National Library of Energy BETA

Sample records for rare elements meeting

  1. US-Japan rare elements meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-Japan rare elements meeting US-Japan rare elements meeting US-Japan rare earth elements meeting PDF icon US-Japan rare elements meeting More Documents & Publications Microsoft...

  2. Rare Earth Elements Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Rare Earth Elements from Coal and Coal By-Products logo. Download the 2016 Rare Earth Elements from Coal and Coal By-Products Project Portfolio Rare Earth ...

  3. 2016 Rare Earth Elements Workshop Accelerating Rare Earth Element...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Workshop Accelerating Rare Earth Element Recovery from U.S. Domestic Sources of Coal and Coal By-Products August 8-9, 2016 Hosted by: Dr. Cynthia Powell Acting ...

  4. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect (OSTI)

    Imashuku, Susumu Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  5. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect (OSTI)

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  6. Trace rare earth element analysis in briny groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.; Smith, M.R.

    1986-08-01

    A rare-earth element (REE) group separation scheme has been developed. REE data for two briny groundwaters representing Granite Wash and Wolfcamp Carbonate formations are reported. (DLC)

  7. Thorium, uranium and rare earth elements content in lanthanide...

    Office of Scientific and Technical Information (OSTI)

    Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water ... in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas ...

  8. CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Recycling of Rare Earth Elements: A Microbiological Approach The CMI Webinar series includes a presentation CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach by David Reed, Idaho National Laboratory (INL), on April 23, 2015. The recording of the webinar runs nearly 39 minutes (38:52

  9. 2016 Rare Earth Elements Workshop Accelerating Rare Earth Element Recovery from U.S. Domestic Sources of Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Workshop Accelerating Rare Earth Element Recovery from U.S. Domestic Sources of Coal and Coal By-Products August 8-9, 2016 Hosted by: Dr. Cynthia Powell Acting Deputy Director, Science & Technology National Energy Technology Laboratory U.S. Department of Energy 541.207.7392 Office of Fossil Energy U.S. Department of Energy 301.903.2827 Location: National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26505 Time: 12:30 pm - 4:15 pm August 8, 2016 7:30

  10. Work Group Leadership Meetings: Transition Elements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leadership Meetings: Transition Elements Work Group Leadership Meetings: Transition Elements Meeting Dates: November 13 - 15, 2012 This Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized

  11. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  12. DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements...

    Office of Environmental Management (EM)

    Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts ...

  13. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  14. Detection of rare earth elements in Powder River Basin sub-bituminous...

    Office of Scientific and Technical Information (OSTI)

    Report Number(s): NETL-PUB--20051 Journal ID: ISSN 0016-2361 Resource ... Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Rare earth elements; ...

  15. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOE Patents [OSTI]

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  16. Watch a Rare Earth Elements Event Live This Morning | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs From 9:30am to noon ET today you can tune into a live discussion on "rare earth ...

  17. Rare Earth Elements: A Tool for Understanding the Behaviour of Trivalent Actinides in the Geosphere

    SciTech Connect (OSTI)

    Buil, Belen; Gomez, Paloma; Garralon, Antonio; Turrero, M. Jesus

    2007-07-01

    Rare earth element (REE) concentrations have been determined in groundwaters, granite and fracture fillings in a restored uranium mine. The granitoids normalized REE patterns of groundwaters show heavy rare earth elements (HREE)-enrichment and positive Eu anomalies. This suggests that the REE are fractionated during leaching from the source rocks by groundwaters. Preferential leaching of HREE would be consistent with the greater stability of their aqueous complexes compared to those of the light rare earth elements (LREE), together with the dissolution of certain fracture filling minerals, dissolution/alteration of phyllosilicates and colloidal transport. (authors)

  18. DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Coal Byproducts | Department of Energy Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts September 25, 2014 - 9:55am Addthis DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts Replies to the RFI are due October 10, 2014, by 8:00 p.m. EDT. Details about how and where to submit your ideas-and additional information

  19. Column Sorption Uptake and Regeneration Study; Rare Earth Element Sorbent Uptake and Sorbent Stripping

    SciTech Connect (OSTI)

    Tim Lanyk

    2015-12-18

    Study of rare earth element (REE) uptake from geothermal brine simulant by column loading, metal recovery through stripping, and regeneration of column for re-loading. Simulated brine testing.

  20. FE-Supported Research Looks to Coal as a Source for Rare Earth Elements

    Office of Energy Efficiency and Renewable Energy (EERE)

    FE, through the National Energy Technology Laboratory (NETL), is looking at ways to use coal and its byproducts (like coal ash from power plants, for instance) to develop new sources of critical rare earth elements, or REEs.

  1. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect (OSTI)

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  2. Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

  3. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOE Patents [OSTI]

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  4. Rare earth element content of thermal fluids from Surprise Valley, California

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  5. Fluid rare earth element anlayses from wells RN-12 and RN-19, Reykjanes, Iceland

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-07-24

    Results for fluid rare earth elment analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples preconcetrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using and Element magnetic sctor ICP-MS.

  6. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  7. The effect of rare earth elements on the texture and formability of asymmetrically rolled magnesium sheet

    SciTech Connect (OSTI)

    Alderman, Dr. Martyn; Cavin, Odis Burl; Davis, Dr. Bruce; Muralidharan, Govindarajan; Muth, Thomas R; Peter, William H; Randman, David; Watkins, Thomas R

    2011-01-01

    The lack of formability is a serious issue when considering magnesium alloys for various applications. Standard symmetric rolling introduces a strong basal texture that decreases the formability; however, asymmetric rolling has been put forward as a possible route to produce sheet with weaker texture and greater ductility. It has also been shown in recent work that weaker textures can be produced through the addition of rare earth elements to magnesium alloys. Therefore, this study has been carried out to investigate the effect of rare earth additions on the texture changes during asymmetric rolling. Two alloys have been used, AZ31B and ZEK100. The effect that the rare earth additions have on the texture of asymmetrically rolled sheet and the subsequent changes in formability will be discussed.

  8. Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements

    SciTech Connect (OSTI)

    Hashida, Masaki; Sakabe, Shuji; Izawa, Yasukazu

    2011-03-15

    Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross sections of IIIa rare-earth-metal elements ({sigma}{sub Sc}, {sigma}{sub Y}, and {sigma}{sub Gd}) with those of alkali metals or helium {sigma}{sub 0}, we found that {sigma}{sub 0{approx_equal}{sigma}Sc}<{sigma}{sub Y}<{sigma}{sub Gd{approx_equal}}2{sigma}{sub 0}at an impact energy of 1000 eV.

  9. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect (OSTI)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  10. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect (OSTI)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  11. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect (OSTI)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  12. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  13. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less

  14. DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth Elements from Coal and Coal Byproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected 10 projects to receive funding for research in support of the lab’s program on Recovery of Rare Earth Elements from Coal and Coal Byproducts. The selected research projects will further program goals by focusing on the development of cost-effective and environmentally benign approaches for the recovery of rare earth elements (REEs) from domestic coal and coal byproducts.

  15. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect (OSTI)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  16. Study on the electrochemical extraction of rare earth elements from FLINAK

    SciTech Connect (OSTI)

    Long, Dewu; Huang, Wei; Jiang, Feng; Tian, Lifang; Li, Qingnuan

    2013-07-01

    Electrochemical behaviors of rare earth elements, such as NdF{sub 3}, GdF{sub 3}, SmF{sub 3}, YF{sub 3}, and EuF{sub 3}, were investigated in a LiF-NaF-KF (46.5-11.5-42.0 mol %, FLINAK, m. p. 454 Celsius degrees) solvent. The results indicated that it is possible to extract Nd, Gd and Y directly by electrochemical deposition since the reductions of those cations to metal are located in the electrochemical window of the FLINAK eutectic, while the reductions of Sm and Eu metal are out of the range of the medium. Subsequently electro-deposition of Nd was carried out with two kinds of cathodic materials, namely, an inert cathode, Pt, and a reactive electrode, Cu. The collected products were characterized by various techniques revealing that a Nd-rich product was obtained. (authors)

  17. Predictive model for ionic liquid extraction solvents for rare earth elements

    SciTech Connect (OSTI)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  18. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  19. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect (OSTI)

    Wang, Lingqing Liang, Tao Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  20. Rare earth element carriers in the Shergotty meteorite and implications for its chronology

    SciTech Connect (OSTI)

    Lundberg, L.L.; Crozaz, G.; Zinner, E. ); McKay, G. )

    1988-08-01

    Ion probe measurements of the rare earth element (REE) concentrations of individual grains of the Shergotty meteorite are reported. Phases analyzed include whitlockite, apatite, baddeleyite, augite, pigeonite, maskelynite and K-rich glass. U concentrations of whitlockite and apatite crystals were also obtained. The whole rock REE pattern is dominated by whitlockite, which contains over 95% of the light rare earth elements (LREE). REE concentrations in apatite are much lower than estimated by Laul et al. (1986). All of the whitlockites have the same relative abundances of LREE. The observation, by Jones et al. (1985), of a skeletal whitlockite with LREE enrichment is not confirmed by analyses of the same grain. Pyroxene rims are not enriched in LREE. No leachable carrier, enriched in LREE and associated with pyroxene, has been found. Instead, either a laboratory contamination or a petrographically cryptic phase such as a film on grain boundaries is suspected as the carrier of LREE enrichments. Estimates of REE abundances in the Shergotty intercumulus melt indicate that a complex petrogenesis is required, in agreement with the conclusions of McKay et al. (1986a). Pyroxene distribution coefficients measured experimentally are compared with estimates from measured REE abundances in augite and pigeonite. Evolution of REE abundances in the Shergotty late-stage interstitial melt, as inferred from analyses of whitlockite, conforms with trends predicted from partitioning considerations, and requires no special processes such as metasomatism. The average U concentrations of whitlockite and apatite are respectively 540 and 1,550 ppb. Although the calcium phosphates are enriched in U, they contain less than 20% of the U in Shergotty.

  1. Improved estimates of rare K decay matrix elements from K{sub l3} decays

    SciTech Connect (OSTI)

    Mescia, Federico; Smith, Christopher

    2007-08-01

    The estimation of rare K decay matrix elements from K{sub l3} experimental data is extended beyond LO in chiral perturbation theory. Isospin-breaking effects at next-to-leading order (and partially next-to-next-to-leading order) in the chiral perturbation theory expansion, as well as QED radiative corrections, are now accounted for. The analysis relies mainly on the cleanness of two specific ratios of form factors, for which the theoretical control is excellent. As a result, the uncertainties on the K{sup +}{yields}{pi}{sup +}{nu}{nu} and K{sub L}{yields}{pi}{sup 0}{nu}{nu} matrix elements are reduced by a factor of about 7 and 4, respectively, and similarly for the direct CP-violating contributions to K{sub L}{yields}{pi}{sup 0}e{sup +}e{sup -} and K{sub L}{yields}{pi}{sup 0}{mu}{sup +}{mu}{sup -}. They could be reduced even further with better experimental data for the K{sub l3} slopes and the K{sub l3}{sup +} branching ratios. As a result, the nonparametric errors for B(K{yields}{pi}{nu}{nu}) and for the direct CP-violating contributions to B(K{sub L}{yields}{pi}{sup 0}l{sup +}l{sup -}) are now completely dominated by those on the short-distance physics.

  2. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect (OSTI)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  3. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect (OSTI)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  4. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  5. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  6. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  7. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    SciTech Connect (OSTI)

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  8. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    SciTech Connect (OSTI)

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  9. Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA

    SciTech Connect (OSTI)

    Gosselin, D.C. ); Smith, M.R.; Lepel, E.A. ); Laul, J.C. )

    1992-04-01

    Rare earth element (REE) data for groundwater samples from the Deep-Basin Brine aquifer of the Palo Duro Basin, Texas, USA, illustrates the potential use of REE for inferring groundwater flow paths through different geologic materials. The REE content of the groundwaters range over 2.5 orders of magnitude and are depleted by 10{sup 2} to 10{sup 5} relative to aquifer materials. The shale-normalized REE patterns for groundwater that have primarily interacted with arkosic sandstones (granite wash) are flat with similar heavy REE (HREE) enrichments ((Lu/La){sub n} = 0.60 to 0.80). The samples with highest REE contents and REE patterns, which are enriched in the intermediate REEs (IREEs; Sm-Tb) reflect variable degrees of interaction with carbonate rocks. The IREE enrichment is the result of fluid interaction with Fe-Mn coatings on carbonate minerals and/or secondary minerals in fractures and vugs. The chloride complex. (LnCl{sup 2+}), and free-ions are the predominant REE species, accounting for over 95% of the REEs. Carbonate and sulfate species account for the other 5% and have very little influence on the behavior of the REEs. Although this study indicates a potentially important role for the REEs in understanding geochemical transport and groundwater movement, it also indicates the necessity for developing a better understanding of REE speciation in high ionic strength solutions.

  10. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  11. β-decay of neutron-rich Z∼60 nuclei and the origin of rare earth elements

    SciTech Connect (OSTI)

    Wu, J.; Nishimura, S.; Lorusso, G.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P. A.; Sakurai, H.; Xu, Z. Y.; Browne, F.; Daido, R.; Fang, Y. F.; Yagi, A.; Nishibata, H.; Odahara, A.; Yamamoto, T.; Ideguchi, E.; Aoi, N.; Tanaka, M.; Collaboration: EURICA Collaboration; and others

    2014-05-02

    A large fraction of the rare-earth elements observed in the solar system is produced in the astrophysical rapid neutron capture process (r-process). However, current stellar models cannot completely explain the relative abundance of these elements partially because of nuclear physics uncertainties. To address this problem, a β-decay spectroscopy experiment was performed at RI Beam Factory (RIBF) at RIKEN, aimed at studying a wide range of very neutron-rich nuclei with Z∼60 that are progenitors of the rare-earth elements with mass number A∼460. The experiment provides a test of nuclear models as well as experimental inputs for r-process calculations. This contribution presents the experimental setup and some preliminary results of the experiment.

  12. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOE Patents [OSTI]

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  13. Aluminoborosilicate glasses codoped with rare-earth elements as radiation-protective covers for solar cells

    SciTech Connect (OSTI)

    Malchukova, E. V. Abramov, A. S.; Nepomnyashchikh, A. I.; Terukov, E. I.

    2015-06-15

    The radiation hardness of aluminoborosilicate glasses codoped with rare-earth ions of Sm, Gd or Sm, Eu in various ratios is studied. The effect of codoping and β irradiation at a dose of 10{sup 9} Gr on the optical transmission and electron paramagnetic resonance spectra is examined. It is found that the introduction of Sm and Gd codopants in a 1 : 1 ratio reduces the number of radiation defects and raises the transmission of irradiated glasses in the visible spectral range.

  14. Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA Outage Coordination Presentation NOA - General References Guide Draft NOC Charter Demand Response NOC Meeting Notes - 6122014 April 23, 2014 NT Redispatch Meeting NT...

  15. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    SciTech Connect (OSTI)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  16. Rare-earth elements in hot brines (165 to 190 degree C) from the Salton Sea geothermal field

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.; Smith, M.R.

    1988-01-01

    Rare-earth element (REE) concentrations are important indicators for revealing various chemical fractionation processes (water/rock interactions) and source region geochemistry. Since the REE patterns are characteristic of geologic materials (basalt, granite, shale, sediments, etc.) and minerals (K-feldspar, calcite, illite, epidote, etc.), their study in geothermal fluids may serve as a geothermometer. The REE study may also enable us to address the issue of groundwater mixing. In addition, the behavior of the REE can serve as analogs of the actinides in radioactive waste (e.g., neodymium is an analog of americium and curium). In this paper, the authors port the REE data for a Salton Sea Geothermal Field (SSGF) brine (two aliquots: port 4 at 165{degree}C and port 5 at 190{degree}C) and six associated core samples.

  17. Partitioning and Leaching Behavior of Actinides and Rare Earth Elements in a Zirconolite- Bearing Hydrothermal Vein System

    SciTech Connect (OSTI)

    Payne, Timothy E.; Hart, Kaye P.; Lumpkin, Gregory R.; McGlinn, Peter J.; Giere, Reto

    2007-07-01

    Chemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9 M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases (zirconolite and titanite) rather than readily leached phases (such as apatite). Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconium. The results show that REE and actinides present in chemically resistant host minerals can be retained under aggressive leaching conditions. (authors)

  18. Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Business Process Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Meetings Customer Comments Network Integration...

  19. Fluid rare earth element anlayses from geothermal wells located on the Reykjanes Peninsula, Iceland and Middle Valley seafloor hydrothermal system on the Juan de Fuca Ridge.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-05-01

    Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).

  20. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    SciTech Connect (OSTI)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao E-mail: dujun@nimte.ac.cn; Du, Juan E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei; Law, Jiayan

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  1. Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Season Reform Customer Meeting September 20, 2012 Agenda NOS Preliminary Future State Model Financial Requirements Financial Analysis for NOS Reform: CIFA Assumptions Eligibility...

  2. Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Meetings Customer Comments Attachment K Commercial Business Process...

  3. Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is available on the BPA Event Calendar. 2013 Network Open Season Update 2013 NOS Cluster Study Meeting May 20, 2014 Agenda Cluster Study Results Overview Generation...

  4. Drill cutting and core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-05-01

    Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  5. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    SciTech Connect (OSTI)

    Tran, Phuoc

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  6. Am phases in the matrix of a U–Pu–Zr alloy with Np, Am, and rare-earth elements

    SciTech Connect (OSTI)

    Janney, Dawn E.; Kennedy, J. Rory; Madden, James W.; O’Holleran, Thomas P.

    2015-01-01

    Phases and microstructures in the matrix of an as-cast U-Pu-Zr alloy with 3 wt% Am, 2% Np, and 8% rare-earth elements were characterized by scanning and transmission electron microscopy. The matrix consists primarily of two phases, both of which contain Am: ζ-(U, Np, Pu, Am) (~70 at% U, 5% Np, 14% Pu, 1% Am, and 10% Zr) and δ-(U, Np, Pu, Am)Zr2 (~25% U, 2% Np, 10-15% Pu, 1-2% Am, and 55-60 at% Zr). These phases are similar to those in U-Pu-Zr alloys, although the Zr content in ζ-(U, Np, Pu, Am) is higher than that in ζ-(U, Pu) and the Zr content in δ-(U, Np, Pu, Am)Zr2 is lower than that in δ-UZr2. Nanocrystalline actinide oxides with structures similar to UO2 occurred in some areas, but may have formed by reactions with the atmosphere during sample handling. Planar features consisting of a central zone of ζ-(U, Np, Pu, Am) bracketed by zones of δ-(U, Np, Pu, Am)Zr2 bound irregular polygons ranging in size from a few micrometers to a few tens of micrometers across. The rest of the matrix consists of elongated domains of ζ-(U, Np, Pu, Am) and δ-(U, Np, Pu, Am)Zr2. Each of these domains is a few tens of nanometers across and a few hundred nanometers long. The domains display strong preferred orientations involving areas a few hundred nanometers to a few micrometers across.

  7. Rare Earth Metals & Alloys | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Metals & Alloys Quantities of high-purity rare earth metals and alloys in ... storage, cutting and cleaning and SDS information for the rare earth elements (metals).

  8. Technical papers presented at a DOE meeting on criteria for cleanup of transuranium elements in soil

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    Transuranium element soil contamination cleanup experience gained from nuclear weapons accidents and cleanup at Eniwetok Atoll was reviewed. Presentations have been individually abstracted for inclusion in the data base. (ACR)

  9. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    SciTech Connect (OSTI)

    AL-Areqi, Wadeeah M. Majid, Amran Ab. Sarmani, Sukiman

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  10. Trace rare earth element analysis of IAEA hair (HH-1), animal bone (H-5) and other biological standards by radiochemical neutron activation

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1986-03-01

    A radiochemical neutron activation analysis using a rare earth group separation scheme has been used to measure ultratrace levels of rare earth elements (REE) in IAEA Human Hair (HH-1), IAEA Animal Bone (H-5), NBS Bovine Liver (SRM 1577), and NBS Orchard Leaf (SRM 1571) standards. The REE concentrations in Human Hair and Animal Bone range from 10/sup -8/g/g to 10/sup -11/g/g and their chondritic normalized REE patterns show a negative Eu anomaly and follow as a smooth function of the REE ionic radii. The REE patterns for NBS Bovine Liver and Orchard Leaf are identical except that their concentrations are higher. The similarity among the REE patterns suggest that the REE do not appear to be fractionated during the intake of biological materials by animals or humans. 14 refs., 3 figs., 2 tabs.

  11. The Tapestry of Life: Lateral Transfers of Heritable Elements - Scientific Meeting

    SciTech Connect (OSTI)

    Claire M. Fraser, Ph.D.

    2005-12-31

    The Sackler Colloquium The Tapestry of Life: Lateral Transfers of Heritable Elements was held on December 12-13, 2005. What Darwin saw as a tree of life descending in a linear fashion, is now more accurately seen as a tapestry of life, an anastomosing network, with important lateral transfers of heritable elements among parallel lines of descent These transfers range in complexity from small insertion sequences, to whole genes, gene islands, and portions of whole genomes which may be combined in symbiogenesis. The colloquium brought together researchers, empirical and theoretical, working at all levels on genomics, comparative genomics, and metagenomics to identify common and differentiating features of lateral gene transfer and to examine their implications for science and for human concerns.

  12. Element

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Element 2. System Name/ Major Application Name 3. Location 4. Name of System Owner/ Information or Data Owner 5. Contact Information 6. Does the system collect or maintain Social Security numbers? 7. Source of Legal Requirement/Authority to Collect or Maintain Social Security Numbers? 8. Does the system have a Privacy Impact Assessment (PIA)? 9. Does the system have a System of Records Notice (SORN)? If yes, provide the name of the System of Records Notice. 10. Does the system

  13. Crystal structure of high-Zr inclusions in an alloy containing U, Pu, Np, Am, Zr and rare-earth elements

    SciTech Connect (OSTI)

    Dawn E. Janney; James W. Madden; J. Rory Kennedy; Thomas P. O'Holleran

    2014-05-01

    Researchers commonly observe high-Zr inclusions in actinide-Zr alloys. As there is very little published data on the crystal structures of these inclusions, it has generally been assumed that the inclusions were impurity-stabilized a-Zr. However, new electron-diffraction data from two high-Zr inclusions in an alloy containing U, Pu, Np, Am, Zr, and rare-earth elements show that these inclusions are not a-Zr (which has a hexagonal structure) but instead have a face-centered cubic structure. This data is unique in that it combines single-crystal diffraction patterns and microchemical analyses from individual inclusions. More data on other high-Zr inclusions is clearly required. However, the present results suggest that caution is needed in assuming that all high-Zr inclusions in actinide-Zr alloys are a-Zr.

  14. As-cast microstructures in U-Pu-Zr alloy fuel pins with 5-8 wt% minor actinides and 0-1.5 wt% rare-earth elements

    SciTech Connect (OSTI)

    Dawn E. Janney; J. Rory Kennedy

    2010-11-01

    The Idaho National Laboratory (INL) is investigating U–Pu–Zr alloys with low concentrations of minor actinides (Np and Am) and rare-earth elements (La, Ce, Pr, and Nd) as possible nuclear fuels to be used to transmute minor actinides. Alloys with compositions 60U–20Pu– 3Am–2Np–15Zr, 42U–30Pu–5Am–3Np–20Zr, 59U–20Pu–3Am–2Np–1RE–15Zr, 58.5U–20Pu– 3Am–2Np–1.5RE–15Zr, 41U–30Pu–5Am–3Np–1RE–20Zr, and 40.5U–30Pu–5Am–3Np–1.5RE– 20Zr (where numbers represent weight percents of each element and RE is a rare-earth alloy consisting of 6% La, 16% Pr, 25% Ce, and 53% Nd by weight) were arc-melted and vacuum cast as fuel pins approximately 4 mmin diameter. The as-cast pins were sectioned, polished, and examined by scanning electron microscopy. Each alloy contains high-Zr inclusions surrounded by a high-actinide matrix. Alloys with rare-earth elements also contain inclusions that are high in these elements. Within the matrix, concentrations of U and Zr vary inversely, while concentrations of Np and Pu appear approximately constant. Am occurs in the matrix and with some high-rare-earth inclusions, and occasionally as high-Am inclusions in samples without rare-earth elements.

  15. As-cast microstructures in U-Pu-Zr alloy fuel pins with 5-8 wt.% minor actinides and 0-1.5 wt% rare-earth elements

    SciTech Connect (OSTI)

    Janney, Dawn E. Kennedy, J. Rory

    2010-11-15

    The Idaho National Laboratory (INL) is investigating U-Pu-Zr alloys with low concentrations of minor actinides (Np and Am) and rare-earth elements (La, Ce, Pr, and Nd) as possible nuclear fuels to be used to transmute minor actinides. Alloys with compositions 60U-20Pu-3Am-2Np-15Zr, 42U-30Pu-5Am-3Np-20Zr, 59U-20Pu-3Am-2Np-1RE-15Zr, 58.5U-20Pu-3Am-2Np-1.5RE-15Zr, 41U-30Pu-5Am-3Np-1RE-20Zr, and 40.5U-30Pu-5Am-3Np-1.5RE-20Zr (where numbers represent weight percents of each element and RE is a rare-earth alloy consisting of 6% La, 16% Pr, 25% Ce, and 53% Nd by weight) were arc-melted and vacuum cast as fuel pins approximately 4 mm in diameter. The as-cast pins were sectioned, polished, and examined by scanning electron microscopy. Each alloy contains high-Zr inclusions surrounded by a high-actinide matrix. Alloys with rare-earth elements also contain inclusions that are high in these elements. Within the matrix, concentrations of U and Zr vary inversely, while concentrations of Np and Pu appear approximately constant. Am occurs in the matrix and with some high-rare-earth inclusions, and occasionally as high-Am inclusions in samples without rare-earth elements. - Research Highlights: {yields}Microstructures consist of high-Zr inclusions surrounded by a high-actinide matrix. {yields}Alloys with rare-earth (RE) elements contain inclusions that are high in REs. {yields}Concentrations of U and Zr vary inversely in the matrix. {yields}Am occurs in the matrix and with high-RE inclusions.

  16. Grain refinement in heavy rare earth element-free sintered Nd–Fe–B magnets by addition of a small amount of molybdenum

    SciTech Connect (OSTI)

    Kim, Jin Woo; Lee, Won Suk; Byun, Jong Min; Kim, Young Do; Kim, Se Hoon

    2015-05-07

    We employed a modified refractory-metal-addition method to achieve higher coercivity and remanence in heavy rare earth element (HREE)-free Nd–Fe–B sintered magnets. This process involved inducing the formation of a homogeneous secondary phase at the grain boundaries during sintering, making it possible to control the intergrain diffusion by adding small amounts of Mo, a refractory metal. To control the microstructure of the secondary phase effectively, a metal organic compound of the refractory metal was coated on the surfaces of the particles of an HREE-free Nd–Fe–B powder. The average grain size after this process was 5.60 μm, which was approximately 1.8 μm smaller than that of the HREE-free sintered Nd–Fe–B magnets (7.4 μm). The coercivity of the magnets prepared through this process could be increased from 11.88 kOe to 13.91 kOe without decreasing their remanence.

  17. Multi-kb Illumina reads Reveal Significant Strain Variation and Rare Organisms in Aquifer (2014 DOE JGI Genomics of Energy & Environment Meeting)

    SciTech Connect (OSTI)

    Sharon, Itai

    2014-03-20

    Itai Sharon from the University of California at Berkely speaks at the 9th Annual Genomics of Energy & Environment Meeting on March 20, 2014 in Walnut Creek, Calif.

  18. A rare opportunity beckons

    SciTech Connect (OSTI)

    Gschneidner, K

    2011-02-01

    There is a great deal of uncertainty for the future of rare-earth production. Rare-earths are a collection of 17 chemical elements in the periodic table, which include scandium and yttrium as well as the 15 lanthanides, such as dysprosium and ytterbium. China has a stranglehold on today's rare-earth market, which was worth about $3bn in 2010, with the country accounting for about 95% of worldwide production. Yet China's future actions can only be guessed at best. In September it halted shipments of rare-earth elements to Japan over a diplomatic spat concerning the detention of a Chinese trawler captain. Although the ban was later lifted, the episode raised concerns around the world about China's rare-earth monopoly and its use in diplomacy. China has already warned that it will not export any rare-earth material in the coming years as it expects its own consumption of rare-earth metals to increase. The country has introduced export taxes as well as production and export quotas, and also refused to grant any new rare-earth mining licences. Furthermore, because its reserves are limited and China's internal markets are growing so rapidly, the country has suggested it will no longer export products that require rare-earth elements, especially those that need heavy rare-earth elements, such as terbium and dysprosium. China's actions have led to huge rises in the cost of rare-earth materials and products. Dysprosium oxide, for example, has shot up from $36 per kilogram in 2005 to a massive $305 per kilogram by late last year. This could have a huge impact on much of today's electronics industry, given that rare-earth elements are ubiquitous in electric motors, computers, batteries, liquid-crystal displays (LCDs) and mobile phones. Neodymium-iron-boron permanent magnets, for example, are used as computer spindle drives. The question is: what can be done to ensure that China's dominance of the rare-earth industry does not affect the military and energy security of the US

  19. ORNL Licenses Rare Earth Magnet Recycling Process to Momentum...

    Office of Environmental Management (EM)

    ORNL Licenses Rare Earth Magnet Recycling Process to Momentum Technologies ORNL Licenses ... Dallas-based Momentum Technologies is focused on extraction of rare earth elements and ...

  20. Rare Earth Metals for Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Metals for Science The Ames Laboratory has been actively involved in the ... More information on the rare-earth elements Quantities of high-purity rare earth metals ...

  1. Phase stable rare earth garnets

    SciTech Connect (OSTI)

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  2. Replacing the Rare Earth Intellectual Capital

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained

  3. Focus Group Meeting (Topical Meeting)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Topical Meeting - Training Meeting agenda, summary and information package Meeting Date: April 30, 2008

  4. Crosscutting Research & Rare Earth Elements Portfolios Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Inc., James Pschirer Novel Functional Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines Babcock & Wilcox Power Generation Group, Inc., Paul S. Weitzel ...

  5. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  6. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  7. Focus Group Meeting (Topical Meeting)

    Broader source: Energy.gov [DOE]

    Aging Workforce and Strategic Initiatives Meeting agenda, summary and information package Meeting Date: November 6, 2008

  8. DOE-Led Research Team Makes Significant Rare Earth Discovery...

    Office of Environmental Management (EM)

    DOE-Led Research Team Makes Significant Rare Earth Discovery DOE-Led Research Team Makes ... Energy (DOE) has found that rare earth elements (REEs) can be removed from two U.S. ...

  9. Modeling Magnetism in Rare-Earth Intermetallic Materials | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a ... Rare-earth elements are unique in that their cores hold strongly localized electrons that ...

  10. Modeling Magnetism in Rare-Earth Intermetallic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a key development in our understanding of the deeply complex magnetic properties in a series of rare-earth intermetallic materials. Rare-earth elements are unique in that their cores hold strongly localized electrons that underpin their novel magnetic properties. When combined with transition metals, rare earths become technologically-useful intermetallic materials. Here gadolinium-an element

  11. Ternary rare earth-lanthanide sulfides

    DOE Patents [OSTI]

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  12. Influence of rare-earth elements doping on thermoelectric properties of Ca{sub 0.98}Dy{sub 0.02}MnO{sub 3} at high temperature

    SciTech Connect (OSTI)

    Zhu, Yuanhu Wang, Chunlei; Su, Wenbin; Liu, Jian; Li, Jichao; Zhang, Xinhua; Mei, Liangmo

    2015-05-15

    Ca{sub 0.98}Dy{sub 0.02}MnO{sub 3} and Ca{sub 0.96}Dy{sub 0.02}Re{sub 0.02}MnO{sub 3} (Re=La, Pr, Sm, Eu, Ho, and Yb) have been synthesized by the solid state reaction method. Samples with relative densities all over 96% have been obtained. Thermoelectric properties are evaluated between 300 and 1000 K. The electrical resistivity shows a typical metal-like conductivity behavior, and at high temperature, 973 K, decreases from 36.1 mΩ cm for Ca{sub 0.98}Dy{sub 0.02}MnO{sub 3} to 8.6 mΩ cm for Ca{sub 0.96}Dy{sub 0.02}Yb{sub 0.02}MnO{sub 3}. Both the absolute values of Seebeck coefficient and thermal conductivity are reduced by the introduction of second rare-earth element. The highest power factor of 415 μW/(K{sup 2}m) is obtained for Ca{sub 0.96}Dy{sub 0.02}Yb{sub 0.02}MnO{sub 3} sample, resulting in the highest dimensionless figure of merit (ZT) 0.25 at 973 K. This value shows an improvement of 144% compared with that of Ca{sub 0.98}Dy{sub 0.02}MnO{sub 3} ceramics at the same temperature. - Graphical abstract: The Ca{sub 0.96}Dy{sub 0.02}Re{sub 0.02}MnO{sub 3} (Re=La, Pr, …, Yb) were prepared by solid state reaction. Highest ZT value obtained is 0.25 at 973 K for Re=Yb, which shows 144% improvement compared with Ca{sub 0.98}Dy{sub 0.02}MnO{sub 3}. - Highlights: • Ca{sub 0.96}Dy{sub 0.02}Re{sub 0.02}MnO{sub 3} (Re=La, Pr, …, Yb) are produced by solid state reaction. • Lowest resistivity is obtained due to the highest carrier mobility for Re=Yb. • Highest power factor obtained is 415 μW/(K{sup 2}m) at 973 K for Re=Yb. • Highest ZT value obtained is 0.25 at 973 K for Ca{sub 0.96}Dy{sub 0.02}Yb{sub 0.02}MnO{sub 3} sample.

  13. Focus Group Meeting (Topical Meeting)

    Broader source: Energy.gov [DOE]

    Former Worker/Energy Compensation Programs and CAIRS Reporting Meeting agenda, summary and information package Meeting Date: September 16, 2008

  14. Programmatic Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Supersedes DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

  15. Public Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Meetings Individual Permit: Public Meetings Subscribe to receive notifications for semiannual Individual Permit for Storm Water public meetings. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Public meeting notifications LANL will email a draft agenda at least one week before the meeting and will consider suggestions from the public for changes or additions to the agenda. Upcoming Meetings 2016 Meeting Archives

  16. Meeting Minutes

    Office of Environmental Management (EM)

    QA Corporate Board Meeting Las Vegas, NV March 13, 2008 8:00 am - 5:00 pm Meeting Notes The meeting was held at the OCRWM Yucca Mountain campus, Building 9, Room 915 (See ...

  17. The New Element Americium (Atomic Number 95)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G.T.; James, R.A.; Morgan, L.O.

    1948-01-00

    Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.

  18. Ternary rare earth-lanthanide sulfides

    DOE Patents [OSTI]

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  19. William Fowler and Elements in the Stars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fusion rates for a wide variety of elements, and experiments with accelerators to ... Abundances of the Rare-Earth Nuclei Produced by Rapid Neutron Capture in Supernovae; Physical ...

  20. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Supersedes DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  1. NNMCAB Meeting Minutes 11-18-2015 Board Meeting

    Office of Environmental Management (EM)

    ... also available on the NNMCAB's YouTube Channel 38 (NNMCAB). 39 40 NNMCAB Meeting Minutes ... 26 chromium, sodium, potassium, aluminum, iron, and many other trace elements. 27 28 Mr. ...

  2. Meeting Minutes

    Office of Environmental Management (EM)

    ... EM Quality Assurance Corporate Board Meeting Follow-Up Actions November 13 - 14, 2008 Atlanta, GA General: 1. Invite NRC to the next Board meeting to discuss 1 - 5 columns binning ...

  3. 2011 Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Fuel Cycle Technologies Annual Review Meeting Transactions Report i Table of Contents Fuel Cycle Technologies Program: I ntroduction ......

  4. 2011 Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Fuel Cycle Technologies Annual Review Meeting Transactions Report i Table of Contents Fuel Cycle Technologies Program: Introduction ......

  5. The Search for Heavy Elements

    ScienceCinema (OSTI)

    None

    2010-01-08

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  6. The Search for Heavy Elements

    SciTech Connect (OSTI)

    2008-04-17

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  7. Rare earth gas laser

    DOE Patents [OSTI]

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  8. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  9. Good Earths and Rare Earths | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Good Earths and Rare Earths Good Earths and Rare Earths April 20, 2011 - 6:17pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What does this mean for me? Rare earth elements -- dysprosium, neodymium, terbium, europium and yttrium -- are essential to a wide range of green energy technologies ranging from windmills to electric vehicles One of their primary uses is in permanent magnets, which amount to over a $4 billion global industry Ames Laboratory

  10. What are the Rare Earths? | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the Rare Earths? Rare-earth metals or elements typically include scandium (Sc-21), yttrium (Y-39) and the lanthanides: lanthanum (La-57), cerium (Ce-58), praseodymium (Pr-59), neodymium (Nd-60), promethium (Pm-61), samarium (Sm-62), europium (Eu-63), gadolinium (Gd-64), terbium (Tb-65), dysprosium (Dy-66), holmium (Ho-67), erbium (Er-68), thulium (Tm-69), ytterbium (Yb-70), and lutetium (Lu-71). When alloyed with other metals, the rare-earths can provide enhanced magnetic, strength and

  11. Rare-earth nanoparticles for catalysis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing new materials based on these two elements is expected to impact favorably the supply chain of the more scarce rare earths. The SULI student in this program will work...

  12. Rare Earths -- The Fraternal Fifteen | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For an up-to-date review of the rare earth elements, which is more technical, see the 2012 articles by Karl A. Gschneidner, Jr. and Vitalij K. Pecharsky in the Encyclopedia ...

  13. The Ames Process for Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Process for Rare Earth Metals The Ames Process for the preparation of high purity ... If we rearrange the order of elements from increasing atomic weight to increasing boiling ...

  14. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study...

  15. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case...

  16. Meeting Minutes

    Office of Environmental Management (EM)

    ... Management Quality Assurance Corporate Board Meeting Minutes May 1, 2012 - Las Vegas, NV Page 7 of 9 TJ Jackson asked why the Lessons Learned system is password protected. ...

  17. 2016 Annual Meeting | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Annual Meeting people attending CMI annual meeting 2016 The Critical Materials Institute held its annual meeting August 16-18, 2016, at Oak Ridge National Laboratory. signing ceremony for CRADA between CMI and Oddello Ceremony for signing new CRADA: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives Pictured Standing: Tim McIntyre, ORNL, Energy and Environmental Sciences Directorate; Alex King, CMI Director, Ames Laboratory; Mike

  18. Meetings - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings SRSCRO Meetings Schedule PLEASE CALL THE SRSCRO OFFICE AT 803-508-7401 FOR MEETING DETAILS 2016 Board Meeting Dates January 28, 2016, 10:00 A.M. March 31, 2016, 10:00 A.M. May 26, 2016, 10:00 A.M. July 28, 2016, 10:00 A.M. September 22, 2016, 10:00 A.M December 8, 2016, 10:00 A.M. ***Changed*** 2016 Executive Committee Meeting Dates January 7, 2016, 9:00 A.M. February 4, 2016, 9:00 A.M. March 3, 2016, 9:00 A.M. April 14, 2016, 9:00 A.M. ***Cancelled*** May 5, 2016, 9:00 A.M. June 16,

  19. Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGENDA DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting February 8-9, 2005 Argonne National Laboratory February 8, 2005 7:30 Arrival and breakfast ...

  20. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Meeting America's Pressing Needs -- One Reaction at a Time Meeting America's Pressing Needs -- One Reaction at a Time March 28, 2016 - 4:37pm Addthis Cleaner auto emissions is just one way catalysis research is helping to solve big problems. | Image courtesy of PNNL. Cleaner auto emissions is just one way catalysis research is helping to solve big problems. | Image courtesy of PNNL. Dr. Steven Ashby Director, Pacific Northwest National Laboratory In the Middle Ages, alchemists

  1. Rare Meets Common: Reacting Protactinium with Ubiquitous Water...

    Office of Science (SC) Website

    This behavior reveals that different chemistry occurs when a water molecule is added to ... The chemistry of protactinium, which is very difficult to study due to it scarcity and ...

  2. The Heaviest Elements in the Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The artificial elements bring the total to 117. 244 244 244 ... Crust: 5 10 -25 g 244 Pu per gram of Earth. There is an ... We observe rare isotopes through their ...

  3. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect (OSTI)

    Sun, Xiaoqi; Dai, Sheng; Luo, Huimin

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  4. 2011 Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Fuel Cycle Technologies Annual Review Meeting Transactions Report i Table of Contents Fuel Cycle Technologies Program: I ntroduction .................................................. 1 Fuel Cycle Options Campaign ................................................................................ 5 1.1 Fuel Cycle Options Campaign Overview ...................................................................................... 6 1.2 Development of the Comprehensive Options List for 2013 Evaluation

  5. 2011 Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Fuel Cycle Technologies Annual Review Meeting Transactions Report i Table of Contents Fuel Cycle Technologies Program: Introduction ...................................................... 1 Used Fuel Disposition Campaign ................................................................................ 3 1.1 Used Fuel Disposition Campaign Overview ......................................................................... 4 1.2 Abstract: Review of the Used Fuel Disposition Campaign's Storage and

  6. 2016 CROSSCUTTING RESEARCH AND RARE EARTH ELEMENTS PORTFOLIOS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Concepts for High Temperature Fossil Energy Applications Yukinori Yamamoto 14 Water Treatment and Reuse Maria Reidpath Research Triangle Institute Low-Energy Water Recovery from ...

  7. 2016 CROSSCUTTING RESEARCH & RARE EARTH ELEMENTS PORTFOLIOS REVIEW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Maine System * Low-Cost Efficient and Durable High Temperature Wireless Sensors by Direct ... High Salinity Produced Brine Treatment via Direct Waste Heat ...

  8. Behavior of Rare Earth Elements in Geothermal Systems- A New...

    Open Energy Info (EERE)

    ExplorationExploitation Tool? Abstract NA Author Scott A. Wood Published Department of Geology and Geological Engineering University of Idaho, 2001 DOI Not Provided Check for...

  9. Rare earth element behavior in the development of energy resources

    SciTech Connect (OSTI)

    Laul, J.C.

    1984-04-02

    The REE patterns in soil-soil extract-plant-coal-flyash are all identical, show a negative Eu anomaly, and follow a smooth function of the REE ionic radii. The patterns are similar to that observed in the secondary mineral apatite. Their enrichment factors in various liquefaction products and ash depositories of a coal fired power plant are nearly unity (Class 1). The REE do not chemically fractionate even in size fractions 25 ..mu..m-0.5 ..mu..m of flyash. Almost all (99%) of the REE are bound in an inorganic form in high temperature clay minerals. The remarkable similarity in REE patterns in a wide variety of matrices with REE content varying over six orders of magnitude demonstrates that the REE do not significantly fractionate during transformation from the geological-biological-geological chain over geological time scales.

  10. Rare B Decays

    SciTech Connect (OSTI)

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  11. Ames Lab 101: Rare Earths

    ScienceCinema (OSTI)

    Gschneidner, Karl

    2012-08-29

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  12. Ames Lab 101: Rare Earths

    SciTech Connect (OSTI)

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  13. Vehicle Technologies Office Merit Review 2015: Non-Rare Earth Motor Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non-rare earth...

  14. Staff meeting

    ScienceCinema (OSTI)

    None

    2011-10-06

    I would like to invite all members of the CERN Personnel to a meeting on Wednesday 16 January 2008 at 3:00 p.m. Main Auditorium (bldg 500) to convey my best wishes for the new year, to review CERN?s activities during 2007 and to present the perspectives for 2008, the year of the LHC start-up. Closed-circuit transmission of the meeting will be available in the Council Chamber and in the AB Auditorium (Meyrin), the AB Auditorium (Prévessin), the IT Auditorium (Bldg. 31) and the AT Auditorium (Bldg. 30). Simultaneous translation into English will be available in the main Auditorium. Best wishes for the festive season! Robert AYMAR

  15. Meeting Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winners of the Lawrence Award - 2014 Meet the Winners of the Lawrence Award - 2014 Addthis Mei Bai, Brookhaven National Laboratory 1 of 9 Mei Bai, Brookhaven National Laboratory Mei Bai's work helps us understand more about how the universe works, from the smallest subatomic particles to the largest stars. A nuclear physicist at Brookhaven National Laboratory, Bai's tool of choice is the Lab's flagship particle accelerator -- the Relativistic Heavy Ion Collider. With the collider, Bai has

  16. Yttrium and rare earth stabilized fast reactor metal fuel

    DOE Patents [OSTI]

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  17. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Meeting ALS User Meeting web banner ALS User Meeting: October 5-7, 2015 Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User...

  18. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS User Meeting Print web banner ALS User Meeting: October 5-7, 2015 Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting...

  19. Meeting of the Electricity Advisory Committee Meeting, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee Meeting, March 26-27, 2015 - Meeting Minutes and Transcripts Meeting of the Electricity Advisory Committee Meeting, March 26-27, 2015 - Meeting Minutes and Transcripts ...

  20. EMAB Meeting- September 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Board minutes, transcripts, and presentations from meeting held in Washington, DC for meeting on Septermber 15, 2010.

  1. EMAB Meeting- March 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Board minutes, transcripts, and presentations from meeting held in Washington, DC for meeting on March 31, 2010.

  2. EMAB Meeting- February 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Board minutes, transcripts, and presentations from meeting held in Washington, DC for meeting on February 24, 2011.

  3. EMAB Meeting- November 2010

    Broader source: Energy.gov [DOE]

    Board minutes, transcripts, and presentations from meeting held in Washington, DC for meeting on November 17, 2010.

  4. Growth and defect structure of CdF{sub 2} crystal and nonstoichiometric Cd{sub 1-x}R{sub x}F{sub 2+x} phases (R are rare earth elements and in): 6. Growth and ionic conductivity of Cd{sub 0.904}In{sub 0.096}F{sub 2.096} single crystal

    SciTech Connect (OSTI)

    Sorokin, N. I. Sul'yanova, E. A.; Buchinskaya, I. I.; Artyukhov, A. A.; Sobolev, B. P.

    2013-07-15

    Cd{sub 0.904}In{sub 0.096}F{sub 2.096} crystals with fluorite-type defect structures have been grown from melt in a fluorinating atmosphere by the Bridgman method, and their ionic conductivity is investigated. The fluorine-ion transport activation enthalpy in Cd{sub 0.904}In{sub 0.096}F{sub 2.096} ({Delta}H = 0.68 eV) is much smaller than the corresponding characteristic of the crystals belonging to the isoconcentration series Cd{sub 0.9}R{sub 0.1}F{sub 2.1}, R = La-Lu, Y ({Delta}H = 0.8-0.9 eV). The ionic conductivity of Cd{sub 0.904}In{sub 0.096}F{sub 2.096} is {sigma} = 2 Multiplication-Sign 10{sup -4} S/cm (at 467 K); this value exceeds the conductivity of the CdF{sub 2} crystal matrix and the highest conductivity Cd{sub 0.9}R{sub 0.1}F{sub 2.1} crystals with rare earth elements by factors of 3 Multiplication-Sign 10{sup 3} and {approx}10, respectively. Nonstoichiometric crystals of solid electrolyte Cd{sub 1-x}In{sub x}F{sub 2+x} have the highest conductivity out of all studied electrolytes based on the CdF{sub 2} matrix.

  5. URTAC Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meetings URTAC Meetings November 27, 2013 URTAC Meeting - December 18, 2013 November 18, ... Federal Register Notice for January 2012 URTAC Meeting October 27, 2011 URTAC Meeting - ...

  6. Method of determining lanthanidies in a transition element host

    DOE Patents [OSTI]

    De Kalb, Edward L.; Fassel, Velmer A.

    1976-02-03

    A phosphor composition contains a lanthanide activator element within a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO.sub.4 with a portion of the rare earth replaced with one or more of the transition elements. On X-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence.

  7. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema (OSTI)

    Schatz, Hendrick [Michigan State University, East Lansing, Michigan, United States

    2010-01-08

    Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  8. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOE Patents [OSTI]

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  9. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  10. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  11. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  12. News about Rare Earths, New or Critical Materials, and Their Uses: |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Rare Earths, New or Critical Materials, and Their Uses: 2016 Rare earth materials: Developing a comprehensive approach could help DOD better manage national security risks in the supply chain, Feb. 11, 2016 New request for information to inform Department of Energy Critical Materials Strategy, Feb. 10, 2016 2015 UK gets federal funds to research coal-based rare earth elements, Dec. 20, 2015 Salvage neodymium magnets from an old hard drive, Dec. 10, 2015 Battery

  13. Electricity Advisory Committee Meeting, June 16-17, 2014 - Meeting...

    Office of Environmental Management (EM)

    Electricity Advisory Committee Meeting, June 16-17, 2014 - Meeting Summaries and Transcripts Meeting summaries and transcripts for the June 16-17, 2014 meeting of the Electricity ...

  14. Electricity Advisory Committee Meeting, March 12-13, 2014 - Meeting...

    Energy Savers [EERE]

    Electricity Advisory Committee Meeting, March 12-13, 2014 - Meeting Minutes and Transcripts Meeting minutes and transcripts for the March 12-13, 2014 meeting of the Electricity ...

  15. Electricity Advisory Committee Meeting, January 24, 2014 - Meeting...

    Energy Savers [EERE]

    Electricity Advisory Committee Meeting, January 24, 2014 - Meeting Summary and Transcript Meeting summary and transcript for the January 24, 2014 meeting of the Electricity ...

  16. Electricity Advisory Committee Meeting, March 5-6, 2012 - Meeting...

    Energy Savers [EERE]

    Electricity Advisory Committee Meeting, March 5-6, 2012 - Meeting Minutes and Transcripts Meeting minutes and transcripts for the March 5-6, 2012 meeting of the Electricity ...

  17. Electricity Advisory Committee Meeting, July 12, 2011 - Meeting...

    Office of Environmental Management (EM)

    Electricity Advisory Committee Meeting, July 12, 2011 - Meeting Minutes and Transcript Meeting minutes and transcript for the July 12, 2011 meeting of the Electricity Advisory ...

  18. Electricity Advisory Committee Meeting, June 11-12, 2012 - Meeting...

    Energy Savers [EERE]

    Electricity Advisory Committee Meeting, June 11-12, 2012 - Meeting Minutes and Transcripts Meeting minutes and transcripts for the June 11-12, 2012 meeting of the Electricity ...

  19. Electricity Advisory Committee Meeting, March 10, 2011 - Meeting...

    Office of Environmental Management (EM)

    Electricity Advisory Committee Meeting, March 10, 2011 - Meeting Minutes and Transcript Meeting minutes and transcript for the March 10, 2011 meeting of the Electricity Advisory ...

  20. Electricity Advisory Committee Meeting, June 5-6, 2013 - Meeting...

    Office of Environmental Management (EM)

    Electricity Advisory Committee Meeting, June 5-6, 2013 - Meeting Summaries and Transcripts Meeting summaries and transcripts for the June 5-6, 2013 meeting of the Electricity ...

  1. Electricity Advisory Committee Meeting, December 11, 2008: Meeting...

    Office of Environmental Management (EM)

    December 11, 2008: Meeting transcript Electricity Advisory Committee Meeting, December 11, 2008: Meeting transcript Transcript of the Electricity Advisory Committee Meeting held on ...

  2. Electricity Advisory Committee Meeting Notice of Open Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Advisory Committee Meeting Notice of Open Meeting October 29, 2010: Federal ... PDF icon Electricity Advisory Committee Meeting: Notice of Open Meeting October 29, 2010 ...

  3. ORSSAB Meeting - Annual Meeting August 2014 | Department of Energy

    Energy Savers [EERE]

    of the 2014 Annual Meeting - August 2014 (93.18 KB) More Documents & Publications ORSSAB Meeting - October 2015 ORSSAB Meeting - September 2013 ORSSAB Meeting - February 2015

  4. Meeting Materials: Consent-Based Siting Public Meeting in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Sacramento (April 26, 2016) Meeting Materials: Consent-Based Siting Public Meeting in Sacramento (April 26, 2016) Meeting Materials: Consent-Based Siting Public Meeting in ...

  5. Facility for Rare Isotope Beams: The Journey Has Begun on DOE...

    Office of Environmental Management (EM)

    ... rare that they can't be found naturally on earth. Instead, they're created in extreme conditions such as the centers of exploding supernovae. These isotopes decay into the elements ...

  6. Public Outreach committee meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB Public Outreach Committee meeting is open to the public. The conference call information will be provided as the meeting approaches.

  7. ORSSAB monthly meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    This month's ORSSAB board meeting will focus on the ETTP Zone 1 soils proposed plan. The meeting is open to the public.

  8. 2013 ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ALS User Meeting banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

  9. 2013 ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 ALS User Meeting Print banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users'...

  10. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOE Patents [OSTI]

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  11. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOE Patents [OSTI]

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  12. RECONDITIONING FUEL ELEMENTS

    DOE Patents [OSTI]

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  13. Meet CMI Researcher David Reed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for project 3.2.5 Bioleaching for Recovery of Recycled REE. The objective of this project is to develop and deploy a biological strategy for recovery of rare earth elements from recyclable materials. His collaborators include Vicki Thompson, Dayna Daubaras, and Debra Bruhn at Idaho National Laboratory and Yongqin Jiao

  14. HAMMER Steering Committee Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HAMMER Steering Committee Meeting HAMMER Steering Committee Meeting September 11 - 13, 2012 The HAMMER Steering Committee is a group of nationally recognized leaders who offer their time and experience to HAMMER management in an interactive setting where everyone shares a common commitment-reducing health and safety risks to workers, emergency responders, and the public. Committee insight and recommendations strongly influence HAMMER policies, strategies, and direction. As an integral element of

  15. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  16. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  17. Rare Earth-Bearing Murataite Ceramics

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Stefanovsky, Olga; Yudintsev, Sergey; Nikonov, Boris

    2007-07-01

    Phase composition of the murataite-based ceramics containing 10 wt.% lanthanum, cerium, neodymium, europium, gadolinium, yttrium, zirconium oxides was studied. The ceramics were prepared by melting of oxide mixtures in 20 mL glass-carbon crucibles in air at {approx}1500 deg. C. They are composed of predominant murataite-type phases and minor extra phases: rutile, crichtonite, perovskite, ilmenite/pyrophanite, and zirconolite (in the Zr-bearing sample only). Three murataite-related phases with five- (5C), eight- (8C), and three-fold (3C) elementary fluorite unit cell are normally present in all the ceramics. These phases form core, intermediate zone, and rim of the murataite grains, respectively. They are predominant host phases for the rare earth elements whose concentrations are reduced in a row: 5C>8C>3C. Appreciate fraction of La and Ce may enter the perovskite phase. (authors)

  18. UDAC Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meetings UDAC Meetings November 27, 2013 UDAC Meeting - December 16, 2013 Federal Register Notice for December 16, 2013 UDAC Meeting UDAC 2014 Findings and Recommendations Minutes from December 16, 2013 UDAC Meeting November 20, 2013 UDAC Meeting - December 9, 2013 Federal Register Notice for December 9, 2013 UDAC Meeting Federal Register Notice for December 9, 2013 UDAC Meeting Meeting documents from December 9, 2013 UDAC Meeting Minutes from December 9, 2013 UDAC Meeting November 18, 2013 UDAC

  19. DRAFT MEETING SUMMARY (v

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Whole Meeting Page 1 Final Meeting Summary May 12, 2010 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD COMMITTEE OF THE WHOLE May 12, 2010 Richland, WA Topics in this Meeting Summary Welcome and Introductions ................................................................................................ 1 Overview of the Proposed Changes .................................................................................... 1 Central Plateau - Specific Issues

  20. AGU Fall Meeting 2014

    Broader source: Energy.gov [DOE]

    The American Geophysical Union's 47th Annual Fall Meeting will showcase groundbreaking research in the geosciences.

  1. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS User Meeting October 3-5, 2011 Lawrence Berkeley National Laboratory, California

  2. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    SciTech Connect (OSTI)

    Sean William McWhorter

    2006-05-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} several new compounds were synthesized with different crystal structures, but similar structural features. In Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} can be thought of as being formed from two 3{sup 2}434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd{sub 2}MgGe{sub 2} and Gd{sub 2}InGe{sub 2} both possess the same 3{sup 2}434 nets of Gd atoms as Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, but these nets are connected differently, forming the Mo{sub 2}FeB{sub 2} crystal structure. A search of the literature revealed that compounds with the composition R{sub 2}XM{sub 2} (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo{sub 2}FeB{sub 2}, Zr{sub 3}Al{sub 2}, Mn{sub 2}AlB{sub 2} and W{sub 2}CoB{sub 2} crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd{sub 2}AlGe{sub 2} forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how electrons can be accounted for. A series of electronic structure calculations were performed on models with the U{sub 3}Si{sub 2} and Zr{sub 3}Al{sub 2} structures, using Zr and A1 as

  3. Are Earths Rare? Perhaps Not

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are Earths Rare? Perhaps Not Are Earths Rare? Perhaps Not Developed at NERSC, a Pipeline for Finding Earth-like Planets in the Milky Way January 13, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov habitablezones450.jpg Artist's representation of the "habitable zone," the range of orbits where liquid water is permitted on the surface of a planet. The authors find that 22% of Sun-like stars harbor a planet between one and two times the size of Earth in the habitable zone One out of

  4. Meeting Attendance - 32nd Tritium Focus Group Meeting | Department of

    Office of Environmental Management (EM)

    Energy 2nd Tritium Focus Group Meeting Meeting Attendance - 32nd Tritium Focus Group Meeting Attendees to the 32nd Tritium Focus Group Meeting held in Germantown, Maryland, April 23-25, 2013. Meeting Attendance - 32nd Tritium Focus Group Meeting (76.56 KB) More Documents & Publications Meeting Attendance - 33rd Tritium Focus Group Meeting Meeting Attendance - 34th Tritium Focus Group Meeting Tritium 2013 Presentation

  5. Meeting Attendance - 35th Tritium Focus Group Meeting | Department of

    Office of Environmental Management (EM)

    Energy 5th Tritium Focus Group Meeting Meeting Attendance - 35th Tritium Focus Group Meeting Attendees to the 35th Tritium Focus Group Meeting held in Princeton, NJ on May 5-7, 2015. Meeting Attendance - 35th Tritium Focus Group Meeting (108.18 KB) More Documents & Publications Meeting Attendance - 34th Tritium Focus Group Meeting Meeting Attendance - 33rd Tritium Focus Group Meeting

  6. ICEIWG Meeting Agendas and Summaries

    Office of Energy Efficiency and Renewable Energy (EERE)

    Meeting agendas and available summaries from previous Indian Country Energy and Infrastructure Working Group (ICEIWG) meetings.

  7. Laminated rare earth structure and method of making

    DOE Patents [OSTI]

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  8. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The claim of discovery of an element has varied over the centuries. Many claims, e.g., the discovery of certain rare earth elements of the lanthanide series, involved the discovery ...

  9. ARM - 2004 Science Team Meeting Pictures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting2004 Science Team Meeting Pictures 2004 Meeting 2004 Meeting Home Proceedings ... Winners Pictures Meeting Archives ARM Science Team Meeting Proceedings Past Science ...

  10. Meet CMI Researcher Ikenna Nlebedim | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet CMI Researcher Ikenna Nlebedim Image: left, CMI researcher Ikenna Nlebedim, and right, Summer 2015 SULI student Gavin Hester CMI researcher Ikenna Nlebedim researches magnets. His research led to a new method for recycling rare earth magnetic material from manufacturing waste. This Ames Laboratory news release describes the process. Also, in this Ames Lab 101 video file, Nlebedim describes recycling rare earths from magnet scraps on the factory floor. Nlebedim led a student researcher for

  11. Rare B decays at CDF

    SciTech Connect (OSTI)

    Farrington, Sinead M.; /Liverpool U.

    2006-10-01

    The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

  12. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect (OSTI)

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  13. Rare events: a state of the art

    SciTech Connect (OSTI)

    Uppuluri, V.R.R.

    1980-12-01

    The study of rare events has become increasingly important in the context of nuclear safety. Some philosophical considerations, such as the framework for the definition of a rare event, rare events and science, rare events and trans-science, and rare events and public perception, are discussed. The technical work of the Task Force on problems of Rare Events in the Reliability Analysis of Nuclear Plants (1976-1978), sponsored by OECD, is reviewed. Some recent technical considerations are discussed, and conclusions are drawn. The appendix contains an essay written by Anne E. Beachey, under the title: A Study of Rare Events - Problems and Promises.

  14. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  15. EIR SCOPING MEETING AGREEMENT FORM EIR SCOPING MEETING FOR _...

    Office of Environmental Management (EM)

    SCOPING MEETING AGREEMENT FORM EIR SCOPING MEETING FOR ... Date of Scoping Meeting: Date of Planned On-Site EIR: Name OrganizationPosition PhoneEmail ...

  16. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda Agenda for the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 ...

  17. Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Attendees List Attendee list from the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 ...

  18. Electricity Advisory Committee Meeting Notice of Open Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting March 10, 2011: Federal Register Notice Volume 76, No. 38 - Feb. 25, 2011 Electricity Advisory Committee Meeting Notice of Open Meeting March 10, 2011: Federal Register ...

  19. ARM - Meetings and Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dates Meeting Important Deadlines 2016.07.31 - 2016.08.06 13th Asia Oceania Geosciences Society Annual Meeting AOGS Beijing, China Asia Oceania Geosciences Society (AOGS) was ...

  20. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The meeting is open to the public. Participants at this week's meeting will receive a presentation on the Federal Oversight Model—Ensuring a Safe Work Environment.

  1. ORSSAB monthly meeting

    Broader source: Energy.gov [DOE]

    The meeting is open to the public. Participants at this week's meeting will receive a presentation on "Y-12 Mercury Cleanup Strategy and Plan for a Y-12 Water Treatment Plant."

  2. NARUC Summer Committee Meetings

    Broader source: Energy.gov [DOE]

    At the NARUC Summer Committee Meetings, you will meet utility regulators from every State in the U.S., along with federal and international officials. This is a wonderful opportunity for learning...

  3. FY 2008 Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiscal Year 2008 Meetings Meetings, Minutes and Handouts Date Type Time Location Agenda Handouts Minutes Nov 6, 2007 EMPIRE Committee 2:30 - 3:45 p.m. 821 E. Amargosa Farm Road...

  4. FY 2010 Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiscal Year 2010 NSSAB Meetings Meetings, Minutes and Handouts Date Type Time Location Agenda Handouts Minutes Oct 1, 2009 Industrial Sites EMAD Tour All Day Nevada Test Site NA...

  5. FY 2009 Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiscal Year 2009 Meetings Meetings, Minutes and Handouts Date Type Time Location Agenda Handouts Minutes Oct 1, 2008 EMPIRE Committee 4:30 - 6 pm DOE Nevada Support Facility 232...

  6. NUG Business Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUG Business Meeting NUG Business Meeting February 26, 2015 Location: Berkeley Lab and NERSC OSF (All events are available for remote access over the web). Dates: Feb. 23-26, 2015...

  7. STGWG Meeting- October 2009

    Broader source: Energy.gov [DOE]

    State and Tribal Government Working Group MeetingOctober 21, 2009Hotel MonteleoneNew Orleans, Louisiana

  8. User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Meeting Awards Print web banner ALS User Meeting Awards See the 2013 User Meeting Awards Winners Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Meeting Archives Users' Executive Committee The ALS Users' Executive Committee invites ALS users and staff to submit nominations in recognition of the people who have made significant contributions to the scientific

  9. STGWG Meeting- May 2010

    Broader source: Energy.gov [DOE]

    State and Tribal Government Working Group Meeting May 3, 2010Doubletree Downtown NashvilleNashville, Tennessee

  10. Meetings and Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings workshops Meetings and Workshops LLNL Well Represented at Joint Working Group Meeting Twenty-nine LLNL researchers participated in a Joint Working Group (JOWOG) meeting hosted by the United Kingdom's Atomic Weapons Establishment (AWE) in Aldermaston, UK, from July 18 to 22. JOWOGs enable classified technical exchanges between UK and U.S. collaborators via the two nations' 1958 Mutual Defense Agreement, which was reaffirmed by the signing of a new Statutory Determination. Joint Working

  11. NASEO 2015 Annual Meeting

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) Annual Meeting will be held in San Diego, California.

  12. ARM - Meetings and Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings and Presentations Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Meetings and Presentations Next Meeting:

  13. ASD All Hands Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schmerge SPEAR3 AD All Hands Meeting November 24, 2009 1 SPEAR3 Accelerator Division All Hands Meeting John Schmerge John Schmerge SPEAR3 AD All Hands Meeting November 24, 2009 2 Outline * Organization - SSRL - AD - SPEAR3 Accelerator Division * Electrical Systems Support * Service Level Agreements * System Managers * Safety - WPC - Recent Accidents - Lessons Learned * Accelerator Projects - 0-1 year - 1-5 year - > 5 year John Schmerge SPEAR3 AD All Hands Meeting November 24, 2009 3 Photon

  14. Announcements and Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings Announcements and Meetings Monthly PDSF User Meeting Minutes PDSF Users Meeting minutes are available back to late 2009 here. Read More » PDSF Selected Announcements The most recent operations and events in PDSF. Read More » PDSF Email Announcements Archive An archive of email announcements sent to NERSC users regarding PDSF. Read More » PDSF Mailing Lists There are a number of different PDSF mailing lists... Read More » In Case of Difficulty Accessing PDSF or HPSS NERSC Systems

  15. 2011 User Meeting Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 User Meeting Agenda Home Agenda Awards Exhibitors Lodging Posters Registration Photo Contest Transportation Workshops This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Meeting Archives Users' Executive Committee The 2011 ALS User Meeting begins registation begins at 07:30 on Monday, October 3, outside the Building 50 Auditorium. The meeting itself will start at 08:25 inside the Building 50 Auditorium; all plenary sessions will also be held at

  16. NASEO Midwest Regional Meeting

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) is hosting its Midwest Regional Meeting in Des Moines, Iowa.

  17. EMAB Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMAB Meetings EMAB Meetings RSS May 11, 2016 EMAB Meeting - May 2016 Board minutes, transcripts, and presentations from meeting held in Aiken, South Carolina September 30, 2015 EMAB Meeting - September 2015 Board minutes, transcripts, and presentations from meeting held in Arlington, Virginia May 20, 2014 EMAB Meeting - May 2014 Board minutes, transcripts, and presentations from meeting held in Richland, Washington June 5, 2013 EMAB Meeting - June 2013 Board minutes, transcripts, and

  18. Chairs Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chairs Meetings Chairs Meetings April 20, 2016 Chairs Meeting - April 2016 EM SSAB minutes, agenda, and presentations from meeting held in Oak Ridge, Tennessee September 2, 2015 Chairs Meeting - September 2015 EM SSAB minutes, agenda, and presentations from meeting held in Santa Fe, New Mexico. April 30, 2015 Chairs Meeting - April 2015 EM SSAB minutes, agenda, and presentations from meeting held in Augusta, Georgia. September 17, 2014 Chairs Meeting - September 2014 EM SSAB minutes, agenda, and

  19. Chairs Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from meeting held in Santa Fe, New Mexico. April 30, 2015 Chairs Meeting - April 2015 EM SSAB minutes, agenda, and presentations from meeting held in Augusta, Georgia. ...

  20. Reservoir Modeling Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting 2012 GEOTHERMAL TECHNOLOGIES PROGRAM PEER REVIEW ... History Past Meetings: March 2010 IPGT Modeling Working Group Meeting May 2010 GTP Peer ...

  1. Electricity Advisory Committee Meeting, July 12, 2011 - Meeting Minutes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript | Department of Energy July 12, 2011 - Meeting Minutes and Transcript Electricity Advisory Committee Meeting, July 12, 2011 - Meeting Minutes and Transcript Meeting minutes and transcript for the July 12, 2011 meeting of the Electricity Advisory Committee. EAC Meeting Minutes - July 12, 2011.pdf (596 KB) EAC Meeting Transcript - July 12, 2011.pdf (576.42 KB) More Documents & Publications Electricity Advisory Committee Meeting, October 29, 2010: Transcript Electricity Advisory

  2. TEC Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meetings TEC Meetings TEC would meet twice per year to identify and discuss issues of concern regarding DOE transportation activities. Issues included planning for transportation, communications, Tribal issues, emergency preparedness, training, and funding. The following is a listing of TEC meeting venues and dates. Meeting related documents are available through 1997. TEC MEETING SUMMARIES February 6, 2008 TEC Meeting Summaries - February 2008 TEC Meeting summary and related documents from

  3. Enclosures STC Stakeholder Meeting Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enclosures STC Residential Energy Efficiency Stakeholder Meeting Wednesday, February 29, 2012 - Austin, Texas Residential Energy Efficiency Stakeholder Meeting Wednesday, February ...

  4. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    SciTech Connect (OSTI)

    Benedict, Lorin X.

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  5. Precise rare earth analysis of geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1982-01-01

    Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

  6. UDAC Meeting - January 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minutes from January 19, 2012 UDAC Meeting (17th Meeting) Minutes from January 19, 2012 UDAC Meeting (17th Meeting) (5.08 MB) More Documents & Publications UDAC Meeting - September 2012 UDAC Meeting - September 2013 UDAC Meeting - February 2011

  7. UDAC Meeting - March 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 2012 UDAC Meeting (18th Meeting) Minutes from March 1, 2012 UDAC Meeting (18th Meeting) (1.31 MB) More Documents & Publications URTAC Meeting - January 2012 URTAC Meeting - February 2012 UDAC Meeting - January 2012

  8. URTAC Meeting - January 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 URTAC Meeting - January 2012 Meeting minutes from January 2012 meeting URTAC - Minutes for January 19, 2012 Meeting (7.3 MB) More Documents & Publications URTAC Meeting - September 2010 URTAC Meeting - September 19, 2013 URTAC Meeting - September

  9. Meeting of the Electricity Advisory Committee Meeting, March 26-27, 2015- Meeting Minutes and Transcripts

    Broader source: Energy.gov [DOE]

    Meeting minutes and transcripts for the March 26-27, 2015 meeting of the Electricity Advisory Committee.

  10. Meeting of the Electricity Advisory Committee Meeting, September 29-30, 2015- Meeting Minutes and Transcripts

    Broader source: Energy.gov [DOE]

    Meeting minutes and transcripts for the September 29-30, 2015 meeting of the Electric Advisory Committee.

  11. Volttron Meeting Wrap Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting on the Software Framework for Transactive Energy Conducted by PNNL for BTO, and Hosted by Case Western Reserve University Cleveland, OH July 23-24, 2014 Joseph Hagerman Senior Policy Advisor Building Technologies Office 2 Meeting Objectives/Background On behalf of DOE/BTO, PNNL held the meetings to: * Increase awareness of VOLTTRON and the Transactional Network concept by convening stakeholders - including industry members, researchers, software developers and practitioners - to build a

  12. STEAB October Meeting Minutes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB October 2015 Meeting October 6-7, 2015 Renaissance Washington, DC Dupont Circle Hotel Washington, DC OCTOBER MEETING ATTENDEES Designated Federal Officer (DFO):  Michael Li, DFO, EERE, DOE. STEAB MEETING ATTENDANCE BOARD MEMBERS Present Absent Jeff Ackermann, Director, Colorado Energy Office X Roger Berliner, Council President, Montgomery County Council X Susan Brown, Deputy Administrator, Wisconsin Division of Energy X Tom Carey, Director, Energy and Rehabilitation Programs, New York

  13. 2015 CAMD Users Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD 2015 Symposium followed by the CAMD Users' Meeting SAXS Workshop Thursday, April 23th, 2015 CAMD, 6980 Jefferson Highway, Baton Rouge, LA 70806 CAMD 2015 Symposium followed by the CAMD Users' Meeting Friday, April 24th, 2015 LTRC Transportation Training and Education Center (Map) The CAMD 2015 Symposium followed by the CAMD Users' Meeting will be held on Friday, April 24th at the LTRC Transportation Training and Education Center, 4099 Gourrier Avenue, Baton Rouge, LA 70808, directly behind

  14. 2011 User Meeting Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Home Agenda Awards Exhibitors Lodging Posters Registration Photo Contest Transportation Workshops This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Meeting Archives Users' Executive Committee The 2011 ALS User Meeting begins registation begins at 07:30 on Monday, October 3, outside the Building 50 Auditorium. The meeting itself will start at 08:25 inside the Building 50 Auditorium; all plenary sessions will also be held at this location.

  15. Consent Order public meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consent Order public meeting Consent Order public meeting WHEN: Apr 28, 2016 5:00 PM - 7:00 PM WHERE: Los Alamos County Council Chambers CATEGORY: Community TYPE: Meeting INTERNAL: Calendar Login Event Description On March 1, 2005, NMED, the Department of Energy (DOE) and the Regents of the University of California entered into the 2005 Consent Order that prescribed fence-to-fence cleanup requirements for the Laboratory. The public comment period on the Consent Order closes May 16, 2016

  16. Meet CMI Researcher Patrice Turchi | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrice Turchi Image of Patrice Turchi, researcher at Critical Materials Institute For the Critical Materials Institute, Patrice Turchi is leading a project entitled "Materials Design Simulator - Efficient Prototyping of Rare Earth-Based Alloys from ab initio Electronic Structure and Thermodynamics." That is about the development of a Materials Design Simulator (MDS) for guiding the search for solute replacements to Rare Earth Elements that provide materials stability and performance.

  17. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  18. Tritium Focus Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting Information Tritium Focus Group Charter (pdf) Hotel Information Classified Session Information Los Alamos Restaurants (pdf) LANL Information Visiting Los Alamos Area Map ...

  19. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meeting is open to the public. This month, participants will receive an updateon the U-233 Project.

  20. ORSSAB Monthly Board Meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meetingis open to the public. The board will receive an update on the Transuranic Waste Processing Center.

  1. CEE Summer Program Meeting

    Broader source: Energy.gov [DOE]

    The Consortium for Energy Efficiency (CEE) is hosting the Summer Program Meeting to cover market transformation to accelerate uptake of efficient goods and services.

  2. ORSSAB Monthly Board Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ORSSAB MonthlyBoard meeting is open to the public. This month, participants will be briefed on the East Tennessee Technology Park Zone 1 Soils Proposed Plan.

  3. Meetings and Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchange Program Surplus Power Sales Reports Meetings and Workshops January 21, 2016 Generation Inputs Workshop Location, time and call-in information Materials to be posted...

  4. CEE Winter Program Meeting

    Broader source: Energy.gov [DOE]

    Consortium for Energy Efficiency (CEE) is hosting their Winter Program Meeting, a two-day conference held in Long Beach, California.

  5. Meetings and Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource/albums Twitter: AdvLightSource YouTube: AdvancedLightSource Home User Information Meetings and Workshops Meetings and Workshops A listing of synchrotron-related meetings, conferences, and workshops can be found at lightsources.org . Meetings and Workshops Archive 2nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 Print http://iswamp2.jlu.edu.cn/ July 20-22, 2013; Xi'an,

  6. CEE Winter Program Meeting

    Broader source: Energy.gov [DOE]

    The Consortium for Energy Efficiency (CEE) is hosting its winter program meeting to work together and define market interventions that increase energy efficiency.

  7. Quadrennial Energy Review Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Energy Review Meeting September 8, 2014 Commissioner Garry Brown, NYS Public Service Commission Topic: Business Models and Regulation of Regulated Utilities - Do They ...

  8. Scenario Analysis Meeting

    Broader source: Energy.gov [DOE]

    Presentation by Sigmund Gronich at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  9. Past Meetings and Workshops

    Office of Energy Efficiency and Renewable Energy (EERE)

    This page archives past meetings where Bioenergy Technologies Office staff have participated and includes copies of the presentations shared at each event.

  10. MEETINGS WITH UNION OFFICIALS

    Broader source: Energy.gov [DOE]

    Guidance as to how to handle requests from union officials to meet with Department officials so that there is no undue legal risk.