Sample records for rare metals plant

  1. About Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Rare Earth Metals What Are Rare Earths? Ames Laboratory's Materials Preparation Center The Ames Process for Purification of Rare Earths USGS Rare Earth Information Rare Earth...

  2. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  3. The Colorado Rare Plant Technical Committee Rare Plant Symposium

    E-Print Network [OSTI]

    The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

  4. Ecotoxicity of rare earth elements Rare earth elements (REEs) or rare earth metals is the

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Ecotoxicity of rare earth elements Info Sheet Rare earth elements (REEs) or rare earth metals isolated. Actually, most rare earth elements exist in the Earth's crust in higher concentrations than though most people have never heard of rare earth elements, sev- eral of them govern mankind's modern

  5. The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium

    E-Print Network [OSTI]

    The Colorado Rare Plant Technical Committee presents: 5th Annual Colorado Rare Plant Symposium September 5, 2008 Montrose, Colorado Sponsored by: Colorado Rare Plant Technical CommitteeColorado Rare Plant Technical Committee Colorado Native Plant Society University of Colorado Herbarium US Fish

  6. The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant

    E-Print Network [OSTI]

    The Colorado Rare Plant Technical Committee presents: 2nd Annual Rare Plant Symposium Friday, September 16th, 2005 8am-noon: 2nd Annual Colorado Rare Plant Symposium (Discuss G1 species) 6:30-7:30pm with the Colorado Native Plant Society's Annual Meeting Sponsored by: #12;The Second Annual Colorado Rare Plant

  7. The Colorado Rare Plant Technical Committee presents

    E-Print Network [OSTI]

    The Colorado Rare Plant Technical Committee presents: 3rd Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado and Eastern Colorado (Las Animas, Weld, Kit Carson, Huerfano, Pueblo, Otero, Prowers, Fremont, and El Paso

  8. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01T23:59:59.000Z

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  9. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01T23:59:59.000Z

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  10. Valuable rare earth metals from old electronics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valuable rare earth metals from old electronics Scientists at the Critical Materials Institute have developed a two-step recovery process that makes recycling rare-earth metals...

  11. Rare Plant Conservation Planning Workshop Results

    E-Print Network [OSTI]

    ­ one of the most imperiled species in Colorado. The species is at risk of extinction due to its narrowRare Plant Conservation Planning Workshop Results PAGOSA SPRINGS Plant Species of Focus Pagosa............................................................................................................................. 12 Attachment 1. Additional key species and plant communities in the Pagosa Springs area 13

  12. The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium

    E-Print Network [OSTI]

    The Colorado Rare Plant Technical Committee presents: 6th Annual Colorado Rare Plant Symposium September 11, 2009 Loveland, Colorado Sponsored by:Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado Natural Heritage Program USDA Forest Service #12

  13. The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium

    E-Print Network [OSTI]

    The Colorado Rare Plant Technical Committee presents: 7th Annual Colorado Rare Plant Symposium September 10, 2010 Denver, Colorado Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado Natural Heritage Program USDA Forest Service #12;#12;Aletes

  14. ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS

    E-Print Network [OSTI]

    Boyer, Edmond

    ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS A. R. MACKINTOSH H. C. Mrsted Institute terres rares Ikgeres. Abstract. -The magnetic properties of the light rare earth metals are reviewed interaction. The discussion is illustrated by recent magnetization and neutron diffraction measurements

  15. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  16. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  17. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  18. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  19. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  20. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  1. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  2. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01T23:59:59.000Z

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  3. New CMI process recycles valuable rare earth metals from old...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New CMI process recycles valuable rare earth metals from old electronics Contacts: For release: Feb. 26, 2015 Ryan Ott, Critical Materials Institute, 515-294-3616 Laura Millsaps,...

  4. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA)

    1992-12-29T23:59:59.000Z

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  5. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29T23:59:59.000Z

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  6. RARE-EARTH METALS--1997 61.1 RARE-EARTH METALS

    E-Print Network [OSTI]

    million, to thulium and lutetium, the least abundant rare-earth elements at about 0.5 parts per million. Scandium, atomic number 21, is the lightest rare-earth element. It is the 31st most abundant element and is the second most abundant rare earth in the Earth's crust. The lanthanides consist of a group of 15 elements

  7. Nuclear orientation studies of rare-earth metals

    SciTech Connect (OSTI)

    Krane, K.S.; Morgan, G.L.; Moses, J.D.

    1980-01-01T23:59:59.000Z

    The angular distributions of gamma rays from /sup 166m/Ho and /sup 160/Tb aligned at low temperatures in, respectively, Ho metal and Tb metal have been measured. Large hyperfine splittings, expected for the rare earths, have been deduced from the temperature dependence of the gamma-ray anisotropies. Both samples show a macroscopic magnetic anisotropy that is not consistent with an interpretation in terms of a randomly oriented polycrystalline structure.

  8. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA); Lincoln, Lanny P. (Woodward, IA)

    1992-02-11T23:59:59.000Z

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  9. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11T23:59:59.000Z

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  10. 7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado

    E-Print Network [OSTI]

    7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado September 10, 2010; 9:00 am-4:00 pm UC Denver Auraria Campus Denver, Colorado Join members of the Colorado Rare Plant Technical Committee (RPTC) for the 7th Annual Colorado Rare Plant Symposium. The RPTC

  11. DOE Announces RFI on Rare Earth Metals | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrillingRFI on Rare Earth Metals DOE

  12. DOE - Office of Legacy Management -- International Rare Metals Refinery Inc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38 Rare Metals

  13. Metal resistance sequences and transgenic plants

    SciTech Connect (OSTI)

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12T23:59:59.000Z

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  14. Plant Population Viability and Restoration Potential for Rare Plants

    E-Print Network [OSTI]

    solar developments in the Mojave and Sonoran deserts of California will significantly impact plants to be affected by utilityscale solar energy Mojave Desert wildflowers in California's Mojave National the biological impacts of solar projects within the Mojave and Colorado deserts of California. Population

  15. Reduction Chemistry of Rare-Earth Metal Complexes: Toward New Reactivity and Properties

    E-Print Network [OSTI]

    Huang, Wenliang

    2013-01-01T23:59:59.000Z

    Elsner, A. ; Milliken, M. As hybrid cars gobble rare metals,rare-earths are heavily used in fuel-efficient hybrid cars.In a leading model of hybrid car, 1 kilogram of neodymium

  16. Solvent extraction of rare-earth metals by carboxylic acids

    SciTech Connect (OSTI)

    Preez, A.C. du; Preston, J.S. [Mintek, Randburg (South Africa)

    1992-04-01T23:59:59.000Z

    The solvent extraction of the trivalent lanthanides and yttrium from nitrate media by solutions of carboxylic acids in xylene has been studied. Commercially available carboxylic acids such as Versatic 10 and naphthenic acids were used, as well as model compounds of known structure, such as 2-ethylhexanoic and 3-cyclohexylpropanoic acids. In a few cases, extraction of the metals from sulphate and chloride solutions was also investigated. The dependence of the extraction properties of the carboxylic acids on the atomic number of the lanthanide shows a definite relationship to the steric bulk of the carboxylic acid molecule quantified by means of the steric parameter, E{sub s}{prime} of the substituent alkyl group. The stoichiometries of the extracted complexes for representative light (La), middle (Gd) and heavy (Lu) rare-earth metals were investigated by the slope-analysis technique for a sterically hindered acid (Versatic 10 acid; -E{prime}{sub s} = 3.83) and an acid with low steric hindrance (3-cyclohexylpropanoic acid; -E{prime}{sub s} = 0.28). 14 refs., 13 figs., 3 tabs.

  17. Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1

    E-Print Network [OSTI]

    Deng, Xing-Wang

    Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1 , Jigang Lic,d,1 , Qing (sent for review May 15, 2014) It has long been observed that rare earth elements (REEs) regulate, such as rare earth elements (REEs), have been observed for a long time to be beneficial to plant growth (1, 2

  18. MATERIALS WORLD January 201216 Dr Steve Barrett from the University of Liverpool, UK, has been studying rare earth metals for

    E-Print Network [OSTI]

    Barrett, Steve D.

    to the functionality of these scarce elements. S tudies into the properties of rare earth metals have been active since of rare earth metals have been examined since the elements themselves were discovered. Much studying rare earth metals for 20 years. Here he explains how preparation of the surface layer is crucial

  19. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    SciTech Connect (OSTI)

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K. [Physics, University of Alabama at Birmingham (UAB), 310 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294-1170 (United States); Hope, Kevin M. [Biology, Chemistry, and Mathematics, University of Montevallo, Harman Hall, Station 6480, Montevallo, AL, 35115 (United States)

    2008-07-01T23:59:59.000Z

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalization in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)

  20. Yttrium and rare earth stabilized fast reactor metal fuel

    DOE Patents [OSTI]

    Guon, Jerold (Woodland Hills, CA); Grantham, LeRoy F. (Calabasas, CA); Specht, Eugene R. (Simi Valley, CA)

    1992-01-01T23:59:59.000Z

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  1. Understanding of Rare Earth Metals from Theory | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014Cell Imaging. |fromof Rare

  2. Rare Earth Metals for Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1Principal InvestigatorsLivingstonNNSARareRare

  3. Metallic beam development for the Facility for Rare Isotope Beam

    SciTech Connect (OSTI)

    Machicoane, Guillaume, E-mail: machicoa@nscl.msu.edu; Cole, Dallas; Leitner, Daniela; Neben, Derek; Tobos, Larry [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)] [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15T23:59:59.000Z

    The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will accelerate a primary ion beam to energies beyond 200 MeV/u using a superconducting RF linac and will reach a maximum beam power of 400 kW on the fragmentation target. The beam intensity needed from the ECR ion source is expected to be between 0.4 and 0.5 emA for most medium mass to heavy mass elements. Adding to the challenge of reaching the required intensity, an expanded list of primary beams of interest has been established based on the production rate and the number of isotope beams that could be produced with FRIB. We report here on the development done for some of the beam in the list including mercury (natural), molybdenum ({sup 98}Mo), and selenium ({sup 82}Ser)

  4. 7th Annual Colorado Rare Plant Symposium G1 Plants of Colorado; Current Conservation Status and Needs

    E-Print Network [OSTI]

    1 7th Annual Colorado Rare Plant Symposium G1 Plants of Colorado; Current Conservation Status, Colorado Meeting Minutes Sponsors: CoNPS, CNHP, DBG, CU Herbarium, USFS, USFW Recorders: David Anderson symposium was held in Steamboat Springs in 2004, and covered all of Colorado's threatened, endangered

  5. TOLERANCE OF HEAVY METALS IN VASCULAR PLANTS: ARSENIC HYPERACCUMULATIONBY

    E-Print Network [OSTI]

    Ma, Lena

    CHAPTER 28 b TOLERANCE OF HEAVY METALS IN VASCULAR PLANTS: ARSENIC HYPERACCUMULATIONBY CHINESE the roots take up colossal amounts of a toxic metal from soils and rapidly sequester into their above hyperaccumulation in the light of accumulated knowledge on heavy metal tolerance in higher plants. 1.INTRODUCTION

  6. Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms

    E-Print Network [OSTI]

    Chu, Xi

    Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms Xi Chu Department of Chemistry, University of Montana, Missoula, Montana 59812; published 29 March 2007 The dynamic scalar and tensor polarizabilities of the rare-earth-metal atoms

  7. Ternary rare earth and actinoid transition metal carbides viewed as carbometalates

    SciTech Connect (OSTI)

    Dashjav, Enkhtsetseg [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kreiner, Guido [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Schnelle, Walter [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Wagner, Frank R. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kniep, Ruediger [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany)], E-mail: Kniep@cpfs.mpg.de; Jeitschko, Wolfgang [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Wilhelm-Klemm-Strasse 8, D-48149 Muenster (Germany)], E-mail: jeitsch@uni-muenster.de

    2007-02-15T23:59:59.000Z

    Ternary carbides A{sub x}T{sub y}C{sub z} (A=rare earth metals and actinoids; T=transition metals) with monoatomic species C{sup 4-} as structural entities are classified according to the criteria (i) metal to carbon ratio, (ii) coordination number of the transition metal by carbon atoms, and (iii) the dimensionality of the anionic network [T{sub y}C{sub z}]{sup n-}. Two groups are clearly distinguishable, depending on the metal to carbon ratio. Those where this ratio is equal to or smaller than 2 may be viewed as carbometalates, thus extending the sequence of complex anions from fluoro-, oxo-, and nitridometalates to carbometalates. The second group, metal-rich carbides with metal to carbon ratios equal to or larger than 4 is better viewed as typical intermetallics (''interstitial carbides''). The chemical bonding properties have been investigated by analyzing the Crystal Orbital Hamilton Population (COHP). The chemical bonding situation with respect to individual T-C bonds is similar in both classes. The main difference is the larger number of metal-metal bonds in the crystal structures of the metal-rich carbides.

  8. Hanford Site Rare Plant Monitoring Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Salstrom, D; Easterly, R; Lindsey, Cole T.; Nugent, John J.

    2013-03-21T23:59:59.000Z

    Two patches of Columbian yellowcress on the Hanford Reach were visited in both 2011 and 2012 to compare ramet counts between years: near Allerd Pumphouse (Rkm 615.4) and near White Bluffs Boat Launch (Rkm 593.3) (Figure 3). In 2012, the population near Allerd Pumphouse had 45 ramets present within a 5x3 m area. At the same population in 2011, there were 60 ramets. In 2012, the population near White Bluffs Boat Launch had 105 ramets in a 2x2 m area. At the same population in 2011, there were 100 ramets. This data shows that while annual variability does exist, ramet counts were relatively similar from 2011 to 2012. This is likely due to the similar flow regimes of 2011 and 2012, which both had above average snowpack, high flows, and extended spring flooding seasons. A total of 19.6 miles (31.5 km) of the Hanford shoreline were surveyed in 2012, with ten patches identified and approximately 1,250 ramets counted. It is not known how many individual plants this count represents due to the rhizomatous nature of the species. Two of these sites were identified previously in the WNHP database, and the remaining eight were newly identified locations. Eleven of the ramets had flowers and/or buds in the patches located during 2012, but no fruits were found

  9. Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare-metal

    E-Print Network [OSTI]

    Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare and the heavy rare earth elements in the world. Much of the potentially economic mineralization was concentrated of Science Department of Earth and Planetary Sciences McGill University, Montreal, QC, Canada February 2010

  10. Heavy Metal Tolerance in Plants J.ANTONOVIOS

    E-Print Network [OSTI]

    Antonovics, Janis

    #12;Heavy Metal Tolerance in Plants J.ANTONOVIOS Department of Biology. University of Stirling to Sprays and Toxicants . . 33 3.Metal Tolerance in Laboratory Strains . . . 34 Present address: Department.K. I. Introduction . . . . . . . . . . . 2 I1. Ecology of Metal Tolerance . . . . . . . . . 4 A

  11. Managing Natural and Reintroduced Rare Plant Populations within a Large Government Reservation

    SciTech Connect (OSTI)

    Carlsen, T M; Paterson, L E; Alfaro, T M

    2009-07-15T23:59:59.000Z

    California is home to many large government reservations that have been in existence for decades. Many of these reservations were formed to support various Department of Defense and Department of Energy national defense activities. Often, only a very small percentage of the reservation is actively used for programmatic activities, resulting in large areas of intact habitat. In some cases, this has benefited rare plant populations, as surrounding lands have been developed for residential or industrial use. However, land management activities such as the suppression or active use of fire and other disturbance (such as fire trail grading) can also work to either the detriment or benefit of rare plant populations at these sites. A management regime that is beneficial to the rare plant populations of interest and is at best consistent with existing site programmatic activities, and at a minimum does not impact such activities, has the best potential for a positive outcome. As a result, some species may be 'difficult' while others may be 'easy' to manage in this context, depending on how closely the species biological requirements match the programmatic activities on the reservation. To illustrate, we compare and contrast two rare annual plant species found at Lawrence Livermore National Laboratory's Site 300. Although several populations of Amsinckia grandiflora have been restored on the site, and all populations are intensively managed, this species continues to decline. In contrast, Blepharizonia plumosa appears to take advantage of the annual controlled burns conducted on the site, and is thriving.

  12. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect (OSTI)

    Han, M.K.

    2006-05-06T23:59:59.000Z

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  13. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect (OSTI)

    Mi-Kyung Han

    2006-05-01T23:59:59.000Z

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  14. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  15. Metal resistant plants and phytoremediation of environmental contamination

    DOE Patents [OSTI]

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20T23:59:59.000Z

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  16. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    E-Print Network [OSTI]

    Sneden, Christopher; Cowan, John J; Ivans, Inese I; Hartog, Elizabeth A Den

    2009-01-01T23:59:59.000Z

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  17. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus; Zhang, Fen

    2014-05-13T23:59:59.000Z

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  18. Resource management plan for the Oak Ridge Reservation. Volume 29, Rare plants on the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Cunningham, M. [Science Applications International Corp., Oak Ridge, TN (United States); Pounds, L. [Tennessee Univ., Knoxville, TN (United States); Oberholster, S. [USDA Forest Service, Montgomery, AL (United States); Parr, P.; Mann, L. [Oak Ridge National Lab., TN (United States); Edwards, L. [Clemson Univ., SC (United States). Dept. of Forestry; Rosensteel, B. [JAYCOR Environmental, Vienna, VA (United States)

    1993-08-01T23:59:59.000Z

    Rare plant species listed by state or federal agencies and found on or near the Department of Energy`s Oak Ridge Reservation (ORR) are identified. Seventeen species present on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these are under review by the US Fish and Wildlife Service for possible listing as threatened or endangered species. Ten species listed by the state occur near and may be present on the ORR; four are endangered in Tennessee, and one is a candidate for federal listing. A range of habitats supports the rare taxa on the ORR: River bluffs, calcareous barrens, wetlands, and deciduous forest. Sites for listed rare species on the ORR have been designated as Research Park Natural Areas. Consideration of rare plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival. In addition, the National Environmental Policy Act requires that federally funded projects avoid or mitigate impacts to listed species. The list of rare plant species and their location on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated.

  19. Subcell Structure and Two Different Superstructures of the Rare Earth Metal Silicide Carbides Y

    SciTech Connect (OSTI)

    Jeitschko, Wolfgang; Gerdes, Martin H.; Witte, Anne M.; Rodewald, Ute Ch.

    2001-01-01T23:59:59.000Z

    The title compounds crystallize with a very pronounced subcell structure that has been determined from single-crystal X-ray diffractometer data of all four compounds. Only subcell (and no superstructure) reflections have been observed for Pr{sub 3}Si{sub 2}C{sub 2}: space group Cmmm, a=396.7(1) pm, b=1645.2(3) pm, c=439.9(1) pm, R=0.019 for 309 structure factors and 20 variable parameters. In this subcell structure there are C{sub 2} pairs with split atomic positions. This structure may be considered the thermodynamically stable forms of these compounds at high temperatures. Two different superstructures with doubled a or c axes, respectively, of the subcell have been observed, where the C{sub 2} pairs have different orientations. In the structure of Tb{sub 3}Si{sub 2}C{sub 2} the a axis of the subcell is doubled. The resulting superstructure in the standard setting has the space group Pbcm: a=423.6(1) pm, b=770.7(1) pm, c=1570.2(3) pm, R=0.031 f or 1437 structure factors and 22 variable parameters. Dy{sub 3}Si{sub 2}C{sub 2} has the same superstructure: a=420.3(1) pm, b=767.5(1) pm, c=1561.1(3) pm, R=0.045, 801 F values, 22 variables. In the structure of Y{sub 3}Si{sub 2}C{sub 2} the c axis of the subcell is doubled, resulting in a body-centered space group with the standard setting Imma: a=842.6(2) pm, b=1563.4(2) pm, c=384.6(1) pm, R=0.035, 681 F values, 15 variables. In all of these structures the rare earth atoms form two-dimensionally infinite sheets of edge-sharing octahedra that contain the C{sub 2} pairs. In between these sheets there are zig-zag chains of silicon atoms with Si-Si distances varying between 246.2(3) and 253.6(3) pm, somewhat longer than the two-electron bonds of 235 pm in elemental silicon, suggesting a bond order of 0.5 for the Si-Si bonds. The C-C distances in the C{sub 2} pairs vary between 127(1) and 131(1) pm, corresponding to a bond order of approximately 2. 5. Hence, using oxidation numbers, the compounds may to a first approximation be represented by the formula (R{sup +3}){sub 3}(Si{sup {minus}3}){sub 2}(C{sub 2}){sup {minus}3}. A more detailed analysis of the interatomic distances showed that the shortest R-R distances are comparable with the R-R distances in the structures of the rare earth elements, thus indicating some R-R bonding. Therefore, the oxidation numbers of the rare earth atoms are slightly lower than +3, in agreement with the metallic conductivity of these compounds. As a consequence, considering the relatively short Si-Si bonds, the absolute value of the oxidation number of the silicon atoms may be lower than 3, resulting in a Si-Si bond order somewhat higher than 0.5.

  20. Electron/phonon coupling in group-IV transition-metal and rare-earth nitrides

    SciTech Connect (OSTI)

    Mei, A. B.; Rockett, A. [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States)] [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden)] [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden); Petrov, I.; Greene, J. E. [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States) [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States); Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden)

    2013-11-21T23:59:59.000Z

    Transport electron/phonon coupling parameters and Eliashberg spectral functions ?{sub tr}{sup 2}F(??) are determined for group-IV transition-metal (TM) nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 < T < 300 K) resistivity measurements of high-crystalline-quality stoichiometric epitaxial films grown on MgO(001) by magnetically-unbalanced reactive magnetron sputtering. Transport electron/phonon coupling parameters ?{sub tr} vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in ?{sub tr} among the TM nitrides and the weak coupling in CeN are consistent with measured superconducting transition temperatures 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and <4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in ?{sup 2}F(??), corresponding to regions in energy-space for which electrons couple to acoustic ??{sub ac} and optical ??{sub op} phonon modes, are centered at ??{sub ac} = 33 and ??{sub op} = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15 ± 0.1 for all four nitrides, indicating similar electron/phonon coupling strengths ?{sub tr}(??) for both modes.

  1. Metals concentration in salt marshes plants and kelp around San Diego: A window to environment quality

    E-Print Network [OSTI]

    Deheyn, Dimitri

    2009-01-01T23:59:59.000Z

    in salt marshes plants and kelp around San Diego: A windowassessing levels of metals in kelp and salt marsh plants inmetals levels found in kelp and salt marsh plants reflect

  2. Magnetism of the rare earth, 3d --Theoretical review Abstract. --Compounds of rare earth and transition metals exhibit unusual and quite different behaviour. In

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Introduction. -- Intermetallic compounds bet- ween rare earth and 3d elements have received much attention similarities of rare earth elements allow to substitute themselves one another in a given material. The mainMagnetism of the rare earth, 3d -- Theoretical review Abstract. -- Compounds of rare earth

  3. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect (OSTI)

    Magee, E. W., E-mail: magee1@llnl.gov; Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15T23:59:59.000Z

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ?10{sup ?7} Torr at ?1000?°C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  4. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Mancuso, Michael; Moseley, Robert

    1994-12-01T23:59:59.000Z

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  5. Synchrotron Diffraction Studies of Spontaneous Magnetostriction in Rare Earth Transition Metal Compounds

    SciTech Connect (OSTI)

    Ning Yang

    2004-12-19T23:59:59.000Z

    Thermal expansion anomalies of R{sub 2}Fe{sub 14}B and R{sub 2}Fe{sub 17}C{sub x} (x = 0,2) (R = Y, Nd, Gd, Tb, Er) stoichiometric compounds are studied with high-energy synchrotron X-ray powder diffraction using Debye-Schemer geometry in temperature range 10K to 1000K. Large spontaneous magnetostriction up to their Curie temperatures (T{sub c}) is observed. The a-axes show relatively larger invar effects than c-axes in the R{sub 2}Fe{sub 14}B compounds whereas the R{sub 2}Fe{sub 17}C{sub x} show the contrary anisotropies. The iron sub-lattice is shown to dominate the spontaneous magnetostriction of the compounds. The contribution of the rare earth sublattice is roughly proportional to the spin magnetic moment of the rare earth in the R{sub 2}Fe{sub 14}B compounds but in R{sub 2}Fe{sub 17}C{sub x}, the rare earth sub-lattice contribution appears more likely to be dominated by the local bonding. The calculation of spontaneous magnetostrain of bonds shows that the bonds associated with Fe(j2) sites in R{sub 2}Fe{sub 14}B and the dumbbell sites in R{sub 2}Fe{sub 17}C{sub x} have larger values, which is strongly related to their largest magnetic moment and Wigner-Seitz atomic cell volume. The roles of the carbon atoms in increasing the Curie temperatures of the R{sub 2}Fe{sub 17} compounds are attributed to the increased separation of Fe hexagons. The R{sub 2}Fe{sub 17} and R{sub 2}Fe{sub 14}B phases with magnetic rare earth ions also show anisotropies of thermal expansion above T{sub c}. For R{sub 2}Fe{sub 17} and R{sub 2}Fe{sub 14}B the a{sub a}/a{sub c} > 1 whereas the anisotropy is reversed with the interstitial carbon in R{sub 2}Fe{sub 17}. The average bond magnetostrain is shown to be a possible predictor of the magnetic moment of Fe sites in the compounds. Both of the theoretical and phenomenological models on spontaneous magnetostriction are discussed and a Landau model on the spontaneous magnetostriction is proposed.

  6. DOE Announces Second RFI on Rare Earth Metals | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrillingRFI on Rare Earth

  7. Uptake and Cellular Compartmentalization of Metals from the Rhizosphere by Hyperaccumulating Plants: A Real Time

    E-Print Network [OSTI]

    Sparks, Donald L.

    from analytical techniques that lack sufficient sensitivity or require extensive sample handling specific fluorescent dyes were used to track the ingress of metals into plant roots exposed to metal laden into and within plant cells. Speaker Information: David McNear, University of Delaware, 152 Townsend Hall, Newark

  8. IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT) Najla LASSOUED1@emse.fr Abstract We are testing the impact of heavy metals in sludge from urban and industrial wastewater treatment> Cu> Ni> Co> Cd The contents of heavy metals in the sludge is made very high and exceed European

  9. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13T23:59:59.000Z

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  10. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04T23:59:59.000Z

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  11. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 1. Scandium Group (Sc, Y, La)

    SciTech Connect (OSTI)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warsaw (Poland); Gumi?ski, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warsaw (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha (China)

    2014-03-15T23:59:59.000Z

    This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) are treated as the input substances in this report. The literature has been covered through the end of 2013.

  12. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOE Patents [OSTI]

    O'Neill, Malcolm A. (Winterville, GA); Pellerin, Patrice J. M. (Montpellier, FR); Warrenfeltz, Dennis (Athens, GA); Vidal, Stephane (Combaillaux, FR); Darvill, Alan G. (Athens, GA); Albersheim, Peter (Athens, GA)

    1999-01-01T23:59:59.000Z

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  13. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOE Patents [OSTI]

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02T23:59:59.000Z

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  14. EIS-0096: Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to evaluate the environmental impacts associated with five potential sets of actions to address the potential public health hazards of residual radioactive materials remaining at the inactive uranium processing site in Canonsburg, Pennsylvania.

  15. A survey of repair practices for nuclear power plant containment metallic pressure boundaries

    SciTech Connect (OSTI)

    Oland, C.B.; Naus, D.J. [Oak Ridge National Lab., TN (United States)

    1998-05-01T23:59:59.000Z

    The Nuclear Regulatory Commission has initiated a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and leaktightness of metal containment vessels and steel liners of concrete containments in nuclear power plants. One of the program objectives is to identify repair practices for restoring metallic containment pressure boundary components that have been damaged or degraded in service. This report presents issues associated with inservice condition assessments and continued service evaluations and identifies the rules and requirements for the repair and replacement of nonconforming containment pressure boundary components by welding or metal removal. Discussion topics include base and welding materials, welding procedure and performance qualifications, inspection techniques, testing methods, acceptance criteria, and documentation requirements necessary for making acceptable repairs and replacements so that the plant can be returned to a safe operating condition.

  16. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    SciTech Connect (OSTI)

    Yan, Ka King [Ames Laboratory

    2013-05-02T23:59:59.000Z

    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe{sub 2}){sub 3} and KC(SiHMe{sub 2}){sub 3}TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe{sub 2}){sub 3} with potassium benzyl. KC(SiHMe{sub 2}){sub 3}TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing ?-SiH groups M{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe{sub 2}){sub 3}. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) are prepared from MI{sub 2} and 2 equiv of KC(SiHMe{sub 2}){sub 3}. The compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and La{C(SiHMe{sub 2}){sub 3}}{sub 3} react with 1 equiv of B(C{sub 6}F{sub 5}){sub 3} to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe{sub 2}){sub 3}}{sub 2}HB(C{sub 6}F{sub 5}){sub 3}, respectively. The corresponding reactions of Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu) give the ?-SiH abstraction product [{(Me{sub 2}HSi){sub 3}C}{sub 2}LnC(SiHMe{sub 2}){sub 2}SiMe{sub 2}][HB(C{sub 6}F{sub 5}){sub 3}] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2 }or TMEDA) and Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) and 2 equiv of B(C{sub 6}F{sub 5}){sub 3} give the expected dicationic M{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and dicationic mono(silylalkyl) LnC(SiHMe{sub 2}){sub 3}{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2} (Ln = Y, Lu, La), respectively. Salt metathesis reactions of Cp{sub 2}(NR{sub 2})ZrX (X = Cl, I, OTf; R = t-Bu, SiHMe{sub 2}) and lithium hydrosilazide ultimately afford hydride products Cp{sub 2}(NR{sub 2})ZrH that suggest unusual ?-hydrogen elimination processes. A likely intermediate in one of these reactions, Cp{sub 2}Zr[N(SiHMe{sub 2})t-Bu][N(SiHMe{sub 2}){sub 2}], is isolated under controlled synthetic conditions. Addition of alkali metal salts to this zirconium hydrosilazide compound produces the corresponding zirconium hydride. However as conditions are varied, a number of other pathways are also accessible, including C-H/Si-H dehydrocoupling, ?-abstraction of a CH, and ?-abstraction of a SiH. Our observations suggest that the conversion of (hydrosilazido)zirconocene to zirconium hydride does not follow the classical four-center ?- elimination mechanism. Elimination and abstraction reactions dominate the chemistry of ligands containing ?- hydrogen. In contrast, Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}H and Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}Me undergo selective ?-CH bond activation to yield the azasilazirconacycle Cp{sub 2Zr}{?{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}}, even though there are reactive ?-hydrogen available for abstraction. The ?-SiH groups in metallacycle provide access to new pathways for sixteen-electron zirconium alkyl compounds, in which Cp{sub 2}Zr{?{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}} undergoes a rare ?-bond metathesis reaction with ethylene. The resulting vinyl intermediate undergoes ?-hydrogen abstraction to reform ethylene and a silanimine zirconium species that reacts with ethylene to give a metallacyclopentane as the isolated product. The pendent ?-SiH in metallocycle also reacts with paraformaldehyde through an uncatalyzed hydrosilylation to form an exocyclic methoxysilyl moiety, while the zirconium-carbon bond in metallocycle is surprisingly inert toward formaldehyde. Still, the Zr-C moiety in metallocycle is available for chemistry, and it interacts with the carbon monoxide and strong electrophile B(C{sub 6}F{sub 5}){sub 3} to provide Cp{sub 2}Zr[?{sup 2}- OC(=CH{sub 2})SiMeHN(SiHMe

  17. Metal uptake by agricultural plant species grown in sludge-amended soil following ecosystem restoration practices

    SciTech Connect (OSTI)

    Peles, J.D.; Barrett, G.W. [Univ. of Georgia, Athens, GA (United States)] [Univ. of Georgia, Athens, GA (United States); Brewer, S.R. [Miami Univ., Oxford, OH (United States)] [Miami Univ., Oxford, OH (United States)

    1996-12-01T23:59:59.000Z

    The disposal of municipal sewage sludge is an important environmental problem presently facing society. Because sludge is rich in plant nutrients such as nitrogen and phosphorous, land application as a fertilizer has been proposed as a cost-effective means of disposal. This method of disposal, however, is frequently the subject of public health concern since municipal sludge may contain heavy metals that potentially could be introduced into the human food chain. This study examined metal concentrations in two agricultural species at a study site where ecosystem restoration practices (liming and tilling) had been conducted for 5 years following 11 years of sludge enrichment. 11 refs., 2 tabs.

  18. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*

    E-Print Network [OSTI]

    California at Los Angeles, University of

    final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants* R. W. Moir November 29, 1999 Lawrence Livermore National Laboratory

  19. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    SciTech Connect (OSTI)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12T23:59:59.000Z

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and ?-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by ?- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  20. Levels of metals from salt marsh plants from Southern California, USA

    E-Print Network [OSTI]

    Hoyt, Kimberly Ann

    2009-01-01T23:59:59.000Z

    sedimentary record of heavy metal pollution in the lagoon ofcapacity for heavy metals. Environmental Pollution, 146,heavy metals in experimental salt marsh ecosystems. Environmental Pollution,

  1. Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Kluth, T.; Quade, U.; Lederbrink, F. W.

    2003-02-26T23:59:59.000Z

    Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

  2. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    SciTech Connect (OSTI)

    Sarrao, J L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Tobash, P H [UNIV. OF DE; Bobev, S [UNIV. OF DE

    2009-01-01T23:59:59.000Z

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  3. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Ellis, Timothy W. (Ames, IA); Dennis, Kevin W. (Ames, IA); Hofer, Robert J. (Ames, IA); Branagan, Daniel J. (Ames, IA)

    1997-11-25T23:59:59.000Z

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  4. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25T23:59:59.000Z

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  5. Metalized Polyethylene Mulch to Reduce Incidence of Huanglongbing and Improve Growth of New Citrus Plantings

    E-Print Network [OSTI]

    Croxton, S.; Stansly, P.

    2014-01-01T23:59:59.000Z

    7.14 P Metalized Polyethylene Mulch to Reduce Incidence ofNorth, Immokalee, FL, USA Polyethylene mulch was evaluatedUV reflective low density polyethylene mulch metalized with

  6. Improved method for preparing rare earth sesquichalcogenides

    DOE Patents [OSTI]

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14T23:59:59.000Z

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  7. Montagnini, Florencia, Howard S. Neufeld and Christopher Uhl. 1984. Heavy metal concentrations in some non-vascular plants in an Amazonian rainforest. Water, Air, and

    E-Print Network [OSTI]

    Neufeld, Howard S.

    Montagnini, Florencia, Howard S. Neufeld and Christopher Uhl. 1984. Heavy metal concentrations in some non-vascular plants in an Amazonian rainforest. Water, Air, and Soil Pollution 21 the possibility of long-range transport of industrial pollutants to that region. Heavy metal concentrations were

  8. Abstract--Grazing incidence metal mirrors in laser-driven IFE power plants are subject to a variety of threats that result

    E-Print Network [OSTI]

    Tillack, Mark

    Abstract--Grazing incidence metal mirrors in laser-driven IFE power plants are subject to a variety [4] at UCSD, and help define design windows for the GIMM in a laser-driven IFE power plant of threats that result in damages leading to increased laser absorption, beam quality degradation and reduced

  9. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    SciTech Connect (OSTI)

    Geldart, R.W.; Bates, S.O.; Jette, S.J.

    1996-03-01T23:59:59.000Z

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.

  10. Are plants useful as accumulation indicators of metal bioavailabity? E. Remonc,h

    E-Print Network [OSTI]

    Boyer, Edmond

    -mail address: ofaure@emse.fr 25 hal-00771221,version1-8Jan2013 Author manuscript, published in "Environmental at three contaminated30 and one uncontaminated site were compared. Results showed that for two contaminated metal bioavailability in contaminated soils. Keywords: Soil contamination; Phytoavailability

  11. RARE EARTHS By James B. Hedrick

    E-Print Network [OSTI]

    at its separation Domestic mine production of rare earths Uruguay Round of Multilateral Trade plant at Mountain Pass, CA. Rhône-Poulenc increased in 1994. The domestic economy Negotiation. The GATT Uruguay

  12. Availability and distribution of heavy metals, nitrogen, and phosphorus from sewage sludge in the plant-soil-water continuum

    SciTech Connect (OSTI)

    Rappaport, B.D.; Scott, J.D.; Martens, D.C.; Reneau, R.B.; Simpson, T.W.

    1987-01-01T23:59:59.000Z

    Research was conducted during 1984 and 1985 to determine Cd, Cu, N, Ni, P, and Zn availabilities to barley (Hordeum vulgare) and corn (Zea mays) grown on four sludge-amended soils. An aerobically digested sewage sludge, which was dewatered for approximately 2 years on sandbeds, was obtained from a sewage-treatment plant with major industrial inputs. A 14-day anaerobic N incubation study indicated that mineralization of sludge organic N varied from 9.2% at the 42 Mg ha(-1) sludge rate to 4.2% at the 210 Mg ha(-1) rate. This relatively low percentage of N mineralized from the sludge may reflect the inhibitory effects of the high sludge-metal levels on N transformations and the changes in sludge composition during long-term dewatering on sandbeds. Sludge application increased crop yields, except where the amounts of N mineralized from the sludge was inadequate to supply the N requirement of the crop. Crop yields were not decreased by either metal phytotoxity or P deficiency on the four sludge-amended soils.

  13. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    , was as follows: chemical catalysts, 22%; metallurgical applications and alloys, 21%; petroleum refining catalysts, and importer of rare-earth products in 2010. The estimated value of refined rare earths imported by the United) -- -- -- -- -- Rare-earth metals, alloy 867 784 564 188 250 Cerium compounds 2,590 2,680 2,080 1,500 1,400 Mixed REOs

  14. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    catalytic converters, 9%; glass polishing and ceramics, 6%; permanent magnets, 5%; petroleum refining, and importer of rare-earth products in 2009. The estimated value of refined rare earths imported by the United) -- -- -- -- 20 Rare-earth metals, alloy 880 867 784 679 210 Cerium compounds 2,170 2,590 2,680 2,080 1,190 Mixed

  15. Au/MxOy/TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives.

    SciTech Connect (OSTI)

    Ma, Zhen [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

    2007-01-01T23:59:59.000Z

    Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually not reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.

  16. Dispersal and disturbance as factors limiting the distribution of rare plant species at the Savannah River Site and the Carolina Sandhills National Wildlife Refuge.

    SciTech Connect (OSTI)

    Primack, Richard; Walker, Joan.

    2003-12-10T23:59:59.000Z

    An experiment was conducted to identify effective methods of creating new populations of herbaceous species in managed upland longleaf pine forest at two locations in the Fall-line Sandhills of South Carolina. We included thirteen species and a variety of site treatments. All sites were burned and lightly raked prior to planting. Sowing seeds on untreated or fertilized treatments resulted in the lowest establishment of all treatments. Digging the planting area to remove belowground plant structures and using hardware cloth cages to exclude potential mammalian seed predators and herbivores led to increased establishment of target species. Establishment was higher using seedling transplants compared to seeds. Success rate was highly variable among sites so population establishment efforts should try to incorporate many sites initially to find the sites that give the greatest chance of success, or increase efforts to carefully identify species, habitat requirements and screen potential sites accordingly. Some species showed very low rates of success despite the variety of methods used; for such species additional work is required on their basic ecology, in particular germination biology and site requirements, as part of a restoration project. The overall low rate of establishment success emphasizes the need to protect and manage existing populations of uncommon Sandhills species, and to recognize that establishing large, long-term, reproducing populations of such species will be difficult.

  17. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    of rare earths by end use was as follows: automotive catalytic converters, 25%; petroleum refining, and consumer of rare-earth products in 2007. The estimated value of refined rare earths consumed in the United -- Rare-earth metals, alloy 1,130 804 880 867 831 Cerium compounds 2,630 1,880 2,170 2,590 3,090 Mixed

  18. Enhanced pinning in mixed rare earth-123 films

    DOE Patents [OSTI]

    Driscoll, Judith L. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2009-06-16T23:59:59.000Z

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  19. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01T23:59:59.000Z

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  20. JOURNAL OF RARE EARTHS, Vol. 27, No. 2, Apr. 2009, p. 270 Foundation item

    E-Print Network [OSTI]

    August 2008; revised 12 September 2008 Abstract: Rare earth elements have been used for 30 years; Juglans nigra; rare earths Rare earth elements (REEs) are metallic ions comprising elementsJOURNAL OF RARE EARTHS, Vol. 27, No. 2, Apr. 2009, p. 270 Foundation item: Corresponding author

  1. New ternary rare-earth metal boride carbides R{sub 15}B{sub 4}C{sub 14} (R=Y, Gd-Lu) containing BC{sub 2} units: Crystal and electronic structures, magnetic properties

    SciTech Connect (OSTI)

    Babizhetskyy, Volodymyr, E-mail: v.babizhetskyy@fkf.mpg.d [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, Postfach 800665, D-70569 Stuttgart (Germany); Simon, Arndt; Mattausch, Hansjuergen [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, Postfach 800665, D-70569 Stuttgart (Germany); Hiebl, Kurt [Arbeitsgruppe Neue Materialien, Universitaet Wien, Waehringerstrasse 42, A-1090 Wien (Austria); Zheng Chong [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115 (United States)

    2010-10-15T23:59:59.000Z

    The ternary rare-earth boride carbides R{sub 15}B{sub 4}C{sub 14} (R=Y, Gd-Lu) were prepared from the elements by arc-melting followed by annealing in silica tubes at 1270 K for 1 month. The crystal structures of Tb{sub 15}B{sub 4}C{sub 14} and Er{sub 15}B{sub 4}C{sub 14} were determined from single crystal X-ray diffraction data. They crystallize in a new structure type in space group P4/mnc (Tb{sub 15}B{sub 4}C{sub 14}: a=8.1251(5) A, c=15.861(1) A, Z=2, R{sub 1}=0.041 (wR{sub 2}=0.088) for 1023 reflections with I{sub o}>2{sigma}(I{sub o}); Er{sub 15}B{sub 4}C{sub 14}: a=7.932(1) A, c=15.685(2) A, Z=2, R{sub 1}=0.037 (wR{sub 2}=0.094) for 1022 reflections with I{sub o}>2{sigma}(I{sub o})). The crystal structure contains discrete carbon atoms and bent CBC units in octahedra and distorted bicapped square antiprisms, respectively. In both structures the same type of disorder exists. One R atom position needs to be refined as split atom position with a ratio 9:1 indicative of a 10% substitution of the neighboring C{sup 4-} by C{sub 2}{sup 4-}. The actual composition has then to be described as R{sub 15}B{sub 4}C{sub 14.2}. The isoelectronic substitution does not change the electron partition of R{sub 15}B{sub 4}C{sub 14} which can be written as (R{sup 3+}){sub 15}(C{sup 4-}){sub 6}(CBC{sup 5-}){sub 4{center_dot}}e{sup -}. The electronic structure was studied with the extended Hueckel method. The investigated compounds Tb{sub 15}B{sub 4}C{sub 14}, Dy{sub 15}B{sub 4}C{sub 14} and Er{sub 15}B{sub 4}C{sub 14} are hard ferromagnets with Curie temperatures T{sub C}=145, 120 and 50 K, respectively. The coercive field B{sub C}=3.15 T for Dy{sub 15}B{sub 4}C{sub 14} is quite remarkable. - Graphical abstract: The ternary rare earth boride carbides R{sub 15}B{sub 4}C{sub 14} (R=Y, Gd-Lu) were prepared from the elements by arc-melting followed by annealing in silica tubes at 1270 K for 1 month. Tb{sub 15}B{sub 4}C{sub 14} is a new member of the rare-earth metal boride carbide series in which the finite quasi-molecular CBC entities as well as isolated C atoms are embedded in the voids of the metal atom matrix. The structure of Tb{sub 15}B{sub 4}C{sub 14} contains two types of slabs: one slab contains finite bent CBC units and isolated carbon atoms whereas another is formed only from octahedral coordinated single carbon atoms. The electronic structure for the idealized composition corresponds to an electron partitioning according to (Tb{sup 3+}){sub 15}(C{sup 4-}){sub 6}(CBC{sup 5-}){sub 4{center_dot}}e{sup -} giving rise to a single electron per formula for Tb-Tb framework bonding. The magnetism of the ternary rare earth boride carbides R{sub 15}B{sub 4}C{sub 14} (R=Tb, Dy, Er) is characterized by the onset of ferromagnetic order below T<150 K.

  2. Laminated rare earth structure and method of making

    DOE Patents [OSTI]

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30T23:59:59.000Z

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  3. AnnaFrebel! metal-poorstars!

    E-Print Network [OSTI]

    -process element pattern!! #12;AnnaFrebel! metal-poorstars! New oscillator strengths of rare earth elements!! · Sneden, Lawler et al. 2009: New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich, Metal-Poor Stars, and Rare Earth Lab Data Summary · Lawler, Sneden et al. 2008: Improved Laboratory

  4. Rare earth thermoelectrics

    SciTech Connect (OSTI)

    Mahan, G.D.

    1997-07-01T23:59:59.000Z

    A review is presented of the thermoelectric properties of rare earth compounds: A discussion is presented of the prospects for future improvements in the figure of merit.

  5. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.

    1993-01-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  6. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.; The MEGA Collaboration

    1993-05-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  7. Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light

    E-Print Network [OSTI]

    Han, Jinkyu

    2013-01-01T23:59:59.000Z

    of R 2 SiO 5 (R = rare earth elements)?, Mater. Res. Bull.QE Quantum Efficiency RE Rare Earth Elements RGB Red, green,transition metal or rare earth elements. The standard

  8. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOE Patents [OSTI]

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10T23:59:59.000Z

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  9. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation 

    E-Print Network [OSTI]

    Hutchison, Gary; Brown, David; Hibbs, Leon; Heal, Mathew R; Donaldson, Ken; Maynard, Robert; Monaghan, Michelle; Nicholl, Andy; Stone, Vicki

    2005-01-01T23:59:59.000Z

    Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition ...

  10. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity of rare earth metals near the melting point and the vacancy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the difference of the heat capacity of the liquid and solid metal in the neighbourhood of the melting point. From of the atomic heat capacity of solid and liquid metals at the melting point. The basis for this calculationJOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity

  11. Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina

    E-Print Network [OSTI]

    Royer, Dana

    Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed and analyzed for major ions, trace metals, and rare earth elements (REE). The concentrations of REE in the Rio to oxidation of sulfide minerals. D 2005 Elsevier B.V. All rights reserved. Keywords: Rare earth elements

  12. RARE EARTHS--2000 62.1 RARE EARTHS

    E-Print Network [OSTI]

    , and monazite (table 2). The rare earths are a moderately abundant group of 17 elements composed of scandium and lutetium, the least abundant rare-earth elements at about 0.5 ppm. In rock-forming minerals, rare earths, whose atomic number is 21, is the lightest rare- earth element. It is the 31st most abundant element

  13. RARE EARTHS--2001 61.1 RARE EARTHS

    E-Print Network [OSTI]

    's crust at 60 parts per million (ppm), to thulium and lutetium, the least abundant rare-earth elements number is 21, is the lightest rare- earth element. It is the 31st most abundant element in the EarthRARE EARTHS--2001 61.1 RARE EARTHS By James B. Hedrick Domestic survey data and tables were

  14. RARE EARTHS--2002 61.1 RARE EARTHS

    E-Print Network [OSTI]

    . 667). Because they have similar chemical structures, the rare-earth elements proved difficultRARE EARTHS--2002 61.1 RARE EARTHS By James B. Hedrick Domestic survey data and tables were in the Earth's crust is 33 ppm and is the second most abundant rare earth in the Earth's crust. Yttrium

  15. EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

  16. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    SciTech Connect (OSTI)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01T23:59:59.000Z

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  17. Rare hadronic B decays

    E-Print Network [OSTI]

    A. J. Bevan

    2006-06-02T23:59:59.000Z

    Rare hadronic B-meson decays allow us to study CP violation. The class of B decays final states containing two vector mesons provides a rich set of angular correlation observables to study. This article reviews some of the recent experimental results from the BaBar and Belle collaborations.

  18. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1997--June 19, 1997

    SciTech Connect (OSTI)

    Kochian, L.

    1997-11-01T23:59:59.000Z

    This laboratory has been involved in a collaborative project focusing on a range of issues related to the phytoremediation of heavy metal-and radionuclide- contaminated soils. While much of the research has been fundamental in nature, involving physiological and molecular characterizations of the mechanisms of hyperaccumulation in plants, the laboratory is also investigating more practical issues related to phytoremediation. A central issue in this latter research has been the identification of amendments capable of increasing the bioavailability and subsequent phytoextraction of radionuclides. The results described here detail these efforts for uranium and Cs-137. A study was also conducted on a Cs-137 contaminated site at Brookhaven National Laboratory (BNL), which allowed application of the laboratory and greenhouse results to a field setting.

  19. Studies on the applicability of a flow coupler to a liquid-metal fast breeder reactor plant

    SciTech Connect (OSTI)

    Hattori, S.; Takuma, S.; Nemoto, K. (Central Research Institute of the Electric Power Industry, 1-6-1 Ohtemachi,, Chiyoda-ku, Tokyo 100 (JP)); Terada, M.; Sano, T. (Mitsubishi Heavy Industries, Ltd., 2-5-1 Marunouchi, Chiyoda-ku, Tokyo 100 (JP))

    1990-04-01T23:59:59.000Z

    A flow coupler is considered as an alternative to the conventional primary pump in a liquid-metal fast breeder reactor (LMFBR). A conceptual design of a flow coupler combined with an intermediate heat exchanger in a pool-type LMFBR was done. Based on this design, a one-tenth-scale flow coupler model was built and successfully operated in a high-temperature sodium loop. To estimate the flow coupler characteristics, a quasi-one-dimensional code was developed. From these studies, the flow coupler pump concept appears to be feasible for actual use in an LMFBR.

  20. ISSN 0378-4738 = Water SA Vol. 27 No. 1 January 2001 71Available on website http://www.wrc.org.za Plant-soil interactions of sludge-borne heavy metals and the

    E-Print Network [OSTI]

    ISSN 0378-4738 = Water SA Vol. 27 No. 1 January 2001 71Available on website http://www.wrc.org.za Plant-soil interactions of sludge-borne heavy metals and the effect on maize (Zea mays L.) seedling, Pretoria 0001, South Africa 2 ERWAT Chair in Wastewater Management, Water Utilisation Section, Department

  1. amazonian plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    species. In 1999, the National Key Protected Wild Plants identified about 1700 rare and endangered plant species (Chinese State Report on Biodiversity Editorial...

  2. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    E-Print Network [OSTI]

    Samuel-Nakamura, Christine

    2013-01-01T23:59:59.000Z

    Sheep1 For Sheep 1, heavy metal water toxicity levels weretwo mines. The sheep heavy metal water toxicity levels wereU & other Heavy Metals (HMs) in soil and water Interpersonal

  3. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    E-Print Network [OSTI]

    Samuel-Nakamura, Christine

    2013-01-01T23:59:59.000Z

    agent (U and other heavy metal toxicants). The environmentM=6.59, SD=3.87). The heavy metal toxicity levels for sheepFor Sheep 1, heavy metal water toxicity levels were not

  4. RARE EARTHS--1999 61.1 RARE EARTHS

    E-Print Network [OSTI]

    in the Earth's crust at 60 parts per million, to thulium and lutetium, the least abundant rare-earth elements, is the lightest rare-earth element. It is the 31st most abundant element in the Earth's crust with an average. 667). Because they have similar chemical structures, the rare-earth elements proved difficult

  5. RARE EARTHS--1998 61.1 RARE EARTHS

    E-Print Network [OSTI]

    in the Earth's crust at 60 parts per million, to thulium and lutetium, the least abundant rare-earth elements, is the lightest rare-earth element. It is the 31st most abundant element in the Earth's crust with an average. 667). Because they have similar chemical structures, the rare-earth elements proved difficult

  6. RARE EARTHS--2003 60.1 RARE EARTHS

    E-Print Network [OSTI]

    , geographic information specialist. The rare earths are a moderately abundant group of 17 elements comprising), to thulium and lutetium, the least abundant rare-earth elements at about 0.5 ppm (Mason and Moore, 1982, p atomic number is 21, is the lightest rare-earth element. It is the 31st most abundant element

  7. Ames Lab 101: Rare Earths

    ScienceCinema (OSTI)

    Gschneidner, Karl

    2012-08-29T23:59:59.000Z

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  8. 2006 Minerals Yearbook RARE EARTHS

    E-Print Network [OSTI]

    parts per million (ppm), to thulium and lutetium, the least abundant rare-earth elements at about 0 and malleable, similar in density to titanium. The elemental forms of rare earths are iron gray to silvery2006 Minerals Yearbook RARE EARTHS U.S. Department of the Interior U.S. Geological Survey May 2008

  9. Rare B Decays

    SciTech Connect (OSTI)

    Jackson, P.D.; /Victoria U.

    2006-02-24T23:59:59.000Z

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  10. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  11. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  12. U.S. Rare Earth Magnet Patents Table © 2-4-2015 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a temperature equal to or lower than a sintering temperature of the magnet base material, wherein: a) a content of a rare earth in a metallic state in the magnet base...

  13. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    2009-03-24T23:59:59.000Z

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  14. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

  15. E-Print Network 3.0 - alkali metal alkaline Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with alkali-metals 9, loi, alkaline earth metals l,18 and some of other rare-earth elements 19, 20 have... alkali metals were doped into C60 solids 9 and...

  16. Replacing the Rare Earth Intellectual Capital

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl

    2011-04-01T23:59:59.000Z

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained personnel to bring the entire rare earth industry, from mining to original equipment manufacturers (OEM), up to full speed in the next few years. Accompanying this decline in technical expertise, innovation and new products utilizing rare earth elements has slowed dramatically, and it may take a decade or more to recapture America's leading role in technological advancements of rare earth containing products. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects of the industry from mining to OEM. Today, only about 1,500 people are employed in these fields. The ratio of non-technically trained persons to those with college degrees in the sciences or engineering varies from about 8 to 1 to about 4 to 1, depending on the particular area of the industry. Assuming an average of 6 to 1, the number of college degree scientists and engineers has decreased from about 4,000 to 250 employed today. In the magnetic industry the approximate numbers are: 6,000 total with 750 technically trained people in the 1980s to 500 totally employed today of which 75 have degrees. The paucity of scientists and engineers with experience and/or training in the various aspects of production and commercialization of the rare earths is a serious limitation to the ability of the US to satisfy its own needs for materials and technologies (1) to maintain our military strength and posture, (2) to assume leadership in critical energy technologies, and (3) to bring new consumer products to the marketplace. The lack of experts is of even greater national importance than the halting in the 1990s and the recent restart of the mining/benification/separation effort in the US; and thus governmental intervention and support for at least five to 10 years will be required to ameliorate this situation. To respond quickly, training programs should be established in conjunction with a national research center at an educational institution with a long tradition in multiple areas of rare earth and other critical elements research and technology. This center should

  17. Phase stable rare earth garnets

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11T23:59:59.000Z

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  18. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    E-Print Network [OSTI]

    Samuel-Nakamura, Christine

    2013-01-01T23:59:59.000Z

    Resource Evaluation (NURE) sampling that was undertaken inabove those found in the NURE sampling conducted in the1970s (Mo not evaluated by NURE). The other heavy metals (

  19. Rare Earth ? See Rare Earth, by Ward and Brownlee

    E-Print Network [OSTI]

    Walter, Frederick M.

    Rare Earth ? See Rare Earth, by Ward and Brownlee #12;N to date N = N* fs fGHZfp nH fl fi fc L/T ·N Earth is "Just Right" Yes, life on Earth has adapted to Earth, but ... Earth has just the right mass to be ·Tectonically-active ·Retain an atmosphere Earth has had a stable climate The Sun is particularly inactive

  20. REVIEW PAPER How metal-tolerant ecotypes of ectomycorrhizal fungi

    E-Print Network [OSTI]

    Boyer, Edmond

    with open access at Springerlink.com Abstract & Introduction Heavy metal pollution is a strong driver for heavy metal-contaminated soils. Keywords Heavy metal pollution . Heavy metal tolerance . EctomycorrhizalREVIEW PAPER How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal

  1. PRESS RELEASE RARE FRUIT CONFERENCE

    E-Print Network [OSTI]

    Jawitz, James W.

    RELEASE RARE FRUIT CONFERENCE July 9 - 13, 2014 Sponsored by the Tropical Fruit & Vegetable Society of the Redland & the Fruit & Spice Park 24801 SW 187th Avenue, Homestead, Florida

  2. A Rare Isolated Trapezoid Fracture

    E-Print Network [OSTI]

    Afifi, Negean; Lu, Jenny J

    2011-01-01T23:59:59.000Z

    wrist in suggested scaphoid fracture. Acta Radiol. 1988;29:Rare isolated trapezoid fracture: a case report. Hand. 2008;suspect and diagnose this fracture. 2,8 REFERENCES 1. Papp

  3. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    SciTech Connect (OSTI)

    Wegener, Dirk [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Kluth, Thomas [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-07-01T23:59:59.000Z

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the current potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)

  4. NANO - "Green" metal oxides ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely used in...

  5. Self-assembled rare-earth silicide nanowires on Si(001)

    SciTech Connect (OSTI)

    Nogami, J.; Liu, B. Z.; Katkov, M. V.; Ohbuchi, C.; Birge, Norman O.

    2001-06-15T23:59:59.000Z

    This paper presents scanning tunneling microscope images of several rare-earth metal silicides grown on silicon (001). For certain of the metals studied (Dy, Ho), an anisotropy in lattice match with the substrate results in the formation of nanowires. These nanowires have desirable properties such as nanometer lateral dimension, crystalline structure with a low density of defects, and micrometer scale length. Tunneling spectroscopy on the nanowires indicates that they are metallic.

  6. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  7. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    . The approximate distribution in 2002 by end use was as follows: petroleum refining catalysts, 27%; glass polishing. The estimated value of refined rare earths consumed in the United States was more than $1 billion-earth metals, alloy 1,780 2,470 1,420 1,450 1,130 Cerium compounds 3,990 4,310 3,850 2,540 2,630 Mixed REOs 5

  8. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    , televisions, computer monitors, radar, and X-ray intensifying film, 10%; petroleum refining catalysts, 8 continued to be a major exporter and consumer of rare-earth products in 2006. The estimated value of refined-earth metals, alloy 1,450 1,130 804 880 947 Cerium compounds 2,540 2,630 1,880 2,170 2,530 Mixed REOs 1,040 2

  9. Ultracold chemistry with alkali-metal-rare-earth molecules

    E-Print Network [OSTI]

    C. Makrides; J. Hazra; G. B. Pradhan; A. Petrov; B. K. Kendrick; T. González-Lezana; N. Balakrishnan; S. Kotochigova

    2014-10-28T23:59:59.000Z

    A first principles study of the dynamics of $^6$Li($^{2}$S) + $^6$Li$^{174}$Yb($^2\\Sigma^+$)$ \\to ^6$Li$_2(^1\\Sigma^+$) + $^{174}$Yb($^1$S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fitting of a three-dimensional potential energy surface for the Li$_2$Yb system and quantum dynamics calculations of varying complexities, ranging from exact quantum dynamics within the close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reasonable agreement with the full close-coupling calculations. The effect of the three-body term in the interaction potential is explored by comparing quantum dynamics results from a pairwise potential that neglects the three-body term to that derived from the full interaction potential. Inclusion of the three-body term in the close-coupling calculations was found to reduce the limiting rate coefficients by a factor of two. The reaction exoergicity populates vibrational levels as high as $v=19$ of the $^6$Li$_2$ molecule in the limit of zero collision energy. Product vibrational distributions from the close-coupling calculations reveal sensitivity to inclusion of three-body forces in the interaction potential. Overall, the results indicate that a simplified model based on the long-range potential is able to yield reliable values of the total reaction rate coefficient in the ultracold limit but a more rigorous approach based on statistical quantum or quantum close-coupling methods is desirable when product rovibrational distribution is required.

  10. Rare Earth Metals & Alloys | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1Principal InvestigatorsLivingstonNNSARare

  11. DOE Science Showcase - Rare Earth Metal Research from DOE Databases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of Scientific andEnergy, OfficeOffice ofOSTI,

  12. The Ames Process for Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(activeDirectory: Office

  13. Electronic structure of rare-earth metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles as SelectiveElectronic Structurefunctional theory

  14. The effect of metals and soil pH on the growth of Rhododendron and other alpine plants in limestone soil 

    E-Print Network [OSTI]

    Kaisheva, Maria V

    2008-01-01T23:59:59.000Z

    Rhododendrons are economically important plants in horticulture, and many species are threatened in the wild by habitat degradation. It is therefore doubly important that their nutritional needs should be understood.

  15. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  16. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect (OSTI)

    Dargis, Rytis, E-mail: dargis@translucentinc.com; Clark, Andrew; Erdem Arkun, Fevzi [Translucent, Inc., 952 Commercial St., Palo Alto, California 94303 (United States); Grinys, Tomas; Tomasiunas, Rolandas [Institute of Applied Research, Vilnius University, Sauletekio al. 10, LT-10223 Vilnius (Lithuania); O'Hara, Andy; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712 (United States)

    2014-07-01T23:59:59.000Z

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  17. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

  18. 2009 RARE PLANT CONSERVATION INITIATIVE IMPLEMENTATION PLAN (May 4, 2009)

    E-Print Network [OSTI]

    Section 6 fund for listed species-late summer RFP · GOCO · NFWF-acres for America · Economic stimulus

  19. anthropogenically rare plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Northeast Colorado Environmental Management and Restoration Websites Summary: of oil shale, preliminary, might be a final draft early next year, BLM hiring a new botanist in...

  20. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  1. An Equilibrium Model of Rare Event Premia

    E-Print Network [OSTI]

    Liu, Jun

    2002-08-12T23:59:59.000Z

    In this paper, we study the asset pricing implication of imprecise knowledge about rare events. Modeling rare events as jumps in the aggregate endowment, we explicitly solve the equilibrium asset prices in a pure-exchange ...

  2. Novel rare earth boron-rich solids

    SciTech Connect (OSTI)

    Zhang, Fuxiang; Leithe-Jasper, Andreas; Xu, Jun; Mori, Takao; Matsui, Yoshio, Tanaka, Takaho; Okada, Shigeru

    2001-06-01T23:59:59.000Z

    A new series of boron-rich solids ReB{sub 22}C{sub 2}N (Re: Y, Ho, Er, Tm, Lu) was synthesized by traditional solid-state reaction. The crystal structure of the representative compound YB{sub 22}C{sub 2}N was solved by direct method from powder X-ray diffraction (XRD) data and transmission electron microscope (TEM) analysis. The unit cell of the new structure is rhombohedral with space group R-3m (No. 166), lattice constant a = b = 5.623(0) {angstrom} and c = 44.785(3) {angstrom} with six formula units in one unit cell. The atoms of boron in the solids, like most of the boron-rich solids, exist with icosahedral and octahedral clusters, and the whole crystal shows a layered structure. The interconnected nine layers of icosahedron and three layers of octahedron in a unit cell build the whole framework of the new phase and rare earth metal atoms reside in voids of the octahedron layers. The neighboring icosahedral layers link through C-B-C chains besides the direct bonding of B-B. Both experimental and structural analysis indicated that the nitrogen atoms in the new phase can be replaced with carbon.

  3. Rare Earth Element Mines, Deposits, and Occurrences

    E-Print Network [OSTI]

    Torgersen, Christian

    Rare Earth Element Mines, Deposits, and Occurrences by Greta J. Orris1 and Richard I. Grauch2 Open. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements of rare earth element concentration. Many of the occurrences have not been well studied and the economic

  4. Are Earths Rare? Perhaps Not

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapyArchiveAre Earths Rare? Perhaps Not

  5. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All yttrium. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium nitrate, and other individual

  6. [Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All yttrium. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium nitrate, and other individual

  7. (Data in metric tons of yttrium oxide (Y2O3) content, unless noted) Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium

  8. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2008. All

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2008. All yttrium 12-31-08 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and compounds containing by weight >19% to rare-earth compounds, including

  9. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All yttrium-31-06 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium and compounds containing by weight >19% to rare-earth compounds, including

  10. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2003.

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2003. Yttrium Relations 12/31/03 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and compounds containing by weight >19% to rare-earth compounds, including

  11. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth.20.0000 Free Free. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805

  12. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium Relations 12-31-04 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and compounds containing by weight >19% to rare-earth compounds, including

  13. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite,

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth fluocarbonate mineral, was mined and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed

  14. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral

    E-Print Network [OSTI]

    Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth fluocarbonate mineral, was mined.20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5

  15. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth/31/96 Thorium ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium

  16. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All

    E-Print Network [OSTI]

    Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All yttrium-31-05 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium and compounds containing by weight >19% to rare-earth compounds, including

  17. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite,

    E-Print Network [OSTI]

    Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth/31/98 Thorium ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium

  18. Development of a metal hydride electrode waste treatment process

    SciTech Connect (OSTI)

    Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

    1999-12-01T23:59:59.000Z

    Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

  19. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  20. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01T23:59:59.000Z

    their  metal  to  phosphorous  ratio  can  be  varied;  materials,   as   the   phosphorous   to   metal   ratio  tetrahedron.    As   the  phosphorous  content  of  the  

  1. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOE Patents [OSTI]

    Huang, Yuhong (West Hills, CA); Wei, Qiang (West Hills, CA); Zheng, Haixing (Oak Park, CA)

    2002-01-01T23:59:59.000Z

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  2. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    SciTech Connect (OSTI)

    Sean William McWhorter

    2006-05-01T23:59:59.000Z

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} several new compounds were synthesized with different crystal structures, but similar structural features. In Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} can be thought of as being formed from two 3{sup 2}434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd{sub 2}MgGe{sub 2} and Gd{sub 2}InGe{sub 2} both possess the same 3{sup 2}434 nets of Gd atoms as Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, but these nets are connected differently, forming the Mo{sub 2}FeB{sub 2} crystal structure. A search of the literature revealed that compounds with the composition R{sub 2}XM{sub 2} (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo{sub 2}FeB{sub 2}, Zr{sub 3}Al{sub 2}, Mn{sub 2}AlB{sub 2} and W{sub 2}CoB{sub 2} crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd{sub 2}AlGe{sub 2} forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how electrons can be accounted for. A series of electronic structure calculations were performed on models with the U{sub 3}Si{sub 2} and Zr{sub 3}Al{sub 2} structures, using Zr and A1 as the building blocks. The starting point for these models was the U{sub 3}Si{sub 2} structure, and models were created to simulate the transition from the idealized U{sub 3}Si{sub 2} structure to the distorted Zr{sub 3}Al{sub 2} structure. Analysis of the band structures of the models has shown that the transition from the U{sub 3}Si{sub 2} structure to the Zr{sub 3}Al{sub 2} structure lifts degeneracies along the {Lambda} {yields} Z direction, indicating a Peierls-type mechanism for the displacement occurring in the positions of the Zr atoms.

  3. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2006-12-05T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. EIS-0096: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania

  6. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Progress report for the period November 1989 through December 1992

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    The corrosion and gas-generation characteristics of three material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base materials, and Ti-base materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments included anoxic brine and anoxic brine with overpressures of CO{sub 2}, H{sub 2}S, and H{sub 2}. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of a protective iron sulfide reaction product. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  7. Ecotoxicit des terres rares Les terres rares sont un groupe de mtaux qui

    E-Print Network [OSTI]

    Wehrli, Bernhard

    'automobile pour dépolluer les gaz d'échappement constituent le principal débouché des terres rares (tout véhicules hybrides, les turbines d'éoliennes ainsi que dans le nucléaire et l'armement. Les terres rares ont

  8. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect (OSTI)

    Ryan Ott

    2012-09-05T23:59:59.000Z

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  9. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema (OSTI)

    Ryan Ott

    2013-06-05T23:59:59.000Z

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  10. Stark spectroscopy on rare gas atoms

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Stark spectroscopy on rare gas atoms PROEFSCHRIFT ter verkrijging van de graad van doctor aan de-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Jiang, Tao Stark spectroscopy on rare gas atoms / by Tao Jiang / gasontladingen Subject headings : plasma diagnostics / Stark effect / optogalvanic spectroscopy / atomic emission

  11. Metal electrode for amorphous silicon solar cells

    DOE Patents [OSTI]

    Williams, Richard (Princeton, NJ)

    1983-01-01T23:59:59.000Z

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  12. Cadmium and Zinc Thiolate and Selenolate Metal-Organic Frameworks

    SciTech Connect (OSTI)

    Turner, D.; Stone, K; Stephens, P; Vaid, T

    2010-01-01T23:59:59.000Z

    Metal-organic frameworks based on metal-sulfur or metal-selenium bonds are relatively rare; herein we describe the synthesis and structural characterization of several examples, including, for example, [Cd(en){sub 3}][Cd(SC{sub 6}H{sub 4}S){sub 2}], which contains the anionic two-dimensional square-grid network [Cd(SC{sub 6}H{sub 4}S){sub 2}]{sub n}{sup 2n-}.

  13. THE INTERACTION OF RARE GAS METASTABLE ATOMS

    E-Print Network [OSTI]

    Wang, A.Z.-F.

    2011-01-01T23:59:59.000Z

    in the study of metastable atom reactions. > 1 it- Fig, laa raetastable rare gas atom, three quantities are necessaryOF iiARE GAS METASTABLF ATOMS Andrew Zun-Foh Wang M a t e r

  14. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29T23:59:59.000Z

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  15. The BNL rare kaon decay program

    SciTech Connect (OSTI)

    Littenberg, L.

    1996-12-31T23:59:59.000Z

    The rare kaon decay program at Brookhaven National Laboratory is reviewed. Results from the last round of experiments are briefly discussed. The three experiments currently collecting data are described. Prospects for future experiments are discussed.

  16. Probing QCD with Rare Charmless $B$ Decays

    SciTech Connect (OSTI)

    Gradl, Wolfgang

    2006-07-07T23:59:59.000Z

    Rare charmless hadronic B decays are a good testing ground for QCD. In this paper we describe a selection of new measurements made by the BABAR and BELLE collaborations.

  17. Epitaxial growth of rare-earth silicides on (111) Si

    SciTech Connect (OSTI)

    Knapp, J.A.; Picraux, S.T.

    1986-02-17T23:59:59.000Z

    Rapid heating with an electron beam has been used to react overlayers of rare-earth (RE) metals with (111) Si, forming epitaxial layers of silicides of Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Under conventional furnace annealing, forming such silicides on Si typically leads to rough, pitted surfaces. The use of fast beam heating not only results in a much smoother surface topology but also helps promote epitaxial growth on (111) Si in both solid and liquid phase reactions. These epitaxial silicides have a hexagonal RESi/sub approximately1.7/ structure (defected AlB/sub 2/ type). Their orientation with the Si substrate is (0001)parallel(111), with predicted lattice mismatches ranging from +0.83 to -2.55%.

  18. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  19. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2010-01-01T23:59:59.000Z

    300-500°C. Doping rare earth phosphate glasses with Ce, andRare Earth Phosphate Glass and Glass-Ceramic Protonconductivity of alkaline-earth doped rare earth phosphate

  20. The 5th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado

    E-Print Network [OSTI]

    Kurzel: monitoring studies have been instituted on BLM and private land Missy Siders: BLM is monitoring set up new demographic plots. RPCI held a Conservation Action Plan workshop to develop strategies 6, although usually it is on 13 Mile Tongue of Green River Shale. There are some populations on private land

  1. The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado

    E-Print Network [OSTI]

    discovered in Black Hills National Forest. Not found on two most recent visits. Last observed in 2007-have not been seen for 20+ years. Peggy Lyon: modeling this winter for San Juan National Forest; Astragalus. When visited, looked good; surveyed in area. #12;Steve Popovich: could have habitat on National Forest

  2. Colorado Rare Plant Symposium G2-G3 Plants in Northeast Colorado

    E-Print Network [OSTI]

    of oil shale, preliminary, might be a final draft early next year, BLM hiring a new botanist in Meeker

  3. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect (OSTI)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31T23:59:59.000Z

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  4. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA)

    1986-09-16T23:59:59.000Z

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  5. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  6. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  7. Examination of dissimilar metal welds in BWR and PWR piping

    SciTech Connect (OSTI)

    MacDonald, D.E. [Electric Power Research Inst., Charlotte, NC (United States). NDE Center

    1994-12-31T23:59:59.000Z

    This paper addresses dissimilar metal weld examinations at PWRS. Surveys were conducted to document the dissimilar metal weld configurations at PWR plants and to update the information known about dissimilar metal weld configurations at BWR plants. The experiences which BWR utilities have had with dissimilar metal weld examinations are documented and include: correct identification of IGSCC, indications thought to be IGSCC but were actually fabrication flaws, and difficulties encountered with the examination of dissimilar metal welds after stress improvement. An experimental program was conducted which verified that the longitudinal wave procedures developed for BWRs are also applicable to PWR designs.

  8. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless noted)

    E-Print Network [OSTI]

    rare earths consumed in the United States was more than $500 million. Principal uses were in petroleum and Foreign). Government Stockpile: Stockpile Status--9-30-95 Uncommitted Committed Authorized Disposals was reported in the first half of the year. China remained a major source of separated rare-earth compounds

  9. Rare earth phosphors and phosphor screens

    DOE Patents [OSTI]

    Buchanan, Robert A. (Palo Alto, CA); Maple, T. Grant (Sunnyvale, CA); Sklensky, Alden F. (Sunnyvale, CA)

    1981-01-01T23:59:59.000Z

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  10. Electrical energy monitoring in an industrial plant

    E-Print Network [OSTI]

    Dorhofer, Frank Joseph

    1994-01-01T23:59:59.000Z

    This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor...

  11. Prospects for Rare Earth Elements From Marine Minerals

    E-Print Network [OSTI]

    Prospects for Rare Earth Elements From Marine Minerals Rare earth elements (REEs) compose in the earth's crust. However, because of their geochemical proper es, rare earth elements are typically. Briefing Paper 02/12 Jim Hein | May 2012 www.isa.org.jm Table 1: Rare Earth Elements This paper

  12. Comparative analyses of soil contaminant levels and plant species diversity at developing and disused oil well sites in Qianjiang oilfield, China

    SciTech Connect (OSTI)

    Xiong, Z.T.; Hu, H.X.; Wang, Y.X. [Wuhan Univ., Hubei (China)] [and others] [Wuhan Univ., Hubei (China); and others

    1997-04-01T23:59:59.000Z

    Oilfield development contaminates soils and waters with crude oil, brine and heavy metals. Oil well sites are probably the most contaminated places in oilfields. During drilling and crude oil extraction from underground stores, a significant amount of oil and brine discharges into soils at oil well sites by blowouts, container spillages and pipeline ruptures. In oilfields in China, it was estimated that about 0.77 - 1.85% crude oil discharged into soils at oil well sites during oilfield development. Exposure to oil and salt contaminants could evoke toxicological effects in plants. Responses of plants to the contaminant exposure include inhibition of photosynthesis and nitrogen fixation, cessation of growth, reduced reproductive success and mortality. These harmful impacts on plants would be expected to result in remarkable loss of biodiversity. Qianjiang oilfield has been developed for about thirty-five years. Oil well sites in it have long been contaminated with oil and brine since, and plants at the well sites are rare. In the last three years however some wells have fallen into disuse. In result, a few plant species have intruded into the disuse well sites and formed new populations, and plant species diversity in these places has increased thereby. For benefit of restoration of the disuse well sites, it is interesting to know the relationships between contaminant levels and plant biodiversity. The present paper focuses the attention on comparative analyses of soil contaminations by crude oil, salt and some heavy metals and plant species diversity at developing and disuse oil well sites. 15 refs., 3 tabs.

  13. E-Print Network 3.0 - actinide metal compounds Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effects in the X-ray photoemission spectra of the actinides Summary: in 3d transition metal compounds and ns (n 4 , 5) levels in rare earth systems, it is clear that ME......

  14. E-Print Network 3.0 - alkaline-earth metal uranium Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In metamorphic rocks uranium and rare earth metals can form minerals. An example... Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  15. Search for rare and forbidden eta ' decays

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, X.

    2000-01-01T23:59:59.000Z

    We have searched for rare and forbidden decays of the eta' meson in hadronic events at the CLEO II detector. The search is conducted on 4.80 fb(-1) of e(+)e(-) collisions at 10.6 GeV center-of-mass energy at the Cornell Electron Storage Ring. We...

  16. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  17. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  18. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14T23:59:59.000Z

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  19. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  20. Developer Installed Treatment Plants

    E-Print Network [OSTI]

    unknown authors

    2008-01-01T23:59:59.000Z

    -installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

  1. E-Print Network 3.0 - arabidopsis halleri metal Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Statistics, University of Warwick Collection: Mathematics 13 Humus forms and metal pollution in soil S. GILLET & J.F. PONGE Summary: . A sward of plants tolerant of heavy metals...

  2. The Plant Cell, Vol. 14, 28372847, November 2002, www.plantcell.org 2002 American Society of Plant Biologists Molecular Mechanisms of Proline-Mediated Tolerance to

    E-Print Network [OSTI]

    Sayre, Richard

    of Plant Biologists Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic., 2001). There are a variety of mechanisms by which organisms reduce heavy metal toxicity, including), exclusion of toxic heavy metals from cells by ion-selective metal transporters, and excretion

  3. The Nonlinear Evolution of Rare Events

    E-Print Network [OSTI]

    F. Bernardeau

    1993-11-25T23:59:59.000Z

    In this paper I consider the nonlinear evolution of a rare density fluctuation in a random density field with Gaussian fluctuations, and I rigorously show that it follows the spherical collapse dynamics applied to its mean initial profile. This result is valid for any cosmological model and is independent of the shape of the power spectrum. In the early stages of the dynamics the density contrast of the fluctuation is seen to follow with a good accuracy the form $$\\delta=(1-\\delta_L/1.5)^{-1.5}-1,$$ where $\\delta_L$ is the linearly extrapolated overdensity. I then investigate the validity domain of the rare event approximation in terms of the parameter $\

  4. Rare K decays: Challenges and Perspectives

    E-Print Network [OSTI]

    Christopher Smith

    2014-09-22T23:59:59.000Z

    At this stage of the LHC program, the prospect for a new physics signal in the very rare K ---> pi nu nu bar decays may be dented, but remains well alive thanks to their intrinsic qualities. First, these decays are among the cleanest observables in the quark flavor sector. When combined with their terrible suppression in the Standard Model, they thus offer uniquely sensitive probes. Second, the LHC capabilities are not ideal for all kinds of new physics, even below the TeV scale. For example, rather elusive scenarios like natural-SUSY-like hierarchical spectrum, baryon number violation, or new very light but very weakly interacting particles may well induce deviations in rare K decays. Even though experimentalists should brace themselves for tiny deviations, these modes thus have a clear role to play in the LHC era.

  5. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolic PathwaysMetal

  6. Concerning the Facility for Rare Isotope Beams

    ScienceCinema (OSTI)

    Symons, James

    2013-05-29T23:59:59.000Z

    James Symons, Nuclear Science Division Director at Lawrence Berkeley Lab, and Daniela Leitner, head of operations at Berkeley Lab's 88-Inch Cyclotron, discuss major contributions to the new Facility for Rare Isotope Beams (FRIB) at Michigan State University, including ion source, which will based on the VENUS source built for the 88-Inch Cyclotron, and the GRETA gamma-ray detector now under construction there.

  7. Carbo-metallic oil-conversion process and catalysts

    SciTech Connect (OSTI)

    Hettinger, W.P.; Beck, W.

    1989-10-31T23:59:59.000Z

    This patent describes a continuous process for cracking of a residual hydrocarbon feedstock into lower molecular weight hydrocarbon transportation fuels. The cracking being carried out in the presence of a catalyst having catalyst parameters comprising porosity, metals content, rare earth content, and zeolite content. The residual hydrocarbon feedstock comprising metal contaminants, fractions boiling above 1025{degrees}F. comprising asphaltenes, polynuclear aromatics, naphthenes and prophyrins.

  8. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28T23:59:59.000Z

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  9. Behavior of Rare Earth Elements in Geothermal Systems- A New...

    Open Energy Info (EERE)

    of Rare Earth Elements in Geothermal Systems- A New ExplorationExploitation Tool? Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Behavior of Rare Earth...

  10. Mechanochemical processing for metals and metal alloys

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

    2001-01-01T23:59:59.000Z

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  11. 2005 Minerals Yearbook RaRe eaRths

    E-Print Network [OSTI]

    , and shipped. substantial stocks of lanthanide concentrates and intermediate and refined compounds were for the petroleum industry and processed cerium and zirconia compounds In 2005, world rare-earth production decreased as did imports of individual rare-earth compounds and mixed rare-earth compounds. U.s. imports

  12. 1 INTRODUCTION The rare earth elements (REE's) form a unique

    E-Print Network [OSTI]

    Chen, Zhongxing

    1 INTRODUCTION The rare earth elements (REE's) form a unique chemical set wherein the gradual October 1991 to December 1993. Clean A time series of dissolved rare earth elements in the lower University, State University, AR 72467 ABSTRACT: Dissolved rare earth element (REE) concentrations were

  13. RARE EARTH ELEMENT SENSITIVITY FACTORS IN CALCIC PLAGIOCLASE (ANORTHITE)

    E-Print Network [OSTI]

    RARE EARTH ELEMENT SENSITIVITY FACTORS IN CALCIC PLAGIOCLASE (ANORTHITE) C. Floss and B. Jolliff Mc Brookings Drive, St. Louis, MO 63130 1. Introduction The rare earth elements (REE) are sensitive indicators concentrations for each sample are listed in Table 1 and are shown in Fig. 1. Table 1. Rare Earth Element Data

  14. MATERIAL FLOW ANALYSIS FOR IDENTIFYING RARE EARTH ELEMENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MATERIAL FLOW ANALYSIS FOR IDENTIFYING RARE EARTH ELEMENT RECYCLING POTENTIALS IN THE EU-27 D Rochelle (F) SUMMARY: Rare earth elements (REEs) are essential for high-techology industrial sectors earths. Rare earth elements (REEs) are a group of 17 elements comprising the 15 lanthanides, scandium

  15. Scintillation of rare earth doped fluoride nanoparticles

    SciTech Connect (OSTI)

    Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Ballato, J. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Yukihara, E. G. [Physics Department, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States); DeVol, T. A. [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634-0905 (United States)

    2011-09-12T23:59:59.000Z

    The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

  16. Rare Iron Oxide in Ancient Chinese Pottery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRare Iron Oxide in Ancient Chinese

  17. Rapporteur's Report - workshop on rare earth elements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-Atlantic Workshop on Rare

  18. Rare b hadron decays at the LHC

    E-Print Network [OSTI]

    Blake, T; Hiller, G

    2015-01-01T23:59:59.000Z

    With the completion of Run~I of the CERN Large Hadron Collider, particle physics has entered a new era. The production of unprecedented numbers of heavy-flavoured hadrons in high energy proton-proton collisions allows detailed studies of flavour-changing processes. The increasingly precise measurements allow to probe the Standard Model with a new level of accuracy. Rare $b$ hadron decays provide some of the most promising approaches for such tests, since there are several observables which can be cleanly interpreted from a theoretical viewpoint. In this article, the status and prospects in this field are reviewed, with a focus on precision measurements and null tests.

  19. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  20. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  1. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  2. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect (OSTI)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)] [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2013-12-15T23:59:59.000Z

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  3. Pinellas Plant facts

    SciTech Connect (OSTI)

    NONE

    1990-11-01T23:59:59.000Z

    The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

  4. New fission fragment distributions and r-process origin of the rare-earth elements

    E-Print Network [OSTI]

    S. Goriely; J. -L. Sida; J. -F. Lemaitre; S. Panebianco; N. Dubray; S. Hilaire; A. Bauswein; H. -Thomas Janka

    2013-11-22T23:59:59.000Z

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r-nuclei with A > 140.

  5. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2012-05-10T23:59:59.000Z

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

  6. Fiberglass plastics in power plants

    SciTech Connect (OSTI)

    Kelley, D. [Ashland Performance Materials (United States)

    2007-08-15T23:59:59.000Z

    Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

  7. E-Print Network 3.0 - amazonian medicinal plant Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medicine 13 Montagnini, Florencia, Howard S. Neufeld and Christopher Uhl. 1984. Heavy metal concentrations in some non-vascular plants in an Amazonian rainforest. Water, Air, and...

  8. Selection of Native Wetland Plants for Water Treatment of Urban Runoff

    E-Print Network [OSTI]

    Rejmankova, Eliska; Bayer, David E

    1995-01-01T23:59:59.000Z

    UC Davis KEYWORDS: Wetlands, Water Treatment, Urban Runoff,of Native Wetland Plants for Water Treatment of UrbanValley Wetlands Biomass Response to Heavy Metal Treatment

  9. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12T23:59:59.000Z

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  10. Rare Plants of the Yakima Subbasin List of known occurrences of rare plants in the Yakima subbasin, Washington (Kittitas, Yakima and

    E-Print Network [OSTI]

    Review Astragalus arrectus Palouse milk-vetch Sensitive Astragalus columbianus Columbia milk Haplopappus liatriformis Palouse goldenweed Threatened SC #12;SCIENTIFIC NAME COMMON NAME STATE STATUS FED

  11. Searches for very rare decays of kaons

    SciTech Connect (OSTI)

    Lang, K. [Univ. of Texas, Austin, TX (United States)

    1997-01-01T23:59:59.000Z

    The physics motivation for searches for very rare kaon decays, either forbidden or suppressed within the Standard Model, is briefly discussed. Simple arguments conclude that such searches probe possible new forces at a 200 TeV mass scale or constitute a precision test of the electroweak model. The examples of such process are decays of K{sub L}{sup 0} {yields} {mu} {sup {+-}}e{sup -+}, K{sup +} {yields} {pi}{sup +} {mu}{sup +} e{sup -}, K{sub L}{sup 0} {yields} {mu}{sup +} {mu}{sup -}, and K{sup +} {yields} {pi} {yields} {pi}{sup +}{nu}{bar {nu}}. We present the current experimental status and describe the new efforts to reach sensitivities down to one part in 10{sup 12}. The discussion is focused on the experimental program at the Alternating Gradient Synchrotron at Brookhaven National Laboratory, where intense beams make such studies possible.

  12. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, April D. (Knoxville, TN); Modine, Frank A. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN); Alim, Mohammad A. (Medina, OH); Mahan, Gerald D. (Oak Ridge, TN); Bartkowiak, Miroslaw (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  13. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29T23:59:59.000Z

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  14. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  15. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    SciTech Connect (OSTI)

    Jia, Shuang

    2008-12-15T23:59:59.000Z

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  16. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments

    E-Print Network [OSTI]

    Yang, Shouye

    The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations rights reserved. Keywords: rare earths; sediments; Huang He; Yangtze River 1. Introduction Rare earth

  17. Anisotropic magnetic properties of light rare-earth diantimonides

    SciTech Connect (OSTI)

    Budko, S.L.; Canfield, P.C. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)] [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Mielke, C.H.; Lacerda, A.H. [National High Magnetic Field Laboratory, Los Alamos Facility, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [National High Magnetic Field Laboratory, Los Alamos Facility, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-06-01T23:59:59.000Z

    Results are presented of anisotropic temperature and field-dependent magnetization M(H,T) and resistivity {rho}(H,T) measurements on high quality single crystals of the light rare-earth diantimonides RSb{sub 2}, R=La-Nd, Sm. All of these, excepting LaSb{sub 2}, magnetically order at low temperatures, and for CeSb{sub 2} and NdSb{sub 2} several magnetically ordered phases were observed in low-field magnetization and zero-field resistivity measurements. For R=Ce-Sm strong anisotropies, associated with crystalline electric field (CEF) splitting of the R{sup 3+} ion, were found in M(T) measurements both below and above magnetic ordering temperatures. Furthermore, for R=Ce-Nd metamagnetic transitions were observed in M(H) and {rho}(H) for H{parallel}(ab) in the magnetically ordered state. In addition, above 15 kG de Haas{endash}van Alphen oscillations are observed for SmSb{sub 2} and Shubnikov{endash}de Haas quantum oscillations are observed above {approximately}120kG for NdSb{sub 2} and SmSb{sub 2}. The zero-field in-plane resistivity {rho}{sub ab} of all of the compounds is metallic (d{rho}/dT{gt}0), with residual resistance ratios ranging from 40 to 750. The c-axis resistivity is also metallic, but appears to be considerably larger than the in-plane value, consistent with the diantimonides being quasi-two-dimensional materials. The magnetoresistance of all members of the series is large, approximately linear in H at moderate fields, and is also dependent on the relative orientation of the applied magnetic fields to the crystallographic axes. The extreme case of SmSb{sub 2} has [{rho}(55kG){minus}{rho}(0)]/{rho}(0){gt}50000{percent} at T=2K and H{parallel}c. {copyright} {ital 1998} {ital The American Physical Society}

  18. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as...

  19. POWDER METALLURGICAL PROCESSING OF MAGNETOSTRICTIVE MATERIALS BASED ON RARE EARTH-IRON INTERMETALLIC COMPOUNDS

    E-Print Network [OSTI]

    Malekzadeh, Manoochehr

    2011-01-01T23:59:59.000Z

    R « any of several rare earth elements) was discovered. Toobserved for pure rare earth elements. This and the strong

  20. Oxidation resistance of 9-12% Cr steels: effect of rare earth surface treatment

    SciTech Connect (OSTI)

    Dogan, Omer N.; Alman, David A.; Jablonski, Paul D.

    2005-02-01T23:59:59.000Z

    Medium Cr steels have been used in fossil fired power plants for many years because of their excellent high temperature stability and mechanical properties. The environment in a fossil fired power plant is extremely aggressive in terms of corrosion, especially oxidation. This is only accelerated as the operating temperature increases to 650C and beyond. For any new steel to be qualified for power plant use, in addition to adequate strength at the operating temperature, material wastage from all corrosion processes must be kept to a minimum acceptable level. The use of medium Cr steels provides a means to improve overall corrosion resistance. Three medium Cr are under development for use as high temperature power plant steels: 0.08C-(9-12)Cr-1.2Ni-0.7Mo-3.0Cu-3.0Co-0.5Ti. Oxidation tests were performed on the steels for times greater than 1000 hours in order to determine the oxidation kinetics and extent of material wastage. Also, rare earth oxides were incorporated into the outer surface layers of the steels to see if the oxidation resistance could be improved. These results will be compared to current power plant steels.

  1. Trichofolliculoma: a rare variant of hair follicle hamartoma

    E-Print Network [OSTI]

    Gokalp, Hilal; Gurer, Mehmet Ali; Alan, Saadet

    2013-01-01T23:59:59.000Z

    to the regressing normal hair follicle in its cycle. J Cutanal. Trichofolliculoma: An Uncommon Hair Follicle Hamartoma.Trichofolliculoma: a rare variant of hair follicle hamartoma

  2. Heavy Metal Stress. Activation of Distinct Mitogen-Activated Protein Kinase Pathways

    E-Print Network [OSTI]

    Hirt, Heribert

    , 2003; Polle and Schu¨tzendu¨bel, 2003). Heavy metal toxicity comprises inactivation of biomole- culesHeavy Metal Stress. Activation of Distinct Mitogen-Activated Protein Kinase Pathways by Copper, Vienna Biocenter, A­1030 Vienna, Austria Excessive amounts of heavy metals adversely affect plant growth

  3. Study of metal dusting phenomenon and development of materials resistant to metal dusting.

    SciTech Connect (OSTI)

    Natesan, K.

    2002-03-13T23:59:59.000Z

    The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as reforming systems, syngas production systems, iron reduction plants, and others. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as metal dusting. There are two major issues of importance in metal dusting. First is formation of carbon and subsequent deposition of carbon on metallic materials. Second is the initiation of metal dusting degradation of the alloy. Details are presented on a research program that is underway at Argonne National Laboratory to study the metal dusting phenomenon from a fundamental scientific base involving laboratory research in simulated process conditions and field testing of materials in actual process environments. The project has participation from the US chemical industry, alloy manufacturers, and the Materials Technology Institute, which serves the chemical process industry.

  4. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect (OSTI)

    Jongik Park

    2004-12-19T23:59:59.000Z

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  5. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  6. Outlooks of HLW Partitioning Technologies Usage for Recovering of Platinum Metals from Spent Fuel

    SciTech Connect (OSTI)

    Pokhitonov, Y. A.; Estimantovskiy, V.; Romanovski, v.; Zatsev, B.; Todd, T.

    2003-02-24T23:59:59.000Z

    The existing practice of management of high level waste (HLW) generated by NPPs, call for a task of selective separation of the most dangerous long-lived radionuclides with the purpose of their subsequent immobilization and disposal. HLW partitioning allows to reduce substantially the cost of vitrified product storage owing to isolation of the most dangerous radionuclides, such as transplutonium elements (TPE) into separate fractions of small volumes, intended for ultimate storage. By now numerous investigations on partitioning of HLW of various composition have been carried out in many countries and a lot of processes permitting to recover cesium, strontium, TPE and rare earth elements (REE) have been already tested. Apart from enumerated radionuclides, a fair quantity of palladium and rhodium presents in spent fuel, but the problem of these elements recovery has not yet been decided at the operating radiochemical plants. A negative effect of platinum group metals (PGM) occurrence is determined by the formation of separate metal phase, which not only worsens the conditions of glass-melting but also shortens considerably the service life of the equipment. At the same time, the exhaustion of PGMs natural resources may finally lead to such a growth of their costs that the spent nuclear fuel would became a substituting source of these elements industrial production. Allowing above mentioned, it is of interest to develop the technique for ''reactor'' palladium and rhodium recovery process which would be compatible with HLW partitioning and could be realized using the same facilities. In the report the data on platinum metals distribution in spent fuel reprocessing products and the several flowsheets for palladium separation from HLW are presented.

  7. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    %; glass polishing and ceramics, 14%; metallurgical additives and alloys, 13%; petroleum refining catalysts continued to be a major exporter and consumer of rare-earth products in 2004. The estimated value of refined,980 Mixed REOs 2,190 2,040 1,040 2,150 1,540 Rare-earth chlorides 1,330 2,590 1,800 1,890 1,520 Rare

  8. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    , televisions, and x-ray-intensifying film, 14%; chemicals and petroleum refining catalysts, 11%; ceramics, 3, and importer of rare-earth products in 2008. The estimated value of refined rare earths imported by the United,880 2,170 2,590 2,680 2,180 Mixed REOs 1,660 640 1,570 2,570 2,750 Rare-earth chlorides 1,310 2,670 2

  9. Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant

    E-Print Network [OSTI]

    Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

    The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present...

  10. DOE/OIT Plant-Wide Energy Assessment Experience Summary

    E-Print Network [OSTI]

    Olszewski, M.; Leach, R.; McElhaney, K.

    and process operations and to identify opportunities for improving their energy efficiency. During the past 18 months, DOE has awarded grants to a total of 13 plants in the steel, metal casting, aluminum, forest products, chemical, and petroleum industries...

  11. Portraits of some representatives of metal boride carbide and boride silicide compounds

    SciTech Connect (OSTI)

    Ben Yahia, Mouna [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Roger, Jerome [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Rocquefelte, Xavier [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Gautier, Regis [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Bauer, Joseph [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Guerin, Roland [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Saillard, Jean-Yves [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France); Halet, Jean-Francois [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511 CNRS-Universite de Rennes 1-ENSC Rennes, Institut de Chimie de Rennes, F-35042 Rennes (France)]. E-mail: halet@univ-rennes1.fr

    2006-09-15T23:59:59.000Z

    Different ternary alkaline-earth and rare-earth metal boron carbide and silicide compounds are examined using the solid-state language of Zintl-Klemm concept, band structures, and density of states, in order to show that the topology of the non-metal sub-lattice is highly dependent on the electron count. It is also shown that the chemistry of rare-earth metal-boron-silicon does not parallel that of rare-earth metal-boron-carbon. B-C bonds are easily formed in the latter, leading to a large variety of different structural arrangements, whereas Si-B bonds are hardly observed in the former, except in insertion compounds. - Graphical abstract: Some ternary alkaline-earth and rare-earth metal boron carbide and silicide compounds are examined using the solid-state language of Zintl-Klemm concept, band structures, and density of states, in order to show that the topology of the non-metal sub-lattice is highly dependent on the electron count.

  12. Effect of damping on the laser induced ultrafast switching in rare earth-transition metal alloys

    SciTech Connect (OSTI)

    Oniciuc, Eugen; Stoleriu, Laurentiu; Cimpoesu, Dorin; Stancu, Alexandru, E-mail: alstancu@uaic.ro [Faculty of Physics and CARPATH Center, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania)

    2014-06-02T23:59:59.000Z

    In this paper, we present simulations of thermally induced magnetic switching in ferrimagnetic systems performed with a Landau-Lifshitz-Bloch (LLB) equation for damping constant in a wide range of values. We have systematically studied the GdFeCo ferrimagnet with various concentrations of Gd and compared for some values of parameters the LLB results with atomistic simulations. The agreement is remarkably good, which shows that the dynamics described by the ferrimagnetic LLB is a reasonable approximation of this complex physical phenomenon. As an important element, we show that the LLB is able to also describe the intermediate formation of a ferromagnetic state which seems to be essential to understand laser induced ultrafast switching. The study reveals the fundamental role of damping during the switching process.

  13. Selecting the suitable dopants: electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate

    E-Print Network [OSTI]

    Assadi, M H N; Yu, A B

    2012-01-01T23:59:59.000Z

    Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to regenerate electricity from waste heat. In this work, three elements with outmost electronic configurations, (1) an open d shell (Ni), (2) a closed d shell (Zn), and (3) an half fill f shell (Eu) with a maximum unpaired electrons, were selected to outline the dopants' effects on electronic and crystallographic structures of Na0.75CoO2. Systematic ab initio density functional calculations showed that the formation energy of these dopants was found to be lowest when residing on sodium layer and ranked as -1.1 eV, 0.44 eV and 3.44 eV for Eu, Ni and Zn respectively. Furthermore Ni was also found to be stable when substituting Co ion. As these results show great harmony with existing experimental data, they provide new insights into the fundamental principle of dopant selection for manipulating the physical properties in the development of high performance sodium cobaltate based thermoelectric materials.

  14. Reduction Chemistry of Rare-Earth Metal Complexes: Toward New Reactivity and Properties

    E-Print Network [OSTI]

    Huang, Wenliang

    2013-01-01T23:59:59.000Z

    reactor and was named promethium. Even Nature could onlyrare-earths (except for promethium and europium; ytterbiumeuropium and radioactive promethium) on hand, we synthesized

  15. New CMI process recycles valuable rare earth metals from old electronics |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons used to studyThe Ames Laboratory

  16. Organic-Inorganic Complexes Containing a Luminescent Rare Earth-Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-ray

  17. Ames Lab, CMI, NEDO hold First Meeting on Rare Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross Blood Drive Hanford HealthLab, CMI,

  18. Barrier Coatings for Refractory Metals and Superalloys

    SciTech Connect (OSTI)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23T23:59:59.000Z

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  19. Modeling the glass forming ability of metals

    E-Print Network [OSTI]

    Cheney, Justin Lee

    2007-01-01T23:59:59.000Z

    Rare Earth Elements..without the use of rare earth elements” in Bulk Metallicwithout the Use of Rare Earth Elements details the design

  20. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  1. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  2. METAL FORMING 2004 -Section: Reiner Kopp, Oliver Hofmann, Vincent Honnet, Christian Plociennik

    E-Print Network [OSTI]

    Kuhlen, Torsten

    , Visualization, Simulation, Portal virtual CSP plant Prof. Dr.-Ing. Reiner Kopp, Institute of Metal Forming, RWTH computing power it is of no use to calculate a finite element job for a entire plant. It makes more sense to start with a rough simulation over the entire plant and then to go deeper into the process at selected

  3. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOE Patents [OSTI]

    Bugga, Ratnakumar V. (Arcadia, CA); Halpert, Gerald (Pasadena, CA); Fultz, Brent (Pasadena, CA); Witham, Charles K. (Pasadena, CA); Bowman, Robert C. (La Mesa, CA); Hightower, Adrian (Whittier, CA)

    1997-01-01T23:59:59.000Z

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  4. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  5. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  6. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  7. A Unique Ductless H and V System for Manufacturing Plants

    E-Print Network [OSTI]

    McReynolds, C.J.

    The 33 year-old Ford plant at Sandusky, Ohio, had been expanded many times over the years and presently manufactures a variety of metal and plastic automotive parts such as plastic heater housings. As more plastic extruders were added, the plant...

  8. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  9. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  10. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

    1991-09-03T23:59:59.000Z

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  11. Ames Lab scientist hopes to improve rare earth purification process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab scientist hopes to improve rare earth purification process Using the second fastest supercomputer in the world, a scientist at the U.S. Department of Energy's Ames Laboratory...

  12. Thermodynamic Database for Rare Earth Elements Recycling Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Database for Rare Earth Elements Recycling Process: Energetics of the REE-X Systems (XA;, Mg, Zn, Si, Sn, Mn, Pb, Fe, Co, Ni) Apr 17 2015 11:00 AM - 12:00 PM In-Ho...

  13. COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and Technical Challenges Dr. Georg Bollen Michigan State...

  14. Simple test for dissimilar-metal welds

    SciTech Connect (OSTI)

    Klueh, R.L.; King, J.F.; Griffith, J.L.

    1983-06-01T23:59:59.000Z

    A simplified accelerated test procedure has been developed for testing dissimilar-metal welds between austenitic stainless steels and low-alloy ferritic steels. The failure of these welded joints in operating steam generators of fossil-fired power plants has become an increasing problem for the utility industry. The proposed test is a three-point loading, bent-beam test that uses sheet specimens taken from a dissimilar-metal weldment. Tests were conducted in a simple test fixture where the specimens are loaded with a set-screw. To determine whether the test produces the same type of failure as those produced in a power plant, tests were conducted on specimens taken from a weld between Type 316 stainless steel and 2 1/4 Cr-1 Mo steel plates using Type 309 stainless steel filler metal. The specimens were loaded in the test fixture at room temperature and then thermally cycled between room temperature and 593/sup 0/C (1099/sup 0/F) by placing the test apparatus in a box furnace (thermal cycling during power plant operation plays a major role in the weld failure during service). The specimens were kept in the furnace for 20 to 70 hours (h), cooled to room temperature, and then the cycle was repeated. Metallographic examination of specimens cycled as few as 64 times with a total of 2300 h at 593/sup 0/C revealed that the specimens contained cracks similar to the cracks observed on dissimilar-metal welds cut from steam tubes after long-time elevated-temperature service racks similar to the cracks observed on dissimilar-metal welds cut from steam tubes after longtime elevated-temperature service in a fossil-fired steam generator. All indications are that this simple accelerated test could be used as a screening procedure to compare the relative behavior of ''improved'' welds in future research and development programs.

  15. Upper Middle Mainstem Columbia River Subbasin Plan Known High Quality or Rare Plant Communities and Wetland

    E-Print Network [OSTI]

    ecosystems of the UMM Subbasin, WA. SCIENTIFIC NAME COMMON NAME Abies amabilis - Tsuga mertensiana cover type;SCIENTIFIC NAME COMMON NAME Artemisia arbuscula / Festuca idahoensis dwarf-shrub herbaceous vegetation Low sagebrush /Idaho fescue Artemisia rigida / Poa secunda dwarf-shrub herbaceous vegetation Stiff sagebrush

  16. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  17. E-Print Network 3.0 - astronomy-related rare books Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    astronomy-related rare books Search Powered by Explorit Topic List Advanced Search Sample search results for: astronomy-related rare books Page: << < 1 2 3 4 5 > >> 1 Rare Books...

  18. U.S. Rare Earth Magnet Patents Table © 11-10-2014 page...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Magnet Patents Table 11-10-2014 page 1 Disclaimer: This U.S. Rare Earth Magnet Patents Table contains a sample of the rare- earth-magnet patents issued by the U.S....

  19. Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems

    E-Print Network [OSTI]

    Kvashnina, Kristina

    2007-01-01T23:59:59.000Z

    Introduction The rare earth elements have unique andun?lled f shell of rare earth elements gives them special4d, 4f shells for rare-earth elements. This suggests that

  20. Bagdad Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2Bagdad Plant 585 Silicon

  1. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  2. LARGE SCALE SIMULATIONS OF THE MECHANCIAL PROPERTIES OF LAYERED TRANSITION METAL TERNARY COMPOUNDS FOR FOSSIL ENERGY POWER SYSTEM APPLICATIONS

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31T23:59:59.000Z

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  3. Facility for Rare Isotope Beams: The Journey Has Begun on DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific...

  4. Micellar enhanced ultrafiltration of heavy metals using lecithin

    E-Print Network [OSTI]

    Ahmadi, Saman Nameghi

    1992-01-01T23:59:59.000Z

    , zinc, silver, copper, and mercury are reported to be above 98%. Chaufer and Deratiani presented complexation-ultrafiltration as a means of removing metal ions with water soluble macromolecules (13). Polymers which are known to bind to metals... from each of the seven characteristic wastewaters and the average percentage of plants that generate such wastes. Table 4. Wastewater Distribution (2). Percentage of plants ihthi wa ew t 100. 0 6. 3 n/a 24. 1 13. 9 12. 9 n/a Percentage...

  5. Modeling the electrical resistivity of deformation processed metal-metal composites

    SciTech Connect (OSTI)

    Tian, Liang [Ames Laboratory; Anderson, Iver [Ames Laboratory; Riedemann, Trevor [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-09-01T23:59:59.000Z

    Deformation processed metal–metal (matrix–reinforcement) composites (DMMCs) are high-strength, high-conductivity in situ composites produced by severe plastic deformation. The electrical resistivity of DMMCs is rarely investigated mechanistically and tends to be slightly higher than the rule-of-mixtures prediction. In this paper, we analyze several possible physical mechanisms (i.e. phonons, interfaces, mutual solution, grain boundaries, dislocations) responsible for the electrical resistivity of DMMC systems and how these mechanisms could be affected by processing conditions (i.e. temperature, deformation processing). As an innovation, we identified and assembled the major scattering mechanisms for specific DMMC systems and modeled their electrical resistivity in combination. From this analysis, it appears that filament coarsening rather than dislocation annihilation is primarily responsible for the resistivity drop observed in these materials after annealing and that grain boundary scattering contributes to the resistivity at least at the same magnitude as does interface scattering.

  6. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics PhysicsWeek »Plant

  7. Phytoremediation of Heavy Metal Toxicity and Role of soil in Rhizobacteria

    E-Print Network [OSTI]

    Rajendra Prasad Bharti; Abhilasha Shri Vastava; Kishor Soni; Asha Tiwari; Shivbhanu More

    Abstract- Our surrounding is filled up with a large number of toxicants in different forms. They contaminate our water, land and atmosphere where we live. Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes. Phytoremediation of toxic heavy metals could be carried out by using specific metallophytes. Green plants are the lungs of nature with unique ability to purifying impure air by photosynthesis and remove or minimize heavy metals toxicity from soil and water ecosystem by absorption, accumulation and biotransformation process. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal toxicity in contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from Rhizosphere of plants growing metal contaminated soils for specific restoration programmes. Index Terms- Environmental, heavy metal toxicity,

  8. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  9. Control of metal dusting corrosion in Ni-base alloys.

    SciTech Connect (OSTI)

    Zeng, Z.; Natesan, K.; Energy Technology

    2007-11-01T23:59:59.000Z

    Metal dusting is a major issue in plants used in the production of hydrogen-and methanol-reformer systems, and syngas (H{sub 2}/CO mixtures) systems that are pertinent to the chemical and petrochemical industries. Usually, metal dusting corrosion has two stages: incubation and growth resulting in propagation of metal dusting pits. The two stages were studied by scanning electron microscopy and profile mapping to evaluate the scale of the surface oxide in the initiation and propagation of metal dusting attack. The initiation occurs because of the presence of defects, and the propagation is determined by the diffusion of carbon into the alloy. The carbon diffusion pathways can be blocked by periodically oxidizing alloy surface at moderate temperatures in controlled atmospheres. It was concluded that metal dusting degradation can be mitigated by selecting an alloy with a long incubation time and subjecting it to intermediate oxidation.

  10. E-Print Network 3.0 - atmospheric heavy metal Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of metal in the atmosphere and into the river system (T1 to T4), (iv... ) to wastewater treatment plants (WWTP),5 the national ... Source: Ecole Polytechnique, Centre de...

  11. E-Print Network 3.0 - aquatic heavy metals Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principles of Ecotoxicology, SCOPE Report 12, Chapter 11, pp 239-255. Heavy metals, Pollutants, Toxicity... fIJJ US Army Corps of Engineers AQUATIC PLANT CONTROL RESEARCH PROGRAM...

  12. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Branagan, Daniel J. (Ames, IA)

    1996-01-23T23:59:59.000Z

    A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.

  13. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOE Patents [OSTI]

    McCallum, R.W.; Branagan, D.J.

    1996-01-23T23:59:59.000Z

    A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.

  14. High efficiency rare-earth emitter for thermophotovoltaic applications

    SciTech Connect (OSTI)

    Sakr, E. S.; Zhou, Z.; Bermel, P., E-mail: pbermel@purdue.edu [Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, 1205 W. State St., West Lafayette, Indiana 47907 (United States)

    2014-09-15T23:59:59.000Z

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573?K (1300?°C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  15. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema (OSTI)

    Hendrik Schatz

    2010-01-08T23:59:59.000Z

    Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  16. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  17. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  18. The Rare Earth Peak : An Overlooked r-Process Diagnostic

    E-Print Network [OSTI]

    M. Mumpower; G. McLaughlin; R. Surman

    2012-02-08T23:59:59.000Z

    The astrophysical site or sites responsible for the r-process of nucleosynthesis still remains an enigma. Since the rare earth region is formed in the latter stages of the r-process it provides a unique probe of the astrophysical conditions during which the r-process takes place. We use features of a successful rare earth region in the context of a high entropy r-process (S>100k_B) and discuss the types of astrophysical conditions that produce abundance patterns that best match meteoritic and observational data. Despite uncertainties in nuclear physics input, this method effectively constrains astrophysical conditions.

  19. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  20. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  1. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

    1994-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  2. Rare Earths Compounds DOI: 10.1002/ange.201002338

    E-Print Network [OSTI]

    Widom, Michael

    ) characterized by covalent bonds between the transition metals (T) and the highly polarizable (monoatomic) carbon of the transition metals cause high negative charges on the complex carbometalate anions, which have to be balanced a special class of ternary and higher carbides containing complex anions n 1 ðTyCz�m� � � (n = 0, 1, 2, 3

  3. PRACTICAL APPLICATION OF THE SINGLE-PARAMETER SUBCRITICAL MASS LIMIT FOR PLUTONIUM METAL

    SciTech Connect (OSTI)

    MITCHELL, MARK VON [Los Alamos National Laboratory

    2007-01-10T23:59:59.000Z

    According to ANS-8.1, operations with fissile materials can be performed safely by complying with any of the listed single-parameter subcritical limits. For metallic units, when interspersed moderators are present, the mass limits apply to a single piece having no concave surfaces. On a practical level, when has any operation with fissile metal involved a single piece and absolutely no moderating material, e.g., water, oil, plastic, etc.? This would be rare. This paper explores the application of the single-parameter plutonium metal mass limit for realistic operational environments.

  4. Development of materials resistant to metal dusting degradation.

    SciTech Connect (OSTI)

    Natesan, K.; Zeng, Z.; Nuclear Engineering Division

    2007-12-07T23:59:59.000Z

    The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as, hydrogen-, ammonia-, and methanol-reforming systems, syngas production systems, and iron-ore reduction plants. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as ''metal dusting''. There are two major issues of importance in metal dusting. First is formation of coke and subsequent deposition of coke on metallic structural components. Second is the initiation and subsequent propagation of metal dusting degradation of the structural alloy. In the past, we reported on the mechanism for metal dusting of Fe- and Ni-base alloys. In this report, we present metal dusting data on both Fe- and Ni-base alloys after exposure in high and atmospheric pressure environments that simulate the gas chemistry in operating hydrogen reformers. We have also measured the progression of pits by measuring the depth as a function of exposure time for a variety of Fe- and Ni-base structural alloys. We have clearly established the role of transport of iron in forming a non-protective spinel phase in the initiation process and presence of carbon transfer channels in the oxide scale for the continued propagation of pits, by nano-beam X-ray analysis using the advance photon source (APS), Raman scattering, and SEM/EDX analysis. In this report, we have developed correlations between weight loss and pit progression rates and evaluated the effects of carbon activity, system pressure, and alloy chemistry, on weight loss and pit propagation. To develop pit propagation data for the alloys without incurring substantial time for the initiation of pits, especially for the Ni-base alloys that exhibit incubation times of thousands of hours, a pre-pitting method has been developed. The pre-pitted alloys exhibited pit propagation rates similar to those of materials tested without pre-pitting. We have also developed a substantial body of metal-dusting data on the performance of Fe- and Ni-base weldments. During the course of this project, we have developed new Ni-base and Cu-base alloys and tested them in simulated metal dusting environments at 1 atm and at high pressures. Results clearly showed superior performance of both classes of alloys in resisting metal dusting. We also developed an approach to mitigate metal dusting by performing an intermediate oxidation step for extending the life of alloys in which metal dusting has initiated and pits are in progression. Finally, we have analyzed several components that have failed in plants such as hydrogen plant, pilot plant reformer, and a gas boiler.

  5. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  6. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  7. Molecular Photodynamics in Rare Gas Solids V. A. Apkarian*

    E-Print Network [OSTI]

    Apkarian, V. Ara

    Molecular Photodynamics in Rare Gas Solids V. A. Apkarian* Department of Chemistry, University Processes 1490 III. Sample Preparation and Morphology 1492 IV. Photon-Induced Dissociation 1493 V. Perfect I. Introduction A molecular level understanding of dynamics in condensed media is one of the current

  8. Rare Isotope Beams for the 21st Century

    ScienceCinema (OSTI)

    James Symons

    2010-01-08T23:59:59.000Z

    In a scientific keynote address on Friday, June 12 at Michigan State University (MSU) in East Lansing, James Symons, Director of Berkeley Labs Nuclear Science Division (NSD), discussed the exciting research prospects of the new Facility for Rare Isotope Beams (FRIB) to be built at MSUs National Superconducting Cyclotron Laboratory.

  9. September 23, 1997 Rare Events in Stochastic Dynamical Systems and

    E-Print Network [OSTI]

    September 23, 1997 Rare Events in Stochastic Dynamical Systems and Failures in Ultra­Reliable reliable is the system, the sharper is the approximation. In this model, we consider two types of failures that the distribution of a failure time can be approximated by an exponen­ tial law is not new in software reliability

  10. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect (OSTI)

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S. [Vanderbilt University: 2301 Vanderbilt Place/PMB 351831, Nashville, TN 37235 (United States)

    2013-07-01T23:59:59.000Z

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  11. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  12. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  13. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  14. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  15. Workers Demolish Metals Plant at Paducah Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject isNovember 07, 2007WhatJenniferWork PlanDepartmentWorkers

  16. Rules for understanding rare-earth magnetic compounds

    E-Print Network [OSTI]

    Roy, Lindsay Elizabeth

    2009-06-02T23:59:59.000Z

    . Using fragments based on structures of metal-rich lanthanide compounds, we have investigated molecular and low-dimensional extended structures, and have shown that open-d-shell clusters facilitate strong ferromagnetic coupling whereas closed...

  17. Functional Metal Phosphonates

    E-Print Network [OSTI]

    Perry, Houston Phillipp

    2012-02-14T23:59:59.000Z

    functional groups. In some cases, these ligands undergo reactions during the solvothermal syntheses which can impart new chemical reactivity. Another method used to introduce functionality was to partially or completely substitute metal atoms within...

  18. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  19. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  20. Ethylene insensitive plants

    SciTech Connect (OSTI)

    Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

    2007-05-22T23:59:59.000Z

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  1. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  2. ECOTOXICITY TEST AND ECOSCORES TO IMPROVE POLLUTED SOILS MANAGEMENT: CASE OF A SECONDARY LEAD SMELTER PLANT.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SMELTER PLANT. Yann FOUCAULT 1,2,3 (y.foucault@stc-metaux.com), Marie-José DURAND 4 (marie-urban areas, trace metals are often present in soils [4]; atmosphere emissions by smelters being one

  3. Metallic glass composition

    DOE Patents [OSTI]

    Kroeger, Donald M. (Knoxville, TN); Koch, Carl C. (Raleigh, NC)

    1986-01-01T23:59:59.000Z

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  4. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  5. Lead in Your Drinking Water Lead (Pb) is an extremely toxic heavy metal that unfortunately occurs widely in our environment. The

    E-Print Network [OSTI]

    Maynard, J. Barry

    Lead in Your Drinking Water Lead (Pb) is an extremely toxic heavy metal that unfortunately occurs of metallic lead in the soil (4) Drinking water ­ water as it leaves the treatment plant has no lead of connection. (In some cases, the water meter as well as the curb stop is outside the house.) Common metals

  6. Plant fatty acid hydroxylases

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Lexington, KY)

    2001-01-01T23:59:59.000Z

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  7. Metal binding proteins, recombinant host cells and methods

    DOE Patents [OSTI]

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15T23:59:59.000Z

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  8. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  9. TOWARD AN ACCURATE MODEL OF METAL SORPTION IN SOILS

    E-Print Network [OSTI]

    All T. Cygan; Howard L. Anderson; Sara E. Arthur; Patrick V. Brady; Carlos F. Jove; Jian-jie Liang; Eric R. Lindgren; Malcolm D. Siegel; David M. Teter; Henry R. Westrich; Pengchu Zhang

    Radionuclide transport in soils and groundwaters is routinely evaluated in performance assessment (PA) using simplified conceptual models (e.g., KD method) to describe radionuclide sorption. However, the KD approach with linear and reversible sorption of metal cations is rarely observed in the field. Inaccuracies of this model are typically addressed by conservativeness in the use of the chemical partitioning parameters, and often result in failed transport predictions or in increased costs for the cleanup of a site. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate and mechanistic models of the metal sorption process. Our research has recently examined the sorption mechanisms and partition coefficients for Ba2+ (analog for 226Ra2+) onto soil minerals (iron oxides and clay phases) using a combination of isothermal sorption/desorption measurements, synchrotron spectroscopic analyses of metal sorbed substrates, and computer molecular modeling simulations. Research goals include 1) evaluation and quantification of the critical mechanisms and geochemical parameters that control the retardation of radionuclides on the sorbing phases in near-field soils, 2) use of atomistic computer simulations to predict radionuclide KD values based on the partitioning of the metal cations between the solution and mineral surface, and 3) identification of the general trends in metal plume length associated with field sites. Results should improve our ability to estimate radionuclide migration at contaminated sites.

  10. Higher order antibunching is not a rare phenomenon

    E-Print Network [OSTI]

    Prakash Gupta; Pratap Narayan Pandey; Anirban Pathak

    2005-08-08T23:59:59.000Z

    Since the introduction of higher order nonclassical effects, higher order squeezing has been reported in a number of different physical systems but higher order antibunching is predicted only in three particular cases. In the present work, we have shown that the higher order antibunching is not a rare phenomenon rather it can be seen in many simple optical processes. To establish our claim, we have shown it in six wave mixing process, four wave mixing process and in second harmonic generation process.

  11. Physics and Outlook for Rare, All-neutral Eta Decays

    SciTech Connect (OSTI)

    Mack, David J. [JLAB

    2014-06-01T23:59:59.000Z

    The $\\eta$ meson provides a laboratory to study isospin violation and search for new flavor-conserving sources of C and CP violation with a sensitivity approaching $10^{-6}$ of the isospin-conserving strong amplitude. Some of the most interesting rare $\\eta$ decays are the neutral modes, yet the effective loss of photons from the relatively common decay $\\eta \\rightarrow 3\\pi^0 \\rightarrow 6\\gamma$ (33$\\%$) has largely limited the sensitivity for decays producing 3-5$\\gamma$'s. Particularly important relevant branches include the highly suppressed $\\eta \\rightarrow \\pi^0 2\\gamma \\rightarrow 4\\gamma$, which provides a rare window on testing models of $O(p^6)$ contributions in ChPTh, and $\\eta \\rightarrow 3\\gamma$ and $\\eta \\rightarrow 2\\pi^0 \\gamma \\rightarrow 5\\gamma$ which provide direct constraints on C violation in flavor-conserving processes. The substitution of lead tungstate in the forward calorimeter of the GluEx setup in Jefferson Lab's new Hall D would allow dramatically improved measurements. The main niche of this facility, which we call the JLab Eta Factory (JEF), would be $\\eta$ decay neutral modes. However, this could likely be expanded to rare $\\eta'(958)$ decays for low energy QCD studies as well as $\\eta$ decays involving muons for new physics searches.

  12. Plant phytotoxicity: A self-regulating pathway

    SciTech Connect (OSTI)

    Not Available

    1989-07-01T23:59:59.000Z

    During the session on regulating sludge utilization, held at BioCycle's 19th Annual National conference on Composting and Recycling, a participant asked one of the speakers, Dr. Alan Rubin of the US EPA's Office of Water Regulations and Standards, why the plant phytotoxicity pathway should be the most limiting, especially when there is no concern about human or animal health. The question related specifically to copper being the most limiting metal concentration limit for many sludge composting and land application programs under the proposed Part 503 regulations. And the most limiting pathway for copper is Pathway 7, sludge-soil-plant phytotoxicity. Rubin responded that the regulation is supposed to protect both human health and the environment, e.g. plants and animals other than humans.

  13. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Phipps, T.L.; Kszos, L.A.

    1996-08-01T23:59:59.000Z

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  14. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  15. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  16. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  17. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    %; permanent magnets, 16%; petroleum refining catalysts, 12%; metallurgical additives and alloys, 9%; rare-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 529 953 1,780 2,470 1,670 Cerium compounds 1,810 4,940 3,990 4,310 4,940 Mixed REOs 974 2,530 5

  18. Statistics of amplitude and fluid velocity of large and rare waves in the ocean

    E-Print Network [OSTI]

    Suh, Il Ho

    2007-01-01T23:59:59.000Z

    The understanding of large and rare waves in the ocean is becoming more important as these rare events are turning into more common observances. In order to design a marine structure or vehicle to withstand such a potentially ...

  19. Rare-earth tantalates and niobates suitable for use as nanophosphors

    DOE Patents [OSTI]

    Nyman, May D; Rohwer, Lauren E.S& gt

    2013-11-19T23:59:59.000Z

    A family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  20. COLLISIONS OF HALOGEN (2P) AND RARE GAS (1S) ATOMS

    E-Print Network [OSTI]

    Becker, Christopher Hank

    2011-01-01T23:59:59.000Z

    involving 2p excited states of alkali atoms, with groundstate rare gas atoms (RG), though other systems have been2p ) AND RARE GAS (IS) ATOMS Christopher Hank Becker (Ph. D.

  1. E-Print Network 3.0 - anhydrous rare earth Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rare earth Search Powered by Explorit Topic List Advanced Search Sample search results for: anhydrous rare earth Page: << < 1 2 3 4 5 > >> 1 An assessment of the amount and types...

  2. E-Print Network 3.0 - alloyed rare earth Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rare earth Search Powered by Explorit Topic List Advanced Search Sample search results for: alloyed rare earth Page: << < 1 2 3 4 5 > >> 1 the machinist mar 2007 agnesium is 36 per...

  3. DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements...

    Broader source: Energy.gov (indexed) [DOE]

    Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal...

  4. E-Print Network 3.0 - aqueous rare earth Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rare earth Search Powered by Explorit Topic List Advanced Search Sample search results for: aqueous rare earth Page: << < 1 2 3 4 5 > >> 1 EES 420 -Geochemistry Course Description...

  5. E-Print Network 3.0 - aqueous rare-earth electrolyte Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rare-earth electrolyte Search Powered by Explorit Topic List Advanced Search Sample search results for: aqueous rare-earth electrolyte Page: << < 1 2 3 4 5 > >> 1 SUSTAINABILITY...

  6. E-Print Network 3.0 - amorphous rare earth Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rare earth Search Powered by Explorit Topic List Advanced Search Sample search results for: amorphous rare earth Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUE Colloque C8,...

  7. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

    1992-01-01T23:59:59.000Z

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  8. 190 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 1, FEBRUARY 2002 Gap Closure in a Cold Metal Halide Lamp

    E-Print Network [OSTI]

    Kushner, Mark

    lamp has been investigated using a two-dimensional, plasma transport model. Im- ages are presented- charge devices, lighting, plasma applications. METAL halide high-intensity-discharge (HID) lamps op- erate as high-pressure thermal arcs [1]. The cold fills of HID lamps are typically 50­100 torr of a rare

  9. Technology Data for Energy Plants June 2010

    E-Print Network [OSTI]

    ............................................................................................... 79 13 Centralised Biogas Plants

  10. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect (OSTI)

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31T23:59:59.000Z

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  11. Plant Phenotype Characterization System

    SciTech Connect (OSTI)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09T23:59:59.000Z

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  12. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

    2008-01-01T23:59:59.000Z

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  13. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  14. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  15. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01T23:59:59.000Z

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. Metallic coating of microspheres

    SciTech Connect (OSTI)

    Meyer, S.F.

    1980-08-15T23:59:59.000Z

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  17. Metal Mechanisms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells In ThisMetal Mechanisms Metal

  18. Formation Of The Rare Earth Peak: Gaining Insight Into Late-Time r-Process Dynamics

    E-Print Network [OSTI]

    Matthew Mumpower; Gail McLaughlin; Rebecca Surman

    2011-09-16T23:59:59.000Z

    We study the formation and final structure of the rare earth peak ($A\\sim160$) of the $r$-process nucleosynthesis. The rare earth peak forms at late times in the $r$-process after neutron exhaustion (neutron-to-seed ratio unity or R=1) as matter decays back to stability. Since rare earth peak formation does not occur during \

  19. Revisiting the rare earth elements in foraminiferal tests Brian A. Haley a,*, Gary P. Klinkhammer b

    E-Print Network [OSTI]

    Kurapov, Alexander

    Revisiting the rare earth elements in foraminiferal tests Brian A. Haley a,*, Gary P. Klinkhammer b: E. Boyle Abstract Are the rare earth elements (REEs) in foraminifera a valuable proxy for use sediments. Over twenty years ago the rare earth elements (REEs) were recognized for having potential

  20. VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN

    E-Print Network [OSTI]

    Steckl, Andrew J.

    . At the same time novel work is being conducted using rare earth elements as sources of light emission. Results. III-V semiconductors doped with rare-earth elements have also been used10VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN M. Garter*, R

  1. Rare earth elements in the sediments of Lake Baikal Lawrence M. Och a

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Rare earth elements in the sediments of Lake Baikal Lawrence M. Och a , Beat Müller a, , Adrian Available online 3 April 2014 Editor: Carla M. Koretsky Keywords: Rare earth elements Cerium anomaly Lake to complex and cryptic redox cycles. The mobility of rare earth elements (REEs) is influenced

  2. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements

    E-Print Network [OSTI]

    , and analysis of zircon/melt partitioning of rare earth elements (REEs) provide mutually consistent lines, 3 tables. Keywords: Hadean; crust; ion microprobe; oxygen; zircon thermometry; rare earth elements oxygen isotopes, Ti-thermometry, and rare earth elements, Geochem. Geophys. Geosyst., 8, Q06014, doi:10

  3. PHOSPHORIC ACID EXTRACTION AND RARE EARTH RECOVERY FROM APATITES OF THE BRAZILIAN PHOSPHATIC ORES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    so as to precipitate the rare earth elements as a phosphate concentrate. The application, fertilizer industry, rare earth elements recovery, phosphate rock, hydrochloric acid route. 1. Introduction: impossibility to recover high commercial value by-products such as the rare earth elements, existence of severe

  4. From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth element

    E-Print Network [OSTI]

    Boyer, Edmond

    and rare earth element concentration variations Mélanie Grenier,1 Catherine Jeandel,1 François Lacan,1 compositions (eNd) and rare earth element (REE) concentrations were measured for filtered surface to deep composition and rare earth element concentration variations, J. Geophys. Res. Oceans, 118, 592­618, doi:10

  5. Speciation of adsorbed yttrium and rare earth elements on oxide surfaces

    E-Print Network [OSTI]

    Sverjensky, Dimitri A.

    Speciation of adsorbed yttrium and rare earth elements on oxide surfaces Wojciech Piasecki, Dimitri 10 June 2008 Abstract The distribution of yttrium and the rare earth elements (YREE) between natural investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition

  6. Rare Earth Elements--End Use and Recyclability Scientific Investigations Report 20115094

    E-Print Network [OSTI]

    Rare Earth Elements--End Use and Recyclability Scientific Investigations Report 2011­5094 U outside of China. Photograph by Dan Cordier, U.S. Geological Survey. #12;Rare Earth Elements--End Use materials contained within this report. Suggested citation: Goonan, T.G., 2011, Rare earth elements--End use

  7. Growth and characterization of rare-earth monosulfides for cold cathode applications

    E-Print Network [OSTI]

    Boolchand, Punit

    of chalco- genides of the rare-earth elements.4,5 The possibility was analyzed theoretically basedGrowth and characterization of rare-earth monosulfides for cold cathode applications Y. Modukuru, J phonons at 261 284 and 100 92 cm 1 with LaS NdS , respectively. These rare-earth monosulfides offer

  8. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin Geological Survey Service, Bordeaux, France, e.malcuit@brgm.fr The study of rare earth elements (REEs such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique

  9. High field strength element/rare earth element fractionation during partial melting in the presence

    E-Print Network [OSTI]

    van Westrenen, Wim

    High field strength element/rare earth element fractionation during partial melting in the presence the amount of fractionation between the two decreases. In contrast, the heavy rare earth element partition field strength element/rare earth element fractionation during partial melting in the presence of garnet

  10. Rare Earth Elements--Critical Resources for High Technology U.S. Department of the Interior

    E-Print Network [OSTI]

    Rare Earth Elements--Critical Resources for High Technology U.S. Department of the Interior U H The rare earth elements (REE) form the largest chemically coherent group in the periodic table of hydrogen for a post-hydro- carbon economy). Some Applications of the Rare Earth Elements Many applications

  11. Use of rare earth elements as external markers for mean retention time measurements in ruminants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Review Use of rare earth elements as external markers for mean retention time measurements -- The present review deals with the utilisation of rare earth (RE) elements as particulate markers for ruminant earth / retention time / feedstuff / methodology / ruminant Résumé -- Utilisation des terres rares comme

  12. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids

    E-Print Network [OSTI]

    ARTICLE Hydrothermal transport and deposition of the rare earth elements by fluorine environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable Hydrothermal concentration of the rare earth elements (REE) to economic and potentially economic levels has

  13. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2011-08-02T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  14. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, RongGuan (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2007-06-05T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  15. Plant centromere compositions

    DOE Patents [OSTI]

    Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-10-10T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  16. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2006-06-26T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  17. Plant centromere compositions

    DOE Patents [OSTI]

    Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

    2011-11-22T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  18. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  19. 1088 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 5, MAY 2004 Classification of Contamination in Salt Marsh Plants

    E-Print Network [OSTI]

    Rocke, David M.

    heavy metal or petroleum toxicity, with a control treatment for each experiment. If these method for classifying heavy-metal or petroleum exposed plants for the more complicated data from air- and spaceborne sensors. Index Terms--Heavy metals, hyperspectral, logistic discrimina- tion (LD), partial least squares

  20. Poisonous Plant Management.

    E-Print Network [OSTI]

    McGinty, Allan

    1985-01-01T23:59:59.000Z

    . Carefully examine plants being grazed. Generally, a Significant quantity of toxic plant must be consumed to be lethaL Many times these plants are readily identified in the field by evidence of grazing. Also helpful at this time is a rumen sample... poisonous plants were most severe at heavy stocking rates, while few losses occurred at light stocking levels. Death ? losses were also directly related to kinds or combinations of livestock being grazed. When combinations of cattle, sheep and goats...

  1. Plant design: Integrating Plant and Equipment Models

    SciTech Connect (OSTI)

    Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

    2007-08-01T23:59:59.000Z

    Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

  2. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  3. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital

  4. Rare Decays And Exotic States With BaBar

    SciTech Connect (OSTI)

    Robertson, S.H.; /McGill U.

    2006-08-28T23:59:59.000Z

    Results from the BABAR experiment are presented for searches for several rare FCNC B and D meson decays, including the modes B{sup 0} {yields} {ell}{sup +}{ell}{sup -} and D{sup 0} {yields} {ell}{sup +}{ell}{sup -}, B {yields} ({rho},{omega}){gamma} and B{sup +} {yields} (K,{pi}){sup +}{nu}{bar {nu}}. Limits on lepton flavor violation in neutrino-less {tau} decays are also discussed. Finally, results of BABAR searches for the strange pentaquark states {Theta}{sup +}(1540), {Xi}{sup --}(1860) and {Xi}{sup 0}(1860) are summarized.

  5. Search for New Physics in Rare Top Decays

    E-Print Network [OSTI]

    Pratishruti Saha

    2014-11-27T23:59:59.000Z

    Top physics provides a fertile ground for new-physics searches. At present, most top observables appear to be in good agreement with the respective Standard Model predictions. However, in the case of decay modes that are suppressed in the Standard Model, new-physics contributions of comparable magnitude may exist and yet go unnoticed because their impact on the total decay width is small. Hence it is interesting to probe rare top decays. This analysis focuses on the decay $t \\to b \\bar b c$. Useful observables are identified and prospects for measuring new-physics parameters are examined.

  6. Summary of the CKM 2014 working group on rare decays

    E-Print Network [OSTI]

    Blake, Thomas; Straub, David M

    2015-01-01T23:59:59.000Z

    Rare flavour changing neutral current decays of strange, charm and beauty hadrons have been instrumental in building up a picture of flavour in the Standard Model. Increasingly precise measurements of these decays allow to search for deviations from predictions of the Standard Model that would be associated to contributions from new particles that might arise in extensions of the Standard Model. In this summary, an overview of recent experimental results and theoretical predictions is given. The new physics sensitivity and prospects for the different observables is also addressed.

  7. Summary of the CKM 2014 working group on rare decays

    E-Print Network [OSTI]

    Thomas Blake; Akimasa Ishikawa; David M. Straub

    2015-01-20T23:59:59.000Z

    Rare flavour changing neutral current decays of strange, charm and beauty hadrons have been instrumental in building up a picture of flavour in the Standard Model. Increasingly precise measurements of these decays allow to search for deviations from predictions of the Standard Model that would be associated to contributions from new particles that might arise in extensions of the Standard Model. In this summary, an overview of recent experimental results and theoretical predictions is given. The new physics sensitivity and prospects for the different observables is also addressed.

  8. US-Japan rare elements meeting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyTheUnited States andUS-Japan rare earth

  9. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab Click onLaser Twinkles in Rare Color NEWPORT NEWS,

  10. Serpentine metal gasket

    DOE Patents [OSTI]

    Rothgeb, Timothy Moore (Norfolk, VA); Reece, Charles Edwin (Yorktown, VA)

    2009-06-02T23:59:59.000Z

    A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.

  11. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09T23:59:59.000Z

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  12. Iron Isotope and Rare Earth Element Patterns of the Neoproterozoic Fulu Formation, South China: Implications for Late Proterozoic Ocean Chemistry

    E-Print Network [OSTI]

    Goldbaum, Elizabeth

    2014-01-01T23:59:59.000Z

    13 3.5. Rare Earth Element Analysis…………………………………………. ……15 4.21 b. 5.2. Rare Earth Element Patterns……………………………………………24 6.Piper, D. Z. (1974). Rare earth elements in the sedimentary

  13. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01T23:59:59.000Z

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  14. Speed of Sound in metal Speed of Sound in metal

    E-Print Network [OSTI]

    Yu, Jaehoon

    the metal rod and metal bar. 2. Acquire a metal bar or rod and measure its mass. Use the meter stick and measure and record the length in meters. Use the vernier calipers and measure the other dimensionBar Select the Smart Tool. Position the Smart tool so that the vertical line bisects the pulse. The (x

  15. PEAT-FORMING PLANT SPECIFIC BIOMARKERS AS INDICATORS OF PALAEOENVIRONMENTAL CHANGES IN SPHAGNUM-DOMINATED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PEAT-FORMING PLANT SPECIFIC BIOMARKERS AS INDICATORS OF PALAEOENVIRONMENTAL CHANGES IN SPHAGNUM and rapid burial make the peat archives particularly useful for reconstructing natural or anthropogenic environmental changes. Nevertheless, up to now biochemical composition of peat OM has rarely been used

  16. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30T23:59:59.000Z

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  17. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  18. Lead in Your Drinking Water Lead (Pb) is an extremely toxic heavy metal that unfortunately occurs widely in

    E-Print Network [OSTI]

    Maynard, J. Barry

    Lead in Your Drinking Water Lead (Pb) is an extremely toxic heavy metal that unfortunately occurs of metallic lead in the soil (4) Drinking water ­ water as it leaves the treatment plant has no lead plumbing components Your exposure to lead in drinking water is at the faucet, but the lead can come from

  19. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

    1985-05-14T23:59:59.000Z

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  20. Coherent properties of single rare-earth spin qubits

    E-Print Network [OSTI]

    P. Siyushev; K. Xia; R. Reuter; M. Jamali; N. Zhao; N. Yang; C. Duan; N. Kukharchyk; A. D. Wieck; R. Kolesov; J. Wrachtrup

    2014-05-20T23:59:59.000Z

    Rare-earth-doped crystals are excellent hardware for quantum storage of optical information. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here, we present experimental results on high-fidelity optical initialization, effcient coherent manipulation, and optical readout of a single electron spin of Ce$^{3+}$ ion in a YAG crystal. Under dynamic decoupling, spin coherence lifetime reaches $T_2$=2 ms and is almost limited by the measured spin-lattice relaxation time $T_1$=3.8 ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce$^{3+}$ emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.

  1. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets

    SciTech Connect (OSTI)

    McCloy, John S.; Walsh, Brian

    2013-07-08T23:59:59.000Z

    The magnetic properties of rare earth garnets make them attractive materials for applications ranging from optical communications to magnetic refrigeration. The purpose of this research was to determine the AC magnetic properties of several rare earth garnets, in order to ascertain the contributions of various sublattices. Gd3Fe5O¬12, Gd3Ga5O12, Tb3Fe5O12, Tb3Ga5O12, and Y3Fe5O12 were synthesized by a solid state reaction of their oxides and verified by x-ray diffraction. Frequency-dependent AC susceptibility and DC magnetization were measured versus temperature (10 – 340 K). Field cooling had little effect on AC susceptibility, but large effect on DC magnetization, increasing magnetization at the lowest temperature and shifting the compensation point to lower temperatures. Data suggest that interaction of the two iron lattices results in the two frequency dependent magnetic relaxations in the iron garnets, which were fit using the Vogel-Fulcher and Arrhenius laws.

  2. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect (OSTI)

    Draayer, Jerry P [Louisiana State University

    2014-09-28T23:59:59.000Z

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  3. Upgrading platform using alkali metals

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  4. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1986-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  5. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  6. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1984-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  7. Methods of recovering alkali metals

    DOE Patents [OSTI]

    Krumhansl, James L; Rigali, Mark J

    2014-03-04T23:59:59.000Z

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  8. Metals processing control by counting molten metal droplets

    DOE Patents [OSTI]

    Schlienger, Eric (Albuquerque, NM); Robertson, Joanna M. (Safford, AZ); Melgaard, David (Albuquerque, NM); Shelmidine, Gregory J. (Tijeras, NM); Van Den Avyle, James A. (Corrales, NM)

    2000-01-01T23:59:59.000Z

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  9. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01T23:59:59.000Z

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  10. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01T23:59:59.000Z

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  11. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20T23:59:59.000Z

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  12. Integrated decontamination process for metals

    DOE Patents [OSTI]

    Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  13. Development of materials resistant to metal dusting degradation.

    SciTech Connect (OSTI)

    Natesan, K.; Zeng, Z.

    2006-04-24T23:59:59.000Z

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  14. Vascular Plants of the Hanford Site

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28T23:59:59.000Z

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  15. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    vapor deposition polycrystalline diamond ?lms. Diamonddoped (B- doped) polycrystalline diamond thin ?lms (MR?

  16. Microstructural investigations of rare-earth transition-metal-based magnetocaloric materials for near-room-temperature applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 05 Oak09 U . SThe March 23,

  17. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  18. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  19. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  20. THE COORDINATION CHEMISTRY OF METAL SURFACES

    E-Print Network [OSTI]

    Muetterties, Earl L.

    2013-01-01T23:59:59.000Z

    result 7 ' 30 u 31 in metal carbide cluster chemistry willin metal chemistry. Oxidation of the iron carbide cluster

  1. Kinetics and mechanisms of metal sorption at the soil mineral/water interface: The continuum from adsorption to

    E-Print Network [OSTI]

    Sparks, Donald L.

    GEOC 36 Kinetics and mechanisms of metal sorption at the soil mineral/water interface: The continuum from adsorption to precipitation Donald L. Sparks, Plant and Soil Sciences Department, Plant and Soil Sciences Department, University of Delaware, 531 S. College Avenue, Townsend Hall, Room 153

  2. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01T23:59:59.000Z

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  3. Water supply and sludge metals

    SciTech Connect (OSTI)

    Brown, W.E. (Wright-Pierce Engineers, Topsham, ME (USA))

    1988-04-01T23:59:59.000Z

    Ultimate sludge disposal is one of the major tasks facing wastewater treatment facilities today. Where adequate farmland exists in proximity to the treatment facility and where sludge characteristics are suitable, land application is often the most economical method. In some cases, however, metal concentrations in the sludge either limit the site life or the application rate to the point where land application is not economical. When metals are above regulatory limits, land application may become impossible. The origin of the metals has largely been credited to industrial users and stormwater runoff and have, in fact, often represented significant sources of metals. Another potentially significant source of metals that has been frequently overlooked is the water supply system (including the distribution and home piping systems). Data from some treatment facilities suggest that the water supply system is the major source of metals and is the reason that sewage sludge metal levels are above allowable land application limits.

  4. Coated metal fiber coalescing cell

    SciTech Connect (OSTI)

    Rutz, W.D.; Swain, R.J.

    1980-12-23T23:59:59.000Z

    A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

  5. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  6. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  7. Detecting Rare Events in the Time-Domain

    SciTech Connect (OSTI)

    Rest, A; Garg, A

    2008-10-31T23:59:59.000Z

    One of the biggest challenges in current and future time-domain surveys is to extract the objects of interest from the immense data stream. There are two aspects to achieving this goal: detecting variable sources and classifying them. Difference imaging provides an elegant technique for identifying new transients or changes in source brightness. Much progress has been made in recent years toward refining the process. We discuss a selection of pitfalls that can afflict an automated difference imagine pipeline and describe some solutions. After identifying true astrophysical variables, we are faced with the challenge of classifying them. For rare events, such as supernovae and microlensing, this challenge is magnified because we must balance having selection criteria that select for the largest number of objects of interest against a high contamination rate. We discuss considerations and techniques for developing classification schemes.

  8. Conditional sterility in plants

    DOE Patents [OSTI]

    Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

    2010-02-23T23:59:59.000Z

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  9. Coupled-channel optical model potential for rare earth nuclei

    E-Print Network [OSTI]

    M. Herman; G. P. A. Nobre; A. Palumbo; F. S. Dietrich; D. Brown; S. Hoblit

    2014-02-06T23:59:59.000Z

    Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved agreement with experimental data compared to spherical optical model calculations. The effect of changing the OMP radius to preserve volume integral is moderate but visibly improves agreement at lower incident energies. We find that seven collective states need to be considered for the coupled-channel calculations to converge. Our results for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkable agreement with experimental data. This result confirms that the adiabatic assumption holds and can extend applicability of the global spherical OMP to rotational nuclei in the rare-earth region, essentially without any free parameter. Thus, quite reliable coupled-channel calculations can be performed on such nuclei even when the experimental data, and consequently a specific coupled-channel potential, are not available.

  10. [Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: Rare earths were mined by one U.S. company in 2013. Bastnasite, a rare-earth

    E-Print Network [OSTI]

    to represent 0.12 percent of the rare-earth elements in the Mountain Pass bastnasite ore. The leading end uses Production and Use: Rare earths were mined by one U.S. company in 2013. Bastnasite, a rare-earth fluorocarbonate mineral, was mined as a primary product at Mountain Pass, CA. Domestic production of rare-earth

  11. Combinatorial exploration of rare-earth-free permanent magnets: Magnetic and microstructural properties of Fe-Co-W thin films

    E-Print Network [OSTI]

    Rubloff, Gary W.

    at least one rare earth element such as Nd, Sm, Tb, or Pr.1­3 However, rare-earth elements are increasCombinatorial exploration of rare-earth-free permanent magnets: Magnetic and microstructural://apl.aip.org/about/rights_and_permissions #12;Combinatorial exploration of rare-earth-free permanent magnets: Magnetic and microstructural

  12. Rare-Earth Surface Alloying: A New Phase for GdAu2 M. J. Verstraete,1,2

    E-Print Network [OSTI]

    refrigeration, are made pos- sible by an unusual group of elements: the rare earths (REs). The rare earthsRare-Earth Surface Alloying: A New Phase for GdAu2 M. Corso,1 M. J. Verstraete,1,2 F. Schiller,1 M. Gadolinium is a borderline rare earth, which is naturally ferromagnetic but can easily switch to different

  13. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    SciTech Connect (OSTI)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16T23:59:59.000Z

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  14. Rare earth focused ion beam implantation utilizing Er and Pr liquid alloy ion sources

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Pr,10,11 Eu,12 Dy,13 Er,13­15 and Tm16 doped GaN. Rare earth elements were added during growthRare earth focused ion beam implantation utilizing Er and Pr liquid alloy ion sources L. C. Chao, B write implantation. © 1999 American Vacuum Society. S0734-211X 99 08306-7 I. INTRODUCTION Rare earth

  15. Emissions estimation for lignite-fired power plants in Turkey

    SciTech Connect (OSTI)

    Nurten Vardar; Zehra Yumurtaci [Yildiz Technical University Mechanical Engineering Faculty, Istanbul (Turkey)

    2010-01-15T23:59:59.000Z

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

  16. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modelingTrending: Metal Oxo Bonds

  17. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modelingTrending: Metal Oxo

  18. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal Hydrogen and Fuel CellTrending: Metal

  19. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    SciTech Connect (OSTI)

    Naus, Dan J [ORNL

    2009-05-01T23:59:59.000Z

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  20. E-Print Network 3.0 - acidic rare earths Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of acidic geothermal waters from the Taupo Volcanic Zone, New... Concentrations of rare earth elements (REE) in acidic thermal waters from the Taupo Volcanic Zone, New Zealand......

  1. Homogeneous blue pattern: A rare presentation in an acral congenital melanocytic nevus

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Malvehy J. Homogeneous blue pattern in an acral congenitalof a plantar combined blue nevus: a simulator of melanoma.Homogeneous blue pattern: A rare presentation in an acral

  2. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  3. Fly ash enhanced metal removal process

    SciTech Connect (OSTI)

    Nonavinakere, S. [Plexus Scientific Corp., Annapolis, MD (United States); Reed, B.E. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil Engineering

    1995-12-31T23:59:59.000Z

    The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

  4. PHYSICAL PLANT POLICY & PROCEDURE

    E-Print Network [OSTI]

    Fernandez, Eduardo

    PHYSICAL PLANT POLICY & PROCEDURE TITLE PHYSICAL PLANT HIGH VOLTAGE PREVENTIVE MAINTENANCE OBJECTIVE AND PURPOSE To establish a consistent policy of performing Preventive Maintenance on high voltage by the G.S.A. Preventive Maintenance sections E- 29 (high voltage oil circuit breaker), E-32 (high voltage

  5. Plant fatty acid hydroxylase

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    2000-01-01T23:59:59.000Z

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  6. Modulating lignin in plants

    DOE Patents [OSTI]

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29T23:59:59.000Z

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  7. Plant Ecology An Introduction

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

  8. RESEARCH ARTICLE PLANT GENETICS

    E-Print Network [OSTI]

    Napp, Nils

    relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of s of regulation among alleles. S porophytic self-incompatibility (SI) is a genetic system that evolved in hermaph

  9. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

  10. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  11. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01T23:59:59.000Z

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  12. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  13. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  14. Recirculation of In-Plant Air at General Motors

    E-Print Network [OSTI]

    McKibben, V. L.

    1983-01-01T23:59:59.000Z

    (fitted around the drum itself) is a coarse fiber, non-woven polyester and is designed for use in oil mist and smoke applications. This inner layer holds the outside media away from the drum keeping it from contacting the expanded metal; thus... for cleaning up the in-plant environment at GM is the rotary drum filter. This rotary drum filter is an air cleaning unit manufactured by two indus trial concerns. It consists of an expanded metal drum fitted with two layers of media. The inner layer...

  15. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  16. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  17. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01T23:59:59.000Z

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  18. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  19. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

    1992-01-01T23:59:59.000Z

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  20. Top 10 plant pathogenic bacteria in molecular plant pathology.

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    plants are being closely grouped together, for example pv.oryzae pv. oryzae AvrXa21 and implications for plant innatePseudomonas syringae pv. tomato in Tanzania. Plant Dis. 91,

  1. ``Towards Strange Metallic Holography'

    SciTech Connect (OSTI)

    Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26T23:59:59.000Z

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  2. Magnetic metallic multilayers

    SciTech Connect (OSTI)

    Hood, R.Q.

    1994-04-01T23:59:59.000Z

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  3. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05T23:59:59.000Z

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  4. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12T23:59:59.000Z

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  5. Plutonium discharges to the sanitary sewer: Health impacts at the Livermore Water Reclamation Plant

    SciTech Connect (OSTI)

    Balke, B.K.

    1993-04-16T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is the largest discharger of sewage treated by the Livermore Water Reclamation (LWRP), contributing approximately 7% by volume of the LWRP influent LILNL operations, as potential sources both of industrial pollutants and radioactivity, are therefore of particular concern to the LWRP. For this reason, LLNL has maintained vigorous wastewater discharge control and monitoring programs. In particular, the monitoring program has demonstrated that, except in a few rare instances, the concentration of contaminants in LLNL effluent have always remained below the appropriate regulatory standards. The exceptions have generally been due to inadvertent discharges of metals-bearing solutions produced by metal plating or cleaning operations.

  6. Analysis of HEU samples from the ULBA Metallurgical Plant

    SciTech Connect (OSTI)

    Gift, E.H.

    1995-05-01T23:59:59.000Z

    In early March 1994, eight highly enriched uranium (HEU) samples were collected from materials stored at the Ulba Metallurgical Plant in Oskamen (Ust Kamenogorsk), Kazakhstan. While at the plant site, portions of four samples were dissolved and analyzed by mass spectrograph at the Ulba analytical laboratory by Ulba analysts. Three of these mass spectrograph solutions and the eight HEU samples were subsequently delivered to the Y-12 Plant for complete chemical and isotopic analyses. Chemical forms of the eight samples were uranium metal chips, U0{sub 2} powder, uranium/beryllium oxide powder, and uranium/beryllium alloy rods. All were declared by the Ulba plant to have a uranium assay of {approximately}90 wt % {sup 235}U. The uranium/beryllium powder and alloy samples were also declared to range from about 8 to 28 wt % uranium. The chemical and uranium isotopic analyses done at the Y-12 Plant confirm the Ulba plant declarations. All samples appear to have been enriched using some reprocessed uranium, probably from recovery of uranium from plutonium production reactors. As a result, all samples contain some {sup 236}U and {sup 232}U and have small but measurable quantities of plutonium. This plutonium could be the result of either contamination carried over from the enrichment process or cross-contamination from weapons material. It is not the result of direct reactor exposure. Neither the {sup 232}U nor the plutonium concentrations are sufficiently high to provide a significant industrial health hazard. Both are well within established or proposed acceptance criteria for storage at Y-12. The trace metal analyses showed that, with the exception of beryllium, there are no trace metals in any of these HEU samples that pose a significant health hazard.

  7. Evidence for the Rare Decay B+ to Ds+ pi0

    SciTech Connect (OSTI)

    Aubert, B.

    2006-11-17T23:59:59.000Z

    The authors have searched for the rare decay B{sup +} {yields} D{sub s}{sup +}{pi}{sup 0}. The analysis is based on a sample of 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II e{sup +}e{sup -} storage ring. They find 19.6 signal events, corresponding to a significance of 4.7 {sigma}. The extracted signal yield including statistical and systematic uncertainties is 20.1{sub -6.0-1.5}{sup +6.8+0.4}, and they measure {Beta}(B{sup +} {yields} D{sub s}{sup +}{pi}{sup 0}) = (1.5{sub -0.4}{sup +0.5} {+-} 0.1 {+-} 0.2) x 10{sup -5}, where the first uncertainty is statistical, the second is systematic, and the last is due to the uncertainty on the D{sub s}{sup +} decay and its daughter decay branching fractions.

  8. Appendix List for Upper Middle Mainstem Columbia River Appendix A. WNHP. 2003.Known High Quality or Rare Plant Communities and

    E-Print Network [OSTI]

    and wetland ecosystems of the UMM Subbasin, WA. SCIENTIFIC NAME COMMON NAME Abies amabilis - Tsuga mertensiana shrubland (provisional) Sitka alder #12;SCIENTIFIC NAME COMMON NAME Artemisia arbuscula / Festuca idahoensis dwarf-shrub herbaceous vegetation Low sagebrush /Idaho fescue Artemisia rigida / Poa secunda dwarf

  9. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22T23:59:59.000Z

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  10. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24T23:59:59.000Z

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  11. Calibration of Cotton Planting Mechanisms.

    E-Print Network [OSTI]

    Smith, H. P. (Harris Pearson); Byrom, Mills H. (Mills Herbert)

    1936-01-01T23:59:59.000Z

    per foot. To obtain a perfect stand of one plant to Foot, a minimum of 1 to a maximum of 11 plants per foot wonld have to be thinned out. The number for picker wheel- drop planting mechanisms ranged from a minimum of 2 to a maxi- mum of 27 plants... per foot, requiring the removal of from 1 to 26 nlants per foot to leave one plant per foot. CONTENTS Introduction History of cotton planter development ------------.---------------------------------- Cottonseed planting mechanisms Requirements...

  12. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    SciTech Connect (OSTI)

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16T23:59:59.000Z

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  13. Grant Helps Make U.S. Rare Earth Magnets More Common

    Broader source: Energy.gov [DOE]

    Sintered rare earth magnets - which are vital components in hybrid vehicle motors and wind turbine generators - are a $4 billion worldwide industry. Landisville, Pa.-based Electron Energy Corporation is hoping to bring a share of that market (and jobs) to the U.S. with their sintered rare earth magnet innovation.

  14. The impact of vegetation on fractionation of rare earth elements (REE) during waterrock interaction

    E-Print Network [OSTI]

    Mailhes, Corinne

    The impact of vegetation on fractionation of rare earth elements (REE) during water The fractionation of the rare earth elements (REE) in river water, as well as the immobilization of REE in the river earth elements (REE) principally originate from apatite dissolution during weathering. However, stream

  15. The Effect of Rare Earth Elements, Temperature and Rolling Speed on the Microstructure Evolution of Magnesium

    E-Print Network [OSTI]

    Barthelat, Francois

    The Effect of Rare Earth Elements, Temperature and Rolling Speed on the Microstructure Evolution ·Rare earth elements are the current focus of study due to: Ability to weaken the rolling texture of Aluminum Abundance: 8th most abundant element in Earth's crust (2% by mass) ·These properties can serve

  16. Expanding hollow metal rings

    DOE Patents [OSTI]

    Peacock, Harold B. (Evans, GA); Imrich, Kenneth J. (Grovetown, GA)

    2009-03-17T23:59:59.000Z

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  17. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01T23:59:59.000Z

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  18. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...