $\\kappa\\sim\\partial H/\\partial F$, at a Fresnel equation which is algebraic of 4th order in the wave covector. We determine how the different pieces of $\\kappa$, in particular the axion and the skewon pieces, affect the propagation of light.
Theory of Sound Propagation in Superfluid Solutions Filled Porous Media
Sh. E. Kekutia; N. D. Chkhaidze
2005-02-10T23:59:59.000Z
A theory of the propagation of acoustic waves in a porous medium filled with superfluid solution is developed. The elastic coefficients in the system of equations are expressed in terms of physically measurable quantities. The equations obtained describe all volume modes that can propagate in a porous medium saturated with superfluid solution. Finally, derived equations are applied to the most important particular case when the normal fluid component is locked inside a highly porous media (aerogel) by viscous forces and the velocities of two longitudinal sound modes are calculated.
Pulse propagation in decorated granular chains: An analytical approach
Upendra Harbola; Alexandre Rosas; Aldo H. Romero; Massimiliano Esposito; Katja Lindenberg
2009-09-14T23:59:59.000Z
We study pulse propagation in one-dimensional chains of spherical granules decorated with small grains placed between large granules. The effect of the small granules can be captured by replacing the decorated chains by undecorated chains of large granules of appropriately renormalized mass and effective interaction between the large granules. This allows us to obtain simple analytic expressions for the pulse propagation properties using a generalization of the binary collision approximation introduced in our earlier work [Phys. Rev. E in print (2009); Phys. Rev. E {\\bf 69}, 037601 (2004)
The importance of covariance in nuclear data uncertainty propagation studies
Benstead, J. [AWE Plc, Aldermaston, Berkshire (United Kingdom)
2012-07-01T23:59:59.000Z
A study has been undertaken to investigate what proportion of the uncertainty propagated through plutonium critical assembly calculations is due to the covariances between the fission cross section in different neutron energy groups. The uncertainties on k{sub eff} calculated show that the presence of covariances between the cross section in different neutron energy groups accounts for approximately 27-37% of the propagated uncertainty due to the plutonium fission cross section. This study also confirmed the validity of employing the sandwich equation, with associated sensitivity and covariance data, instead of a Monte Carlo sampling approach to calculating uncertainties for linearly varying systems. (authors)
Heat pulse propagation in chaotic three-dimensional magnetic fields
Del-Castillo-Negrete, Diego [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Blazevski, Daniel [Institute for Mechanical Systems, ETH, Zurich (Switzerland)
2014-06-01T23:59:59.000Z
Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ?), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.
Light propagation and fluorescence quantum yields in liquid scintillators
Buck, C; Wagner, S
2015-01-01T23:59:59.000Z
For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.
Graviton propagators in supergravity and noncommutative gauge theory
Kitazawa, Yoshihisa [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Particle and Nuclear Physics, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Nagaoka, Satoshi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)
2007-02-15T23:59:59.000Z
We investigate the graviton propagator in the type IIB supergravity background which is dual to 4 dimensional noncommutative gauge theory. We assume that the boundary is located not at the infinity but at the noncommutative scale where the string frame metric exhibits the maximum. We argue that the Neumann boundary condition is the appropriate boundary condition to be adopted at the boundary. We find that the graviton propagator behaves just as that of the 4 dimensional massless graviton. On the other hand, the nonanalytic behaviors of the other Kaluza-Klein modes are not significantly affected by the Neumann boundary condition.
Spherical Wave Propagation in a Nonlinear Elastic Medium
Korneev, Valeri A.
2009-07-01T23:59:59.000Z
Nonlinear propagation of spherical waves generated by a point-pressure source is considered for the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic theory advanced by Murnaghan is used where general equations of motion are put in the form of vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear field component to the primary wave in the far field is proportional to ln(r) where r is a propagation distance. Near-field components of the primary field do not contribute to the far field of nonlinear component.
Wythe, Kathy
2008-01-01T23:59:59.000Z
and a wide range of academic areas are investigating the different compo- nents. More recently, they are taking information gleaned from the global climate models and applying them to research questions pertaining to Texas. Dr. Bruce Mc...Carl, Regents Professor of agricultural economics at Texas A&M University, has researched the economics of climate change for the last 20 years. McCarl, as a lead CHANGING CLIMATES tx H2O | pg. McCarl ] tx H2O | pg. 4 Changing Climates author...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Regulation and Frequency Response DollarsKW-month 4.56 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and Frequency Response DollarsKW-month 3.98 4.17 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and Frequency Response DollarsKW-month 4.17 4.56 CV-RFS4 Spinning Reserve The formula rate for spinning reserve service is the price consistent with the California...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
First Preference Percentages Rate Schedule Calaveras PPA 1.56% CV-F13 Sierra CC 0.50% Trinity PUD 4.76% Tuolumne PPA 1.12% Customer Total 7.94% Monthly Power Billing Current Year...
On Thermonuclear Reaction Rates
H. J. Haubold; A. M. Mathai
1996-12-02T23:59:59.000Z
Nuclear reactions govern major aspects of the chemical evolution od galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the case of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are also discussed.
Steady-state propagation speed of rupture fronts along 1D frictional interfaces
Amundsen, David Skålid; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien
2015-01-01T23:59:59.000Z
The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasi-static velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a 1D spring-block model of an extended frictional interface, for various friction laws. With the classical Amontons--Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates stead...
Radio Wave Propagation in Potato Fields John Thelen
Kuzmanov, Georgi
Radio Wave Propagation in Potato Fields John Thelen Wageningen University Email: John nodes. This paper reports on an extensive set of measurements taken in a potato field, where the foliage of the potato crop is significant. We observed a reduction of 15 dB in signal strength at 15 m between nodes
Back Propagation is Sensitive to Initial Conditions John F. Kolen
Pollack, Jordan B.
Back Propagation is Sensitive to Initial Conditions John F. Kolen Jordan B. Pollack Laboratory Columbus, Ohio 43210, USA kolenj@cis.ohiostate.edu, pollack@cis.ohiostate.edu TR 90JKBPSIC ABSTRACT. Kolen Jordan B. Pollack Laboratory for Artificial Intelligence Research Computer and Information Science
Back Propagation is Sensitive to Initial Conditions John F. Kolen
Pollack, Jordan B.
Back Propagation is Sensitive to Initial Conditions John F. Kolen Jordan B. Pollack Laboratory Columbus, Ohio 43210, USA kolen-j@cis.ohio-state.edu, pollack@cis.ohio-state.edu TR 90-JK-BPSIC ABSTRACT. Kolen Jordan B. Pollack Laboratory for Artificial Intelligence Research Computer and Information Science
Geometrical Properties and Propagation for the Proca Field Theory
Luca Fabbri
2009-08-28T23:59:59.000Z
We consider the Proca field with dynamical term given by the exterior derivative with respect to the most general connection; the most general Proca field equations are given, and a discussion about the propagation and the geometrical properties are presented: it is shown that this generalization is inconsistent. So the standard theory is already the most general Proca Theory possible.
Propagation of gravitons in the shock wave geometry
Lang, Ruitian
2009-01-01T23:59:59.000Z
In this thesis, I study propagation of gravitons in the shock wave geometry in the context of the AdS/CFT correspondence, with the goal to uncover some constraint on the supergravity action in the AdS space. In studying ...
Propagating versus Nonpropagating MaddenJulian Oscillation Events DAEHYUN KIM
Sobel, Adam
and reaches the WP when the dry anomaly is stronger. Analysis of the column-integrated moist static energy contribution is from free-tropospheric meridional advection by the intraseasonal time scale wind anomalies. 2009), but understanding of the dynamics of its initiation, maintenance, and propagation is still
STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS
Kasman, Alex
STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS STÂ´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two
Computer Virus Propagation Models Giuseppe Serazzi and Stefano Zanero
Zanero, Stefano
Computer Virus Propagation Models Giuseppe Serazzi and Stefano Zanero Dipartimento di Elettronica e.zanero@polimi.it Abstract. The availability of reliable models of computer virus propa- gation would prove useful The concept of a computer virus is relatively old, in the young and expanding field of information security
Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Christov, Ivan; Christov, C. I.; Jordan, P. M.
2014-12-18T23:59:59.000Z
This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.
Pulse propagation in tapered granular chains: An analytic study
Upendra Harbola; Alexandre Rosas; Massimiliano Esposito; Katja Lindenberg
2009-05-27T23:59:59.000Z
We study pulse propagation in one-dimensional tapered chains of spherical granules. Analytic results for the pulse velocity and other pulse features are obtained using a binary collision approximation. Comparisons with numerical results show that the binary collision approximation provides quantitatively accurate analytic results for these chains.
Propagation of a shockrelated disturbance in the Earth's magnetosphere
Santolik, Ondrej
and intensification of the current is recorded at the Earth's surface as a sudden increase in the geomagnetic field the propagation processes that is not directly obtainable from point measurements made by (even several and earthward motion of the magnetopause. At the same time, the magnetopause current is intensified. The motion
Propagation and Re ection of Internal Waves B. R. Sutherland
Sutherland, Bruce
the frequency spectrum of the waves. I INTRODUCTION An internal wave is a disturbance propagating under the e a level where the Doppler-shifted frequency of the waves is comparable with the background buoyancy frequency. Although linear theory predicts that the waves should re ect if the Doppler-shifted frequency
Bethe free energy, Kikuchi approximations and belief propagation
Bethe free energy, Kikuchi approximations and belief propagation algorithms Jonathan S. Yedidia to a stationary point of an approximate free energy, known as the Bethe free energy in statis- tical physics- curate free energy approximations, of which Bethe's approximation is the simplest. Exploiting
Three-dimensional wave propagation through single crystal solidliquid interfaces
Wadley, Haydn
Three-dimensional wave propagation through single crystal solidliquid interfaces Yichi Lua solid liquid interfaces during single crystal growth. A previously developed two-dimensional ray across solidliquid interfaces in cylindrical bodies where the receiver is located at an arbitrary
DNA ARRAY DECODING FROM NONLINEAR MEASUREMENTS BY BELIEF PROPAGATION
DNA ARRAY DECODING FROM NONLINEAR MEASUREMENTS BY BELIEF PROPAGATION Mona A. Sheikh, Shriram Compressed Sensing (CS) and demonstrate its utility in DNA array decoding. In a CS DNA microarray, the array spots identify DNA sequences that are shared between multiple organisms, thereby reduc- ing the number
Electromagnetic Waves Propagation in 3D Plasma Configurations
is the optimisation of low-frequency plasma heating systems in stellarators. The aim is to develop a code that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating-wave interaction is modelled by a full cold-plasma dielectric tensor, including the parallel electric field term
On flame kernel formation and propagation in premixed gases
Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2010-12-15T23:59:59.000Z
Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)
ROOF CHARACTERISATION RELATED TO FIRE PROPAGATION RISK BY A NUMERICAL
Paris-Sud XI, Université de
ROOF CHARACTERISATION RELATED TO FIRE PROPAGATION RISK BY A NUMERICAL APPROACH L. Fournier1 , A by thé roof: - one is thé use of intumescent strips on thé roof, - thé other consists of extending thé fire walls (typically 70 cm or 1 m) above thé roof levé1 in order to prevent thé flame from being blown
High-power, high-intensity laser propagation and interactions
Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2014-05-15T23:59:59.000Z
This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.
CONSTRAINT PROPAGATION IN KIMMO SYSTEMS G. Edward Barton, Jr.
CONSTRAINT PROPAGATION IN KIMMO SYSTEMS G. Edward Barton, Jr. M.I.T. Artificial Intelligence into place step-by-step through a chain of limited and local inferences, but it is insuffi- ciently powerful for Kimmo generation works for English, Turkish, and Warlpiri. When applied to a Kimmo system that en- codes
Manipulation of Electron Beam Propagation by Hetero-Dimensional
Simons, Jack
Manipulation of Electron Beam Propagation by Hetero-Dimensional Graphene Junctions Zhengfei Wang through carefully controlled light as information carriers. In an analogy, manipulation of electron beams for manipulating light. Recently, graphene has been pro- posed as a new candidate for manipulating electron beams
Nash Propagation for Loopy Graphical Games Luis E. Ortiz
Kearns, Michael
Nash Propagation for Loopy Graphical Games Luis E. Ortiz Michael Kearns Department of Computer and Information Science University of Pennsylvania fleortiz,mkearnsg@cis.upenn.edu Abstract We introduce NashProp, an iterative and local messageÂpassing algoÂ rithm for computing Nash equilibria in multiÂplayer games
Nash Propagation for Loopy Graphical Games Luis E. Ortiz
Ives, Zachary G.
Nash Propagation for Loopy Graphical Games Luis E. Ortiz Michael Kearns Department of Computer and Information Science University of Pennsylvania leortiz,mkearns @cis.upenn.edu Abstract We introduce NashProp, an iterative and local message-passing algo- rithm for computing Nash equilibria in multi-player games
Axisymmmetric empty space: light propagation, orbits and dark matter
Sergio Giardino
2014-09-18T23:59:59.000Z
This study presents a axisymmetric solution of the Einstein equations for empty space. The geometry is studied by determining its Petrov classification and Killing vectors. Light propagation, orbital motion and asymptotic and Newtonian limits are also studied. Additionally, cosmological applications of the geometry as an alternative model for the inflationary universe and as a substitute for dark matter and quintessence are also outlined.
Nature ofNature of Light is a self-propagatingLight is a self-propagating
Shirley, Yancy
within 10% ! Ole Christensen RÃ¸mer #12;Aberration of LightAberration of Light James Bradley DeterminedTheThe Nature ofNature of LightLight #12;Light is a self-propagatingLight is a selfWavelength & Frequency = c #12;Speed of lightSpeed of light Timing the occultations of Io from Earth in 1676 : got
Kozlov, G I [Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow (Russian Federation)
1999-11-30T23:59:59.000Z
The relationships governing the propagation of pyrolysis and combustion waves along an electric-discharge CO{sub 2}-laser beam in propane and propane - air mixtures were investigated. It was shown that, after the preliminary conversion of propane in the pyrolysis waves, the average velocity of the combustion wave along the laser beam increases by a factor of 6 - 7. It was established that the velocity of the combustion wave along the beam is proportional to the chain-branching rate constant and that the wave appears as a result of consecutive ignition of the mixture along the beam (analogous to an electric breakdown wave). (laser applications and other topics in quantum electronics)
Minimizing Variation in Outdoor CPV Power Ratings: Preprint
Muller, M.; Marion, B.; Rodriguez, J.; Kurtz, S.
2011-07-01T23:59:59.000Z
The CPV community has agreed to have both indoor and outdoor power ratings at the module level. The indoor rating provides a repeatable measure of module performance as it leaves the factory line while the outdoor rating provides a measure of true performance under real world conditions. The challenge with an outdoor rating is that the spectrum, temperature, wind speed, etc are constantly in flux and therefore the resulting power rating varies from day to day and month to month. This work examines different methodologies for determining the outdoor power rating with the goal of minimizing variation even if data are collected under changing meteorological conditions.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6 Shares of U.S.CareerPAST EVENTS NanoscaleCertificateChange Log Change Log
EVOLUTIONARY CHANGE the evolution of change management
Emmerich, Michael
page 1 EVOLUTIONARY CHANGE the evolution of change management by Jeroen van der Zon University, evolutionary change is studied by describing the evolution of Change Manage- ment (CM). CM is one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Modelling Change Management
Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)
Jordan, D.; Kurtz, S.; Hansen, C.
2014-04-01T23:59:59.000Z
Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.
Guided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coating
Kuo, Chi-Wei 1982-
2012-11-16T23:59:59.000Z
Three kinds of propagating waves physically admissible in a tubular section are derived to establish their dispersion characteristics in response to the presence of multi-layered viscoelastic coatings. One is the longitudinal wave that propagates...
Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators
Bracco, M.E.; Eiras, A.; Krein, G. [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 Sao Paulo, Sao Paulo (Brazil)] [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 Sao Paulo, Sao Paulo (Brazil); Wilets, L. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)
1994-03-01T23:59:59.000Z
The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.
Bhakta, Aditya (Aditya S.)
2010-01-01T23:59:59.000Z
This thesis analyzes the influence of a self-induced natural convection flow on the propagation of a high energy laser beam. The two configurations considered are of a vertical laser beam (propagation direction opposite ...
Electric field control of domain wall propagation in Pt/Co/GdOx films
Bauer, Uwe
The influence of a gate voltage on domain wall (DW) propagation is investigated in ultrathin Pt/Co/gadolinium oxide (GdOx) films with perpendicular magnetic anisotropy. The DW propagation field can be enhanced or retarded ...
Guided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coating
Kuo, Chi-Wei 1982-
2012-11-16T23:59:59.000Z
Three kinds of propagating waves physically admissible in a tubular section are derived to establish their dispersion characteristics in response to the presence of multi-layered viscoelastic coatings. One is the longitudinal wave that propagates...
Obliquely propagating waves in the magnetized strongly coupled one-component plasma
Kählert, Hanno; Kalman, Gabor J. [Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, Massachusetts 02467 (United States)] [Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, Massachusetts 02467 (United States); Ott, Torben; Bonitz, Michael [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany)] [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany); Reynolds, Alexi [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)] [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)
2013-05-15T23:59:59.000Z
The quasi-localized charge approximation is used to calculate the wave spectrum of the magnetized three-dimensional strongly coupled one-component plasma at arbitrary angles ? between the wave vector and the magnetic field axis. Three frequency branches are identified whose interplay is strongly determined by ?=?{sub c}/?{sub p}, the ratio of the cyclotron frequency ?{sub c}, and the plasma frequency ?{sub p}. The frequency dispersion relations for the three principal modes along the magnetic field cross in the case ?<1, which strongly affects the transition from parallel to perpendicular wave propagation. For ?>1, the frequencies of the different branches are well separated, and the long-wavelength dispersion in the intermediate and upper branch changes sign as ? is varied from 0 to ?/2. In addition to the frequencies, we also investigate the waves' polarization properties.
Propagating Structure Of A Microwave Driven Shock wave Inside A Tube
Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya [Department of Advanced Energy, the University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8561 (Japan); Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki, 311-0193 (Japan); Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)
2010-05-06T23:59:59.000Z
The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.
Ivanov, M F; Liberman, M A
2015-01-01T23:59:59.000Z
Thermal radiation of the hot combustion products usually does not influence noticeably the flame propagating through gaseous mixture. the situation is changed drastically in the presence even small concentration of particles, which absorb radiation, transfer the heat to the surrounding unburned gaseous mixture by means of heat conduction, so that the gas phase temperature in front of the advancing flame lags that of the particles. It is shown that radiative preheating of unreacted mixture ahead of the flame results in a modest increase of the advancing flame velocity for a highly reactive gaseous fuel, or to considerable increase of the flame velocity in the case of a slow reactive mixture. The effects of radiation preheating as stronger as smaller the normal flame velocity. The radiation heat transfer can become a dominant mechanism compared with molecular heat conduction, determining the structure and the speed of combustion wave in the case of a small enough velocity of the advancing flame. It is shown tha...
Fresnel analysis of the wave propagation in nonlinear electrodynamics
Yuri N. Obukhov; Guillermo F. Rubilar
2002-04-05T23:59:59.000Z
We study the wave propagation in nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of general nonlinear Lagrangian models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains non-trivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Pinpointing Cosmic Ray Propagation With The AMS-02 Experiment
Pato, Miguel; Simet, Melanie
2010-01-01T23:59:59.000Z
The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.
Pinpointing cosmic ray propagation with the AMS-02 experiment
Pato, Miguel [Dipartimento di Fisica, Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Simet, Melanie, E-mail: pato@iap.fr, E-mail: dhooper@fnal.gov, E-mail: msimet@uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)
2010-06-01T23:59:59.000Z
The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.
Fast computation of Lyot-style coronagraph propagation
Remi Soummer; Laurent Pueyo; Anand Sivaramakrishnan; Robert J. Vanderbei
2007-11-02T23:59:59.000Z
We present a new method for numerical propagation through Lyot-style coronagraphs using finite occulting masks. Standard methods for coronagraphic simulations involve Fast Fourier Transforms (FFT) of very large arrays, and computing power is an issue for the design and tolerancing of coronagraphs on segmented Extremely Large Telescopes (ELT) in order to handle both the speed and memory requirements. Our method combines a semi-analytical approach with non-FFT based Fourier transform algorithms. It enables both fast and memory-efficient computations without introducing any additional approximations. Typical speed improvements based on computation costs are of about ten to fifty for propagations from pupil to Lyot plane, with thirty to sixty times less memory needed. Our method makes it possible to perform numerical coronagraphic studies even in the case of ELTs using a contemporary commercial laptop computer, or any standard commercial workstation computer.
PROPAGATION AND STABILITY OF SUPERLUMINAL WAVES IN PULSAR WINDS
Mochol, Iwona; Kirk, John G., E-mail: iwona.mochol@mpi-hd.mpg.de, E-mail: john.kirk@mpi-hd.mpg.de [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, D-69029 Heidelberg (Germany)
2013-07-01T23:59:59.000Z
Nonlinear electromagnetic waves with superluminal phase velocity can propagate in the winds around isolated pulsars, and around some pulsars in binary systems. Using a short-wavelength approximation, we find and analyze an integrable system of equations that govern their evolution in spherical geometry. A confined mode is identified that stagnates to finite pressure at large radius and can form a precursor to the termination shock. Using a simplified criterion, we find this mode is stable for most isolated pulsars, but may be unstable if the external pressure is high, such as in the pulsar wind nebulae in starburst galaxies and in W44. Pulsar winds in eccentric binary systems, such as PSR 1259-63, may go through phases with stable and unstable electromagnetic precursors, as well as phases in which the density is too high for these modes to propagate.
Propagation of ultra-short solitons in stochastic Maxwell's equations
Kurt, Levent, E-mail: LKurt@gc.cuny.edu [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States)] [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States); Schäfer, Tobias [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)] [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)
2014-01-15T23:59:59.000Z
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.
Selfing rate Expectedproportion
Gardner, Andy
.2 0.4 0.6 0.8 1 20 9 5 4 3 2 1 50 40 20 10 30 DCIS tissue has indicated that it shows the same changes, a mother's fitness depends on reducing competition among her sons for mates. Thus, just enough sons should
Three-dimensional simulation of tsunami generation and propagation: Application to intraplate events
Furumura, Takashi
Three-dimensional simulation of tsunami generation and propagation: Application to intraplate simulation program based on the Navier-Stokes (NS) equations is developed for simulating 3-D tsunami generation and propagation. We can simulate tsunami propagation over more than 1000 km using this program
Propagation of uncertainties in the nuclear DFT models
Markus Kortelainen
2014-09-04T23:59:59.000Z
Parameters of the nuclear density functional theory (DFT) models are usually adjusted to experimental data. As a result they carry certain theoretical error, which, as a consequence, carries out to the predicted quantities. In this work we address the propagation of theoretical error, within the nuclear DFT models, from the model parameters to the predicted observables. In particularly, the focus is set on the Skyrme energy density functional models.
Propagation and Retention of Viscoelastic Surfactants in Carbonate Cores
Yu, Meng
2012-07-16T23:59:59.000Z
Approved by: Chair of Committee, Hisham A. Nasr-El-Din Committee Members, Stephen A. Holditch A. Daniel Hill Mahmoud El-Halwagi Head of Department, Stephen A. Holditch May 2011 Major Subject: Petroleum Engineering iii ABSTRACT... Propagation and Retention of Viscoelastic Surfactants in Carbonate Cores. (May 2011) Meng Yu, B.S., Sichuan University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Hisham A. Nasr-El-Din Viscoelastic surfactants have found numerous...
QCD plasma parameters and the gauge-dependent gluon propagator
Kobes, R.; Kunstatter, G.; Rebhan, A. (Department of Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba (Canada) Institut fuer Theoretische Physik, Technische Universitaet Wien, Wiedner Haupstrasse 8-10, A-1040 Vienna (Austria))
1990-06-18T23:59:59.000Z
We derive the Ward identities that determine the gauge dependence of the QCD dispersion relations obtained from the ordinary gluon propagator in a certain class of gauges. These identities hold for complex structure functions at both zero and finite temperature. A direct consequence of our analysis is that the gauge dependence of the gluon-plasma damping constant obtained in recent one-loop calculations is due to an inconsistent approximation scheme.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)
2010-03-16T23:59:59.000Z
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency
Daisuke Akamatsu; Yoshihiko Yokoi; Manabu Arikawa; Satoshi Nagatsuka; Takahito Tanimura; Akira Furusawa; Mikio Kozuma
2008-01-27T23:59:59.000Z
We have succeeded in observing ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. Squeezed vacuum pulses (probe lights) were incident on a laser cooled 87Rb gas together with an intense coherent light (control light). A homodyne method sensitive to the vacuum state was employed for detecting the probe pulse passing through the gas. A delay of 3.1us was observed for the probe pulse having a temporal width of 10 us.
Galactic propagation of positrons from particle dark-matter annihilation
I. V. Moskalenko; A. W. Strong
1999-06-14T23:59:59.000Z
We have made a calculation of the propagation of positrons from dark-matter particle annihilation in the Galactic halo for different models of the dark matter halo distribution using our 3D code. We show that the Green's functions are not very sensitive to the dark matter distribution for the same local dark matter energy density. We compare our predictions with computed cosmic ray positron spectra ("background") for the "conventional" cosmic-ray nucleon spectrum which matches the local measurements, and a modified spectrum which respects the limits imposed by measurements of diffuse Galactic gamma-rays, antiprotons, and positrons. We conclude that significant detection of a dark matter signal requires favourable conditions and precise measurements unless the dark matter is clumpy which would produce a stronger signal. Although our conclusion qualitatively agrees with that of previous authors, it is based on a more realistic model of particle propagation and thus reduces the scope for future speculations. Reliable background evaluation requires new accurate positron measurements and further developments in modelling production and propagation of cosmic ray species in the Galaxy.
Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma
Abbas, Gohar; Bashir, M. F. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Department of Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan)
2012-07-15T23:59:59.000Z
Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.
Hunter, Steven L. (Livermore, CA)
2002-01-01T23:59:59.000Z
A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.
Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2010-12-15T23:59:59.000Z
Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)
Climate Change 2007: Mitigation of Climate Change.
Schiavon, Stefano; Zecchin, Roberto
2007-01-01T23:59:59.000Z
2007: Mitigation of Climate Change. Full report. WorkingIntergovernmental Panel on Climate Change www.webcda.it LaIntergovernmental Panel on Climate Change”. Il Rapporto
Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and
1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes · Due to Climate Change Land Cover / Land Use Change Interaction of Climate and Land Cover Change · Resolution Space Time Hydro-Climatic Change · Variability vs. Change (Trends) · Point data
DEFORMATION OF SUPERPLASTIC ALLOYS AT RELATIVELY LOW STRAIN RATES
Grivas, Dionysios
2011-01-01T23:59:59.000Z
load change test during a creep test or a strain rate changethe desired microstructures. Creep tests were performed on a5. The strains in the creep test were Because the measured
Cost Bases for Incentive Rates Applicable to Industrial Loads
Stover, C. N.
1987-01-01T23:59:59.000Z
Incentive rates applicable to industrial customers are presently receiving a great deal of attention and increased acceptance. This represents a substantial change in attitude, particularly on the part of the ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 ofCategoricalDynamicTheoryMessagefor6-02-01 FederalChange Number
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 ofCategoricalDynamicTheoryMessagefor6-02-01 FederalChange NumberE
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 ofCategoricalDynamicTheoryMessagefor6-02-01 FederalChange
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 ofCategoricalDynamicTheoryMessagefor6-02-01 FederalChange20-02-01
[FIXED RATE GUARANTEED OBLIGATIONS]
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal Energy Program GrantStateAcceptance andThe Hartford WithStatementTable ofZia Haq -FIXED RATE
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)sets safetyInitiatives to AdvanceCongressmanAugustRecentPreviouspower-rates
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)sets safetyInitiatives totransmission-rates Sign In About | Careers | Contact |
White, Larry D.; McGinty, Allan
1999-02-15T23:59:59.000Z
Stocking Rate Decisions Key to Successful Ranch Management Larry D. White and AlIan McGinty Extension Range Specialists, The Texas A&M University System On any ranch, decisions must be made as to the management of each ranch resource (land, animals... will be successful ranch management. The decisions that will achieve successful ranch management are different for each enterprise be- cause each ranch has its own resources. Rangeland is a ranch?s main resource for producing income and other benefits to the ranch...
Charged-Particle Thermonuclear Reaction Rates: IV. Comparison to Previous Work
Christian Iliadis; Richard Longland; Art Champagne; Alain Coc
2010-04-23T23:59:59.000Z
We compare our Monte Carlo reaction rates (see Paper II of this series) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions considered here. The changes are caused by (i) our new Monte Carlo method of computing reaction rates (see Paper I of this series), and (ii) newly available nuclear physics information (see Paper III of this series).
Effective normal stress alteration due to pore pressure changes induced by dynamic slip
Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation and permeabilities causes a change in pore pressure there. Because slip causes compression on one side of the fault wall and extension on the other, the pore pressure on the fault increases substantially when
Electrochemical Corrosion Rate Sensors for Waste Incineration Applications
Covino, B.S., Jr.; Bullard, S.J.; Matthes, S.A.; Holcomb, G.R.; Ziomek-Moroz, M.; Eden, D.A. (Honeywell Intercorr)
2007-03-01T23:59:59.000Z
Electrochemical corrosion rate sensors work in high temperature waste incineration applications where ash is deposited. The ash serves as the electrolyte for electrochemical measurements, such as liner polarization resistance, electrochemical noise, and harmonic distortion analyses. Results to date have shown that these types of sensors respond qualitatively to changes in temperature, gas composition, alloy composition, and type of ash. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. More recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Ideas for research that may help resolve these issues are presented.
GTA TRIP GENERATION RATES, 1986 -1996 Eric J. Miller
Toronto, University of
GTA TRIP GENERATION RATES, 1986 - 1996 by Eric J. Miller Department of Civil Engineering University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. CHANGES IN GTA TRIP GENERATION RATES, 1986-96 . . . . . . . . . . . . . . . . . . . . . 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3. DEMOGRAPHIC FACTORS AFFECTING WORK TRIP GENERATION . . . . . . . . . . 12 3.1 Observed Trends
John J. Moore, Douglas E. Burkes, Collin D. Donohoue, Marissa M. Reigel, J. Rory Kennedy
2009-05-18T23:59:59.000Z
The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.
Quantum gravitational corrections to propagator in arbitrary spacetimes
T. Padmanabhan
1997-03-18T23:59:59.000Z
The action for a relativistic free particle of mass m receives a contribution $-m R(x,y)$ from a path of length R(x,y) connecting the events $x^i$ and $y^i$. Using this action in a path integral, one can obtain the Feynman propagator for a spinless particle of mass m in any background spacetime. If one of the effects of quantizing gravity is to introduce a minimum length scale $L_P$ in the spacetime, then one would expect the segments of paths with lengths less than $L_P$ to be suppressed in the path integral. Assuming that the path integral amplitude is invariant under the `duality' transformation ${\\cal R}\\to L_P^2/R$, one can calculate the modified Feynman propagator in an arbitrary background spacetime. It turns out that the key feature of this modification is the following: The proper distance $(\\Delta x)^2$ between two events, which are infinitesimally separated, is replaced by $\\Delta x^2 + L_P^2$; that is the spacetime behaves as though it has a `zero-point length' of $L_P$. This equivalence suggests a deep relationship between introducing a `zero-point-length' to the spacetime and postulating invariance of path integral amplitudes under duality transformations. In the Schwinger's proper time description of the propagator, the weightage for a path with proper time s becomes $m(s+L_P^2/s)$ rather than as ms. As to be expected, the ultraviolet behavior of the theory is improved significantly and divergences will disappear if this modification is taken into account. Implications of this result are discussed.
Plane-Wave Propagation in Electromagnetic PQ Medium
Lindell, Ismo V
2015-01-01T23:59:59.000Z
Two basic classes of electromagnetic media, recently defined and labeled as those of P media and Q media, are generalized to define the class of PQ media. Plane wave propagation in the general PQ medium is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional dyadic formalism. The result is verified by considering various special cases of PQ media for which the dispersion equation is known to decompose to two quadratic equations or be identically satisfied (media with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with non-decomposable dispersion equation is considered.
Jet propagation within a Linearized Boltzmann Transport Model
Luo, Tan; Wang, Xin-Nian; Zhu, Yan
2015-01-01T23:59:59.000Z
A Linear Boltzmann Transport (LBT) model has been developed for the study of jet propagation inside a quark-gluon plasma. Both leading and thermal recoiled partons are transported according to the Boltzmann equations to account for jet-induced medium excitations. In this talk, we present our study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate elastic energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons are found to have significant influences on the jet energy loss and transverse profile.
Oblique propagation of nonlinear electrostatic waves in dense astrophysical magnetoplasmas
Masood, W.; Siddiq, M. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000, Islamabad (Pakistan); Rizvi, H. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan)
2011-10-15T23:59:59.000Z
Nonlinear quantum ion-acoustic waves in dense dissipative as well as non-dissipative magnetized plasmas are investigated employing the quantum hydrodynamic model. In this regard, Zakharov Kuznetsov Burgers equation is derived in quantum plasmas, for the first time, using the small amplitude perturbation expansion method. The unique features of nonlinear electrostatic structures in pure electron-ion quantum magnetoplasma are highlighted and the parametric domain of the applicability of the model is unequivocally expressed. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock and solitary structures in dense astrophysical systems where the quantum effects are expected to dominate.
Propagation of Nd-laser pulses through crystalline silicon wafers
Kirichenko, N A; Kuzmin, P G; Shcherbina, M E [Wave Research Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2011-07-31T23:59:59.000Z
Propagation of pulses from an Nd:YAG laser (wavelength, 1.064 {mu}m; pulse duration, 270 ns; pulse energy, 225 {mu}J) through crystalline silicon wafers is studied experimentally. Mathematical modelling of the process is performed: the heat conduction equation is solved numerically, the temperature dependences of the absorption and refraction of a substance, as well as generation of nonequilibrium carriers by radiation are taken into account. The constructed model satisfactorily explains the experimentally observed intensity oscillations of transmitted radiation. (interaction of laser radiation with matter)
Excitation of two atoms by a propagating single photon pulse
Navneeth Ramakrishnan; Yimin Wang; Valerio Scarani
2014-11-13T23:59:59.000Z
We describe the interaction of two two-level atoms in free space with propagating modes of the quantized electromagnetic field, using the time-dependent Heisenberg-Langevin method. For single- photon pulses, we consider the effect of the pulse's spatial and temporal profiles on the atomic excitation. In particular, we find the ideal shape for a pulse to put exactly one excitation in any desired state of the bi-atomic system. Furthermore, we analyze the differences in the atomic dynamics between the cases of Fock state pulses and coherent state pulses.
Wave propagation and dispersion in a nonlinear microstructured materials.
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect1.08]Te[subscriptM-PACEResponseseffectHypothesis-Driven|Connect Wave Propagation(Journal
Jet propagation within a Linearized Boltzmann Transport Model
Tan Luo; Yayun He; Xin-Nian Wang; Yan Zhu
2015-06-12T23:59:59.000Z
A Linear Boltzmann Transport (LBT) model has been developed for the study of jet propagation inside a quark-gluon plasma. Both leading and thermal recoiled partons are transported according to the Boltzmann equations to account for jet-induced medium excitations. In this talk, we present our study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate elastic energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons are found to have significant influences on the jet energy loss and transverse profile.
Nucleation and propagation of phase mixtures in a bistable chain
Vainchtein, Anna; Van Vleck, Erik
2009-04-29T23:59:59.000Z
Nucleation and propagation of phase mixtures in a bistable chain Anna Vainchtein* Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Erik S. Van Vleck† Department of Mathematics, University of Kansas, Lawrence...-to-nearest-neighbor interactions. w h wc a phase I phase II FIG. 2. The biquadratic NN interaction potential Eq. #1;3#2; . ANNA VAINCHTEIN AND ERIK S. VAN VLECK PHYSICAL REVIEW B 79, 144123 #1;2009#2; 144123-2 wn = un ? un?1 #7; , is below #1;phase I#2; or above #1;phase II#2...
Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation
Pyrak-Nolte, Laura J. [Purdue University
2013-04-27T23:59:59.000Z
Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a â??sub-porosityâ? within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The â??sub-porosityâ? may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.
Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes and
Post, Wilfred M.
2000-01-01T23:59:59.000Z
Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration
Kim, Jihoon; Moridis, George
2013-05-22T23:59:59.000Z
We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.
Scharer, John E.
propagation and absorption Ehave been and continue to be an intriguing plasma physics research area. Mc
Influence of Dark Matter on Light Propagation in Solar System
Hideyoshi Arakida
2009-11-17T23:59:59.000Z
We investigated the influence of dark matter on light propagation in the solar system. We assumed the spherical symmetry of spacetime and derived the approximate solution of the Einstein equation, which consists of the gravitational attractions caused by the central celestial body, i.e. the Sun, and the dark matter surrounding it. We expressed the dark matter density in the solar system in the following simple power-law form, $\\varrho(t, r) = \\rho(t)(\\ell/r)^k$, where $t$ is the coordinate time; $r$, the radius from the central body; $\\ell$, the normalizing factor; $k$, the exponent characterizing $r$-dependence of dark matter density; and $\\rho(t)$, the arbitrary function of time $t$. On the basis of the derived approximate solution, we focused on light propagation and obtained the additional corrections of the gravitational time delay and the relative frequency shift caused by the dark matter. As an application of our results, we considered the secular increase in the astronomical unit reported by Krasinsky and Brumberg (2004) and found that it was difficult to provide an explanation for the observed $d{\\rm AU}/dt = 15 \\pm 4 ~[{\\rm m/century}]$.
Propagating Waves in a Monolayer of Gas-Fluidized Rods
L. J. Daniels; D. J. Durian
2010-11-12T23:59:59.000Z
We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ $N^{0.72 \\pm 0.04}$, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow.
Double porosity modeling in elastic wave propagation for reservoir characterization
Berryman, J. G., LLNL
1998-06-01T23:59:59.000Z
Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.
A turnstile mechanism for fronts propagating in fluid flows
John R. Mahoney; Kevin A. Mitchell
2013-05-22T23:59:59.000Z
We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified ("active") turnstile lobes according to the evolution of point sources across a transport boundary. We then show that the lobe boundaries may be constructed from stable and unstable \\emph{burning invariant manifolds}---one-way barriers to front propagation analogous to traditional invariant manifolds for passive advection. Because the burning invariant manifolds (BIMs) are one-dimensional curves in a three-dimensional ($xy\\theta$) phase space, their projection into $xy$-space exhibits several key differences from their advective counterparts: (lobe) areas are not preserved, BIMs may self-intersect, and an intersection between stable and unstable BIMs does not map to another such intersection. These differences must be accommodated in the correct construction of the new turnstile. As an application, we consider a lobe-based treatment protocol for protecting an ocean bay from an invading algae bloom.
Effects of crowding on growth rate and symbiosis in green hydra
Thorp, James H.; Barthalamus, George T.
1975-01-01T23:59:59.000Z
every 4 days. A significant inverse relationship between population density and population growth rate exists. In addition, hydras were found to increase or decrease their growth rates in response to rapid changes of density after acclimation to fixed...
Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont
Williams, M. M.
1981-01-01T23:59:59.000Z
As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...
Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont
Williams, M. M.
1981-01-01T23:59:59.000Z
As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...
National Utility Rate Database: Preprint
Ong, S.; McKeel, R.
2012-08-01T23:59:59.000Z
When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.
LEED for Homes Rating System affordablemarket rate multi-family
Zaferatos, Nicholas C.
LEED for Homes Rating System affordablemarket rate multi-family #12;The top 25% of new homes based the negative impact of buildings on their occupants and on the environment. LEED for Homes categories and education (AE) #12;Rating System www.usgbc.org/leed/homes #12;LEED for Homes Project Checklist or Scorecard
Wai, Ping-kong Alexander
, but the output power is not very high. High repetition pulse generation based on nonlinear propagation of a dual1 High power and high repetition rate pulse generation using self injection-locking in Fabry-doped fiber ring lasers (ED-FRL) [2-3] are attractive methods to generate high speed pulse trains
Gopman, D. B., E-mail: daniel.gopman@physics.nyu.edu; Kent, A. D. [Department of Physics, New York University, New York, New York 10003 (United States); Bedau, D. [Department of Physics, New York University, New York, New York 10003 (United States); HGST San Jose Research Center, San Jose, California 95135 (United States); Mangin, S. [Institut Jean Lamour, UMR CNRS 7198 Université de Lorraine, Nancy, France 54506 (France); Fullerton, E. E. [CMRR, University of California at San Diego, La Jolla, California 92093 (United States); Katine, J. A. [HGST San Jose Research Center, San Jose, California 95135 (United States)
2014-03-21T23:59:59.000Z
We present a study of the temperature dependence of the switching fields in Co/Ni-based perpendicularly magnetized spin-valves. While magnetization reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is typically marked by a single sharp step change in resistance, low temperature measurements can reveal a series of resistance steps, consistent with non-uniform magnetization configurations. We propose a model that consists of domain nucleation, propagation, and annihilation to explain the temperature dependence of the switching fields. Interestingly, low temperature (<30?K) step changes in resistance that we associate with domain nucleation have a bimodal switching field and resistance step distribution, attributable to two competing nucleation pathways.
Upper Great Plains Rates information
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Ancillary Services Rate Data (2.4mb pdf) Transmission and Ancillary Services 2011 Rate True-up Calculation (3.4mb pdf) Power Reporting Miscellaneous Information If you have any...
Bubble growth rates in boiling
Griffith, P.
1956-01-01T23:59:59.000Z
The conditions determining the growth rate of a bubble on a surface in boiling are considered and a mathematical model framed in the light of these conditions. The growth rate is then calculated for bubbles growing under ...
Analysis of SaO? & heart rate from the combined PBG/PBA study
Dawes, Derek Shawn
2001-01-01T23:59:59.000Z
States Air Force Base in San Antonio, Texas. The findings indicate that while SaO? level changes are not statistically significant, heart rate changes are considerable when transitioning to increased Gz level....
2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.
United States. Bonneville Power Administration.
2006-11-01T23:59:59.000Z
This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.
Nonlinear pulse propagation and phase velocity of laser-driven plasma waves
Schroeder, Carl B.
2011-01-01T23:59:59.000Z
of California. Nonlinear pulse propagation and phasea relativistically-intense short-pulse laser in un- derdenseinvestigated in the broad pulse limit, including the e?ects
Higher-order differencing for phase-front propagation in geothermal systems
Oldenburg, Curtis; Pruess, Karsten
1998-01-01T23:59:59.000Z
FRONT PROPAGATION IN GEOTHERMAL SYSTEMS Curtis M. Oldenburgreinjection in geothermal systems. The numerical simulationcases that can arise in geothermal systems where saturation
Source and Listener Directivity for Interactive Wave-based Sound Propagation
North Carolina at Chapel Hill, University of
integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization
Manifestly gauge-covariant representation of scalar and fermion propagators
Latosi?ski, Adam
2015-01-01T23:59:59.000Z
A new way to write the massive scalar and fermion propagators on a background of a weak gauge field is presented. They are written in a form that is manifestly gauge-covariant up to several additional terms that can be written as boundary terms in momentum space. These additional terms violate Ward-Takahashi identities and need to be renormalized by appropriate counterterms if the complete theory is to be gauge-covariant. This form makes it possible to calculate many amplitudes in a manifestly gauge-covariant way (at the same time reducing the number of Feynman diagrams). It also allows to express some counterterms in a way independent of the regularization scheme and provides an easy way to derive the anomalous term affecting the chiral current conservation.
Analysis of Errors in a Special Perturbations Satellite Orbit Propagator
Beckerman, M.; Jones, J.P.
1999-02-01T23:59:59.000Z
We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.
Seismic pulse propagation with constant Q and stable probability distributions
Francesco Mainardi; Massimo Tomirotti
2010-08-07T23:59:59.000Z
The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with index of stability determined by the order of the fractional time derivative in the evolution equation.
Electromagnetic Pulse Propagation over Nonuniform Earth Surface: Numerical Simulation
Alexei V. Popov; Vladimir V. Kopeikin
2007-04-14T23:59:59.000Z
We simulate EM pulse propagation along the nonuniform earth surface using so called time-domain parabolic equation. To solve it by finite differences, we introduce a time-domain analog of the impedance boundary condition and a nonlocal BC of transparency reducing open computational domain to a strip of finite width. Numerical examples demonstrate influence of soil conductivity on the wide-band pulse waveform. For a high-frequency modulated EM pulse, we develop an asymptotic approach based on the ray structure of the monochromatic wave field at carrier frequency. This radically diminishes the computation costs and allows for pulsed wave field calculation in vast domains measured by tens of thousands wavelengths.
The propagation of kinetic energy across scales in turbulent flows
Cardesa, José I; Dong, Siwei; Jiménez, Javier
2015-01-01T23:59:59.000Z
A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence, at Reynolds numbers in the range $Re_{\\lambda}=107-384$. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive, as inferred from the agreement between the total travel time from a given scale to the smallest dissipative motions, and the time estimated from successive jumps through intermediate scales. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a `velocity' that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.
The Influence of Instantons on the Quark Propagator
Daniel Trewartha; Waseem Kamleh; Derek Leinweber; Peter Moran
2012-12-03T23:59:59.000Z
We use over-improved stout-link smearing to investigate the presence and nature of instantons on the lattice. We find that smearing can remove short-range effects with little damage to the long-range structure of the gauge field, and that after around 50 sweeps this process is complete. There are more significant risks for very high levels of smearing beyond 100 sweeps. We are thus able to produce gauge configurations dominated by instanton effects. We then calculate the overlap quark propagator on these configurations, and thus the non-perturbative mass function. We find that smeared configurations reproduce the majority of dynamical mass generation, and conclude that instantons are primarily responsible for the dynamical generation of mass.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Stavroula Foteinopoulou
2003-12-12T23:59:59.000Z
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed negatively refractive phenomena. They found that in the PC system, negative refraction is neither a prerequisite nor guarantees left-handed behavior. They examined carefully the condition to obtain left-handed behavior in the PC. They proposed a wedge type of experiment, in accordance with the experiment performed on the traditional LHM, to test these conditions. They found that for certain frequencies the PC shows left-handed behavior and acts in some respects like a homogeneous medium with a negative refractive index. they used the realistic PC system for this case to show how negative refraction occurs at the interface between a material with a positive and a material with a negative refractive index. Their findings indicate that the formation of the negatively refracted beam is not instantaneous and involves a transient time. With this time-dependent analysis, they were able to address previous controversial issues about negative refraction concerning causality and the speed of light limit. Finally, they attempt a systematic study of anomalous refractive phenomena that can occur at the air-PC interface. They observe cases where only a single refracted beam (in the positive or negative direction) is present, as well as cases with birefringence. they classify these different effects according to their origin and type of propagation (left-handed or not). For a complete study of the system, they also obtain expressions for the energy and group velocities, and show their equality. For cases with very low index contrast, band folding becomes an artificiality. They discuss the validity of their findings when they move to the limit of photonic crystals with a low index modulation.
Apportioning Climate Change Costs
Farber, Daniel A.
2008-01-01T23:59:59.000Z
Apportioning Climate Change Costs Daniel A. Farber* I. II.ON CLIMATE CHANGE FOUR QUESTIONS ABOUTof how to respond to climate change. Most public attention
Smith, Jennifer
2013-01-01T23:59:59.000Z
introduction to global climate change, the greenhouseReview: Global Climate Change: A Primer By Orrin H PilkeyPilkey, Keith C. Global Climate Change: a primer. Durham,
Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball
Sarira Sahu; Nissim Fraija; Yong-Yeon Keum
2009-11-10T23:59:59.000Z
The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order $M^{-4}_W$. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5-30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.
Vasco, D.W.
2011-10-01T23:59:59.000Z
Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.
Zhan Shi; Hendra I. Nurdin
2014-10-12T23:59:59.000Z
Recent work has shown that deploying two nondegenerate optical parametric amplifiers (NOPAs) separately at two distant parties in a coherent feedback loop generates stronger Einstein-Podolski-Rosen (EPR) entanglement between two propagating continuous-mode output fields than a single NOPA under same pump power, decay rate and transmission losses. The purpose of this paper is to investigate the stability and EPR entanglement of a dual-NOPA coherent feedback system under the effect of phase shifts in the transmission channel between two distant parties. It is shown that, in the presence of phase shifts, EPR entanglement worsens or can vanish, but can be improved to some extent in certain scenarios by adding a phase shifter at each output with a certain value of phase shift. In ideal cases, in the absence of transmission and amplification losses, existence of EPR entanglement and whether the original EPR entanglement can be recovered by the additional phase shifters are decided by values of the phase shifts in the path.
The initiation and propagation of helium detonations in white dwarf envelopes
Shen, Ken J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Moore, Kevin, E-mail: kenshen@astro.berkeley.edu [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States)
2014-12-10T23:59:59.000Z
Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear '.Ia' supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate and alters the composition of the shell's burning products. The ashes of these low-mass shells consist primarily of silicon, calcium, and unburned helium and metals and may explain the high-velocity spectral features observed in most Type Ia supernovae.
Climate Change and Extinctions
Sinervo, Barry
2013-01-01T23:59:59.000Z
Lectures presents: Climate Change and Extinctions Happening2013. He will present a climate change extinction model that
Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California
Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California
A Closed-Form Solution to the Arbitrary Order Cauchy Problem with Propagators
Henrik Stenlund
2014-11-24T23:59:59.000Z
The general abstract arbitrary order (N) Cauchy problem was solved in a closed form as a sum of exponential propagator functions. The infinite sparse exponential series was solved with the aid of a homogeneous differential equation. It generated a linear combination of exponential functions. The Cauchy problem solution was formed with N linear combinations of N exponential propagators.
Contextual Back-Propagation Technical Report UT-CS-00-443
MacLennan, Bruce
Contextual Back-Propagation Technical Report UT-CS-00-443 Bruce J. MacLennan #3; Computer Science. This report presents an adaptation of the back- propagation algorithm to training contextual neural networks and adaptation must also be context- dependent. The basic idea is simple enough | hold the context constant while
Kirby, James T.
WCCE ECCE TCCE Joint Conference: EARTHQUAKE & TSUNAMI 1 BASIN SCALE TSUNAMI PROPAGATION-scale tsunami modeling are based on the shallow water equations and neglect frequency dispersion effects in wave propagation. Recent studies on tsunami modeling revealed that such tsunami models may not be satisfactory
Trace formula for systems with spin from the coherent state propagator
de Aguiar, Marcus A. M.
Trace formula for systems with spin from the coherent state propagator A. D. Ribeiroa Instituto de November 2007 We present a detailed derivation of the trace formula for a general Hamiltonian with two the semiclassical formula for the propagator in a basis formed by the product of a canonical and a spin coherent
Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES
Anlage, Steven
ABSTRACT Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES AND PLASMA CHANNELS Jianzhou Wu, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Thomas M PROPAGATION OF LASER PULSES IN TENUOUS GASES AND PLASMA CHANNELS By Jianzhou Wu Dissertation submitted
Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene
Kono, Junichiro
Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene Weilu Gao, Gang polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic
Implementacin paralela del algoritmo Belief Propagation A. Mendiburu J. Miguel-Alonso J. A. Lozano
Miguel-Alonso, JosÃ©
ImplementaciÃ³n paralela del algoritmo Belief Propagation A. Mendiburu J. Miguel-Alonso J. A. Lozano concreto. Entre estos mÃ©todos podemos ci- tar los algoritmos belief propagation, que se aplican estos algoritmos de inferencia, concretamente loopy belief pro- pagation sobre factor graphs. Nuestra
Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos
Born, George
Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos Brandon A. Jones1. Results presented in this paper use non-intrusive, i.e., sampling-based, methods in combination the use of polynomial chaos expansions (PCEs) for the non- linear, non-Gaussian propagation of orbit state
Frandsen, Jannette B.
The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine in the Philippine Sea during 20092011 investigated deep-water acoustic propagation and ambient noise of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also
Propagation failure in the discrete Nagumo equation H. J. Hupkes a,, D. Pelinovsky b
Hupkes, Hermen Jan
Propagation failure in the discrete Nagumo equation H. J. Hupkes a,, D. Pelinovsky b , B. Sandstede Email: hjhupkes@dam.brown.edu b Department of Mathematics - McMaster University Hamilton, ON L8S 4K1 problem of propagation failure for monotonic fronts of the discrete Nagumo equation. For a special class
Reducing pulse distortion in fast-light pulse propagation through an erbium-doped
Boyd, Robert W.
Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier, 2007 (Doc. ID 78405); published March 19, 2007 When a pulse superposed on a cw background propagates through an erbium-doped fiber amplifier with a negative group velocity, either pulse broadening or pulse
Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene
Natelson, Douglas
tunability,4,19 and plasmonic devices based on a 2D electron gas in semiconductors20 have been demonstratedExcitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene Weilu Gao, Gang polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal
PREVENTING NETWORK INSTABILITY CAUSED BY PROPAGATION OF CONTROL PLANE POISON MESSAGES*
Shayman, Mark A.
PREVENTING NETWORK INSTABILITY CAUSED BY PROPAGATION OF CONTROL PLANE POISON MESSAGES* Xiaojiang Du to as "poison message failure propagation": Some or all of the network elements have a software or protocol `bug' which is activated on receipt of a certain network control/management message (the poison message
On Disturbance Propagation in Vehicle Formations with Inter-vehicle Communication
Gupta, Vijay
of the frequency response magnitude of the transfer function from a deterministic disturbance at the leadingOn Disturbance Propagation in Vehicle Formations with Inter-vehicle Communication Yingbo Zhao, Paolo Minero, and Vijay Gupta Abstract-- This paper focuses on disturbance propagation in a formation
Laboratory study of linear and nonlinear elastic pulse propagation in sandstone
Laboratory study of linear and nonlinear elastic pulse propagation in sandstone James A. Ten propagation experiments were performed in sandstone rods, both at ambient conditions and in vacuum-long, 5-cm-diam rod of Berea sandstone with embedded detectors used in previously published experiments
One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home
Al Hanbali, Ahmad
One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home, Citadel T100 As part of the application called migration or reflection seismic imaging, we model wave propagation through the earth, governed by the acoustic wave equation. Downward continuation is a technique
Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino
Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino Detection Peter ultrahigh energy cosmic rays (UHECR), which would typically interact very close to the surface. Since of electromagnetic surface waves and their propagation is presented. The charged particle shower is modelled
Repeater Insertion in RLC Lines for Minimum Propagation Delay Yehea I. Ismail and Eby G. Friedman
Ismail, Yehea
- A closed form expression for the propagation delay of a CMOS gate driving a distributed RLC line in an RLC line is provided in the appendix. II. Propagation Delay of a CMOS Gate Driving an RLC Load An arbitrary CMOS gate driving an RLC transmission line representation of an interconnect line is shown in Fig
Showalter, Kenneth
of propagation, generally, is the coupling of a positive feedback process with transport, such as the coupling is an essential process in the wave dynamics of the oxidation of CO on single-crystal Pt.7 In this paper, we on models of Liesegang band and redissolution systems. The dynamics of the propagating waves
Robertson, William
Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic the slow group-velocity propagation of electromagnetic pulses through a narrow transmission band describe a simple experimental configuration that leads to slow-group-velocity electromagnetic pulse
Note on the determination of the ignition point in forest fires propagation using a control
Paris-Sud XI, Université de
Note on the determination of the ignition point in forest fires propagation using a control-lès-Nancy Cedex, France Abstract This paper is devoted to the determination of the origin point in forest fires pro- pagation using a control algorithm. The forest fires propagation are mathema- tically modelled
Active Vibration Control of a Modular Robot Combining a Back-Propagation Neural Network with
Li, Yangmin
by joints, vibration can easily be induced in this special type of mechanical structure. Based on the modalActive Vibration Control of a Modular Robot Combining a Back-Propagation Neural Network-propagation neural network suboptimal controller is developed to control the vibration of a nine
Peirce, Anthony
to width power law indices k > 1 2 , which are different from the index k ¼ 1 2 of linear elastic fracture by buoy- ancy forces to propagate in finger-like fractures toward the surface of the Earth. Engineering of HF. The prohibitive re-meshing cost of tracking a propagating frac- ture has hampered the development
Carlson, Erica
Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting;Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices Shuo a fruitful approach for enhancing the figure of merit, ZT, of thermoelectric materials. Generally
Effect of the open roof on low frequency acoustic propagation in street canyons
Paris-Sud XI, Université de
Effect of the open roof on low frequency acoustic propagation in street canyons O. Richoux, C of the effect of open roof on acoustic propagation along a 3D urban canyon. The experimental study is led Domain approach adapted to take into account the acoustic radiation losses due to the street open roof
Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation
Xing, Eric P.
Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy component of our free energy estimates can useful in distinguishing native
Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation
Langmead, Christopher James
Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy compo- nent of our free energy estimates can be useful in distinguishing
Improving Robustness in P2PS and a Generic Belief Propagation Service for P2PKit
Bonaventure, Olivier
propagation service designed using P2PKit, showing an example of usage with the k-partition algorithm for loadImproving Robustness in P2PS and a Generic Belief Propagation Service for P2PKit Boris Mej´ias, Yves Jaradin, and Peter Van Roy Universit´e catholique de Louvain, Louvain-la-Neuve, Belgium firstname
History of Artificial Propagation of Coho Salmon, Oncorhynchus kisutch, in the Mid-Columbia River System ROY J. WAHLE and ROGER E. PEARSON Figure I. - Middle and upper portion of the Columbia River Basin, artificial propagation was attempted. The first hatcheries in the mid- Columbia section (Fig. 1) of the river
Genealogies and Increasing Propagation of Chaos for FeynmanKac and Genetic Models
Del Moral , Pierre
Genealogies and Increasing Propagation of Chaos for FeynmanÂKac and Genetic Models P. Del Moral L for the genealogical structure of genetic algorithms is presented. We connect the historical process Interacting particle systems, genetic algorithms, historical process, genealogy, relative entropy, propagation
An empirical study of faults in late propagation clone genealogies Liliane Barbour1
Zou, Ying
An empirical study of faults in late propagation clone genealogies Liliane Barbour1 , Foutse Khomh2 has an effect on the fault proneness of specific types of late propagation genealogies. Lastly, we can February 2012; Revised 21 January 2013; Accepted 15 March 2013 KEY WORDS: clone genealogies; late
California at Berkeley, University of
Spatial localization of Langmuir waves generated from an electron beam propagating electron beams, during type III events or close to the electron foreshock. It seems that the influence packets by electron beams propagating in an inhomogeneous medium. To this purpose, we present
Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind.
California at Berkeley, University of
Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III in which the only propagation effects are taken into account. Keywords: density fluctuationselectron beams
13 Edgar Nett Mobile Computer Communication SS'10 Signal propagation ranges
13 Edgar Nett Mobile Computer Communication SS'10 Signal propagation ranges distance sender interfere other transmissions #12;14 Edgar Nett Mobile Computer Communication SS'10 Signal propagation diffractionreflectionshadowing refraction #12;15 Edgar Nett Mobile Computer Communication SS'10 Signals can take many different
LMS SUBSCRIPTION RATES & NOTES 2014/15 SUBSCRIPTION RATES
1 LMS SUBSCRIPTION RATES & NOTES 2014/15 SUBSCRIPTION RATES LMS membership subscription: £ US.00 Associate membership 16.00 32.00 Free membership (see note 2) Print only Online only Print & online* LMS, or are unemployed or otherwise in hardship. Contact membership@lms.ac.uk to enquire further. #12;LMS PUBLICATIONS 4
LMS SUBSCRIPTION RATES & NOTES 2013/14 SUBSCRIPTION RATES
1 LMS SUBSCRIPTION RATES & NOTES 2013/14 SUBSCRIPTION RATES LMS membership subscription: £ US.00 Associate membership 15.00 30.00 Free membership (see note 2) Print only Online only Print & online* LMS, or are unemployed or otherwise in hardship. Contact membership@lms.ac.uk to enquire further. #12;LMS PUBLICATIONS 4
Nieves-Chinchilla, T. [Catholic University of America, Washington, DC 20064 (United States); Vourlidas, A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Stenborg, G. [George Mason University, College of Science, Fairfax, VA 22030 (United States); Savani, N. P.; Koval, A.; Szabo, A.; Jian, L. K., E-mail: Teresa.Nieves@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States)
2013-12-10T23:59:59.000Z
Coronal mass ejections (CMEs) are the main driver of space weather. Therefore, a precise forecasting of their likely geo-effectiveness relies on an accurate tracking of their morphological and kinematical evolution throughout the interplanetary medium. However, single viewpoint observations require many assumptions to model the development of the features of CMEs. The most common hypotheses were those of radial propagation and self-similar expansion. The use of different viewpoints shows that, at least for some cases, those assumptions are no longer valid. From radial propagation, typical attributes that can now be confirmed to exist are over-expansion and/or rotation along the propagation axis. Understanding the 3D development and evolution of the CME features will help to establish the connection between remote and in situ observations, and hence help forecast space weather. We present an analysis of the morphological and kinematical evolution of a STEREO-B-directed CME on 2009 August 25-27. By means of a comprehensive analysis of remote imaging observations provided by the SOHO, STEREO, and SDO missions, and in situ measurements recorded by Wind, ACE, and MESSENGER, we prove in this paper that the event exhibits signatures of deflection, which are usually associated with changes in the direction of propagation and/or also with rotation. The interaction with other magnetic obstacles could act as a catalyst of deflection or rotation effects. We also propose a method to investigate the change of the CME tilt from the analysis of height-time direct measurements. If this method is validated in further work, it may have important implications for space weather studies because it will allow for inference of the interplanetary counterpart of the CME's orientation.
Physics-based statistical model and simulation method of RF propagation in urban environments
Pao, Hsueh-Yuan (San Jose, CA); Dvorak, Steven L. (Tucson, AZ)
2010-09-14T23:59:59.000Z
A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.
Nonlinear light propagation in cholesteric liquid crystals with a helical Bragg microstructure
Liu, Yikun; Zhu, Xing; Xie, Xiangsheng; Feng, Mingneng; Zhou, Jianying; Li, Yongyao; Xiang, Ying; Malomed, Boris A; Kurizki, Gershon
2015-01-01T23:59:59.000Z
Nonlinear optical propagation in cholesteric liquid crystals (CLC) with a spatially periodic helical molecular structure is studied experimentally and modeled numerically. This periodic structure can be seen as a Bragg grating with a propagation stopband for circularly polarized light. The CLC nonlinearity can be strengthened by adding absorption dye, thus reducing the nonlinear intensity threshold and the necessary propagation length. As the input power increases, a blue shift of the stopband is induced by the self-defocusing nonlinearity, leading to a substantial enhancement of the transmission and spreading of the beam. With further increase of the input power, the self-defocusing nonlinearity saturates, and the beam propagates as in the linear-diffraction regime. A system of nonlinear couple-mode equations is used to describe the propagation of the beam. Numerical results agree well with the experiment findings, suggesting that modulation of intensity and spatial profile of the beam can be achieved simult...
Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips
2012-03-13T23:59:59.000Z
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Phillips, Rob
The Rate of Osmotic Downshock Determines the Survival Probability of Bacterial Mechanosensitive and respond to environmental changes. In bacteria, these channels are be- lieved to protect against an osmotic that the protection provided by MS channels depends strongly on the rate of osmotic change, revealing that, under
Behavioral contrast and local rate-of-response in rats
Dreyfus, Leon Richard
1976-01-01T23:59:59.000Z
discrimination phase (IV), identical to phase I, was introduced, all four rats showed positive behavioral contrast and a uniform pattern of local rates was obtained. Response rate in the variable-interval component began above the previous baseline level.... In this procedure, the onset of a 10 min period of VI 30-sec reinforcement was signalled. During the discrimination phase, the second 5 minutes was changed to extinction. Although there were not separate stimuli associated with the different conditions...
Innovative Rates Program. Final report
Not Available
1982-06-21T23:59:59.000Z
Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)
2013-05-10T23:59:59.000Z
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Exact propagating nonlinear singular disturbances in strongly coupled dusty plasmas
Das, Amita; Tiwari, Sanat Kumar; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)
2014-08-15T23:59:59.000Z
The dynamical response of the strongly coupled dusty plasma medium has recently been described by utilizing the Generalized Hydrodynamic (GHD) model equations. The GHD equations capture the visco-elastic properties of the medium and have been successful in predicting a host of phenomena (e.g., existence of novel transverse shear waves in the fluid medium, modification of longitudinal wave dispersion by elastic effects, etc.) which have found experimental confirmation. In this paper, the nonlinear longitudinal response of the medium governed by GHD equations in strong coupling limit is discussed analytically. The structure of the equations rules out the balance between dispersion and nonlinearity, thereby, forbidding soliton formation. However, a host of new varieties of nonlinear solutions are found to exist, which have singular spatial profiles and yet have conservative properties. For instance, existence of novel conservative shock structures with zero strength is demonstrated, waves whose breaking produces no dissipation in the medium are observed, propagating solutions which produce cusp like singularities can exist and so on. It is suggested that simulations and experiments should look for these novel nonlinear structures in the large amplitude strong coupling limit of longitudinal disturbances in dusty plasmas.
Propagation of UHE Protons through Magnetized Cosmic Web
Santabrata Das; Hyesung Kang; Dongsu Ryu; Jungyeon Cho
2008-05-16T23:59:59.000Z
If ultra-high-energy cosmic rays (UHECRs) originate from extragalactic sources, understanding the propagation of charged particles through the magnetized large scale structure (LSS) of the universe is crucial in the search for the astrophysical accelerators. Based on a novel model of the turbulence dynamo, we estimate the intergalactic magnetic fields (IGMFs) in cosmological simulations of the formation of the LSS. Under the premise that the sources of UHECRs are strongly associated with the LSS, we consider a model in which protons with E >10^{19} eV are injected by sources that represent active galactic nuclei located inside clusters of galaxies. With the model IGMFs, we then follow the trajectories of the protons, while taking into account the energy losses due to interactions with the cosmic background radiation. For observers located inside groups of galaxies like ours, about 70% and 35% of UHECR events above 60 EeV arrive within ~15 degree and ~5 degree, respectively, of the source position with time delays of less than ~10^7 yr. This implies that the arrival direction of super-GZK protons might exhibit a correlation with the distribution of cosmological sources on the sky. In this model, nearby sources (within 10 - 20 Mpc) should contribute significantly to the particle flux above ~10^{20} eV.
CME propagation: Where does the solar wind drag take over?
Sachdeva, Nishtha; Colaninno, Robin; Vourlidas, Angelos
2015-01-01T23:59:59.000Z
We investigate the Sun-Earth dynamics of a set of eight well observed solar coronal mass ejections (CMEs) using data from the STEREO spacecraft. We seek to quantify the extent to which momentum coupling between these CMEs and the ambient solar wind (i.e., the aerodynamic drag) influences their dynamics. To this end, we use results from a 3D flux rope model fit to the CME data. We find that solar wind aerodynamic drag adequately accounts for the dynamics of the fastest CME in our sample. For the relatively slower CMEs, we find that drag-based models initiated below heliocentric distances ranging from 15 to 50 $R_{\\odot}$ cannot account for the observed CME trajectories. This is at variance with the general perception that the dynamics of slow CMEs are influenced primarily by solar wind drag from a few $R_{\\odot}$ onwards. Several slow CMEs propagate at roughly constant speeds above 15--50 $R_{\\odot}$. Drag-based models initiated above these heights therefore require negligible aerodynamic drag to explain their...
Hydrodynamic model for picosecond propagation of laser-created nanoplasmas
Saxena, Vikrant; Ziaja, Beata; Santra, Robin
2015-01-01T23:59:59.000Z
The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., $>1$ ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherica...
Cybersim: geographic, temporal, and organizational dynamics of malware propagation
Santhi, Nandakishore [Los Alamos National Laboratory; Yan, Guanhua [Los Alamos National Laboratory; Eidenbenz, Stephan [Los Alamos National Laboratory
2010-01-01T23:59:59.000Z
Cyber-infractions into a nation's strategic security envelope pose a constant and daunting challenge. We present the modular CyberSim tool which has been developed in response to the need to realistically simulate at a national level, software vulnerabilities and resulting mal ware propagation in online social networks. CyberSim suite (a) can generate realistic scale-free networks from a database of geocoordinated computers to closely model social networks arising from personal and business email contacts and online communities; (b) maintains for each,bost a list of installed software, along with the latest published vulnerabilities; (d) allows designated initial nodes where malware gets introduced; (e) simulates, using distributed discrete event-driven technology, the spread of malware exploiting a specific vulnerability, with packet delay and user online behavior models; (f) provides a graphical visualization of spread of infection, its severity, businesses affected etc to the analyst. We present sample simulations on a national level network with millions of computers.
Environmental Change Institute Environmental Change Institute
Oxford, University of
Environmental Change Institute 2012/13 eci Environmental Change Institute #12;ii Environmental 06 Educating environmental leaders 08 Centre for interdisciplinary doctoral training 10 A thriving, Dumfriesshire (ECI) #12;1 The Environmental Change Institute has 21 years' experience in helping governments
John J. Moore, Marissa M. Reigel, Collin D. Donohoue
2009-04-30T23:59:59.000Z
The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.
Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing
Dynamic screening correction for solar p-p reaction rates
Mussack, Katie; 10.1088/0004-637X/729/2/96
2011-01-01T23:59:59.000Z
The solar abundance controversy inspires renewed investigations of the basic physics used to develop solar models. Here we examine the correction to the proton-proton reaction rate due to dynamic screening effects. Starting with the dynamic screening energy from the molecular-dynamics simulations of Mao et al., we compute a reaction-rate correction for dynamic screening. We find that, contrary to static screening theory, this dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential.
Quantized Media with Absorptive Scatterers and Modified Atomic Emission Rates
L. G. Suttorp; A. J. van Wonderen
2011-02-14T23:59:59.000Z
Modifications in the spontaneous emission rate of an excited atom that are caused by extinction effects in a nearby dielectric medium are analyzed in a quantummechanical model, in which the medium consists of spherical scatterers with absorptive properties. Use of the dyadic Green function of the electromagnetic field near a a dielectric sphere leads to an expression for the change in the emission rate as a series of multipole contributions for which analytical formulas are obtained. The results for the modified emission rate as a function of the distance between the excited atom and the dielectric medium show the influence of both absorption and scattering processes.
Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint
Burch, J.
2012-06-01T23:59:59.000Z
In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.
Comparison of experimental and simulated thermal ratings of drain-back solar water heaters
Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins (United States)); Schaefer, P.J.; Beckman, W.A.; Klein, S.A. (Univ. of Wisconsin, Madison (United States))
1993-05-01T23:59:59.000Z
Short-term experimental tests of drain-back solar water heaters are compared to ratings obtained using TRNSYS to determine if computer simulations can effectively replace laboratory thermal ratings of solar domestic hot water heating systems. The effectiveness of TRNSYS in predicting changes in rating due to limited changes in collector area, collector flow rate, recirculation flow rate, storage tank volume, and storage tank design is validated to within [plus minus]10 percent. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards.
Eastward propagation of transient field-aligned currents and Pi 2 pulsations at auroral latitudes
Webster, D.J.; Samson, J.C.; Rostoker, G. (Univ. of Alberta, Edmonton (Canada))
1989-04-01T23:59:59.000Z
Transient field-aligned currents associated with the substorm expansive phase produce the damped, quasisinusoidal, geomagnetic pulsations called Pi 2's. Mid-latitude and auroral latitude measurements of the fields of these pulsations have indicated that they are produced, for the most part, by westward propagating field-aligned currents at auroral latitudes, although some studies have shown hints of eastward propagation, particularly far to the east of the longitude of the onset of the expansive phase. This study uses data from the University of Alberta magnetometer array to identify the characteristics of the eastward propagating mode at high latitudes by measuring polarizations and apparent group and phase velocities in regions far to the east of the expansive phase. The results show that eastward propagating Pi 2's have very high phase velocities (typically 40 km/s) which are comparable with those of the westward propagating mode. The polarizations and field configurations are compatible with a field-aligned and ionospheric current model which is very similar to that for the westward propagating component. These current models suggest that Pi 2's may be caused by shear Alfven waves produced by an azimuthally expanding, fast mode wave. The shear Alfven waves are reflected from the auroral ionosphere to produce the latitudinally localized field-aligned and ionospheric currents in the eastward (and westward) propagating modes.
Strain rate sensitive constitutive equations
Nelson, Charles Edward
1971-01-01T23:59:59.000Z
Subject: Aerospace Engineering STRAIN RATE SERSITIVE CORSTITETIVE EOUATIORS A Thesis by CHARLES EDHARD RELSON Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) g( emb ) (Member) (Member) (Member) August... published strain rates for similar metals and alloys, it appears that no two results have the exact same stress-strai. n curve. In fact even the 5 quasi-static data varies; some investigators consider quasi-static -2 -1 6 to mean a strain rate of 10 sec...
Rate Analysis of Two Photovoltaic Systems in San Diego
Doris, E.; Ong, S.; Van Geet, O.
2009-07-01T23:59:59.000Z
Analysts have found increasing evidence that rate structure has impacts on the economics of solar systems. This paper uses 2007 15-minute interval photovoltaic (PV) system and load data from two San Diego City water treatment facilities to illustrate impacts of different rate designs. The comparison is based on rates available in San Diego at the time of data collection and include proportionately small to large demand charges (relative to volumetric consumption), and varying on- and off- peak times. Findings are twofold for these large commercial systems: 1) transferring costs into demand charges does not result in savings and 2) changes in peak times do not result in a major cost difference during the course of a year. While lessons learned and discussion on rate components are based on the findings, the applicability is limited to buildings with similar systems, environments, rate options, and loads.
Li Qing; Zhu Ximing; Li Jiangtao; Pu Yikang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)
2010-02-15T23:59:59.000Z
In the experiment of plasma jets generated in a tube dielectric barrier discharge configuration, three distinguishable modes, namely, laminar, transition, and turbulent jet modes, have been identified. Flows of helium, neon, and argon gases shared the hydrodynamic law when their plasma jets spraying into ambient air of atmospheric pressure and room temperature. Aiming to reveal the basic processes, we propose that plasma jet length is mainly determined by reactions involving metastable atoms. These processes are responsible for the variation in plasma jet length versus gas flow rate and working gas species. To investigate this proposal in detail, we have obtained three significant experimental results, i.e., (1) the plasma jet lengths of helium, neon, and argon are different; (2) the plasma jet length of krypton slightly changes with gas flow rate, with three modes indistinguishable; and (3) there are large differences between optical emission spectra of helium, neon, argon, and krypton flow gases. These observations are in good agreement with our proposal.
Hörandel, Jörg R.
for the propagation in the magnetic fields. This method works best for the highest energy particles, since the timePropagation of super-high-energy cosmic rays in the Galaxy Jo¨rg R. Ho¨randel a,*, Nikolai N Available online 27 October 2006 Abstract The propagation of high-energy cosmic rays in the Galaxy
Covariant propagator in AdS5 x S5 superspace
Peng Dai; Ru-Nan Huang; Warren Siegel
2010-02-10T23:59:59.000Z
We give an explicit superspace propagator for the chiral scalar field strength of 10D IIB supergravity on an AdS5 x S5 background. Because this space is conformally flat, the propagator is very simple, almost identical to that of flat space. We also give an explicit expansion over the Kaluza-Klein modes of S5. The fact that the full propagator is so much simpler suggests that, as in 2D conformal field theory, AdS/CFT calculations would be simpler without a mode expansion.
Resuspension rates from aged inert-tracer sources
Sehmel, G.A.
1982-11-01T23:59:59.000Z
Wind-caused particle resuspension rates were investigated with molybdenum tracers at two circular resuspension sites in the Hanford area. The tracer particles were calcium molybdate. The radii of each circular tracer-source area were 22.9 m and 29.9 m respectively for tracer deposited on 2 October 1973 and 29 May 1979. Resuspension rates were investigated by sampling resuspended tracer with air sampling equipment mounted as a function of height on a centrally located sampling tower at each site. Sampling equipment was operated as a function of wind speed increments in order to investigate resuspension rates, wind speed dependencies of resuspension rates, and for subsequent comparisons of resuspension rate changes as a function of time for constant wind speed ranges. Experimental results are reported for measurements over several years. Resuspension rates ranged from about 10/sup -13/ to 10/sup -6/ fraction of the tracer source resuspended per second. Resuspension rates tended to increase with increasing wind speed. At one investigation site, resuspension rates were nearly constant, except for seasonal variations, for a four-year time period. Resuspension rates appear higher in the autumn than in the spring and summer.
Investigation of guided waves propagation in pipe buried in sand
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)
2014-02-18T23:59:59.000Z
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.
Rate Adjustments and Public Involvement
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Letter to South Texas Electric Coop., Inc requesting an extension of the existing rate formula FalconAmistad WAPA-143 FERC Approval FalconAmistad Published WAPA-143 Falcon...
Electric Rate Alternatives to Cogeneration
Sandberg, K. R. Jr.
1988-01-01T23:59:59.000Z
This paper discusses electric rate alternatives to cogeneration for the industrial customer and attempts to identify the effects on the utility company, the industrial customer as well as remaining customers. It is written from the perspective...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
period FY2015 through 2028. Customers have a diversification right to limit the amount of power they purchase at the Load Growth rate in future years with notice provided by...
Asset Prices and Exchange Rates
Pavlova, Anna
2003-08-01T23:59:59.000Z
This paper develops a simple two-country, two-good model, in which the real exchange rate, stock and bond prices are jointly determined. The model predicts that ...
Asset Prices and Exchange Rates
Pavlova, Anna
2004-11-30T23:59:59.000Z
This paper develops a simple two-country, two-good model, in which the real exchange rate, stock and bond prices are jointly determined. The model predicts that stock market prices are correlated ...
Electric Rate Alternatives to Cogeneration
Sandberg, K. R. Jr.
"ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...
Rate making for Electric Utilities
Hanson, Carl Falster
1911-01-01T23:59:59.000Z
KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Rate making for Electric Utilities 1913 by Carl Falster Hanson This work was digitized by the Scholarly Communications program staff in the KU Libraries... • -• ---- 122 Chapter VII Going Concern and Franchise Value-- • 129 Chapter VIII Cost of Service • 147 Chanter IX Fixing of Rates — — — 248 Chapter X Systems of Charging for Electrical Energy 283 Chapter XI Public Service Commissions--- 308 2 BIBLIO...
Climate change cripples forests
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...
Climate change cripples forests
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...
A finite element method and the method of finite spheres enriched for analysis of wave propagations
Ham, Seounghyun, 1982-
2014-01-01T23:59:59.000Z
The objective of this thesis is to present a finite element method and the method of finite spheres enriched for the solution of various wave propagation problems. The first part of this thesis is to present an enriched ...
Laubie, Hadrien Hyacinthe
2013-01-01T23:59:59.000Z
Fracture mechanics is a field of continuum mechanics with the objective to predict how cracks initiate and propagate in solids. It has a wide domain of application. While aerospace engineers want to make sure a defect in ...
Numerical methods for electromagnetic wave propagation and scattering in complex media
Moss, Christopher D. Q. (Christopher Doniert Q.), 1973-
2004-01-01T23:59:59.000Z
Numerical methods are developed to study various applications in electromagnetic wave propagation and scattering. Analytical methods are used where possible to enhance the efficiency, accuracy, and applicability of the ...
Nagaraj, Mahavir
2004-11-15T23:59:59.000Z
The generalized theory of thermoelasticity was employed to characterize the coupled thermal and mechanical wave propagation in high performance microelectronic packages. Application of a Gaussian heat source of spectral ...
Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers
van der Veen, Cornelis J.
2007-01-07T23:59:59.000Z
1] Propagation of water-filled crevasses through glaciers is investigated based on the linear elastic fracture mechanics approach. A crevasse will penetrate to the depth where the stress intensity factor at the crevasse tip equals the fracture...
ZFX Controls Propagation and Prevents Differentiation of Acute T-Lymphoblastic and Myeloid Leukemia
Weisberg, Stuart P.
Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different ...
Elasto-viscoplastic wave propagation in single crystallographic silicon thin structure
Liu, Li
2006-08-16T23:59:59.000Z
non-contact, high resolution thermal measurement methodology applicable to Rapid Thermal Processing (RTP) motivated the work. A stress wave propagation model was developed and a complex, temperature-dependent elasto-viscoplastic constitutive law...
Chun, Kwang Hee
2013-08-01T23:59:59.000Z
The effect of coupled thermo-poroelastic behavior on hydraulic fracture propagation is of much interest in geothermal- and petroleum-related geomechanics problems such as wellbore stability and hydraulic fracturing as pore pressure and temperature...
Chun, Kwang Hee
2013-08-01T23:59:59.000Z
The effect of coupled thermo-poroelastic behavior on hydraulic fracture propagation is of much interest in geothermal- and petroleum-related geomechanics problems such as wellbore stability and hydraulic fracturing as pore pressure and temperature...
Dooley, Jeffrey B.
2011-08-08T23:59:59.000Z
The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, the freezing process...
FURTHER NOTES ON THE NATURAL HISTORY AND ARTIFICIAL PROPAGATION OF THE DIAMOND-BACK TERRAPIN.
on the artificial propagation of the diamond-back terrapin, Malaclemmys cenirata, at the United States Fisheries been directed since its beginning by several investigators. Originally Dr. R. E. Coker gave his
Fauske, H.F. [Fauske and Associates, Inc. (United States); Meacham, J.E.; Cash, R.J. [Westinghouse Hanford Co., Richland, WA (United States)
1995-09-29T23:59:59.000Z
Based on Fauske and Associates, Inc. Reactive System Screening Tool tests, the onset or initiation temperature for a ferrocyanide-nitrate propagating reaction is about 250 degrees Celcius. This is at about 200 degrees Celcius higher than current waste temperatures in the highest temperature ferrocyanide tanks. Furthermore, for current ambient waste temperatures, the tube propagation tests show that a ferrocyanide concentration of 15.5 wt% or more is required to sustain a propagation reaction in the complete absence of free water. Ignoring the presence of free water, this finding rules out propagating reactions for all the Hanford flowsheet materials with the exception of the ferrocyanide waste produced by the original In Farm flowsheet
ASYMPTOTIC AND INCREASING PROPAGATION OF CHAOS EXPANSIONS FOR GENEALOGICAL PARTICLE MODELS
Del Moral , Pierre
ASYMPTOTIC AND INCREASING PROPAGATION OF CHAOS EXPANSIONS FOR GENEALOGICAL PARTICLE MODELS PIERRE with genealogical tree models. Applications to nonlinear filtering problems and interacting Markov chain Monte Carlo algorithms are discussed. Key words. Interacting particle systems, historical and genealogical tree models
Electromagnetic wave propagation with negative phase velocity in regular black holes
Sharif, M., E-mail: msharif.math@pu.edu.pk; Manzoor, R., E-mail: rubabmanzoor9@yahoo.com [University of the Punjab, Department of Mathematics (Pakistan)
2012-12-15T23:59:59.000Z
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.
Climate Change and Transportation
Minnesota, University of
1 Climate Change and Transportation Addressing Climate Change in the Absence of Federal Guidelines;6 WSDOT Efforts · Climate Change Team · Project Level GHG Approach · Planning Level GHG Approach · Alternative Fuels Corridor · Recent legislation and research #12;7 WSDOT Efforts: Climate Change Team
Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory
Nakagawa, Y.; Toki, H. [Research Center for Nuclear Physics, Osaka University, Ibaraki-shi, Osaka 567-0047 (Japan); Voigt, A. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany); Max-Planck-Institut fuer Meteorologie, D-20146 Hamburg (Germany); Ilgenfritz, E.-M. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany); Karl-Franzens-Universitaet Graz, Institut fuer Physik, A-8010 Graz (Austria); Mueller-Preussker, M. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany); Nakamura, A. [Research Institute for Information Science and Education, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Saito, T. [Integrated Information Center, Kochi University, Akebono-cho, Kochi 780-8520 (Japan); Sternbeck, A. [CSSM, School of Chemistry and Physics, University of Adelaide, SA 5005 (Australia)
2009-06-01T23:59:59.000Z
We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb-gauge theory carrying out a joint analysis of data collected independently at the Research Center for Nuclear Physics, Osaka and Humboldt University, Berlin. We focus on the scaling behavior of these propagators at {beta}=5.8,...,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at a large momentum. As a byproduct we obtain the respective lattice scale dependences a({beta}) for the transversal gluon and the ghost propagator which indeed run faster with {beta} than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a({beta}) dependence as determined from the instantaneous time-time gluon propagator, D{sub 44}, remains a problem, though. The role of residual gauge-fixing influencing D{sub 44} is discussed.
Effects of pore fluids in the subsurface on ultrasonic wave propagation
Seifert, P.K.
1998-05-01T23:59:59.000Z
This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.
GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES
Routh, S. [Department of Physics, R. V. College of Engineering, Bangalore (India)] [Department of Physics, R. V. College of Engineering, Bangalore (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)] [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Hammer, R., E-mail: routhswati@rvce.edu.in, E-mail: zmusielak@uta.edu, E-mail: hammer@kis.uni-freiburg.de [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, Freiburg, D-79104 Germany (Germany)
2013-01-20T23:59:59.000Z
It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.
Light propagation through a coiled optical fiber and Pancharatnam phase
Rajendra Bhandari
2007-05-31T23:59:59.000Z
The nature of changes in the interference pattern caused by the presence of polarization-changing elements in one or both beams of an interferometer, in particular those caused by an effective optical activity due to passage of a polarized beam through a coiled optical fiber are clarified. It is pointed out that for an incident state that is not circularly polarized so that the two interfering beams go to different polarization states, there is an observable nonzero Pancharatnam phase shift between them which depends on the incident polarization state and on the solid angle subtended by the track of the $\\vec{k}$-vector at the centre of the sphere of k-vectors. The behaviour of this phase shift is singular when the two interfering states are nearly orthogonal. It is shown that for zero path difference between the two beams, the amplitude of intensity modulation as a function of optical activity is independent of the incident polarization state.
Incentive Rates- At What Cost?
Schaeffer, S. C.
's impact. In fact, I doubt that one can truly know the exact impact of a rate even after its inclusion in a tariff, assuming of course, that someone uses it. My own judgment is that there are currently examples of both effective and not so effective... tem see a positive impact on their rates from any successes with this tariff, over the expected life of the new facility. We did not count societal benefits like high tax bases for local authorities when reviewing existing ratepayer benefit - only...
Elliott, John
at Santiaguito volcano, Guatemala S.K. Ebmeier a,n , J. Biggs b , T.A. Mather a , J.R. Elliott a , G. Wadge c , F. We apply this to Santiaguito volcano, Guatemala, and measure increases in lava thickness of up to 140
Fast repetition rate (FRR) flasher
Kolber, Z.; Falkowski, P.
1997-02-11T23:59:59.000Z
A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.
Climate Change, Adaptation, and Development
Cole, Daniel H.
2008-01-01T23:59:59.000Z
Climate Change, Adaptation, and Development Daniel H. Cole*THE COSTS OF CLIMATE CHANGE . ADAPTATIONCONVENTION ON CLIMATE CHANGE . IV. A.
APPLIEDPHYSICAL Cross-correlations between volume change
, the volume traded, yields a power law (2028) P(Q > x) x-Q . [2] To our knowledge, the logarithmic volume not the trading volume, but rather the volume growth rate ~R, the difference in logarithm between two consecutive values of trading volume. To this end, we use several methods to analyze the properties of volume changes
Advertising Rates from May 2012
Peters, Richard
and commitments in line with newspaper format changes. SMH and The Age editions of Drive are available only in NSW bookings taken inside cancellation deadline are taken on a non-cancellation basis. No liability note that Fairfax Media will only accept material via electronic transmission. Fairfax Media operates
Burn propagation in a PBX 9501 thermal explosion
Henson, B. F.; Smilowitz, L.; Romero, J. J. [Chemistry Division, Los Alamos National Lab, Los Alamos, NM 87545 (United States); Sandstrom, M. M.; Asay, B. W. [DE Division, Los Alamos National Lab, Los Alamos, NM 87545 (United States); Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M. [Physics Division, Los Alamos National Lab, Los Alamos, NM 87545 (United States); McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M. [HX Division, Los Alamos National Lab, Los Alamos, NM 87545 (United States)
2007-12-12T23:59:59.000Z
We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.
Hard X-ray Emission During Flares and Photospheric Field Changes
Burtseva, O; Petrie, G J D; Pevtsov, A A
2015-01-01T23:59:59.000Z
We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the GONG and HMI instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the...
"Managing Department Climate Change"
Sheridan, Jennifer
"Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate Ronda
PowerChoice Residential Customer Response to TOU Rates
Peters, Jane S.; Moezzi, Mithra; Lutzenhiser, Susan; Woods, James; Dethman, Linda; Kunkle, Rick
2009-10-01T23:59:59.000Z
Research Into Action, Inc. and the Sacramento Municipal Utility District (SMUD) worked together to conduct research on the behaviors and energy use patterns of SMUD residential customers who voluntarily signed on to a Time-of-Use rate pilot launched under the PowerChoice label. The project was designed to consider the how and why of residential customers ability and willingness to engage in demand reduction behaviors, and to link social and behavioral factors to observed changes in demand. The research drew on a combination of load interval data and three successive surveys of participating households. Two experimental treatments were applied to test the effects of increased information on households ability to respond to the Time-of-Use rates. Survey results indicated that participants understood the purpose of the Time-of-Use rate and undertook substantial appropriate actions to shift load and conserve. Statistical tests revealed minor initial price effects and more marked, but still modest, adjustments to seasonal rate changes. Tests of the two information interventions indicated that neither made much difference to consumption patterns. Despite the lackluster statistical evidence for load shifting, the analysis points to key issues for critical analysis and development of residential Time-of-Use rates, especially pertinent as California sets the stage for demand response in more California residences.
Influence of finite radial geometry on the growth rate of ion-channel free electron laser
Bahmani, Mohammad; Hamzehpour, Hossein [Department of Physics, K.N. Toosi University of Technology, Tehran 15875-4416 (Iran, Islamic Republic of)] [Department of Physics, K.N. Toosi University of Technology, Tehran 15875-4416 (Iran, Islamic Republic of); Hasanbeigi, Ali [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofateh Avenue, Tehran 15614 (Iran, Islamic Republic of)] [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofateh Avenue, Tehran 15614 (Iran, Islamic Republic of)
2013-11-15T23:59:59.000Z
The influence of finite radial geometry on the instability of a tenuous relativistic electron beam propagating in an ion-channel in a waveguide is investigated. The instability analysis is based on the linearized Vlasov-Maxwell equations for the perturbation about a self-consistent beam equilibrium. With the help of characteristic method the dispersion relation for the TE-mode is derived and analyzed through the numerical solutions. It is found that the positioning of the beam radius R{sub b} relative to the waveguide radius R{sub c}, and the ion-channel frequency can have a large influence on the maximum growth rate and corresponding wave number.
Environment and Climate Change
Galles, David
Migration, Environment and Climate Change: ASSESSING THE EVIDENCE #12;The opinions expressed;Migration, Environment and Climate Change: ASSESSING THE EVIDENCE Edited by Frank Laczko and Christine with with the financial support of #12;3 Migration, Environment and Climate Change: Assessing the Evidence Contents
existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change
Nebraska-Lincoln, University of
1 Climate Change Workshop 2007 Adaptive Management and Resilience Relevant for the Platte River, UNL Climate Change Workshop 2007 · Resilience ·Why it matters · Adaptive Management ·How it helps ·Adaptive Capacity · What it is Overview Climate Change Workshop 2007 "A public Domain, once a velvet carpet
Forest Research: Climate Change
Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes
CLIMATE CHANGE & THE GREENHOUSE
Tobar, Michael
CLIMATE CHANGE & THE GREENHOUSE EFFECT #12;This development of these materials was supported under.nasa.gov/Features/BlueMarble/BlueMarble_history.php © 2014 University of Western Australia ISBN 978-0-646-93241-5 Title: Climate change and the greenhouse OF CONTENTS TABLE OF CONTENTS Introduction to climate change resources 5 Alternative conceptions 6 References
Infrastructure Institutional Change Principle
Broader source: Energy.gov [DOE]
Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.
WP-07 Rate Case Workshops (rates/meetings)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |and TerryVolunteering employees,W A8,WORKINGStudiesRates >
Massachusetts Takes On Climate Change
Kimmell, Ken; Laurie, Burt
2009-01-01T23:59:59.000Z
Decoupling Electricity Rates from Sales .. Regionalfuel diversity and electricity rates without considering theC. Decoupling Electricity Rates from Sales Massachusetts
Rate-dependent deformation behavior of poss-filled and plasticized poly(vinyl chloride)
Soong, Sharon Yu-Wen
2007-01-01T23:59:59.000Z
Polymers are known to exhibit strong time-dependent mechanical behavior. In different temperatures or frequency regimes, the rate sensitivities of polymers change as various primary and secondary molecular mobility mechanisms ...
Orradottir, Berglind
2002-01-01T23:59:59.000Z
only occurred where vegetation cover was sparse. Seasonal changes in infiltration rates, measured with double-ring infiltrometers, varied with soil frost depth and type, as indicated by the depth of visible ice crystals and size and number of ice...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
that is available immediately to serve load and is synchronized with the power system. Formula Rate: The formula rate for spinning reserve includes three components: Component 1:...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
within the first 10 minutes to take load and is synchronized with the power system. Formula Rate: The formula rate for supplemental reserve service includes three components:...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and system control and dispatch service needed to support the transmission service. Formula Rate: The formula rate for COTP firm and non-firm PTP transmission service includes...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and system control and dispatch service needed to support the transmission service. Formula Rate: The formula rate for CVP NITS includes three components: Component 1: The NITS...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and system control and dispatch service needed to support the transmission service. Formula Rate: The formula rate for PACI firm and non-firm transmission includes three...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
load and for maintaining scheduled interconnection frequency at 60-cycles per second. Formula Rate: The formula rate for regulation includes three components: Component 1: Annual...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
that is established in the service agreement or Interconnected Operations Agreements. Formula Rate: The formula rate for EI service includes three components: Component 1: EI...
2012 Wholesale Power and Transmission Rate
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rate Period wholly within the Payment Period. "PF Customer" means any entity eligible to purchase power from BPA at wholesale power rates applicable to "general requirements," as...
Conformation changes and protein folding induced by \\phi^4 interaction
Januar, M; Handoko, L T; 10.1142/9789814335614_0047
2011-01-01T23:59:59.000Z
A model to describe the mechanism of conformational dynamics in protein based on matter interactions using lagrangian approach and imposing certain symmetry breaking is proposed. Both conformation changes of proteins and the injected non-linear sources are represented by the bosonic lagrangian with an additional \\phi^4 interaction for the sources. In the model the spring tension of protein representing the internal hydrogen bonds is realized as the interactions between individual amino acids and nonlinear sources. The folding pathway is determined by the strength of nonlinear sources that propagate through the protein backbone. It is also shown that the model reproduces the results in some previous works.
Local Gauge Transformation for the Quark Propagator in an SU(N) Gauge Theory
Aslam, M Jamil; Gutierrez-Guerrero, L X
2015-01-01T23:59:59.000Z
In an SU(N) gauge field theory, the n-point Green functions, namely, propagators and vertices, transform under the simultaneous local gauge variations of the gluon vector potential and the quark matter field in such a manner that the physical observables remain invariant. In this article, we derive this intrinsically non perturbative transformation law for the quark propagator within the system of covariant gauges. We carry out its explicit perturbative expansion till O(g_s^6) and, for some terms, till O(g_s^8). We study the implications of this transformation for the quark-anti-quark condensate, multiplicative renormalizability of the massless quark propagator, as well as its relation with the quark-gluon vertex at the one-loop order. Setting the color factors C_F=1 and C_A=0, Landau-Khalatnikov-Fradkin transformation for the abelian case of quantum electrodynamics is trivially recovered.
1D3V PIC simulation of propagation of relativistic electron beam in an inhomogeneous plasma
Shukla, Chandrashekhar; Patel, Kartik
2015-01-01T23:59:59.000Z
A recent experimental observation has shown efficient transport of Mega Ampere of electron currents through aligned carbon nanotube arrays [Phys. Rev Letts. 108, 235005 (2012)]. The result was subsequently interpreted on the basis of suppression of the filamentation instability in an inhomogeneous plasma [Phys. Plasmas 21, 012108 (2014)]. This inhomogeneity forms as a result of the ionization of the carbon nanotubes. In the present work a full 1D3V Particle-in-Cell (PIC) simulations have been carried out for the propagation of relativistic electron beams (REB) through an inhomogeneous background plasma. The suppression of the filamentation instability, responsible for beam divergence, is shown. The simulation also confirms that in the nonlinear regime too the REB propagation is better when it propagates through a plasma whose density is inhomogeneous transverse to the beam. The role of inhomogeneity scale length, its amplitude and the transverse beam temperature etc., in the suppression of the instability is ...
Propagation of an asymmetric Gaussian beam in a nonlinear absorbing medium
Ianetz, D.; Kaganovskii, Yu.; Rosenbluh, M. [Jack and Pearl Resnick Institute for Advanced Technology, Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Wilson-Gordon, A. D. [Department of Chemistry, Bar-Ilan University, Ramat Gan 52900 (Israel)
2010-05-15T23:59:59.000Z
Propagation of an asymmetric Gaussian beam in a cubic-quintic absorbing medium is analyzed and compared with that of a symmetric beam in both lossless and lossy media. A 'collective variable approach' technique, based on trial functions, is used for solution of the general nonlinear Schroedinger equation. Using this variational approach, we investigate the self-focusing and breathing of an intense asymmetric Gaussian beam, taking into account both linear and nonlinear absorption. For a lossless medium, we define regions of oscillatory and diffractive beam propagation, for both symmetric and asymmetric beams. In particular, for an asymmetric beam, we find that there is no sharp boundary between the oscillatory self-focusing and oscillatory diffractive regimes of propagation. In the oscillatory region, we detect an interesting phenomenon -'beats' of the amplitude and perpendicular widths of the beam. For a lossy medium, significant differences between the amplitudes, widths, and phases of the symmetric and asymmetric beams have been predicted.
Breathing dynamics of an asymmetric Gaussian beam propagating in a saturable absorbing medium
Ianetz, D.; Kaganovskii, Yu.; Rosenbluh, M. [Jack and Pearl Resnick Institute for Advanced Technology, Department of Physics, Bar-Ilan University, Ramat-Gan IL-52900 (Israel); Wilson-Gordon, A. D. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel)
2010-12-15T23:59:59.000Z
Propagation of an asymmetric Gaussian beam in a medium with saturated nonlinear refractive index is analyzed using a 'collective variable approach' to solve the general nonlinear Schroedinger equation and compared with that of a symmetric beam in both lossless and lossy media. For a lossless medium, we construct a diagram which defines regions of oscillatory and diffractive propagation of an asymmetric beam and compare it with that of a symmetric beam. We detect breathing dynamics of the widths and amplitude of the asymmetric beam in the oscillatory regime of propagation and identify two different types of width and amplitude beating, Type 1 and 2, depending on the initial beam energy and saturation constant of the medium. This is in contrast to a cubic-quintic medium where only one type of beating is obtained.
He, Jiansen; Marsch, Eckart; Chen, Christopher H K; Wang, Linghua; Pei, Zhongtian; Zhang, Lei; Salem, Chadi S; Bale, Stuart D
2015-01-01T23:59:59.000Z
Magnetohydronamic turbulence is believed to play a crucial role in heating the laboratorial, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. Different from the traditional paradigm with counter-propagating Alfv\\'en waves, anti-sunward Alfv\\'en waves (AWs) are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond respectively to the dominant and sub-dominant populations of the imbalanced Els\\"asser variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orth...
Propagation and dispersion of sausage wave trains in magnetic flux tubes
Oliver, R; Terradas, J
2015-01-01T23:59:59.000Z
A localized perturbation of a magnetic flux tube produces a pair of wave trains that propagate in opposite directions along the tube. These wave packets disperse as they propagate, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. (2014) we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. Previous studies on wave propagation in magnetic wave guides have emphasized that the wave train dispersion is influenced by the particular dependence of the group velocity on the longitudinal wavenumber. Here we also find that long initial perturbations result in low amplitude wave packets and that large values of the magnetic tube to environment density ratio yield longer wave trains. To test the detectability ...
Ghost poles in the nucleon propagator: Vertex corrections and form factors
Krein, G. (Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona, 145-01405 Sao Paulo (Brazil)); Nielsen, M. (Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal, 20516-01498 Sao Paulo (Brazil)); Puff, R.D.; Wilets, L. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))
1993-06-01T23:59:59.000Z
Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Yasuhiro Nariyuki; Shuichi Matsukiyo; Tohru Hada
2008-04-25T23:59:59.000Z
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
Modelling of Reflective Propagating Slow-mode Wave in a Flaring Loop
Fang, X; Van Doorsselaere, T; Keppens, R; Xia, C
2015-01-01T23:59:59.000Z
Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in EUV images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized \\textit{Solar Dynamics Observatory}/Atmospheric Imaging Assembly (AIA) 131, 94~\\AA~emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km/s in an 80 Mm length loop with an average temperatu...
Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop
T. Minoshima; T. Yokoyama
2008-06-24T23:59:59.000Z
We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.
Cascading Power Outages Propagate Locally in an Influence Graph that is not the Actual Grid Topology
Hines, Paul D H; Rezaei, Pooya
2015-01-01T23:59:59.000Z
In a cascading power transmission outage, component outages propagate non-locally; after one component outages, the next failure may be very distant, both topologically and geographically. As a result, simple models of topological contagion do not accurately represent the propagation of cascades in power systems. However, cascading power outages do follow patterns, some of which are useful in understanding and reducing blackout risk. This paper describes a method by which the data from many cascading failure simulations can be transformed into a graph-based model of influences that provides actionable information about the many ways that cascades propagate in a particular system. The resulting "influence graph" model is Markovian, since component outage probabilities depend only on the outages that occurred in the prior generation. To validate the model we compare the distribution of cascade sizes resulting from n-2 contingencies in a 2896 branch test case to cascade sizes in the influence graph. The two dist...
Nonlinear effects of stretch on the flame front propagation
Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C. [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)
2010-10-15T23:59:59.000Z
In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01T23:59:59.000Z
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations
Min, Kyoung
2013-07-16T23:59:59.000Z
Better understanding and control of crack growth direction during hydraulic fracturing are essential for enhancing productivity of geothermal and petroleum reservoirs. Structural analysis of fracture propagation and impact ...
Power Rates Study Final Proposal
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)sets safety recordPotential partnerships and funding fromEnergyPowerRates5
Energy Management Through Innovative Rates
Williams, M. L.
1982-01-01T23:59:59.000Z
that of the general rate of inflation. Domestic gas prices will be affected as the provisions of the Natural Gas Policy Act of 1978 take effect. The price of both foreign and domestic oil supplies is also expected to increase. These increases are likely... Consumption Coal High sulfur Low sulfur Total 273 billion tons 160 billion tons 433 billion tons 6,90& 3,&3& 10,746 &23 Oil Lower 4& (crude) Natural gas liquids Alaska 30 billion barrels 6 billion barrels 10 billion barrels 176 37 59 Total...
Rate Schedules | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334 318Cubic Feet)89312Forums OutreachPower Plant2-392Grid IQ Quiz: TestHeatRanda FahmyRate
Energy Management Through Innovative Rates
Williams, M. L.
1982-01-01T23:59:59.000Z
the exception of the recent buildup of the Strategic Petroleum Reserve, the United States is no better prepared to deal with significant disruptions in oil imports than it was during the 1973 oil embargo." The study stresses the importance of strategic... levels of consumption for 500 years or more. Petroleum reserves are considered to be adequate for the next 50 to 75 years. (See Figure 1) However, growth in the rate of fuel consumption could mean current fuel supplies may be exhausted within 20...
Kolber, Z.; Falkowski, P.
1995-06-20T23:59:59.000Z
A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants is revealed. The phytoplankton or higher plants are illuminated with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes. 14 figs.
Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration
Sharma, B. S., E-mail: bs-phy@yahoo.com; Jain, Archana [Government College Kota, Kota 324001 (India)] [Government College Kota, Kota 324001 (India); Jaiman, N. K. [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India)] [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India); Gupta, D. N. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)] [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jang, D. G.; Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)] [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kulagin, V. V. [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)] [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)
2014-02-15T23:59:59.000Z
Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (?10{sup 19}?W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.
Arseni Goussev
2012-01-06T23:59:59.000Z
We address the phenomenon of diffraction of non-relativistic matter waves on openings in absorbing screens. To this end, we expand the full quantum propagator, connecting two points on the opposite sides of the screen, in terms of the free particle propagator and spatio-temporal properties of the opening. Our construction, based on the Huygens-Fresnel principle, describes the quantum phenomena of diffraction in space and diffraction in time, as well as the interplay between the two. We illustrate the method by calculating diffraction patterns for localized wave packets passing through various time-dependent openings in one and two spatial dimensions.
School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André
2014-12-11T23:59:59.000Z
Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.
Curvature aided long range propagation of short laser pulses in the atmosphere
Yedierler, Burak [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)
2013-03-15T23:59:59.000Z
The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.
Seismic wave propagation in thinly-layered media with steep reflectors
Deng, H.L.
1992-05-01T23:59:59.000Z
Seismic waves reflected from steep reflectors in the earth`s subsurface spend a significant amount of time travelling more or less horizontally. Therefore, accurate imaging of steep geologic structure requires knowledge of the behavior of these horizontally propagating waves. In particular, the effect of tunneling on seismic waves propagating in thinly-layered media must be understood. I describe a method for modeling seismic waves traveling in thinly-layered media. This method, a frequency-wavenumber finite-difference scheme coupled with the Born approximation, is useful in studying seismic waves reflected from steep geologic structures.
Nagaraj, Mahavir
2004-11-15T23:59:59.000Z
of the relaxation time constants. This method has been adapted from Suh [15]. Consider a plane harmonic wave propagating with a phase velocity c in a direction defined by the propagation vector p represented by [(. )](,) ixpctUxt Ade? ?= (3-1) where x... [(. )]ixpct? ? (3-2) 20 A similar representation can be found in Achenbach [20]. Substituting U and ? into Equations 2-15 and 2-16 and eliminating the constant B, we obtain, 2()()(.)cd pdp?? ???++ + 2 22 0 11 2 2 1( ) (.) 0 []v v Tc it c t c...
Equivalence of the channel-corrected-T-matrix and anomalous-propagator approaches to condensation
Morawetz, K. [Muenster University of Applied Science, Stegerwaldstrasse 39, 48565 Steinfurt (Germany); International Institute of Physics (IIP), Universidade Federal do Rio grande do Norte, BrazilAvenida Odilon Gomes de Lima, 1722-CEP 59078-400, Natal/RN (Brazil) and Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany)
2010-09-01T23:59:59.000Z
Any many-body approximation corrected for unphysical repeated collisions in a given condensation channel is shown to provide the same set of equations as they appear by using anomalous propagators. The ad hoc assumption in the latter theory about nonconservation of particle numbers can be released. In this way, the widespread used anomalous-propagator approach is given another physical interpretation. A generalized Soven equation follows which improves a chosen approximation in the same way as the coherent-potential approximation improves the averaged T matrix for impurity scattering.
Changes of O/M, dimension and microstructure of MOX pellet during heat treatment
Watanabe, M.; Kato, M. [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Nakagun, Ibaraki 319-1194 (Japan); Sunaoshi, T. [Inspection Development Company, Tokai-mura, Ibaraki, 319-1194 (Japan)
2013-07-01T23:59:59.000Z
The oxidation and reduction behaviors of sintered (Pu{sub 0.3}U{sub 0.7})O{sub 2-x} pellets have been studied at 1873 K under a controlled oxygen partial pressure. From the results of oxygen-to-metal (O/M) ratio changes, dimensional and structural changes, it was concluded that the crack nucleation-propagation and the local density change of pores were caused by the tensile and compressive stresses due to the O/M ratio distribution in the direction of the pellet radius. (authors)