Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Precise rare earth analysis of geological materials  

Science Conference Proceedings (OSTI)

Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

Laul, J.C.; Wogman, N.A.

1982-01-01T23:59:59.000Z

2

Investigation of RF plasma spraying synthesis of rare earth oxide nano-materials.  

E-Print Network (OSTI)

??Nano rare earth materials have attracted great interest recently due to their unique properties and extensive applications. Among the methods for nano rare earth materials… (more)

Sun, Xiao Long.

2010-01-01T23:59:59.000Z

3

CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL  

DOE Patents (OSTI)

A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

Ploetz, G.L.; Ray, W.E.

1958-11-01T23:59:59.000Z

4

Rare Earth Elements Industry Overview and Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 30, 2013 ... We'll review many of these applications including forecasts for growth. ... Volatility of the price of rare earth elements highlights the importance ...

5

Replacing Critical Rare Earth Materials in High Energy Density ...  

Science Conference Proceedings (OSTI)

... magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily ...

6

About Rare Earth Metals | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About Rare Earth Metals About Rare Earth Metals What Are Rare Earths? Ames Laboratory's Materials Preparation Center The Ames Process for Purification of Rare...

7

Layered Rare Earth and Transition Metal Materials: Synthesis, Modification and Catalytic Application.  

E-Print Network (OSTI)

?? This research contains three parts; the first two parts of this thesis demonstrate the synthesis of rare earth layered materials and their application in… (more)

Zhang, Yashan

2013-01-01T23:59:59.000Z

8

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future December 3, 2010 Session A: Setting the Scene - Critical Materials for a Clean Energy Future Diana Bauer, Office of Policy and International Affairs, U.S. Department of Energy, Highlights of the DOE Critical Materials Strategy Antje Wittenberg, Directorate General for Enterprise and Industry, The EU Raw Materials Initiative and the Report of the Ad-hoc Group (tbc) Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Derk Bol, Materials Innovation Institute M2i (Netherlands) M2i, Material

9

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future  

Energy.gov (U.S. Department of Energy (DOE))

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

10

Rare Earth Elements Industry Overview and Advanced Materials  

Science Conference Proceedings (OSTI)

In response to booming growth in the industrial output and rare metal demand in Korea, The Korean Government, through such organizations as KIRAM and ...

11

Determination of contamination in rare earth materials by promptgamma activation analysis (PGAA)  

SciTech Connect

Prompt gamma activation analysis (PGAA) has been used to detect and quantify impurities in the analyses of rare earth (RE) oxides. The analytical results are discussed with respect to the importance of having a thorough identification and understanding of contaminant elements in these compounds regarding the function of the materials in their various applications. Also, the importance of using PGAA to analyze materials in support of other physico-chemical studies of the materials is discussed, including the study of extremely low concentrations of ions such as the rare earth ions themselves in bulk material matrices.

Perry, D.L.; English, G.A.; Firestone, R.B.; Molnar, G.L.; Revay,Zs.

2004-11-09T23:59:59.000Z

12

10 Questions for a Materials Scientist: Mr. Rare Earth -- Dr. Karl A.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Scientist: Mr. Rare Earth -- Dr. Karl Materials Scientist: Mr. Rare Earth -- Dr. Karl A. Gschneidner, Jr. 10 Questions for a Materials Scientist: Mr. Rare Earth -- Dr. Karl A. Gschneidner, Jr. April 3, 2013 - 12:59pm Addthis Dr. Karl Gschneidner is holding a neodymium-iron-boron magnet produced using a new, greener process. The process that Dr. Gschneidner helped develop doesn’t produce the environmentally unfriendly byproducts that result from traditional manufacturing methods. | Photo courtesy of Ames Laboratory. Dr. Karl Gschneidner is holding a neodymium-iron-boron magnet produced using a new, greener process. The process that Dr. Gschneidner helped develop doesn't produce the environmentally unfriendly byproducts that result from traditional manufacturing methods. | Photo courtesy of Ames

13

New Materials and Novel Anisotropies for Rare-Earth-Free ...  

Science Conference Proceedings (OSTI)

... subjected to extremely slow cooling rates occurring over one billion years. ... Challenges of Magnetic Material Development for Vehicle Electrification.

14

High-pressure studies of rare earth material could lead to lighter, cheaper  

NLE Websites -- All DOE Office Websites (Extended Search)

22013_earth 22013_earth 12/20/2013 A Lawrence Livermore researcher prepares a sample at Oak Ridge National Laboratory's Spallation Neutrons and Pressure Diffractometer (SNAP). High-pressure studies of rare earth material could lead to lighter, cheaper magnets Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Sometimes you have to apply a little pressure to get magnetic materials to reveal their secrets. By placing a permanent magnet under high pressures, Lawrence Livermore researchers are exploring how atomic structure enhances magnetic strength and resistance to demagnetization. This fundamental research into magnetic behavior has important implications for engineering stronger, cheaper magnets. Permanent magnets based on rare earth elements are in high demand for

15

Rare Earth Elements in Transportation  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

16

Rare earth gas laser  

DOE Patents (OSTI)

A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

Krupke, W.F.

1975-10-31T23:59:59.000Z

17

Rare earth thermoelectrics  

DOE Green Energy (OSTI)

The author reviews the thermoelectric properties of metallic compounds which contain rare-earth atoms. They are the group of metals with the largest value ever reported of the Seebeck coefficient. An increase by 50% of the Seebeck would make these compounds useful for thermoelectric devices. The largest Seebeck coefficient is found for compounds of cerium (e.g., CePd{sub 3}) and ytterbium (e.g., YbAl{sub 3}). Theoretical predictions are in agreement with the maximum observed Seebeck. The author discusses the theoretical model which has been used to calculate the Seebeck coefficient. He is solving this model for other configurations (4f){sup n} of rare-earth ground states.

Mahan, G.D.

1997-09-01T23:59:59.000Z

18

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

Science Conference Proceedings (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

19

Rare earth-iron magnetostrictive materials and devices using these materials  

DOE Patents (OSTI)

Grain-oriented polycrystalline or single crystal magnetostrictive materials n the general formula Tb.sub.x Dy.sub.1-x Fe.sub.2-w, Tb.sub.x Ho.sub.1-x Fe.sub.2-w, Sm.sub.x Dy.sub.1-x Fe.sub.x-w, Sm.sub.x Ho.sub.1-x Fe.sub.2-w, Tb.sub.x Ho.sub.y Dy.sub.z Fe.sub.2-w, or Sm.sub.x Ho.sub.y Dy.sub.z Fe.sub.2-w, wherein O.ltoreq.w.ltoreq.0.20, and x+y+z=1. X, y, and z are selected to maximize the magnetostrictive effect and the magnetomechanical coupling coefficient K.sub.33. These material may be used in magnetostrictive transducers, delay lines, variable frequency resonators, and filters.

Savage, Howard T. (Greenbelt, MD); Clark, Arthur E. (Adelphi, MD); McMasters, O. Dale (Ames, IA)

1981-12-29T23:59:59.000Z

20

Magnetism of rare earth epitaxial films and rare earth based ...  

Science Conference Proceedings (OSTI)

... The cases of heavy and light rare earth will be successively presented, the latter being of particular interest because ... Back to Seminar Home Page. ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Rare Earths from Monazite - Indian Experience  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

22

Extractive Metallurgy of Rare Earths  

Science Conference Proceedings (OSTI)

Jan 24, 2006 ... The extractive metallurgy of the rare-earth elements has several features that make it unique—a variety of both input ores and final products, ...

23

Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets  

Science Conference Proceedings (OSTI)

REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to today’s best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

None

2012-01-01T23:59:59.000Z

24

Rapporteur's Report - workshop on rare earth elements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trans-Atlantic Workshop on Rare Earth Elements and Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative, cambridge, Massachusetts december 3, 2010 Introduction The objective of the workshop was to exchange views and information on the material security challenges of rare earths and other elements critical for clean energy generation and use. This includes the description of current research topics around the supply chain and end uses, and to identify opportunities for Trans-Atlantic research cooperation. The workshop consisted of a series of brief presentations by researchers in the US and Europe, followed by a discussion of possible areas of collaboration proposed by the co-chairs. A list of the presentations and the agenda for the day is appended with this document.

25

Microstructural investigations of rare-earth transition-metal-based magnetocaloric materials for near-room-temperature applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LOGO LOGO Spomenka Kobe, Paul McGuiness, Boris Saje Jožef Stefan Institute Rare-Earth Permanent Magnets in Europe KOLEKTOR *China's Complete Control of Global High-Tech Magnet Industry Rare-earth minerals are used in: rechargeable batteries (in camcorders), cell phones, PDAs, laptop computers and other portable devices.. wind turbines, drinking water filters, petrochemical catalysts, polishing powders, hydrogen storage, fluorescent lighting, flat panels, color televisions, glass, ceramics and automotive catalysts. fiberoptics, dental and surgical lasers, MRI systems, as medical contrast agents, in medical isotopes and in positron emission tomography scintillation detectors. magnetic refrigeration rechargeable batteries used in hybrid vehicles permanent magnets

26

Rare Earth Oxide Coatings for Life Extension of Chromia Forming ...  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... TMS: The Minerals, Metals and Materials Society Home ... Rare Earth Oxide Coatings for Life Extension of Chromia Forming Alloys by Stela ...

27

DOE launches rare earth metals research hub  

NLE Websites -- All DOE Office Websites (Extended Search)

ATL011113_hub ATL011113_hub 01/11/2013 DOE launches rare earth metals research hub Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. Photo courtesy of the Ames Laboratory. High Resolution Image The Department of Energy has launched a research hub that focuses on solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security. Housed at Ames Laboratory in Iowa, Lawrence Livermore has been involved in establishing this Energy Innovation Hub since its conception more than two years ago. In 2010, on behalf of DOE, LLNL hosted the first U.S.-Japan

28

Hydrothermal synthesis of new rare earth silicate fluorides: A novel class of polar materials  

Science Conference Proceedings (OSTI)

Polar crystals provide an interesting avenue for materials research both in the structures they form and the properties they possess. This work describes the hydrothermal synthesis and structural characterization of three novel silicate fluorides. Compound (1), LiY{sub 3}(SiO{sub 4}){sub 2}F{sub 2} crystallizes in space group C2/c, with a=17.651(4) A, b=4.8868(10) A, c=11.625(2) A and {beta}=131.13(3) Degree-Sign . BaY{sub 2}(Si{sub 2}O{sub 7})F{sub 2} (2) crystallizes in space group P-1, with a=5.1576(10) A, b=6.8389(14) A, c=11.786(2) A, {alpha}=93.02(3) Degree-Sign , {beta}=102.05(3) Degree-Sign and {gamma}=111.55(3) Degree-Sign . Finally, the structure of Ba{sub 2}Y{sub 3}(SiO{sub 4}){sub 2}F{sub 5} (3) was determined in the polar orthorhombic space group Pba2, having unit cell parameters a=8.8864(18) A, b=12.764(3) A and c=5.0843(10) A. The structures are compared based on their building blocks and long range polarities. Aligned silicate tetrahedra segregated into a single layer in (3) impart the observed polarity. - Graphical abstract: The polar structure of Ba{sub 2}Y{sub 3}(SiO{sub 4}){sub 2}F{sub 5}. Highlights: Black-Right-Pointing-Pointer Natural yttrium silicate fluoride minerals are briefly reviewed. Black-Right-Pointing-Pointer The synthesis and structures of LiY{sub 3}(SiO{sub 4}){sub 2}F{sub 2}, BaY{sub 2}(Si{sub 2}O{sub 7})F{sub 2} and Ba{sub 2}Y{sub 3}(SiO{sub 4}){sub 2}F{sub 5} are discussed. Black-Right-Pointing-Pointer Ba{sub 2}Y{sub 3}(SiO{sub 4}){sub 2}F{sub 5} crystallizes in the polar space group Pba2. Black-Right-Pointing-Pointer Polarity occurs primarily through aligned silicate tetrahedra in a segregated layer.

McMillen, Colin D., E-mail: cmcmill@clemson.edu [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, 485 H.L. Hunter Laboratories, Clemson, SC 29634 (United States); Emirdag-Eanes, Mehtap, E-mail: mehtapemirdag@iyte.edu.tr [Department of Chemistry, Izmir Institute of Technology, Gulbahce koyu, Urla, Izmir 35430 (Turkey)] [Department of Chemistry, Izmir Institute of Technology, Gulbahce koyu, Urla, Izmir 35430 (Turkey); Stritzinger, Jared T., E-mail: jstritz@clemson.edu [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, 485 H.L. Hunter Laboratories, Clemson, SC 29634 (United States); Kolis, Joseph W., E-mail: kjoseph@clemson.edu [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, 485 H.L. Hunter Laboratories, Clemson, SC 29634 (United States)

2012-11-15T23:59:59.000Z

29

Enhancement of thermopower of TAGS-85 high-performance thermoelectric materials by doping with the rare earth Dy  

SciTech Connect

Enhancement of thermopower is achieved by doping the narrow-band semiconductor Ag{sub 6.52}Sb{sub 6.52}Ge{sub 36.96}Te{sub 50} (acronym TAGS-85), one of the best p-type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X-ray diffraction and increased orientation-dependent local fields detected by {sup 125}Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f-electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by {sup 125}Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS-85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.3 in TAGS-85 to PF = 35 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.5 in TAGS-85 doped with 1 or 2% Dy for Ge. This makes TAGS-85 doped with Dy a promising material for thermoelectric power generation.

Levin, Evgenii; Budko, Serfuei; Schmidt-Rohr, Klaus

2012-04-10T23:59:59.000Z

30

Production method for making rare earth compounds  

DOE Patents (OSTI)

A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

McCallum, R. William (Ames, IA); Ellis, Timothy W. (Ames, IA); Dennis, Kevin W. (Ames, IA); Hofer, Robert J. (Ames, IA); Branagan, Daniel J. (Ames, IA)

1997-11-25T23:59:59.000Z

31

Rare Earth Composite Magnets with Increased Resistivity - Energy ...  

Dielectric rare earth fluorides are blended with rare earth magnet powders to produce high-resistivity fluoride composite rare earth magnets.

32

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

Science Conference Proceedings (OSTI)

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

33

Good Earths and Rare Earths | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Good Earths and Rare Earths Good Earths and Rare Earths Good Earths and Rare Earths April 20, 2011 - 6:17pm Addthis Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What does this mean for me? Rare earth elements -- dysprosium, neodymium, terbium, europium and yttrium -- are essential to a wide range of green energy technologies ranging from windmills to electric vehicles One of their primary uses is in permanent magnets, which amount to over a $4 billion global industry Ames Laboratory recently discovered a way to make these magnets cheaper and greener and signed a cooperative research and development agreement with Molycorp Inc. -- the Western hemisphere's only producer of rare-earth oxides. China holds about 36 percent of world's rare-earth reserves, (compared to 13 percent in the U.S.), but it currently produces 95 percent

34

Earth materials and earth dynamics  

Science Conference Proceedings (OSTI)

In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

Bennett, K; Shankland, T. [and others

2000-11-01T23:59:59.000Z

35

Replacing the Rare Earth Intellectual Capital  

SciTech Connect

The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained personnel to bring the entire rare earth industry, from mining to original equipment manufacturers (OEM), up to full speed in the next few years. Accompanying this decline in technical expertise, innovation and new products utilizing rare earth elements has slowed dramatically, and it may take a decade or more to recapture America's leading role in technological advancements of rare earth containing products. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects of the industry from mining to OEM. Today, only about 1,500 people are employed in these fields. The ratio of non-technically trained persons to those with college degrees in the sciences or engineering varies from about 8 to 1 to about 4 to 1, depending on the particular area of the industry. Assuming an average of 6 to 1, the number of college degree scientists and engineers has decreased from about 4,000 to 250 employed today. In the magnetic industry the approximate numbers are: 6,000 total with 750 technically trained people in the 1980s to 500 totally employed today of which 75 have degrees. The paucity of scientists and engineers with experience and/or training in the various aspects of production and commercialization of the rare earths is a serious limitation to the ability of the US to satisfy its own needs for materials and technologies (1) to maintain our military strength and posture, (2) to assume leadership in critical energy technologies, and (3) to bring new consumer products to the marketplace. The lack of experts is of even greater national importance than the halting in the 1990s and the recent restart of the mining/benification/separation effort in the US; and thus governmental intervention and support for at least five to 10 years will be required to ameliorate this situation. To respond quickly, training programs should be established in conjunction with a national research center at an educational institution with a long tradition in multiple areas of rare earth and other critical elements research and technology. This center should

Gschneidner, Jr., Karl

2011-04-01T23:59:59.000Z

36

DOE Announces RFI on Rare Earth Metals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RFI on Rare Earth Metals RFI on Rare Earth Metals DOE Announces RFI on Rare Earth Metals May 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy has released a Request for Information (RFI) soliciting information on rare earth metals and other materials used in the energy sector. The request is specifically focused on rare earth metals (e.g., lanthanum, cerium and neodymium) and several other metals including lithium and cobalt, but respondents are welcome to identify other materials of interest. These materials are important to the development and deployment of a variety of clean energy technologies, such as wind turbines, hybrid vehicles, solar panels and energy efficient light bulbs. In a March 17 speech, Assistant Secretary of Energy for Policy & International Affairs David Sandalow announced that DOE is developing its

37

DOE Announces RFI on Rare Earth Metals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RFI on Rare Earth Metals RFI on Rare Earth Metals DOE Announces RFI on Rare Earth Metals May 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy has released a Request for Information (RFI) soliciting information on rare earth metals and other materials used in the energy sector. The request is specifically focused on rare earth metals (e.g., lanthanum, cerium and neodymium) and several other metals including lithium and cobalt, but respondents are welcome to identify other materials of interest. These materials are important to the development and deployment of a variety of clean energy technologies, such as wind turbines, hybrid vehicles, solar panels and energy efficient light bulbs. In a March 17 speech, Assistant Secretary of Energy for Policy & International Affairs David Sandalow announced that DOE is developing its

38

Corrosion Protection Mechanisms of Rare-earth Based Inhibitors in ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

39

Assessment of Various Processes for Rare Earth Elements Recovery I  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

40

Assessment and Management of Radioactivity in Rare Earth ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Rare Earth–Related Research & Developments Networks At Work  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

42

High Density Nanocrystalline Rare Earth and Dysprosium-free ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

43

Understanding the Structural Stability of Rare-earth Containing ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

44

Crystallization of Rare Earth Solution by Ammonium Bicarbonate  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

45

Advance in Solvent Extraction and Separation of Rare Earths  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

46

A Process Route for the Sarfartoq Rare Earth Project, Greenland  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

47

Recovery of Rare Earths from Permanent Magnets and Phosphors ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

48

Recycling of Rare Earth Elements for the Synthesis of Permanent ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

49

Application of Ionic Liquid Extractants on Rare Earths Green ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

50

Two Exotic and Unique Families of Rare Earth Intermetallic ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

51

Rare Earth Metals and Alloys | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Mpc » Rare Earth Metals and Alloys Mpc » Rare Earth Metals and Alloys Rare Earth Metals and Alloys Terbium (Tb) and Cerium (Ce) phosphors in your computer screen allow you to see GREEN. Europium (Eu) is the source of the RED light and BLUE emitted by our display. The Ames Laboratory has been actively involved in the preparation of very pure rare earth metals since the early 1940's when Dr. Frank H. Spedding and his group of pioneers developed the ion-exchange process, a technique that separates the "fraternal fifteen" plus yttrium and scandium. As a result of this and subsequent work, high-purity oxides are available from which high-purity rare earth metals can be prepared. In most cases, the rare earth oxides are first converted to their respective fluorides and are then reduced metallothermicaly on a kilogram

52

Improved method for preparing rare earth sesquichalcogenides  

DOE Patents (OSTI)

An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

1982-04-14T23:59:59.000Z

53

The Uses of Rare Earth Element Activated Micrometer and ...  

Science Conference Proceedings (OSTI)

... lighting industries, detecting systems, security applications (marking objects and currency) and ... Assessment and Management of Radioactivity in Rare Earth Element Production ... Inorganic Functional Materials for Environmental Protection ... Oxides for Nuclear Waste Sequestration Applications by X-ray Spectroscopy ...

54

Session III: Rare Earth Recycling and Hydrometallurgy  

Science Conference Proceedings (OSTI)

... Dresden and TU Dresden; 2Leibniz-Institute for Solid State and Materials Research Dresden; 3Korea Institute of Rare Metals; 4Korea Institute of Rare Metal

55

Rare Earth Extraction by Molten Oxide Electrolysis  

Science Conference Proceedings (OSTI)

Symposium, Production, Refining and Recycling of Rare Earth Metals ... Electrolysis in molten halides is an established method for the reduction but requires ... Recycling of Different Sintered Magnet Grades by Hydrogen Processing Yielding ...

56

Rare Earth Metal research, at DOE  

Office of Scientific and Technical Information (OSTI)

Energy Citations Database - Intermultiplet transitions in rare-earth metals DOE Green Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells...

57

Ternary rare earth-lanthanide sulfides  

DOE Patents (OSTI)

A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

Takeshita, Takuo (Omiya, JP); Gschneidner, Jr., Karl A. (Ames, IA); Beaudry, Bernard J. (Ames, IA)

1987-01-06T23:59:59.000Z

58

Rare-Earth Free Permanent Magnets - Programmaster.org  

Science Conference Proceedings (OSTI)

However, availability of rare-earth elements is a potential barrier to motor and generator applications. Thus, aiming at developing magnets without rare-earth ...

59

Preparations of rare earth-iron alloys by thermite reduction  

DOE Patents (OSTI)

An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA)

1986-09-16T23:59:59.000Z

60

DOE Science Showcase - Rare Earth Metal Research from DOE Databases |  

Office of Scientific and Technical Information (OSTI)

Rare Earth Metal Research from DOE Databases Rare Earth Metal Research from DOE Databases Information Bridge Energy Citations Database Highlighted documents of Rare Earth Metal research in DOE databases Information Bridge - Corrosion-resistant metal surfaces DOE R&D Project Summaries - Structural and magnetic studies on heavy rare earth metals at high pressures using designer diamonds Energy Citations Database - Intermultiplet transitions in rare-earth metals DOE Green Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells Science.gov - H.R.4866 - Rare Earths Supply-Chain Technology and Resources Transformation Act of 2010 WorldWideScience.org - China produces most of the world's rare earth metals DOepatents - Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Enthalpies of Formation of Rare-Earth Orthovanadates, REVO4  

Science Conference Proceedings (OSTI)

Rare earth orthovanadates, REVO4, having the zircon structure, form a series of materials interesting for magnetic, optical, sensor, and electronic applications. Enthalpies of formation of REVO4 compounds (RE=Sc, Y, Ce Nd, Sm Tm, Lu) were determined by oxide melt solution calorimetry in lead borate (2PbO {center_dot} 2B2O3) solvent at 1075 K. The enthalpies of formation from oxide components become more negative with increasing RE ionic radius. This trend is similar to that obtained for the rare earth phosphates.

Dorogova, M. [University of California, Davis; Navrotsky, Alexandra [University of California, Davis; Boatner, Lynn A [ORNL

2007-01-01T23:59:59.000Z

62

Rare Earth Oxide Fluoride: Ceramic Nano-particles via a ...  

Rare Earth Oxide Fluoride: Ceramic Nano-particles via a Hydrothermal Method. Battelle Number(s): 12234. ... Potential Industry Applications. ...

63

Alternative Process for Rare Earths Recovery from Bastnasite ...  

Science Conference Proceedings (OSTI)

Presentation Title, Alternative Process for Rare Earths Recovery from ... Emerging Issues Around Critical Metals for Clean Energy Automotive Applications.

64

Rare Earth and Magnetic Materials  

Science Conference Proceedings (OSTI)

Magnetoresistance Effect Using Co Based Full Heusler Electrodes: Nobuki ... Here we report giant TMR observation at room temperature (RT) for the MTJ using ...

65

A Review on Iron Separation in Rare Earths Hydrometallurgy Using ...  

Science Conference Proceedings (OSTI)

... solvent extraction, and some alternative methods (e.g., thermal cracking). ... Assessment and Management of Radioactivity in Rare Earth Element Production ... Hydrometallurgical Plant Design Parameters for the Avalon Rare Earth Process ... Mitigation of Rare Earth Supply Risk Posed by Permanent Magnets Used in ...

66

Scintillation of rare earth doped fluoride nanoparticles  

SciTech Connect

The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Ballato, J. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Yukihara, E. G. [Physics Department, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States); DeVol, T. A. [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634-0905 (United States)

2011-09-12T23:59:59.000Z

67

DOE Announces Second RFI on Rare Earth Metals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second RFI on Rare Earth Metals Second RFI on Rare Earth Metals DOE Announces Second RFI on Rare Earth Metals March 22, 2011 - 12:00am Addthis Washington, D.C. - The Department of Energy today released a Request for Information (RFI) soliciting information from the public on rare earth metals and other materials used in the energy sector. Responses to this RFI will inform an update to DOE's Critical Materials Strategy (pdf - 5.7mb ), released December 15, 2010, that assessed the use of rare earth metals and other materials important to the development and deployment of a variety of clean energy technologies, such as wind turbines, hybrid vehicles, solar panels and energy efficient light bulbs. The updated strategy, expected later this year, will include additional analysis of rapidly-changing market conditions. It will analyze the use

68

Exploring the Chemical Space for Rare-earth Additions to Optimize ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

69

Decomposition of Rare Earth Loaded Resin Particles  

Science Conference Proceedings (OSTI)

The Fuel Cycle R and D (FCR and D) program within the Department of Energy Office of Nuclear Energy (DOE-NE) is evaluating nuclear fuel cycle options, including once-through, modified open, and fully closed cycles. Each of these scenarios may utilize quite different fuel management schemes and variation in fuel types may include high thermal conductivity UO{sub 2}, thoria-based, TRISO, metal, advanced ceramic (nitride, carbide, composite, etc.), and minor actinide (MA) bearing fuels and targets. Researchers from the US, Europe, and japan are investigating methods of fabricating high-specific activity spherical particles for fuel and target applications. The capital, operating, and maintenance costs of such a fuel fabrication facility can be significant, thus fuel synthesis and fabrication processes that minimize waste and process losses, and require less footprint are desired. Investigations have been performed at the Institute for Transuranium Elements (ITU) and the French Atomic Energy Commission (CEA) studying the impact of americium and curium on the fuel fabrication process. proof of concept was demonstrated for fabrication of MA-bearing spherical particles, however additional development will be needed for engineering scale-up. Researchers at the Paul Scherer Institute (PSI) and the Japan Atomic Energy Association (JAEA) have collaborated on research with ceramic-metallic (CERMET) fuels using spherical particles as the ceramic component dispersed in the metal matrix. Recent work at the CEA evaluates the burning of MA in the blanket region of sodium fast reactors. There is also interest in burning MA in Canada Deuterium Uranium (CANDU) reactors. The fabrication of uranium-MA oxide pellets for a fast reactor blanket or MA-bearing fuel for CANDU reactors may benefit from a low-loss dedicated footprint for producing MA-spherical particles. One method for producing MA-bearing spherical particles is loading the actinide metal on a cation exchange resin. The AG-50W resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

Voit, Stewart L [ORNL; Rawn, Claudia J [ORNL

2010-09-01T23:59:59.000Z

70

SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS  

DOE Patents (OSTI)

The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

Cowan, G.A.

1959-08-25T23:59:59.000Z

71

Watch a Rare Earth Elements Event Live This Morning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watch a Rare Earth Elements Event Live This Morning Watch a Rare Earth Elements Event Live This Morning Watch a Rare Earth Elements Event Live This Morning December 15, 2010 - 9:20am Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs From 9:30am to noon ET today you can tune into a live discussion on "rare earth materials" that are critical to the production of clean energy technologies. Tune in here. The Department of Energy's Assistant Secretary for Policy and International Affairs David Sandalow will give the keynote, speaking to the role of rare earth metals and other materials in the clean energy economy. You can check back to the Energy Blog for more info later today. Ginny Simmons is a New Media Specialist and contractor to the Office of Public Affairs.

72

Watch a Rare Earth Elements Event Live This Morning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watch a Rare Earth Elements Event Live This Morning Watch a Rare Earth Elements Event Live This Morning Watch a Rare Earth Elements Event Live This Morning December 15, 2010 - 9:20am Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs From 9:30am to noon ET today you can tune into a live discussion on "rare earth materials" that are critical to the production of clean energy technologies. Tune in here. The Department of Energy's Assistant Secretary for Policy and International Affairs David Sandalow will give the keynote, speaking to the role of rare earth metals and other materials in the clean energy economy. You can check back to the Energy Blog for more info later today. Ginny Simmons is a New Media Specialist and contractor to the Office of Public Affairs.

73

Mitigation of Rare Earth Supply Risk Posed by Permanent Magnets ...  

Science Conference Proceedings (OSTI)

These include electric vehicles and wind generators. Volatility of the price of rare earth elements highlights the importance of a co-ordinated strategy to mitigate ...

74

Rare Earth Modified Matrices for SiC Matrix Composites  

Science Conference Proceedings (OSTI)

Presentation Title, Rare Earth Modified Matrices for SiC Matrix Composites. Author(s), David L Poerschke, Carlos G Levi. On-Site Speaker (Planned), David L

75

Production, Refining and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, refining and recycling of the rare earth metals. In addition the symposium is ...

76

Production, Recovery and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, recovery and recycling of the rare earth. In addition the symposium is  ...

77

Behavior of Rare Earth Elements in Geothermal Systems- A New...  

Open Energy Info (EERE)

2001 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration...

78

Rare Earth and Plutonium Doping of Apatite - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Rare Earth and Plutonium Doping of Apatite ... Influence of Cation Composition and Temperature on the Solubility and Oxidation State of Ce  ...

79

Microsoft Word - ARPA-E_RareEarth_Workshop_Overview_v6  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E WORKSHOP ARPA-E WORKSHOP Rare Earth and Critical Materials December 6, 2010 in Arlington, VA Background ...................................................................................................................................................................................... 2 Breakout Sessions and Participant Preparation .............................................................................................................. 8 Agenda ................................................................................................................................................................................................ 9 Contact Information ................................................................................................................................................................... 10

80

Behavior of Rare Earth Elements in Geothermal Systems- A New  

Open Energy Info (EERE)

Behavior of Rare Earth Elements in Geothermal Systems- A New Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Abstract N/A Author Department of Geology and Geological Engineering niversity of Idaho Published Publisher Not Provided, 2001 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Citation Department of Geology and Geological Engineering niversity of Idaho. 2001. Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool?. (!) : (!) . Retrieved from

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microsoft Word - Rare Earth Update for RFI 110523final  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Thijssen, LLC P: 206 229 6882 J. Thijssen, LLC P: 206 229 6882 4910 163 rd Ave NE Redmond, WA 98052 e: jant@jthijssen.com Solid Oxide Fuel Cells and Critical Materials: A Review of Implications J. Thijssen, LLC Report Number: R102 06 04D1 Date: May 10, 2011 Prepared for: National Energy Technology Laboratory, In Sub-Contract to Leonardo Technologies, Inc. Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) 2 Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide

82

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

83

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

84

Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials and Rare Futures: Ames Laboratory Signs a New Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

85

Rare Earth-free Permanent Magnets I  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Sponsored by: TMS Electronic, Magnetic, and Photonic Materials Division, TMS: Energy Committee, TMS: Energy Conversion and Storage ...

86

Rare earth elements in synthetic zircon. 1. synthesis, and rare earth element and phosphorus doping.  

SciTech Connect

Sedimentary mineral assemblages commonly contain detrital zircon crystals as part of the heavy-mineral fraction. Age spectra determined by U-Pb isotopic analysis of single zircon crystals within a sample may directly image the age composition--but not the chemical composition--of the source region. Rare earth element (REE) abundances have been measured for zircons from a range of common crustal igneous rock types from different tectonic environments, as well as kimberlite, carbonatite, and high-grade metamorphic rocks, to assess the potential of using zircon REE characteristics to infer the rock types present in sediment source regions. Except for zircon with probable mantle affinities, zircon REE abundances and normalized patterns show little intersample and intrasample variation. To evaluate the actual variation in detrital zircon REE composition in a true sediment of known mixed provenance, zircons from a sandstone sample from the Statfjord Formation (North Sea) were analyzed. Despite a provenance including high-grade metasediment and granitoids and a range in zircon age of 2.82 b.y., the zircon REEs exhibit a narrow abundance range with no systematic differences in pattern shape. These evidences show zircon REE patterns and abundances are generally not useful as indicators of provenance.

Hanchar, J. M.; Finch, R. J.; Hoskin, W. O.; Watson, E. B.; Cherniak, D. J.; Mariano, A. N.; Chemical Engineering; George Washington Univ.; Univ. of Canterbury; Australian National Univ.; Rensselaer Polytechnic Inst.

2001-05-01T23:59:59.000Z

87

RARE EARTHS, SCIENCE, TECHNOLGY AND APPLICATIONS: III ...  

Science Conference Proceedings (OSTI)

... AND STABILITY OF COERCIVITY: L.H. Lewis, Materials Science Division, Department of Applied Science, Bldg. 480, Brookhaven National Laboratory, Upton, ...

88

Estimated Rare Earth Reserves and Deposits  

Energy.gov (U.S. Department of Energy (DOE))

Many of the fastest growing clean energy technologies, from batteries to solar panels to magnets, are made with materials that have unique chemical and physical characteristics, including magnetic,...

89

A REVIEW OF THE RARE-EARTH HYDRIDES  

SciTech Connect

Some of the properties of rare earth hydrides are reviewed. Information on the hydrides of Tm, Lu, Tb, and Ho is not included because no work has been done on these elements. Eu and Yb are different from other rare earths in that MH/sub 2/ is their highest hydride and the crystal structures of EuH/sub 2/ and YbH/sub 2/ are orthorhombic. ra, Ce, Pr, and Nd form a dihydride which will take hydrogen into solid solution up to MH/sub 3/ without a change in crystal structure. The heavy rare earths form the same type of dihydride as the light, but as the hydrogen content increases from MH/sub 2/ the cubic structure becomes unstable and is replaced by a hexagonal structare. With increasing atomic number, thermal stability and hydrogen deusity increase. (J.R.D.)

Mulford, R.N.R.

1950-01-01T23:59:59.000Z

90

Yttrium and rare earth stabilized fast reactor metal fuel  

DOE Patents (OSTI)

To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

Guon, Jerold (Woodland Hills, CA); Grantham, LeRoy F. (Calabasas, CA); Specht, Eugene R. (Simi Valley, CA)

1992-01-01T23:59:59.000Z

91

Rare earth-transition metal scrap treatment method  

DOE Patents (OSTI)

Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

1992-02-11T23:59:59.000Z

92

THE RARE EARTH PEAK: AN OVERLOOKED r-PROCESS DIAGNOSTIC  

Science Conference Proceedings (OSTI)

The astrophysical site or sites responsible for the r-process of nucleosynthesis still remains an enigma. Since the rare earth region is formed in the latter stages of the r-process, it provides a unique probe of the astrophysical conditions during which the r-process takes place. We use features of a successful rare earth region in the context of a high-entropy r-process (S {approx}> 100k{sub B} ) and discuss the types of astrophysical conditions that produce abundance patterns that best match meteoritic and observational data. Despite uncertainties in nuclear physics input, this method effectively constrains astrophysical conditions.

Mumpower, Matthew R.; McLaughlin, G. C. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Surman, Rebecca, E-mail: mrmumpow@ncsu.edu, E-mail: gail_mclaughlin@ncsu.edu, E-mail: surmanr@union.edu [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States)

2012-06-20T23:59:59.000Z

93

Process to remove rare earth from IFR electrolyte  

DOE Patents (OSTI)

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

1994-01-01T23:59:59.000Z

94

Process to remove rare earth from IFR electrolyte  

DOE Patents (OSTI)

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

Ackerman, J.P.; Johnson, T.R.

1994-08-09T23:59:59.000Z

95

Process to remove rare earth from IFR electrolyte  

DOE Patents (OSTI)

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

Ackerman, J.P.; Johnson, T.R.

1992-01-01T23:59:59.000Z

96

Rare earth-transition metal scrap treatment method  

DOE Patents (OSTI)

Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA); Lincoln, Lanny P. (Woodward, IA)

1992-02-11T23:59:59.000Z

97

Process for separation of the rare earths by solvent extraction  

DOE Patents (OSTI)

Production rates for solvent extraction separation of the rare earths and yttrium from each other can be improved by the substitution of di(2-ethylhexyl) mono-thiophosphoric acid for di(2-ethylhexyl) phosphoric acid. The di(2-ethylhexyl) mono-thiophosphoric acid does not form an insoluble polymer at approximately 50% saturation as does the former extractant, permitting higher feed solution concentration and thus greater throughput.

Mason, George W. (Clarendon Hills, IL); Lewey, Sonia (Joliet, IL)

1977-04-05T23:59:59.000Z

98

Rare Earths and Critical Materials Revitalization - TMS  

Science Conference Proceedings (OSTI)

... weapons guidance systems, oil refining catalysts, computer disk drives, televisions and monitors, compact fluorescent light bulbs, fiberoptic cable, and others.

99

H. Rare Earth, Electronic, and Magnetic Materials  

Science Conference Proceedings (OSTI)

... Nd-Fe-B Permanent Magnets · Unique Exchange Bias Induced by Antiferromagnetic Cr-oxide · ZnO-graphene Hybrid Quantum Dots Light Emitting Diode ...

100

Synthesis, structure and characterization of molybdenum and rare earth chalcogenides  

E-Print Network (OSTI)

This dissertation focuses on the synthetic exploratory synthesis of molybdenum chalcogenides and rare earth metal-rich ternary tellurides as a part of an effort to produce molecular building blocks of molybdenum chalcogenide clusters and to explore their structural relationships with solid state cluster networks. The tightly cross-linked Mo3nSe3n+2(n = 2, 3, ...?) clusters and chain compounds react with alkali metal cyanide or cyanide salt mixtures at temperatures of 450-675 °C to yield reduced, cyanide-terminated molybdenum chalcogenide clusters that are thermodynamically stable. At temperatures of 650-675 °C, linear chain compounds I6[Mo6Se8(CN)4(CN)2/2] (MI = K, Cs) were prepared from reactions of Mo6Se8 or elemental starting materials, Mo and Se with excess molten cyanide (KCN, CsCN). These are the first known compounds to feature linking of Mo6Se8 clusters via cyanide bridges. Magnetic susceptibility and EPR measurements indicate that there is one unpaired electron per cluster. A new reduced molecular octahedral complex, Na8[Mo6Se8(CN)6]•20H2O was prepared by the reduction of [Mo6Se8(CN)6]7-with Zn in an aqueous NaCN solution. Single crystal structure was determined. Cyclic voltammetric measurements in basic aqueous media show multiple reversible redox waves corresponding to [Mo6Se8(CN)6]6-/7-, [Mo6Se8(CN)6]7-/8-, [Mo6Se8(CN)6]8-/9-redox couples with half-wave potentials of E1/2 = -0.442 V, -0.876 V, and 11.369 V respectively versus the standard hydrogen electrode (SHE). UV-Vis studies support the presence of the reduced cluster compound. New reduced molecular tetrahedral complexes, K7Na[Mo4Se4(CN)12]•5H2O•MeOH, Na4Cs7[Mo4Se4(CN)12]Cl3, Na8[Mo4Se4(CN)12], and Na4K4[Mo4Se4(CN)12]•12H2O were prepared. Preparation of Na8[Mo4Se4(CN)12] is an improved method for the synthesis of the Mo4Se4 core. Half-wave potentials of E1/2 for the [Mo4Se4(CN)12]6-/7-and [Mo4Se4(CN)12]7-/8-couples are 0.233 V, and -0.422 V respectively versus SHE. The molecular cubane clusters [Mo4Se4(CN)12]7-/8-play an essential role in the process by which the discrete [Mo6Se8(CN)6]6-and [Mo6Se8(CN)6]are excised from the CN-linked chain compound, K6Mo6Se8(CN)5. A new rare-earth telluride compound with the empirical composition of Gd4NiTe2 was synthesized from a high-temperature solid-state reaction. Gd4MTe2 (M = Ni) crystallizes in the orthorhombic space group Pnma. This unprecedented structure consists of a cluster condensation of Ni-centered gadolinium tricapped trigonal prisms along the rectangular faces of the trigonal prism such that the Ni atoms act as two of the caps to the trigonal prisms.

Magliocchi, Carmela Luisa

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS  

DOE Patents (OSTI)

A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

Kohman, T.P.

1961-11-21T23:59:59.000Z

102

Resonance electronic Raman scattering in rare earth crystals  

Science Conference Proceedings (OSTI)

The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

Williams, G.M.

1988-11-10T23:59:59.000Z

103

Microsoft Word - US-EU WORKSHOP on RARE EARTHS Program 20101206  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trans-Atlantic Workshop Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative Massachusetts Institute of Technology 400 Main Street, Building E19-307, Cambridge, Massachusetts December 3, 2010 Workshop Background Rare earth elements and other critical raw materials are essential to our industrial production, particularly for clean energy options like wind turbines, solar cells, electric vehicles, and energy- efficient lighting. Wind turbines are the most rapidly growing source of electricity generation in both Europe and the United States. Solar photovoltaic cells are steadily declining in cost, and their widespread, cost-effective use on power grids is anticipated within the coming decade.

104

Precise trace rare earth analysis by radiochemical neutron activation  

Science Conference Proceedings (OSTI)

A rare earth group separation scheme followed by normal Ge(Li), low energy photon detector (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometry significantly enhances the detection sensitivity of individual rare earth elements (REE) at or below the ppB level. Based on the selected ..gamma..-ray energies, normal Ge(Li) counting is favored for /sup 140/La, /sup 170/Tb, and /sup 169/Yb; LEPD is favored for low ..gamma..-ray energies of /sup 147/Nd, /sup 153/Sm, /sup 166/Ho, and /sup 169/Yb; and noncoincidence counting is favored for /sup 141/Ce, /sup 143/Ce, /sup 142/Pr, /sup 153/Sm, /sup 171/Er, and /sup 175/Yb. The detection of radionuclides /sup 152m/Eu, /sup 159/Gd, and /sup 177/Lu is equally sensitive by normal Ge(Li) and noncoincidence counting; /sup 152/Eu is equally sensitive by LEPD and normal Ge(Li); and /sup 153/Gd and /sup 170/Tm is equally favored by all the counting modes. Overall, noncoincidence counting is favored for most of the REE. Precise measurements of the REE were made in geological and biological standards.

Laul, J.C.; Lepel, E.A.; Weimer, W.C.; Wogman, N.A.

1981-06-01T23:59:59.000Z

105

Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)  

Science Conference Proceedings (OSTI)

REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

None

2012-01-01T23:59:59.000Z

106

Microsoft Word - rare earth speech 3-18 6am  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REMARKS PREPARED FOR DELIVERY REMARKS PREPARED FOR DELIVERY TECHNOLOGY AND RARE EARTH METALS CONFERENCE 2010 KEYNOTE ADDRESS DAVID SANDALOW ASSISTANT SECRETARY FOR POLICY & INTERNATIONAL AFFAIRS U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. MARCH 17, 2010 [Acknowledgements.] 1. INTRODUCTION Thank you for the invitation to speak at this important conference. At energy conferences today, no topic is hotter than shale gas. The story is striking: recoverable reserves of shale gas have increased six-fold in the past few years, thanks to new drilling technologies. This increase has been transformational, with U.S. natural gas imports now predicted to drop steadily in the next decade and beyond, whereas just a few years ago imports were projected to climb for the foreseeable future. Large shale gas reserves are believed to exist

107

Grant Helps Make U.S. Rare Earth Magnets More Common | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Helps Make U.S. Rare Earth Magnets More Common Grant Helps Make U.S. Rare Earth Magnets More Common Grant Helps Make U.S. Rare Earth Magnets More Common August 6, 2010 - 12:12pm Addthis With sintered rare earth magnets a $4 billion worldwide market, the U.S. could be a bigger producer of these magnets - which are not actually rare - and are used in hybrid vehicle motors and wind turbine generators. | Illustration Courtesy of of Electron Energy Corporation | With sintered rare earth magnets a $4 billion worldwide market, the U.S. could be a bigger producer of these magnets - which are not actually rare - and are used in hybrid vehicle motors and wind turbine generators. | Illustration Courtesy of of Electron Energy Corporation | Kevin Craft Electron Energy Corporation is one of a kind. According to Peter Dent, vice president of business development for the

108

Grant Helps Make U.S. Rare Earth Magnets More Common | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Helps Make U.S. Rare Earth Magnets More Common Grant Helps Make U.S. Rare Earth Magnets More Common Grant Helps Make U.S. Rare Earth Magnets More Common August 6, 2010 - 12:12pm Addthis With sintered rare earth magnets a $4 billion worldwide market, the U.S. could be a bigger producer of these magnets - which are not actually rare - and are used in hybrid vehicle motors and wind turbine generators. | Illustration Courtesy of of Electron Energy Corporation | With sintered rare earth magnets a $4 billion worldwide market, the U.S. could be a bigger producer of these magnets - which are not actually rare - and are used in hybrid vehicle motors and wind turbine generators. | Illustration Courtesy of of Electron Energy Corporation | Kevin Craft Electron Energy Corporation is one of a kind. According to Peter Dent, vice president of business development for the

109

Methods for preparation of nanocrystalline rare earth phosphates for lighting applications  

DOE Patents (OSTI)

Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

2013-04-16T23:59:59.000Z

110

The Influence of Nb on the Rare Earth Heavy Rail Steel Mechanical ...  

Science Conference Proceedings (OSTI)

Micro-alloying through the additions of Nb or rare earth (RE) elements has been proved ... Group Metals by the Metal-ion Reducing Bacterium Shewanella Algae.

111

The Influence of Nb on the Rare Earth Heavy Rail Steel Mechanical ...  

Science Conference Proceedings (OSTI)

Micro-alloying through the additions of Nb or rare earth (RE) elements has been proved ... of a Retired Cast Austentic Stainless Steel Hydrogen Reformer Tube.

112

The influence of Nb on the rare earth heavy rail steel mechanical ...  

Science Conference Proceedings (OSTI)

Micro-alloying through the additions of Nb or rare earth (RE) elements has been proved to be efficient to enhance the strength and corrosion resistance of rail ...

113

Incorporating Dy in Rare-earth Magnets Through a Low Melting Dy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Approximately 8wt% to 10wt% Dy is needed in the conventionally manufactured rare earth magnets used for the traction motors of electric and ...

114

(3) Tue PM-a Rare Earth Free Magnets - Programmaster.org  

Science Conference Proceedings (OSTI)

... magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily ...

115

Hydrothermal method of synthesis of rare-earth tantalates and niobates  

SciTech Connect

A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

2012-10-16T23:59:59.000Z

116

Ge integration on Si via rare earth oxide buffers: From MBE to CVD (Invited Paper)  

Science Conference Proceedings (OSTI)

Single crystalline rare earth oxide heterostructures are flexible buffer systems to achieve the monolithic integration of Ge thin film structures on Si. The development of engineered oxide systems suitable for mass-production compatible CVD processes ... Keywords: Engineered Si wafers, Ge integration, Heteroepitaxy, Rare earth oxides, X-ray diffraction

T. Schroeder; A. Giussani; H. -J. Muessig; G. Weidner; I. Costina; Ch. Wenger; M. Lukosius; P. Storck; P. Zaumseil

2009-07-01T23:59:59.000Z

117

Si Nanostructures Embedded into Crystalline Rare Earth Oxide Matrix for Opto and Nano Electronic Devices  

Science Conference Proceedings (OSTI)

We describe a novel approach to grow Si nanostructures embedded into crystalline rare earth oxides using molecular beam epitaxy. By efficiently exploiting the growth kinetics during growth one could create nanostructures exhibiting various dimensions, ... Keywords: Si quantum dot, quantum confinement, nonvolatile memory, optoelectronics, rare earth oxide, molecular beam epitaxy

H. J. Osten; A. Laha; A. Fissel

2010-02-01T23:59:59.000Z

118

Si-nanoclusters embedded into epitaxial rare earth oxides: Potential candidate for nonvolatile memory applications  

Science Conference Proceedings (OSTI)

Using an unconventional approach, single crystalline Si-nanoclusters (Si-NCs) with uniform size and higher density were embedded into epitaxial rare earth oxide with two-dimensional spatial arrangements at a defined distance from the substrate using ... Keywords: Epitaxial rare earth oxide, MBE, Nonvolatile memory, Si-nanocluster

Apurba Laha; E. Bugiel; A. Fissel; H. J. Osten

2008-12-01T23:59:59.000Z

119

Witnessing spin-orbit thermal entanglement in rare-earth ions  

E-Print Network (OSTI)

We explore spin-orbit thermal entanglement in rare-earth ions, based on a witness obtained from mean energies. The entanglement temperature $T_{E}$, below which entanglement emerges, is found to be thousands of kelvin above room temperature for all light rare earths. This demonstrate the robustness to environmental fluctuations of entanglement between internal degrees of freedom of a single ion.

O. S. Duarte; C. S. Castro; D. O. Soares-Pinto; M. S. Reis

2013-08-07T23:59:59.000Z

120

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Summary Report Documenting Status of the Rare Earth Oxide Investigation  

Science Conference Proceedings (OSTI)

The goal of this work is to enhance the understanding of ceramic nuclear fuel thermochemistry through a coordinated modeling and experimental approach. This work supports the Advanced Fuels Campaign Feedstock and Fabrication Technology R&D Program and is focused on the following tasks: (1) use existing compound energy formalism-based models to support Los Alamos National Laboratory (LANL) fuel development activities, (2) assess rare earth (RE) oxide systems and begin development of thermochemical representations of U-RE-O systems, and (3) develop a U-Ce-O thermochemical model for the fluorite-structure phase. In support of the experimental efforts at the LANL, an assessment of temperature-oxygen potential conditions for preparing stoichiometric U{sub 1-y}Ce{sub y}O{sub 2} at relatively low values of y (thermochemical information, e.g., oxygen potentials and phase equilibria, can thus yield the necessary corrections to the Gibbs free energies for the non-standard constituents and derived interaction parameters (L values). While a model is available that includes all the interactions separately among the urania and ceria species, determination of any possible non-ideal interactions between the urania and ceria cations requires optimization from first principles (if possible) and experimental data for the system. Utilizing the best set of data for oxygen potential-temperature-composition for U{sub 1-y}Ce{sub y}O{sub 2-x} the FactSage thermochemical computational software code was used to optimize the system for selected Gibbs free energy functions and interaction parameters. While it was possible to obtain optimized solutions, the resulting parameters did not allow adequate reproduction of the data, as can be seen in Fig. 2. As noted above, the quality of the data among the various investigators is poor and that is a likely cause for the lack of a reasonable representation. The focus for the remainder of the fiscal year will be twofold. There will be collaboration with LANL on the collection of experimental data to resolve inconsistencies in the literature data and to fill some of the gaps in the experimental space

Besmann, Theodore M [ORNL; Voit, Stewart L [ORNL; Shin, Dongwon [ORNL

2010-05-01T23:59:59.000Z

122

Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals  

E-Print Network (OSTI)

Broadband and anisotropic light emission from rare-earth doped tellurite thin films is demonstrated using Er[superscript 3+]-TeO[subscript 2] photonic crystals (PhCs). By adjusting the PhC parameters, photoluminescent light ...

Vanhoutte, Michiel

123

Rapid separation of individual rare-earth elements from fission products  

SciTech Connect

A microprocessor-controlled radiochemical separation system has been developed to rapidly separate rare-earth elements from gross fission products. The system is composed of two high performance liquid chromatography columns coupled in series by a stream-splitting injection valve. The first column separates the rare-earth group by extraction chromatography using dihexyldiethylcarbamylmethylenephosphonate (DHDECMP) adsorbed on Vydac C/sub 8/ resin. The second column isolates the individual rare-earth elements by cation exchange using Aminex A-9 resin with ..cap alpha..-hydroxyisobutyric acid (..cap alpha..-HIBA) as the eluent. With this system, fission-product rare-earth isotopes with half-lives as short as three minutes have been studied.

Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

1980-01-01T23:59:59.000Z

124

Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles  

DOE Patents (OSTI)

A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

Fulton, John L. (Richland, WA); Hoffmann, Markus M. (Richland, WA)

2003-12-23T23:59:59.000Z

125

Meteorite made up of rare early solar system material  

NLE Websites -- All DOE Office Websites (Extended Search)

1613meteorite 01162013 Meteorite made up of rare early solar system material Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Pieces of the Sutter's Mill...

126

Summary Report Documenting Status of the Rare Earth Oxide Investigation  

SciTech Connect

The goal of this work is to enhance the understanding of ceramic nuclear fuel thermochemistry through a coordinated modeling and experimental approach. This work supports the Advanced Fuels Campaign Feedstock and Fabrication Technology R&D Program and is focused on the following tasks: (1) use existing compound energy formalism-based models to support Los Alamos National Laboratory (LANL) fuel development activities, (2) assess rare earth (RE) oxide systems and begin development of thermochemical representations of U-RE-O systems, and (3) develop a U-Ce-O thermochemical model for the fluorite-structure phase. In support of the experimental efforts at the LANL, an assessment of temperature-oxygen potential conditions for preparing stoichiometric U{sub 1-y}Ce{sub y}O{sub 2} at relatively low values of y (< 0.4) was performed. There is significant agreement in the literature that both the independent urania and ceria phases, and the urania-ceria solution phase are stoichiometric at oxygen-to-metal (O/M) ratios of 2 at 850 C and an oxygen potential of -368 kJ/mol. The oxygen potential value is obtained at a partial pressure of CO/CO{sub 2} ratio of unity at 1 bar total pressure. This information was successfully applied in thermogravimetric analysis experimental efforts at LANL investigating urania, ceria, and blended powders of the two oxides. Data reported in the literature for oxygen potential-temperature-composition for U{sub 1-y}Ce{sub y}O{sub 2-x} was extracted manually and used to generate a data file. Assessment of the data showed both wide error ranges within sets of data as well as inconsistencies between data sets of different investigators. Figure 1, a plot of the extracted data, illustrates the paucity of experimental data with respect to composition, temperature, and O:M space. For example, as shown in Figure 1, the data as a function of temperature are limited to the range 873 K to 1273 K and higher O:M ratios. Furthermore, the compositions studied have focused on higher uranium fractions and very little work has been done at corresponding lower O:M ratios. A compound energy formalism representation has been developed for the (U,Ce)O{sub 2+x} utilizing developed models for the UO{sub 2+x} from Gueneau et al. (2002) and CeO{sub 2-x} of Zinkevich et al. (2006). A three sublattice approach was used to allow for uranium of valences up to +6. Vacancies are considered only on the anion sites. The ionic species are introduced in the sublattice as follows: (U{sup 6+},U{sup 4+},U{sup 3+},Ce{sup 4+},Ce{sup 3+}){sub 1}(O{sup 2-},Va){sub 2}(O{sup 2-},Va){sub 1} Gibbs free energy expressions for each of the derived constituents can be determined from standard state values. Optimizations using all available thermochemical information, e.g., oxygen potentials and phase equilibria, can thus yield the necessary corrections to the Gibbs free energies for the non-standard constituents and derived interaction parameters (L values). While a model is available that includes all the interactions separately among the urania and ceria species, determination of any possible non-ideal interactions between the urania and ceria cations requires optimization from first principles (if possible) and experimental data for the system. Utilizing the best set of data for oxygen potential-temperature-composition for U{sub 1-y}Ce{sub y}O{sub 2-x} the FactSage thermochemical computational software code was used to optimize the system for selected Gibbs free energy functions and interaction parameters. While it was possible to obtain optimized solutions, the resulting parameters did not allow adequate reproduction of the data, as can be seen in Fig. 2. As noted above, the quality of the data among the various investigators is poor and that is a likely cause for the lack of a reasonable representation. The focus for the remainder of the fiscal year will be twofold. There will be collaboration with LANL on the collection of experimental data to resolve inconsistencies in the literature data and to fill some of the gaps in the experimental space

Besmann, Theodore M [ORNL; Voit, Stewart L [ORNL; Shin, Dongwon [ORNL

2010-05-01T23:59:59.000Z

127

Structural Characterization of Apatite-Type Rare-Earth Silicates  

Science Conference Proceedings (OSTI)

... Ferroelectrics with Giant Electrocaloric Effect for Dielectric Refrigeration ... Processes during Sintering: Establishing a Tool Kit for Materials Design in PZT.

128

Critical and Strategic Failure of Rare Earth Resources  

Science Conference Proceedings (OSTI)

2010 Vittorio de Nora Award Winner: Designing Crushing and Grinding Circuits for ... Materialization of Manganese by Selective Precipitation from Used Battery.

129

METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES  

DOE Patents (OSTI)

A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

Duffield, R.B.; Stoughton, R.W.

1959-02-01T23:59:59.000Z

130

Iver Anderson, Division of Materials Sciences and Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS, Research Trends on Rare Earth Materials in Japan...

131

Summary of radiation damage studies on rare earth permanent magnets  

SciTech Connect

With the proposed use of permanent magnets for both the NLC and the VLHC the issue flux loss due to radiation damage needs to be fully understood. There exist many papers on the subject. There are many difficulties in drawing conclusions from all of these data. First there is the difference methods of dosimetry, second different types of magnets and magnetic arrangements, and third different manufacturers of magnet material. This paper provides a summary of the existing literature on the subject.

J. T. Volk

2002-11-19T23:59:59.000Z

132

Ternary rare earth-lanthanide sulfides. [Re = Eu, Sm or Yb  

DOE Patents (OSTI)

Disclosed is a new ternary rare earth sulfur compound having the formula La/sub 3-x/M/sub x/S/sub 4/, where M is europium, samarium, or ytterbium, with x = 0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000/sup 0/C.

Takeshita, Takuo; Gschneidner, K.A. Jr.; Beaudry, B.J.

1986-03-06T23:59:59.000Z

133

Thermal treatment for increasing magnetostrictive response of rare earth-iron alloy rods  

DOE Patents (OSTI)

Magnetostrictive rods formed from rare earth-iron alloys are subjected to a short time heat treatment to increase their Magnetostrictive response under compression. The heat treatment is preferably carried out at a temperature of from 900.degree. to 1000.degree. C. for 20 minutes to six hours.

Verhoeven, John D. (Ames, IA); McMasters, O. D. (Ames, IA)

1989-07-18T23:59:59.000Z

134

Market Impacts of Rare Earth Element Use in Solid Oxide Fuel Cells  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary Rare earth elements (REEs) are critical to the function and performance of solid oxide fuel cells (SOFCs) 1. Given the concentration of commercially minable REE deposits and production in China (and especially given recent tightening of its export quota), the US Department of Energy is interested in understanding how REE demand for SOFC applications could impact REE markets and vice versa. Yttria (yttrium oxide), lanthanum oxide, and ceria (cerium oxide) are important materials in the ceramic cells that form the core of any solid oxide fuel cell, imparting on the functional layers of the cells ionic conductivity, electronic conductivity, and/or structural strength. Gadolinium, scandium, and samarium are also used in some SOFC designs. The amounts of REEs contained in state-of-the-art SOFC are modest, and represent less than 5% of annual production (Table 1). Spent SOFC stacks and production waste will likely be recycled for their metal and REE content, which would reduce REE demand for stack replacements by

J. Thijssen Llc

2010-01-01T23:59:59.000Z

135

Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators  

Science Conference Proceedings (OSTI)

With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements.

Kramer, Matthew; McCallum, Kendall; Anderson, Iver; Constantinides, Steven

2012-06-29T23:59:59.000Z

136

Method of increasing magnetostrictive response of rare earth-iron alloy rods  

DOE Patents (OSTI)

This invention comprises a method of increasing the magnetostrictive response of rare earth-iron (RFe) magnetostrictive alloy rods by a thermal-magnetic treatment. The rod is heated to a temperature above its Curie temperature, viz. from 400.degree. to 600.degree. C.; and, while the rod is at that temperature, a magnetic field is directionally applied and maintained while the rod is cooled, at least below its Curie temperature.

Verhoeven, John D. (Ames, IA); McMasters, O. Dale (Ames, IA); Gibson, Edwin D. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Finnemore, Douglas K. (Ames, IA)

1989-04-04T23:59:59.000Z

137

Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides  

SciTech Connect

We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.

Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.

2012-05-15T23:59:59.000Z

138

Rare earth chalcogenides for use as high temperature thermoelectric materials  

DOE Green Energy (OSTI)

In the first part of the thesis, the electric resistivity, Seebeck coefficient, and Hall effect were measured in X{sub y}(Y{sub 2}S{sub 3}){sub 1-y} (X = Cu, B, or Al), for y = 0.05 (Cu, B) or 0.025-0.075 for Al, in order to determine their potential as high- temperature (HT)(300-1000 C) thermoelectrics. Results indicate that Cu, B, Al- doped Y{sub 2}S{sub 3} are not useful as HT thermoelectrics. In the second part, phase stability of {gamma}-cubic LaSe{sub 1.47-1.48} and NdSe{sub 1.47} was measured periodically during annealing at 800 or 1000 C for the same purpose. In the Nd selenide, {beta} phase increased with time, while the Nd selenide showed no sign of this second phase. It is concluded that the La selenide is not promising for use as HT thermoelectric due to the {gamma}-to-{beta} transformation, whereas the Nd selenide is promising.

Michiels, J.

1996-01-02T23:59:59.000Z

139

Status and Preparation Technology of Rare Earth Materials  

Science Conference Proceedings (OSTI)

... Nd-Fe-B Permanent Magnets · Unique Exchange Bias Induced by Antiferromagnetic Cr-oxide · ZnO-graphene Hybrid Quantum Dots Light Emitting Diode ...

140

Rare Earth and Optical Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... ZnO-graphene Hybrid Quantum Dots Light Emitting Diode: Won Kook Choi1; Dong-Ick Son1; Soon-Nam Kwon1; 1Korea Institute of Science ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Report Reveals Not-So-Rare Earth Elements - Materials Technology ...  

Science Conference Proceedings (OSTI)

Nov 22, 2010 ... The report describes significant deposits of REE in 14 states, with the ... Bokan Mountain, Alaska; and the Bear Lodge Mountains, Wyoming.

142

Session VI: Rare Earth Advanced Materials, Recycling and Separation  

Science Conference Proceedings (OSTI)

HAB two-solvent extracting system using Sec-octylphenoxy acetic acid as main ... that usually contains more than 10 valuable elements of different prices.

143

Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity  

E-Print Network (OSTI)

Three orders of magnitude cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, induced by strong intra-cavity dispersion caused by off-resonant interaction with dopant ions is demonstrated. The strong dispersion is created by semi-permanent but rapidly reprogrammable changes of the rare earth absorption profiles using optical pumping techniques. Several cavity modes are shown within the spectral transmission window. Potential applications are discussed.

Sabooni, Mahmood; Rippe, Lars; Kröll, Stefan

2013-01-01T23:59:59.000Z

144

Iron-Nitride-Based Magnets: Synthesis and Phase Stabilization of Body Center Tetragonal (BCT) Metastable Fe-N Anisotropic Nanocomposite Magnet- A Path to Fabricate Rare Earth Free Magnet  

SciTech Connect

REACT Project: The University of Minnesota will develop an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials. The ultimate goal of this project is to demonstrate a prototype with magnetic properties exceeding state-of-the-art commercial magnets.

None

2012-01-01T23:59:59.000Z

145

Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool  

DOE Green Energy (OSTI)

The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

Scott A. Wood

2002-01-28T23:59:59.000Z

146

Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns  

DOE Patents (OSTI)

The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

Payne, Stephen A. (Castro Valley, CA); Page, Ralph H. (San Ramon, CA); Schaffers, Kathleen I. (Pleasanton, CA); Nostrand, Michael C. (Livermore, CA); Krupke, William F. (Pleasanton, CA); Schunemann, Peter G. (Malden, MA)

2000-01-01T23:59:59.000Z

147

The impact of trade costs on rare earth exports : a stochastic frontier estimation approach.  

SciTech Connect

The study develops a novel stochastic frontier modeling approach to the gravity equation for rare earth element (REE) trade between China and its trading partners between 2001 and 2009. The novelty lies in differentiating betweenbehind the border' trade costs by China and theimplicit beyond the border costs' of China's trading partners. Results indicate that the significance level of the independent variables change dramatically over the time period. While geographical distance matters for trade flows in both periods, the effect of income on trade flows is significantly attenuated, possibly capturing the negative effects of financial crises in the developed world. Second, the total export losses due tobehind the border' trade costs almost tripled over the time period. Finally, looking atimplicit beyond the border' trade costs, results show China gaining in some markets, although it is likely that some countries are substituting away from Chinese REE exports.

Sanyal, Prabuddha; Brady, Patrick Vane; Vugrin, Eric D.

2013-09-01T23:59:59.000Z

148

Rare earth/iron fluoride and methods for making and using same  

DOE Patents (OSTI)

A particulate mixture of Fe.sub.2 O.sub.3 and RE.sub.2 O.sub.3, where RE is a rare earth element, is reacted with an excess of HF acid to form an insoluble fluoride compound (salt) comprising REF.sub.3 and FeF.sub.3 present in solid solution in the REF.sub.3 crystal lattice. The REF.sub.3 /FeF.sub.3 compound is dried to render it usable as a reactant in the thermite reduction process as well as other processes which require an REF.sub.3 /FeF.sub.3 mixture. The dried REF.sub.3 /FeF.sub.3 compound comprises about 5 weight % to about 40 weight % of FeF.sub.3 and the balance REF.sub.3 to this end.

Schmidt, Frederick A. (Ames, IA); Wheelock, John T. (Neveda, IA); Peterson, David T. (Ames, IA)

1991-12-17T23:59:59.000Z

149

The impact of trade costs on rare earth exports : a stochastic frontier estimation approach.  

Science Conference Proceedings (OSTI)

The study develops a novel stochastic frontier modeling approach to the gravity equation for rare earth element (REE) trade between China and its trading partners between 2001 and 2009. The novelty lies in differentiating betweenbehind the border' trade costs by China and theimplicit beyond the border costs' of China's trading partners. Results indicate that the significance level of the independent variables change dramatically over the time period. While geographical distance matters for trade flows in both periods, the effect of income on trade flows is significantly attenuated, possibly capturing the negative effects of financial crises in the developed world. Second, the total export losses due tobehind the border' trade costs almost tripled over the time period. Finally, looking atimplicit beyond the border' trade costs, results show China gaining in some markets, although it is likely that some countries are substituting away from Chinese REE exports.

Sanyal, Prabuddha; Brady, Patrick Vane; Vugrin, Eric D.

2013-09-01T23:59:59.000Z

150

Nuclear Resonant Scattering on Earth Materials using Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

NRS2005 Home NRS2005 Home Agenda Organizing Committee Nuclear Resonant Scattering on Earth Materials using Synchrotron Radiation February 12-13, 2005 Advanced Photon Source Argonne National Laboratory - Argonne, Illinois, USA Nuclear Resonant Scattering (NRS) techniques provide the Earth and planetary science community with opportunities for new and exciting results on the properties of materials at high pressure and temperature conditions. Such NRS experiments have become possible due to the extreme brightness of third-generation synchrotron radiation sources. NRS techniques fall into two broad areas, which are in many ways ideally or even uniquely suited for addressing a number of important geophysical questions: Nuclear Resonant Inelastic X-ray Scattering (NRIXS) provides information on

151

Thermal transport of the single-crystal rare-earth nickel borocarbides RNi2B2C  

E-Print Network (OSTI)

The quaternary intermetallic rare-earth nickel borocarbides RNi2B2C are a family of compounds that show magnetic behavior, superconducting behavior, and/or both. Thermal transport measurements reveal both electron and phonon scattering mechanisms, and can provide information on the interplay of these two long-range phenomena. In general the thermal conductivity kappa is dominated by electrons, and the high temperature thermal conductivity is approximately linear in temperature and anomalous. For R=Tm, Ho, and Dy the low-temperature thermal conductivity exhibits a marked loss of scattering at the antiferromagnetic ordering temperature T-N. Magnon heat conduction is suggested for R=Tm. The kappa data for R=Ho lends evidence for gapless superconductivity in this material above T-N. Unlike the case for the non-magnetic superconductors in the family, R=Y and Lu, a phonon peak in the thermal conductivity below T-c is not observed down to T=1.4 K for the magnetic superconductors. Single-crystal quality seems to have a strong effect on kappa. The electron-phonon interaction appears to weaken as one progresses from R=Lu to R=Gd. The resistivity data shows the loss of scattering at T-N for R=Dy, Tb, and Gd; and the thermoelectric power for all three of these materials exhibits an enhancement below T-N.

Hennings, BD; Naugle, Donald G.; Canfield, PC.

2002-01-01T23:59:59.000Z

152

Preparation and properties of electrically conducting ceramics based on indium oxide-rare earth oxides-hafnium oxides  

DOE Green Energy (OSTI)

Electrically conducting refractory oxides based on adding indium oxide to rare earth-stabilized hafnium oxide are being studied for use in magnetohydrodynamic (MHD) generators, fuel cells, and thermoelectric generators. The use of indium oxide generally increases the electrical conductivity. The results of measurements of the electrical conductivity and data on corrosion resistance in molten salts are presented.

Marchant, D.D.; Bates, J.L.

1983-09-01T23:59:59.000Z

153

Resonant Inelastic X-ray Scattering of Rare-Earth and CopperSystems  

Science Conference Proceedings (OSTI)

Rare earths and copper systems were studied using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The use of monochromased synchotron radiation and improved energy resolution for RIXS made possible to obtain valuable information on the electronic structure in 4f, 5f and 3d systems. Experimental results for rare-earths (Ho, Gd, Cm, U, Np, Pu) were analyzed by atomic multiplet theory based on the Hartree-Fock calculations. The inelastic scattering structures in RIXS spectra at 5d edge of actinides found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248-curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248 curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge indicate the reduction of U(VI), NP(V) and Pu(VI) to U(IV), Np(IV) and Pu(IV) by presence of iron ions. This thesis is also addressed to the study of changes in the electronic structure of copper films during interaction with synthetic groundwater solutions. The surface modifications induced by chemical reactions of oxidized 100 Angstrom Cu films with CL{sup -}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -} ions in aqueous solutions with various concentrations were studied in-situ using XAS. It was shown that the pH value, the concentration of Cl{sup -} ion and presence of HC{sub 3}{sup -} ion in the solutions strongly affect the speed of the corrosion reaction. The Cu 2p RIXS was used to distinguish between the species present on the copper surface while in contact with groundwater solution.

Kvashnina, Kristina

2007-07-11T23:59:59.000Z

154

The role of rare-earth dopants in nanophase zirconia catalysts for automotive emission control.  

DOE Green Energy (OSTI)

Rare earth (RE) modification of automotive catalysts (e.g., ZrO{sub 2}) for exhaust gas treatment results in outstanding improvement of the structural stability, catalytic functions and resistance to sintering at high temperatures. Owing to the low redox potential of nonstoichiometric CeO{sub 2}, oxygen release and intake associated with the conversion between the 3+ and 4+ oxidation states of the Ce ions in Ce-doped ZrO{sub 2} provide the oxygen storage capacity that is essentially to effective catalytic functions under dynamic air-to-fuel ratio cycling. Doping tripositive RE ions such as La and Nd in ZrO{sub 2}, on the other hand, introduces oxygen vacancies that affect the electronic and ionic conductivity. These effects, in conjunction with the nanostructure and surface reactivity of the fine powders, present a challenging problem in the development of better ZrO{sub 2}-containing three-way catalysts. We have carried out in-situ small-to-wide angle neutron diffraction at high temperatures and under controlled atmospheres to study the structural phase transitions, sintering behavior, and Ce{sup 3+} {leftrightarrow} Ce{sup 4+} redox process. We found substantial effects due to RE doping on the nature of aggregation of nanoparticles, defect formation, crystal phase transformation, and metal-support interaction in ZrO{sub 2} catalysts for automotive emission control.

Loong, C.-K.; Ozawa, M.

1999-07-16T23:59:59.000Z

155

Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making  

DOE Patents (OSTI)

A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.

McCallum, R. William (Ames, IA); Branagan, Daniel J. (Ames, IA)

1996-01-23T23:59:59.000Z

156

Polarization dependence of two-photon transition intensities in rare-earth doped crystals  

SciTech Connect

A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO{sub 4}, NdVO{sub 4}, ErVO{sub 4}, and TmVO{sub 4} crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F{sub 1}/F{sub 2} ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F{sub 1}/F{sub 2} and the predicted values using the second-order theory has been found.

Le Nguyen, An-Dien

1996-05-01T23:59:59.000Z

157

Critical Materials and Rare Futures: Ames Laboratory Signs a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials in petroleum refineries and other applications not addressed in last year's report. Other steps are also being taken. ARPA-E has opened a Funding Opportunity...

158

Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste  

DOE Patents (OSTI)

Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

2001-01-01T23:59:59.000Z

159

The Search for Enhanced Magnetic Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, The ... Advances in Rare-earth Free Permanent Magnets · Anisotropic Curie ...

160

Flotation Flowsheet Development for Avalon Rare Metal's ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Proceedings of the 25th Rare Earth Research Conference, June 22-26, Tuscaloosa, Alabama, USA Journal of Alloys and Compounds 2009, Vol. 488, Iss. 2, pp 491-656  

SciTech Connect

The program of the 25th Rare Earth Research Conference (RERC08) integrated basic and applied multidisciplinary research centered on the f-elements. Leading science was featured in the form of invited oral presentations and contributed posters on topics in f-element chemistry, physics, and material, earth, environmental, and biological sciences. The conference was held in Shelby Hall, located on The University of Alabama?s Tuscaloosa, AL campus. The final program and list of attendees is available at URL http://bama.ua.edu/~rdrogers/RERC08/.

Rogers, Robin D.

2009-12-04T23:59:59.000Z

162

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Critical Materials for a Clean Energy Future Diana Bauer, Office of Policy and International Affairs, U.S. Department of Energy, Highlights of the DOE Critical Materials...

163

Earth abundant materials for high efficiency heterojunction thin film solar cells  

E-Print Network (OSTI)

We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

Buonassisi, Tonio

164

Effect of rare earth ions on the phase transition of Na sub 2 SO sub 4 crystals  

SciTech Connect

The V {r reversible} I phase transition of Na{sub 2}SO{sub 4} crystals was investigated on a sample of pure Na{sub 2}SO{sub 4} and on rare-earth ion (Ln{sup 3+} = La{sup 3+}, Eu{sup 3+}, Tm{sup 3+})-doped Na{sub 2}SO{sub 4} samples in various ambient gases (O{sub 2}, N{sub 2}, NH{sub 3}) with high temperature X-ray diffraction and differential thermal analysis. On heating in N{sub 2} flow, the initiating temperature for the V {yields} I transition was lowered by doping with Ln{sup 3+} ion and the doping effect was enhanced by an increase in the ionic size ratio r{sub Ln{sup 3+}}/r{sub Na{sup +}}. The low temperature form of the solid solution (LSS) Na{sub 2}SO{sub 4} and rare earth sulfate, which was a by-product in the preparation of the Ln{sup 3+}-doped samples, transformed to a high temperature form (HSS) after the V {yields} I transition, and the initiating temperature for the LSS {yields} HSS transition was highest in the Eu{sup 3+}-doped sample (r{sub Ln{sup 3+}}/r{sub Na{sup +}} {approx equal} 1).

Ohta, Masatoshi; Sakaguchi, Masakazu (Niigata Univ. (Japan))

1991-03-01T23:59:59.000Z

165

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Critical Materials, ChairsAnimateurs: Jeff Skeer, DOE Office of Policy and International Affairs and Renzo Tomellini, EC Directorate General for Research and Innovation...

166

Rare Earth Atoms Make the Best Thermoelectrics Better | U.S....  

Office of Science (SC) Website

local magnetic characteristics modifies the complex interplay between electronic and thermal transport in the material that is responsible for the electrical current that is...

167

Recent Developments in Rare Earth Lean/Free High Energy Magnets  

Science Conference Proceedings (OSTI)

Fe-rich FeSiBPCu Nano-crystalline Soft Magnetic Alloys Contributable To Energy -saving · Fe and Mn Based Materials for Magnetic Refrigeration · First-order ...

168

Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys  

SciTech Connect

The goal of this work is to investigate methods in which anisotropy could be induced in fine-grained alloys. We have identified two general processing routes to creating a fine, textured microstructure: form an amorphous precursor and devitrify in a manner that induces texture or form the fine, textured microstructure upon cooling directly from the liquid state. Since it is possible to form significant amounts of amorphous material in RE-Fe-B alloys, texture could be induced through biasing the orientationof the crystallites upon crystallization of the amorphous material. One method of creating this bias is to form glassy material and apply uniaxial pressure during crystallization. Experiments on this are presented. All of the work presented here utilizes melt-spinning, either to create precursor material, or to achieve a desired final microstructure. To obtain greater control of the system to process these materials, a study was done on the effects of heating the wheel and modifying the wheel’s surface finish on glass formation and phase selection. The second general approach—creating the desired microstructure directly from the liquid—can be done through directional rapid solidification. In particular, alloys melt-spun at low tangential wheel speeds often display directional columnar growth through a portion of the ribbon. By refining and stabilizing the columnar growth, a highly textured fine microstructure is achieved. The effects of adding a segregating element (Ag) on the columnar growth are characterized and presented.

Oster, Nathaniel

2012-04-23T23:59:59.000Z

169

Earth melter and method of disposing of feed materials  

DOE Patents (OSTI)

An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

Chapman, C.C.

1994-10-11T23:59:59.000Z

170

Earth melter and method of disposing of feed materials  

DOE Patents (OSTI)

An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

Chapman, Christopher C. (Richland, WA)

1994-01-01T23:59:59.000Z

171

Selecting the suitable dopants: electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate  

E-Print Network (OSTI)

Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to regenerate electricity from waste heat. In this work, three elements with outmost electronic configurations, (1) an open d shell (Ni), (2) a closed d shell (Zn), and (3) an half fill f shell (Eu) with a maximum unpaired electrons, were selected to outline the dopants' effects on electronic and crystallographic structures of Na0.75CoO2. Systematic ab initio density functional calculations showed that the formation energy of these dopants was found to be lowest when residing on sodium layer and ranked as -1.1 eV, 0.44 eV and 3.44 eV for Eu, Ni and Zn respectively. Furthermore Ni was also found to be stable when substituting Co ion. As these results show great harmony with existing experimental data, they provide new insights into the fundamental principle of dopant selection for manipulating the physical properties in the development of high performance sodium cobaltate based thermoelectric materials.

Assadi, M H N; Yu, A B

2012-01-01T23:59:59.000Z

172

Hydrometallurgical Plant Design Parameters for the Avalon Rare ...  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

173

Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions  

SciTech Connect

An investigation of donor-acceptor energy transfer kinetics in dual rare earths doped precursor oxy-fluoride glass and its glass-ceramics containing NaYF{sub 4} nano-crystals is reported here, using three different donor-acceptor ion combinations such as Nd-Yb, Yb-Dy, and Nd-Dy. The precipitation of NaYF{sub 4} nano-crystals in host glass matrix under controlled post heat treatment of precursor oxy-fluoride glasses has been confirmed from XRD, FESEM, and transmission electron microscope (TEM) analysis. Further, the incorporation of dopant ions inside fluoride nano-crystals has been established through optical absorption and TEM-EDX analysis. The noticed decreasing trend in donor to acceptor energy transfer efficiency from precursor glass to glass-ceramics in all three combinations have been explained based on the structural rearrangements that occurred during the heat treatment process. The reduced coupling phonon energy for the dopant ions due to fluoride environment and its influence on the overall phonon assisted contribution in energy transfer process has been illustrated. Additionally, realization of a correlated distribution of dopant ions causing clustering inside nano-crystals has also been reported.

Sontakke, Atul D.; Annapurna, K. [Glass Science and Technology Section, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata - 700 032 (India)

2012-07-01T23:59:59.000Z

174

NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.

Not Available

2012-10-01T23:59:59.000Z

175

A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln{sub 2}O{sub 2}S  

SciTech Connect

A continuous two-step molecular precursor pathway is designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu). This new route involves a first oxidation step leading to the rare-earth oxysulfate Ln{sub 2}O{sub 2}SO{sub 4} which is subsequently reduced to the rare-earth oxysulfide Ln{sub 2}O{sub 2}S by switching to a H{sub 2}-Ar atmosphere. The whole process occurs at a temperature significantly lower than usual solid state synthesis (T{<=}650 Degree-Sign C) and avoids the use of dangerous sulfur-based gases, providing a convenient route to the synthesis of the entire series of Ln{sub 2}O{sub 2}S. The molecular precursors consist in heteroleptic dithiocarbamate complexes [Ln(Et{sub 2}dtc){sub 3}(phen)] and [Ln(Et{sub 2}dtc){sub 3}(bipy)] (Et{sub 2}dtc=N,N-diethyldithiocarbamate; phen=1,10-phenanthroline; bipy=2,2 Prime -bipyridine) and were synthesized by a new high yield and high purity synthesis route. The nature of the molecular precursor determines the minimum synthesis temperature and influences therefore the purity of the final Ln{sub 2}O{sub 2}S crystalline phase. - Graphical abstract: A continuous two-step molecular precursor pathway was designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu), starting from heteroleptic dithiocarbamate complexes. The influence of the nature of the molecular precursor on the minimum synthesis temperature and on the purity of the final Ln{sub 2}O{sub 2}S crystalline phase is discussed. Highlights: Black-Right-Pointing-Pointer A new high yield and high purity synthesis route of rare earth dithiocarbamates is described. Black-Right-Pointing-Pointer These compounds are used as precursors in a continuous process leading to rare-earth oxysulfides. Black-Right-Pointing-Pointer The oxysulfides are obtained under much more moderate conditions than previously described.

De Crom, N. [Institute of Condensed Matter and Nanosciences/MOST, Universite Catholique de Louvain, Place Louis Pasteur, 1, L4.01.03, B-1348 Louvain-la-Neuve (Belgium); Devillers, M., E-mail: michel.devillers@uclouvain.be [Institute of Condensed Matter and Nanosciences/MOST, Universite Catholique de Louvain, Place Louis Pasteur, 1, L4.01.03, B-1348 Louvain-la-Neuve (Belgium)

2012-07-15T23:59:59.000Z

176

Rare Earth Elements  

Science Conference Proceedings (OSTI)

Current Korean R&D and Investment Strategies in Response to REE Demand & Supply Concerns · Development of a High Recovery Process Flowsheet for ...

177

Rare Earth Based Nanomaterials  

Science Conference Proceedings (OSTI)

Efficient emission at such small size is provided by doping Ln3+-ions into a fluoride matrix. Therefore, NaGdF4:Er3+,Yb3+ nanoparticles are synthesized by ...

178

Rare Earth Magnets  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Performance and Endurance of Nd-Fe-B Sintered Magnets in E-Motor Application Conditions: Martina Moore1; Ralph Sueptitz1; Margitta ...

179

Rare Earth Magnets  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Current high performance permanent magnets (PM) for traction motors of (hybrid) electric vehicles use substantial amount of Dy in Nd-Fe-B ...

180

Magnesium - Rare Earth Alloys  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Location: Washington State Convention Center ... The Use of Computer Modeling for Producing DC Cast WE43 Magnesium Alloy Slab: ... However, there is a limited operating window within which favourable textures arise.

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rare-earth chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm)  

Science Conference Proceedings (OSTI)

The ternary rare-earth-metal chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm) have been prepared by reactions of the elements at 1000 Degree-Sign C in the presence of excess gallium used as a self-flux. Their structures are derived by inserting Cr atoms into a quarter of the empty Ga{sub 6} octahedral clusters found in the parent binary gallides REGa{sub 3} (AuCu{sub 3}-type), although single-crystal X-ray diffraction studies suggest that complex superstructures may be adopted. An ideal ordered Y{sub 4}PdGa{sub 12}-type structure was successfully refined for a crystal of Dy{sub 4}CrGa{sub 12} (Pearson symbol cI34, space group Im3{sup Macron }m, Z=2, a=8.572(1) A). Magnetic measurements on single-crystal samples reveal ferromagnetic or possibly ferrimagnetic ordering for the Tb, Dy, and Er members (T{sub C}=22, 15, and 2.8 K, respectively) and antiferromagnetic ordering for the Ho member (T{sub N}=7.5 K). Band structure calculations on a hypothetical 'Y{sub 4}CrGa{sub 12}' model suggest that the Cr atoms carry no local magnetic moment. - Graphical abstract: RE{sub 4}CrGa{sub 12} is derived by inserting Cr atoms into empty Ga{sub 6} octahedral clusters present in the parent binary gallides REGa{sub 3}. Highlights: Black-Right-Pointing-Pointer RE{sub 4}MGa{sub 12} (previously known for M=Fe, Ni, Pd, Pt, Ag) has been extended to M=Cr. Black-Right-Pointing-Pointer RE{sub 4}CrGa{sub 12} compounds show predominantly ferromagnetic ordering. Black-Right-Pointing-Pointer Band structure calculations suggest that Cr atoms carry no local magnetic moment.

Slater, Brianna R.; Bie, Haiying; Stoyko, Stanislav S. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Bauer, Eric D.; Thompson, Joe D. [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

2012-12-15T23:59:59.000Z

182

Porous Rare-Earth Containing NbTiAl-Based High-entropy Materials ...  

Science Conference Proceedings (OSTI)

The filter properties for the water and air were also measured. ... Novel Self- foaming Cellular Composites Produced from Recycled Water Potabilisation Sludge.

183

Ternary rare-earth zinc arsenides REZn{sub 1-x}As{sub 2} (RE=La-Nd, Sm)  

SciTech Connect

The ternary rare-earth zinc arsenides REZn{sub 1-x}As{sub 2} (RE=La-Nd, Sm) were prepared by reaction of the elements at 800 deg. C. Single-crystal and powder X-ray diffraction analysis revealed a defect SrZnBi{sub 2}-type average structure for the La member (Pearson symbol tI16, space group I4/mmm, Z=4; a=4.0770(9) A, c=20.533(5) A), in contrast to defect HfCuSi{sub 2}-type average structures for the remaining RE members (Pearson symbol tP8, space group P4/nmm, Z=2; a=4.0298(5)-3.9520(4) A, c=10.222(1)-10.099(1) A in the progression from Ce to Sm). The homogeneity range is not appreciable (estimated to be narrower than 0.6<1-x<0.7 in SmZn{sub 1-x}As{sub 2}) and the formula REZn{sub 0.67}As{sub 2} likely represents the Zn-rich phase boundary. The Ce-Nd members are Curie-Weiss paramagnets. LaZn{sub 0.67}As{sub 2} shows activated behavior in its electrical resistivity, whereas SmZn{sub 0.67}As{sub 2} exhibits anomalies in its temperature dependence of the electrical resistivity. - Graphical abstract: LaZn{sub 1-x}As{sub 2} adopts a SrZnBi{sub 2}-type structure whereas the remaining members of the REZn{sub 1-x}As{sub 2} series (RE=Ce-Nd, Sm) adopt a HfCuSi{sub 2}-type structure. Highlights: > REZn{sub 1-x}As{sub 2} adopts SrZnBi{sub 2}-type (RE=La) or HfCuSi{sub 2}-type (RE=Ce-Nd, Sm) structures. > Trends in RE substitution and local distortion around Zn-centered tetrahedra can be rationalized by geometrical factors. > Zn vacancies occur to reduce Zn-As and As-As antibonding interactions.

Stoyko, Stanislav S. [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)

2011-09-15T23:59:59.000Z

184

Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates  

DOE Patents (OSTI)

An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

Epperly, William R. (Summit, NJ); Deane, Barry C. (East Brunswick, NJ); Brunson, Roy J. (Buffalo Grove, IL)

1982-01-01T23:59:59.000Z

185

Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials in Japan SessionA7HonoNIMS.pdf More Documents & Publications Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research:...

186

Iver Anderson, Division of Materials Sciences and Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver...

187

Synthesis and crystal structure of the isotypic rare earth thioborates Ce[BS{sub 3}], Pr[BS{sub 3}], and Nd[BS{sub 3}  

Science Conference Proceedings (OSTI)

The orthothioborates Ce[BS{sub 3}], Pr[BS{sub 3}] and Nd[BS{sub 3}] were prepared from mixtures of the rare earth (RE) metals together with amorphous boron and sulfur summing up to the compositions CeB{sub 3}S{sub 6}, PrB{sub 5}S{sub 9} and NdB{sub 3}S{sub 6}. The following preparation routes were used: solid state reactions with maximum temperatures of 1323 K and high-pressure high-temperature syntheses at 1173 K and 3 GPa. Pr[BS{sub 3}] and Nd[BS{sub 3}] were also obtained from rare earth chlorides RECl{sub 3} and sodium thioborate Na{sub 2}B{sub 2}S{sub 5} by metathesis type reactions at maximum temperatures of 1073 K. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The thioborates are isotypic and crystallize in the orthorhombic spacegroup Pna2{sub 1} (No. 33; Z=4; Ce: a=7.60738(6)A, b=6.01720(4)A, c=8.93016(6)A; Pr: a=7.56223(4)A, b=6.00876(2)A, c=8.89747(4)A; Nd: a=7.49180(3)A, b=6.00823(2)A, c=8.86197(3)A) . The crystal structures contain isolated [BS{sub 3}]{sup 3-} groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of undulated kagome nets, which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure The isotypic orthothioborates Ce[BS{sub 3}], Pr[BS{sub 3}] and Nd[BS{sub 3}] were prepared using different preparation routes. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The crystal structures contain isolated [BS{sub 3}]{sup 3-} groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of corrugated kagome nets (sketched with blue dotted lines), which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species.

Hunger, Jens; Borna, Marija [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kniep, Ruediger, E-mail: kniep@cpfs.mpg.d [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany)

2010-03-15T23:59:59.000Z

188

Synthesis, structural characterization and magnetic properties of RE{sub 2}MgGe{sub 2} (RE=rare-earth metal)  

SciTech Connect

A series of rare-earth metal-magnesium-germanides RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) has been synthesized by reactions of the corresponding elements at high temperature. Their structures have been established by single-crystal and powder X-ray diffraction and belong to the Mo{sub 2}FeB{sub 2} structure type (space group P4/mbm (No. 127), Z=2; Pearson symbol tP10). Temperature dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for all members of the family, excluding Y{sub 2}MgGe{sub 2}, Sm{sub 2}MgGe{sub 2}, and Lu{sub 2}MgGe{sub 2}. At cryogenic temperatures (ca. 60 K and below), most RE{sub 2}MgGe{sub 2} phases enter into an antiferromagnetic ground-state, except for Er{sub 2}MgGe{sub 2} and Tm{sub 2}MgGe{sub 2}, which do not undergo magnetic ordering down to 5 K. The structural variations as a function of the decreasing size of the rare-earth metals, following the lanthanide contraction, and the changes in the magnetic properties across the series are discussed as well. - Graphical Abstract: The structure of RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) can be best viewed as 2-dimensional slabs of Mg and Ge atoms (anionic sub-lattice), and layers of rare-earth metal atoms (cationic sub-lattice) between them. Within this description, one should consider the Ge-Ge dumbbells (formally Ge{sup 6-}{sub 2}), interconnected with square-planar Mg atom as forming flat [MgGe{sub 2}] layers (z=0), stacked along the c-axis with the layers at z=1/2, made of rare-earth metal cations (formally RE{sup 3+}). Highlights: > RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) are new ternary germanides. > Their structures can be recognized as a 1:1 intergrowth of CsCl- and AlB{sub 2}-like slabs. > Ge atoms are covalently bound into Ge{sub 2} dumbbells. > Most RE{sub 2}MgGe{sub 2} phases are antiferromagnetically ordered at cryogenic temperatures.

Suen, Nian-Tzu; Tobash, Paul H. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

2011-11-15T23:59:59.000Z

189

2010 Critical Materials Strategy  

Energy.gov (U.S. Department of Energy (DOE))

This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

190

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

191

Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats  

E-Print Network (OSTI)

Katoe , Danielle Fortind a Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima 739-8526, Japan b Laboratory for Multiple Isotope Research for Astro- and Geochemical Evolution (MIRAGE), Hiroshima University, Hiroshima 739-8526, Japan c Ge´osciences Rennes, CNRS, Rennes, F-35042

192

As-cast microstructures in U-Pu-Zr alloy fuel pins with 5-8 wt% minor actinides and 0-1.5 wt% rare-earth elements  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) is investigating U–Pu–Zr alloys with low concentrations of minor actinides (Np and Am) and rare-earth elements (La, Ce, Pr, and Nd) as possible nuclear fuels to be used to transmute minor actinides. Alloys with compositions 60U–20Pu– 3Am–2Np–15Zr, 42U–30Pu–5Am–3Np–20Zr, 59U–20Pu–3Am–2Np–1RE–15Zr, 58.5U–20Pu– 3Am–2Np–1.5RE–15Zr, 41U–30Pu–5Am–3Np–1RE–20Zr, and 40.5U–30Pu–5Am–3Np–1.5RE– 20Zr (where numbers represent weight percents of each element and RE is a rare-earth alloy consisting of 6% La, 16% Pr, 25% Ce, and 53% Nd by weight) were arc-melted and vacuum cast as fuel pins approximately 4 mmin diameter. The as-cast pins were sectioned, polished, and examined by scanning electron microscopy. Each alloy contains high-Zr inclusions surrounded by a high-actinide matrix. Alloys with rare-earth elements also contain inclusions that are high in these elements. Within the matrix, concentrations of U and Zr vary inversely, while concentrations of Np and Pu appear approximately constant. Am occurs in the matrix and with some high-rare-earth inclusions, and occasionally as high-Am inclusions in samples without rare-earth elements.

Dawn E. Janney; J. Rory Kennedy

2010-11-01T23:59:59.000Z

193

Derk Bol, Materials Innovation Institute M2i (Netherlands) M2i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The EU Raw Materials Initiative and the Report of the Ad-hoc Group Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research:...

194

Preparation, characterization, and second-harmonic generation of a Langmuir-Blodgett film based on a rare-earth coordination compound  

Science Conference Proceedings (OSTI)

The rare-earth coordination compound (E)-N-hexadecyl-4-(2-(4-(dimethylamino)phenyl)-ethenyl)pyridinium tetrakis(1-phenyl-3-methyl-4-benzoyl-5-pyrazolonato)dysprosium(III) was synthesized. The LB films were prepared and characterized by UV-vis, IR, X-ray photoelectron spectroscopy, and low-angle X-ray diffraction. High-quality LB films up to 50 layers on the hydrophilic substrates of quartz, calcium fluoride, and glass were obtained. From the second-harmonic generation measurement, second-order molecular hyperpolarizability {beta} of the dysprosium complex was estimated to be about (6.6-9.3) x 10{sup {minus}28} esu. 14 refs., 6 figs., 1 tab.

Wang, K.Z.; Huang, C.H.; Xu, G.X.; Zhao, X.S.; Xie, X.M.; Wu, N.Z. [Peking Univ., Beijing (China); Xu, Y.; Liu, Y.Q.; Zhu, D.B. [Institute of Chemistry, Beijing (China)

1994-11-01T23:59:59.000Z

195

Effects of Rare Earth (RE) Intergranular Adsorption on the Phase Transformation and Microstructure Evolution in Silicon Nitride with RE2O3 + MgO Additives: Fracture Behavior  

SciTech Connect

Silicon nitride powders consist primarily of the alpha phase, which transforms to the beta phase during the densification and microstructural evolution of Si3N4 ceramics. The temperature at which the transformation initiates in the presence of a combination of MgO and RE2O3 densification additives is found to decrease with increasing atomic number of the rare earth (RE). This trend coincides with the predicted and observed decrease in the affinity of the rare earth to segregate to and absorb on the prism planes of hexagonal prism shaped beta grains with increase in the atomic number of the RE. When RE adsorption is diminished, Si (and N) attachment on the smooth prism planes is enhanced, which increases diametrical growth rates, normally reaction-rate limited by an attachment mechanism. Combined with the typically fast [0001] growth, it is this augmented grain growth that contributes towards the initiation of the alpha-beta transformation at lower temperatures. With the enhanced transformation, observations reveal an increase in the number of beta grains growing in the early stages of densification. On the other hand, increased RE adsorption leads to greater growth anisotropy resulting in the formation of higher aspect ratio grains. Thus, Lu2O3 generates larger diameter, yet elongated, reinforcing grains, while La2O3 results in reinforcing grains of higher aspect ratio. The Gd2O3 additive transformation and microstructual characteristics lie intermediate to those of the lanthanide end member elements. Despite these differences, a substantial fraction of large reinforcing grains were found for each additive composition. As a result, the mechanical properties of the resultant ceramics are similar with flexure strengths in excess of 1 GPa, fracture toughness values greater than 10 MPa m1/2 at room temperature and excellent strength retention (>800 MPa) at 1200 C.

Becher, Paul F [ORNL; Painter, Gayle S [ORNL; Shibata, Naoya [University of Tokyo, Tokyo, Japan; Waters, Shirley B [ORNL; Lin, Hua-Tay [ORNL

2008-01-01T23:59:59.000Z

196

Chromium (III), Titanium (III), and Vanadium (IV) sensitization of rare earth complexes for luminescent solar concentrator applications  

E-Print Network (OSTI)

High optical concentrations without excess heating in a stationary system can be achieved with a luminescent solar concentrator (LSC). Neodymium (Nd) and ytterbium (Yb) are excellent infrared LSC materials: inexpensive, ...

Thompson, Nicholas John

2011-01-01T23:59:59.000Z

197

Oxide/Graphene Nanocomposite Functional Materials  

Science Conference Proceedings (OSTI)

Rare Earth Activated Oxides for Solid State Lighting · Rare Earth Doped Tellurite and Chalcogenide Planar Waveguide Amplifiers and Lasers · Replacing ...

198

Inorganic Functional Materials for Environmental Protection  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

199

The Critical Materials Institute - Programmaster.org  

Science Conference Proceedings (OSTI)

Characterization of Indonesia Rare Earth Minerals and their Potential Processing Techniques · Characterization of Rare Earth Minerals with Field Emission ...

200

Advanced neutron absorber materials  

DOE Patents (OSTI)

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand  

E-Print Network (OSTI)

This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

Mancco, Richard

2012-01-01T23:59:59.000Z

202

Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3  

SciTech Connect

The unique combination of magnetic properties and structural transitions exhibited by many members of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family (R = rare earths, 0 ? x ? 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R{sub 5(Si{sub x}Ge{sub 1-x}){sub 4} compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er{sub 5}Si{sub 4} compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd{sub 5}Si{sub 4}-type orthorhombic to Gd{sub 5}Si{sub 2}Ge{sub 2}-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 ?C. Successful future utilization of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family in novel devices depends on a fundamental understanding of the structure-property interplay on the nanoscale level, which makes a complete understanding of the microstructure of this family especially important. Past scanning electron microscopy (SEM) observation has shown that nanometer-thin plates exist in every R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} (“5:4”) phase studied, independent of initial parent crystal structure and composition. A comprehensive electron microscopy study including SEM, energy dispersive spectroscopy (EDS), selected area diffraction (SAD), and high resolution transmission electron microscopy (HRTEM) of a selected complex 5:4 compound based on Er rather than Gd, (Er{sub 0.9Lu{sub 0.1}){sub 5}Si{sub 4}, has produced data supporting the assumption that all the platelet-like features present in the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family are hexagonal R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 3} (“5:3”) phase and possess the same reported orientation relationship that exists for the Gd{sub 5}Ge{sub 4} and Gd{sub 5}Si{sub 2}Ge{sub 2} compounds, i.e. [010](102?){sub m} || [101?0](12?11){sub p}. Additionally, the phase identification in (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4} carried out using X-ray powder diffraction (XRD) techniques revealed that the low amount of 5:3 phase is undetectable in a conventional laboratory Cu K? diffractometer due to detection limitations, but that extremely low amounts of the 5:3 phase can be detected using high resolution powder diffraction (HRPD) employing a synchrotron source. These results suggest that use of synchrotron radiation for the study of R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds should be favored over conventional XRD for future investigations. The phase stability of the thin 5:3 plates in a Gd{sub 5}Ge{sub 4} sample was examined by performing long-term annealing at very high temperature. The experimental results indicate the plates are thermally unstable above 1200?C. While phase transformation of 5:3 to 5:4 occurs during the annealing, the phase transition is still fairly sluggish, being incomplete even after 24 hours annealing at this elevated temperature. Additional experiments using laser surface melting performed on the surface of a Ho{sub 5}(Si{sub 0.8}Ge{sub 0.}2){sub 4} sample showed that rapid cooling will suppress the precipitation of 5:3 plates. Bulk microstructure studies of polycrystalline and monocrystalline Gd{sub 5}Ge{sub 3} compounds examined using optical microscopy, SEM and TEM also show a series of linear features present in the Gd{sub 5}Ge{sub 3} matrix, similar in appearance in many ways to the 5:3 plates observed in R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds. A systematic microscopy analysis of these linear features revealed they also are thin plates with a stoichiometric composition of Gd{sub 5}Ge{sub 4} with an orthorhombic structure. The orientation relationship between the 5:3 matrix and the precipitate 5:4 thin plates was determined as [101?0] (12?11){s

Cao, Qing

2012-07-26T23:59:59.000Z

203

The extraction of rare earth elements from ICPP sodium-bearing waste and dissolved zirconium calcine by CMP and TRUEX solvents  

SciTech Connect

The extraction of stable isotopes of Eu and Ce was investigated from simulated sodium-bearing waste (SBW) and dissolved zirconium calcine by TRUEX and CMP solvents at the Idaho Chemical Processing Plant (ICPP). Single batch contacts were carried out in order to evaluate the rare earth behavior in the extraction, scrub, strip and wash sections for the proposed flowsheets. It has been shown that these lanthanides are efficiently extracted from the sodium-bearing wastes into either solvent, are not scrubbed and are stripped from both of the extractants with dilute HEDPA. The extraction distribution coefficients for Ce and Eu are higher in the TRUEX solvent (D{sub Ce} = 11.7, D{sub Eu} = 14.9) compared with CMP (D{sub Ce} = 9.3, D{sub Eu} = 7.23) for SBW. The extraction distribution coefficients for Ce and Eu are considerably less in the TRUEX solvent (D{sub Ce}=1.13, D{sub Eu}=1.8) than in the CMP solvent (D{sub Ce}=7.4, D{sub Eu=}6.1) for dissolved zirconium calcine feeds. The lower distribution coefficients for the extraction of lanthanides in the TRUEX/dissolved zirconium calcine system can be explained by zirconium loading of the solvent. The data obtained also confirmed that Ce and Eu can be used as non-radioactive surrogates for Am in separation experiments with acidic solutions.

Todd, T.A.; Glagolenko, I.Y.; Herbst, R.S.; Brewer, K.N.

1995-11-01T23:59:59.000Z

204

Anomalies in the Young modulus at structural phase transitions in rare-earth cobaltites RBaCo{sub 4}O{sub 7} (R = Y, Tm-Lu)  

SciTech Connect

The elastic properties of rare-earth cobaltites RBaCo{sub 4}O{sub 7} (R = Y, Tm-Lu) have been experimentally studied in the temperature range of 80-300 K. The strong softening of the Young modulus {Delta}E(T)/E{sub 0} Almost-Equal-To -(0.1-0.2) of cobaltites with Lu and Yb ions has been revealed, which is due to the instability of the crystal structure upon cooling and is accompanied by an inverse jump at the second-order structural phase transition. The softening of the Young modulus and the jump at the phase transition decrease by an order of magnitude and the transition temperature T{sub s} and hysteresis {Delta}T{sub s} increase from a compound with Lu to that with Tm. A large softening of the Young modulus at the structural transition in Lu- and Yb cobaltites indicates that the corresponding elastic constant goes to zero, whereas this constant in Tm cobaltite is not a 'soft' mode of the phase transition. It has been found that the structural phase transition in Lu- and Yb cobaltites is accompanied by a large absorption maximum at the phase transition point and an additional maximum in the low-temperature phase and absorption anomalies in Tm cobaltite is an order of magnitude smaller.

Kazei, Z. A., E-mail: kazei@plms.phys.msu.ru; Snegirev, V. V.; Andreenko, A. S. [Moscow State University (Russian Federation); Kozeeva, L. P. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Branch (Russian Federation)

2011-08-15T23:59:59.000Z

205

Conversion of Rare Earth Doped Borate Glass to Rare Earth ...  

Science Conference Proceedings (OSTI)

A History of the Theories of Glass Structure: Can We Really Believe What is ... Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass ... Mechanisms of the Conversion Reaction in FeF2 Cathodes Exposed to Li in ...

206

Rare Earth Metals | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

are critical components in modern electronic technologies, ranging from TVs, fluorescent light bulbs, cell phones and computers to "green" magnets in electric motors that power...

207

Rare Earth Supply Chain Overview  

Science Conference Proceedings (OSTI)

... energy options such as wind power, hybrid electric vehicles, advanced batteries, fluorescent lighting, and efficient permanent magnet motors and generators.

208

Session VII: Rare Earth Hydrometallurgy  

Science Conference Proceedings (OSTI)

... of these concentrations in terms of potential occupational radiation exposures, .... McGill University has been developing a pilot-plant tested alternative that ...

209

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

210

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

211

Neutron Scattering Studies of Fundamental Processes in Earth Materials, Final Report  

DOE Green Energy (OSTI)

The aim of this work was to use neutron scattering techniques to explore the dynamics and structure of water in rock samples. The dynamics of water in rock at low (residual) saturation are directly related to the transport properties of fluids within the host rock. The structure of water in rock may be related to the elastic behavior of the rock, which in many cases is nonlinear and hysteretic. Neutron scattering techniques allow us to study water in intact rock samples at both the molecular and microstructural scales. Our samples were Berea sandstone, Calico Hills and Prow Pass tuffs from Yucca Mountain, NV, and pure samples of the tuff constituents, specifically mordenite and clinoptilolite. We chose Berea sandstone because its macroscopic elastic behavior is known to be highly unusual, and the microscopic mechanisms producing this behavior are not understood. We chose Yucca Mountain tuff, because the fluid transport properties of the geologic structure at Yucca Mountain, Nevada could be relevant to the performance of a high level nuclear waste repository at that site. Neutron scattering methods have a number of properties that are extremely useful for the study of earth materials. In contrast to X-rays, neutrons have very low absorption cross-sections for most elements so that entire bulk samples of considerable size can be 'illuminated' by the neutron beam. Similarly, samples that are optically opaque can be readily investigated by inelastic neutron scattering techniques. Neutrons are equally sensitive to light atoms as to heavy atoms, and can, for example, readily distinguish between Al and Si, neighboring atoms in the periodic table that are difficult to tell apart by X-ray diffraction. Finally, neutrons are particularly sensitive to hydrogen and thus can be used to study the motions, both vibrational and diffusive, of H-containing molecules in rocks, most notably of course, water. Our studies were primarily studies of guest molecules (in our case, water) in a host material (rock). We used three neutron scattering techniques: quasielastic neutron scattering (QNS), inelastic neutron scattering (INS), and neutron powder diffraction (NPD). We used QNS to measure the translational and rotational diffusional motion of water in rock; INS vibrational spectra allowed us to determine the nature of residual water in a sample (disassociated, chemisorbed, or physisorbed); and NPD measurements may allow us to determine the locations of residual water molecules (and the associated dynamic disorder), and thereby understand the binding of water molecules in our samples.

McCall, K. R.

2007-06-11T23:59:59.000Z

212

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials  

E-Print Network (OSTI)

B. Superconductivity . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideSearch for Pressure Induced Superconductivity in Undoped Ce-

Zocco, Diego Andrés

2011-01-01T23:59:59.000Z

213

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials.  

E-Print Network (OSTI)

??Superconductivity, charge- and spin-density waves are collective electronic phenomena that originate from electron-electron and electron-phonon interactions, and the concept of Fermi surface competition between these… (more)

Zocco, Diego Andrés

2011-01-01T23:59:59.000Z

214

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials  

E-Print Network (OSTI)

1. Electrical Resistivity . . . . . . . . . . . . . 2.diamond, for electrical resistivity measurements, as can beRoom-temperature electrical resistivity ? as a function of

Zocco, Diego Andrés

2011-01-01T23:59:59.000Z

215

2011 Critical Materials Strategy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Critical Materials Strategy 1 Critical Materials Strategy 2011 Critical Materials Strategy This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead. DOE_CMS2011_FINAL_Full.pdf DOE_CMS_2011_Summary.pdf More Documents & Publications 2010 Critical Materials Strategy ARPA-E Workshop on Rare Earth and Critical Materials

216

REACT: Alternatives to Critical Materials in Magnets  

Science Conference Proceedings (OSTI)

REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

None

2012-01-01T23:59:59.000Z

217

Ames Laboratory to Lead New Research Effort to Address Shortages in Rare  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory to Lead New Research Effort to Address Shortages in Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials January 9, 2013 - 12:13pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy announced today that a team led by Ames Laboratory in Ames, Iowa, has been selected for an award of up to $120 million over five years to establish an Energy Innovation Hub that will develop solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security. The new research center, which will be named the Critical Materials Institute (CMI), will bring together leading researchers from academia, four Department of Energy

218

Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials  

SciTech Connect

We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

Parker, David S [ORNL; Singh, David J [ORNL

2013-01-01T23:59:59.000Z

219

As-cast microstructures in U-Pu-Zr alloy fuel pins with 5-8 wt.% minor actinides and 0- 1.5 wt% rare-earth elements  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) is investigating U-Pu-Zr alloys with low concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, Nd) as possible nuclear fuels to be used to transmute minor actinides. Alloys with compositions 60U-20Pu-3Am-2Np-15Zr, 42U-30Pu-5Am-3Np-20Zr, 59U-20Pu-3Am-2Np-1RE-15Zr, 58.5U-20Pu-3Am-2Np-1.5RE-15Zr, 41U-30Pu-5Am-3Np-1RE-20Zr, and 40.5U-30Pu-5Am-3Np-1.5RE-20Zr (where numbers represent weight percents of each element and RE is a rare-earth alloy consisting of 6% La, 16% Pr, 25% Ce, and 53% Nd by weight) were arc-melted and vacuum cast as fuel pins approximately 4 mm in diameter. The pins were sectioned, polished, and examined by scanning electron microscopy. Each alloy contains high-Zr inclusions surrounded by a high-actinide matrix. Alloys with lanthanides also contain high-RE inclusions. Within the matrix, concentrations of U and Zr vary inversely, while concentrations of Np and Pu appear approximately constant. Am occurs in the matrix and with some high-RE inclusions, and occasionally as high-Am inclusions in samples without REs.

Dawn E. Janney; J. Rory Kennedy

2010-11-01T23:59:59.000Z

220

Magnetic Materials for Energy Applications II  

Science Conference Proceedings (OSTI)

Innovation in certain green energy technologies can lead to imbalances in rare earth element supply and demand, rare earths are critical to the performance of ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Explores Earth-Abundant Explores Earth-Abundant Materials for Future Solar Cells Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique-sequential cation mutation-to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment. The goal of the U.S. Department of Energy SunShot Initiative is to reduce the installed cost of solar energy systems by about 75% by the end of the decade. Obtaining that goal calls for photovoltaic (PV) technologies to improve in three main areas: solar-cell efficiencies, material processing costs, and scalability to the terawatt (TW), or 10

222

Organic-Inorganic Complexes Containing a Luminescent Rare Earth-Metal Nanocluster and an Antenna Ligand, Luminescent Articles, and Methods of Making Luminescent Articles  

Battelle has developed a material capable of spectral conversion, that is, absorbing light across a broad range of wavelengths and re-emitting this ...

223

Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

Timothy A. Hyde

2012-06-01T23:59:59.000Z

224

Session IV: Rare Earth Mineralogy and Beneficiation  

Science Conference Proceedings (OSTI)

A novel concept of reactive oily bubbles (i.e., bubbles covered by a thin layer of oil containing oil-soluble collectors) as a carrier in flotation is proposed.

225

Available Technologies Rare Earth Oxide Fluoride: Ceramic ...  

Ceramic Nano-particles via a Hydrothermal Method SuMMARy A novel method for the synthesis of ceramic structures having nanometer ... Potential Industr ...

226

Catalytic Rare Earth Nanostructure Coatings for Extreme ...  

Science Conference Proceedings (OSTI)

... relation to corrosion resistance under sour environment at high pressure and temperature. ... of Transport Phenomena for Enhanced Oil Recovery Applications .

227

RARE EARTHS, SCIENCE, TECHNOLOGY, AND APPLICATIONS: II ...  

Science Conference Proceedings (OSTI)

... electrodes in Ni - Metal Hydride batteries with 30% KOH electrolyte. In spite of ... The Joule-Thomson expansion of hydrogen gas offers a method to produce ...

228

RARE EARTHS, SCIENCE, TECHNOLOGY, AND APPLICATIONS: I ...  

Science Conference Proceedings (OSTI)

... Department of Physics, Quaid-I-Azam University, Islamabad, Pakistan., Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan. We report on ...

229

RARE EARTHS, SCIENCE, TECHNOLOGY AND APPLICATIONS: V ...  

Science Conference Proceedings (OSTI)

... used as a method for the ligquefaction of cryogenic gasses, freezers for food processing plants, supermarket chillers and large scale building air conditioning.

230

Bulk Anisotropic Nanocrystalline Rare-Earth Magnets  

Science Conference Proceedings (OSTI)

... (die-upset) has become one of the basic production routes to prepare high performance ... Coupling Magnetism to Electricity in Multiferroic Heterostructures.

231

Rare Earth Permanent Magnets: Processing, Characterization and ...  

Science Conference Proceedings (OSTI)

... Thomas Schrefl1; Simon Bance1; Tetsuya Shoji2; Masao Yano2; Akira Manabe2; 1St. Poelten University of Applied Sciences; 2Toyota Motor Corporation

232

Rare Earth-free Permanent Magnets II  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Funded by USDOE-EERE-VT-PEEM program through Ames Lab contract no. DE- AC02-07CH11358. 9:00 AM Invited High Coercivity Carbide ...

233

What are the Rare Earths? | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

made from neodymium-iron--boron have been used in a variety of products, including electric motors and hybrid cars components. The Elements Scandium Sc symbol Scandium...

234

Mixed Conduction in Rare-Earth Phosphates  

E-Print Network (OSTI)

5   A  comparison  of  the  PEM,  SOFC,  and  PCFC  fuel  solid   oxide   fuel   cells   (SOFC).    The  electrolyte  immobilized)   OH -­?   MCFC   SOFC   Molten   Ceramic  

Ray, Hannah Leung

2012-01-01T23:59:59.000Z

235

The Critical Materials Research Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEMBER 2012 NOVEMBER 2012 The Critical Materials Research Alliance About the Critical Materials Research Alliance The recent surge of interest in critical materials, including rare earth elements (REEs), stems from supply shortages and escalating prices of some REEs. In 2010, the United States' sole REE supplier was China-previously responsible for 97% of global REE production-but the Chinese government curtailed their export. Because REEs and other critical elements are used in renewable energy resources, energy storage, energy efficiency technologies, and national defense, a shortage in their supply impedes development of energy technologies and hinders U.S. defense industries. To address the challenges faced in revitalizing the rare earth industry, the National Energy Technology

236

Optical Spectroscopy of Borate Glasses Doped with Trivalent Rare ...  

Science Conference Proceedings (OSTI)

Luminescence properties of rare-earth ions are well-known, but quantum efficiencies ... Ion Exchanged Mixed Glass Cullet Proppants for Stimulation of Oil and ...

237

Application of Reactive Oily Bubble Flotation Technology to Rare ...  

Science Conference Proceedings (OSTI)

... bubbles covered by a thin layer of oil containing oil-soluble collectors) as a ... Impurities from Multi-Source Concentrates Feeding a Rare Earths Refinery.

238

Electronic interactions give rise to quantum phenomena in rare...  

NLE Websites -- All DOE Office Websites (Extended Search)

exist in a wide variety of correlated electron systems, including cuprate high-temperature superconductors, transition-metal itinerant magnets, rare-earth compounds, and organic...

239

ORNL partners on critical materials hub | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL partners on critical materials hub ORNL partners on critical materials hub January 01, 2013 The Critical Materials Institute builds on the Department of Energy's Critical Materials Strategy report, which addresses the use of rare earths and other critical materials in clean energy components, products, and processes. December 2011. Credit: U.S. DOE. ORNL wins big as part of a team led by Ames Labora-tory, which was selected for an Energy Innovation Hub to address shortages of critical materials, including rare earth metals. The award of up to $120 million over five years for the Critical Materials Institute involves four national labs, academia, and industrial partners. ORNL will play a key role in conducting the CMI's mis-sion to eliminate materials criticality as an impediment to the commercialization of clean

240

Magnetic Materials Committee  

Science Conference Proceedings (OSTI)

The rare earth metals are fundamental to renewable energy technologies; with applications in electric vehicles, energy efficient batteries and the solar panel ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alkaline and alkaline earth metal phosphate halides and phosphors  

SciTech Connect

Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

2012-11-13T23:59:59.000Z

242

HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.  

SciTech Connect

Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

2001-10-12T23:59:59.000Z

243

Semiconductive materials and associated uses thereof  

SciTech Connect

High rate radiation detectors are disclosed herein. The detectors include a detector material disposed inside the container, the detector material containing cadmium, tellurium, and zinc, a first dopant containing at least one of aluminum, chlorine, and indium, and a second dopant containing a rare earth metal. The first dopant has a concentration of about 500 to about 20,000 atomic parts per billion, and the second dopant has a concentration of about 200 to about 20,000 atomic parts per billion.

Lynn, Kelvin; Jones, Kelly; Ciampi, Guido

2012-10-09T23:59:59.000Z

244

Semiconductive materials and associated uses thereof  

Science Conference Proceedings (OSTI)

High rate radiation detectors are disclosed herein. The detectors include a detector material disposed inside the container, the detector material containing cadmium, tellurium, and zinc, a first dopant containing at least one of aluminum, chlorine, and indium, and a second dopant containing a rare earth metal. The first dopant has a concentration of about 500 to about 20,000 atomic parts per billion, and the second dopant has a concentration of about 200 to about 20,000 atomic parts per billion.

Lynn, Kelvin (Pullman, WA); Jones, Kelly (Colfax, WA); Ciampi, Guido (Waltham, MA)

2011-11-01T23:59:59.000Z

245

Department of Energy Releases its 2011 Critical Materials Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its 2011 Critical Materials Strategy its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead.

246

Department of Energy Releases its 2011 Critical Materials Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Releases its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead.

247

Energy Department Releases New Critical Materials Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials Strategy Critical Materials Strategy Energy Department Releases New Critical Materials Strategy December 15, 2010 - 1:30pm Addthis | Department of Energy Illustration | | Department of Energy Illustration | David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs The Department of Energy released a strategy on critical materials at an event this morning at the Center for Strategic & International Studies. The report examines the role of rare earth metals and other materials used in four clean energy technologies: wind turbines, electric vehicles, solar cells and energy-efficient lighting. You can download the full 171-page report and a 4-page executive summary here. The strategy analyzes 14 elements and identifies five specific rare earth

248

Earth Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Multiscale Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems Modeling Engineering Analysis Behavioral Sciences Geographic Information Science and Technology Quantum Information Science Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Research Areas | Earth Sciences SHARE Earth Sciences Computational Earth Sciences research at ORNL encompasses many important aspects of global and regional Earth system model development and analysis. We focus on numerical methods development and implementation, data analytics, verification and validation of Earth system components, and the development of methods to characterize stochastic behavior. Significant progress is underway in the areas of scalable time stepping algorithms,

249

Increasing Access to Materials Critical to the Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access to Materials Critical to the Clean Energy Economy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Who will be partners?

250

Increasing Access to Materials Critical to the Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increasing Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Who will be partners?

251

Novel materials for laser refrigeration  

SciTech Connect

The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

Hehlen, Markus P [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

252

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

253

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

254

Microsoft Word - FINAL Materials Strategy Request for Information May 5 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Strategy Materials Strategy Request for Information (RFI) DATE: May 6, 2010 SUBJECT: Request for Information (RFI) DESCRIPTION: The Department of Energy (DOE) recently announced its intent to develop its first-ever strategic plan for addressing the role of rare earth and other materials in energy technologies and processes. In support of this effort, DOE is seeking information from stakeholders on rare earth elements and other materials used in energy technologies, particularly clean energy components and applications, and energy efficiency technologies. Examples include lanthanum and lithium use in batteries, neodymium use in permanent magnet motors and compact fluorescent light bulbs, gallium and ytterbium use in photovoltaics, as well as the use of these materials in other clean energy

255

Recovery of fissile materials from nuclear wastes  

DOE Patents (OSTI)

A process is described for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium, and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

Forsberg, Charles W.

1997-12-01T23:59:59.000Z

256

Recovery of fissile materials from nuclear wastes  

DOE Patents (OSTI)

A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

Forsberg, Charles W. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

257

Happy Earth Day 2011! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Day 2011! Day 2011! Happy Earth Day 2011! April 22, 2011 - 7:30am Addthis Allison Casey Senior Communicator, NREL Happy Earth Day! Today, April 22, marks the 41st anniversary of Earth Day. Check out these resources from the Department of Energy to help you celebrate, get in the Earth Day spirit, and take action: Earth Day Website This page from the Office of Energy Efficiency and Renewable Energy highlights other great resources to help you be energy efficient and Earth-friendly Earth Day 2011 Outreach Materials These materials from the Federal Energy Management Program will help you develop a workplace energy awareness program and "Act Now; Together We Can Create a Greener Future." Happy Earth Day! If you haven't already shared how you're celebrating, be sure to e-mail your responses to the Energy Saver team at

258

Materials for electrical battery technology. (Latest citations from Metadex). Published Search  

SciTech Connect

The bibliography contains citations concerning materials used in batteries. Among materials discussed are lead, nickel, magnesium and zinc alloys, rare-earth-based hydrogen, aluminum, and lead-calcium alloys. Recovery and recycling of polypropylene from automotive batteries are referenced, and use of polyphase as rechargeable electrodes in advanced battery systems is also examined.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

259

High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials  

DOE Patents (OSTI)

An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

Sanchez, Robert O. (Los Lunas, NM); Gunewardena, Shelton (Walnut, CA); Masi, James V. (Cape Elizabeth, ME)

2007-11-27T23:59:59.000Z

260

Materials for electrical battery technology. (Latest citations from Metadex). NewSearch  

SciTech Connect

The bibliography contains citations concerning materials used in batteries. Among materials discussed are lead, nickel, magnesium and zinc alloys, rare-earth-based hydrogen, aluminum, and lead-calcium alloys. Recovery and recycling of polypropylene from automotive batteries are referenced, and use of polyphase as rechargeable electrodes in advanced battery systems is also examined. (Contains a minimum of 153 citations and includes a subject term index and title list.)

Not Available

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Researchers use light to create rare uranium molecule  

NLE Websites -- All DOE Office Websites (Extended Search)

to create rare uranium molecule Uranium nitride materials show promise as advanced nuclear fuels due to their high density, high stability, and high thermal conductivity. July...

262

Microsoft PowerPoint - Siemens_materials workshop MIT EI_120310.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Critical Materials and Substitutes Critical Materials and Substitutes Siemens Corporation Dr Madhav D Manjrekar Dr. Madhav D. Manjrekar Green Energy & Power Systems Dr. Thomas Scheiter & Dr. Gotthard Rieger Materials Substitution and Recycling Materials Substitution and Recycling Dr. Martin Zachau & Pamela Horner OSRAM Sylvania y Dr. Henrik Stiesdal Siemens Wind Power ©Siemens Corporation, Corporate Research, 2010. All rights reserved. ©Siemens Corporation, Corporate Research, 2010. All rights reserved. Agenda * Introduction Introduction * Application Requirements * Renewable Generation & Power Electronics * Lighting * Lighting * Discussion Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative

263

Earth melter  

DOE Patents (OSTI)

An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed either by excavating a melt zone in a quantity of soil or rock, or by constructing a melt zone in an apparatus above grade and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

Chapman, Christopher C. (Richland, WA)

1995-01-01T23:59:59.000Z

264

Estimated Rare Earth Reserves and Deposits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Facilities Department of Energy Facilities Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects 2009 Energy Expenditure Per Person 2009 Energy...

265

Estimated Rare Earth Reserves and Deposits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams Creating an Energy Innovation Ecosystem Creating an Energy Innovation Ecosystem Sunshot Rooftop Solar...

266

Rare Earth Shortages Addressed in New Research Initiative  

Science Conference Proceedings (OSTI)

Jan 8, 2013 ... Other national labs partnering with Ames include Idaho National Laboratory, Lawrence Livermore National Laboratory, and Oak Ridge National ...

267

The Rare Earth Contributions to Global Energy Solutions  

Science Conference Proceedings (OSTI)

In the transportation sector: La is used in batteries; Ce in gasoline cracking ... Y as an oxygen sensor to control lean/rich fuel mixtures and as an oxidation ...

268

Realizing Canada's Rare Earth Elements Resource Potential: R&D ...  

Science Conference Proceedings (OSTI)

Due to the criticality of these metals and the need for metallurgical R&D across this emerging industry there is a strong federal role. To address this need ...

269

Characterization of Indonesia Rare Earth Minerals and their ...  

Science Conference Proceedings (OSTI)

Current Korean R&D and Investment Strategies in Response to REE Demand & Supply Concerns · Development of a High Recovery Process Flowsheet for ...

270

Characterization of Rare Earth Minerals with Field Emission ...  

Science Conference Proceedings (OSTI)

Current Korean R&D and Investment Strategies in Response to REE Demand & Supply Concerns · Development of a High Recovery Process Flowsheet for ...

271

Prospects for Rare Earth Elements From Marine Minerals  

E-Print Network (OSTI)

and electric cars, wind turbines, weapons systems, motors, magnets for many applica ons, and a huge market

272

Microsoft Word - Rare Earth Update for RFI 110523final  

NLE Websites -- All DOE Office Websites (Extended Search)

least an additional 50% reduction in REE use if desirable. Category 2 - Supply Chain and Market Demand SOFC developers expect to purchase yttrium as high-purity yttria powder when...

273

Mutual separation of rare earths using chemically modified chitosan ...  

Science Conference Proceedings (OSTI)

Calcium Reductants – A historical review. Chemical ... Electrochemistry for Nd electrowinning from fluoride-oxide molten salts · Electrodeposition of Zinc from ...

274

Rare Earth Shortages Addressed in New Research Initiative  

Science Conference Proceedings (OSTI)

Jan 8, 2013 ... Industry partners that have joined to help advance CMI-developed technologies include General Electric; OLI Systems, Inc.; SpinTek Filtration, ...

275

Magnetic Rare Earth Intermetallics with Easy Plane Anisotropy  

Science Conference Proceedings (OSTI)

... demand of the new--generation divices with ever growing working frequency around GHz ... Coupling Magnetism to Electricity in Multiferroic Heterostructures.

276

Processing to Enhance Performance in Rare Earth Permanent ...  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... This work was supported by DOE-EERE, VT Office, PEEM program, through Contract No. DE-AC02-07CH11358 at Ames Laboratory(USDOE).

277

Anisotropic Crystallization of Uniaxially Pressed Mixed Rare Earth  

Science Conference Proceedings (OSTI)

Results will be presented. Supported by DOE-EERE-FCVT Office through Ames Lab contract DE-AC02-07CH11358. Proceedings Inclusion? Definite: A CD-only  ...

278

Magnetic Coupling and Transport Properties of Rare Earth ...  

Science Conference Proceedings (OSTI)

Giant Low-Field Magnetocaloric Effect with Small Hysteresis Near Room ... Large Room Temperature Magnetoresistance in FeCo-SiN Granular Films · Magnetic ...

279

Advances in Rare-Earth-Free Permanent Magnets  

Science Conference Proceedings (OSTI)

Giant Low-Field Magnetocaloric Effect with Small Hysteresis Near Room ... Large Room Temperature Magnetoresistance in FeCo-SiN Granular Films · Magnetic ...

280

Modeling the Pseudocubic Lattice Constant of Rare-earth Doped ...  

Science Conference Proceedings (OSTI)

A predictive model for the pseudocubic lattice constant based solely on published ionic radii data has been developed and adapted as a model for tolerance ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Liquid–free Mechanochemical Preparation of Rare Earth Metal ...  

Science Conference Proceedings (OSTI)

... structures using mechanical processing in the form of ball milling or grinding. ... Application of [A336][P507]/[P204] on High Selective Extraction and ...

282

Effects of Rare Earth Elements and Calcium Upon High ...  

Science Conference Proceedings (OSTI)

Results and Discussion. Isothermal oxidation. Usually, it is assumed that an oxidation process of alloy follows the parabolic rate law as shown following equation.

283

PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS  

DOE Patents (OSTI)

A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

Thompson, S.G.

1960-04-26T23:59:59.000Z

284

J8: Distribution Behaviors of Light Rare Earths Extracted by ...  

Science Conference Proceedings (OSTI)

A8: Microstructural Investigation of Nano-Calcium Phosphates Doped with Fluoride Ions .... D7: Surfactant Structure–property Relationship: Effect of Polypropylene ... E4: The Effect of Monobutyl Ether Ethylene Glycol on the Conductivity and ...

285

J10: Preparation of Rare Earths Oxide by Spray Pyrolysis  

Science Conference Proceedings (OSTI)

A8: Microstructural Investigation of Nano-Calcium Phosphates Doped with Fluoride Ions .... D7: Surfactant Structure–property Relationship: Effect of Polypropylene ... E4: The Effect of Monobutyl Ether Ethylene Glycol on the Conductivity and ...

286

Rare Earth Activated Oxides for Solid State Lighting  

Science Conference Proceedings (OSTI)

... Nd-Fe-B Permanent Magnets · Unique Exchange Bias Induced by Antiferromagnetic Cr-oxide · ZnO-graphene Hybrid Quantum Dots Light Emitting Diode ...

287

Watch a Rare Earth Elements Event Live This Morning | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

contractor to the Office of Public Affairs. Addthis Related Articles Watch Live: National Science Bowl - Starting At 9:30 AM ET President Barack Obama delivers his State of the...

288

Estimated Rare Earth Reserves and Deposits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPEN 2012 Projects Clean Cities Coalition Regions Clean Cities Coalition Regions Google Crisis Map for Hurricane Sandy Google Crisis Map for Hurricane Sandy Alternative...

289

Assessment of Environmental Impact of Rare Earth Metals Recycling ...  

Science Conference Proceedings (OSTI)

Sorption of Se(IV) and Se(VI) Ions onto Biomass Ash ... Tellurium Supply Sensitivity to Growth of Non-Traditional Copper Extraction Techniques - Implications for ...

290

Microstructures and Relationships between Rare-Earth Elements ...  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

291

Removal of Phosphor in Metallurgical Silicon by Rare Earth Elements  

Science Conference Proceedings (OSTI)

A New Centrifuge CVD Reactor that will Challenge the Siemens Process ... Boron Removal from Silicon Melts by H2O/H2 Gas Blowing – Gas-phase Mass ...

292

Electrochemical and Thermal Properties of Rare-Earth Chlorides in ...  

Science Conference Proceedings (OSTI)

Radioactive Demonstrations of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes · Radionuclide Behavior and Geochemistry in Boom  ...

293

Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate Perspective George Hadjipanayis, Chairman, Department of Physics and Astronomy, University of Delaware, Moving Beyond Neodymium-Iron Permanent Magnets for EV Motors...

294

Production, Refining and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

Mar 4, 2013... that by utilizing induction melting and vacuum distillation, RE metals with ... of Nd are simulated using the present thermodynamic database.

295

Earth and Atmospheric Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

296

The Department of Energy's Critical Materials Strategy | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

The Department of Energy's Critical Materials The Department of Energy's Critical Materials Strategy The Department of Energy's Critical Materials Strategy The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical materials in clean energy technologies. In 2010 the Department developed its first-ever Critical Materials Strategy based on three strategic pillars: 1) diversifying global supply chains to mitigate supply risk; 2) developing material and technology substitutes; and 3) promoting recycling, reuse and more efficient use to significantly lower global demand for critical materials. In 2011 DOE updated its criticality assessments and provided in-depth market and technology analyses in response to important developments during the year. DOE will

297

GOOGLE EARTH QUICK GUIDE (1)Google Earth Features  

E-Print Network (OSTI)

GOOGLE EARTH QUICK GUIDE (1)Google Earth Features The Google Earth of the Google Earth window. Often when opening up the Google Earth program, the view Bar Controls View Screen #12;GOOGLE EARTH QUICK GUIDE Controls. The following

Smith-Konter, Bridget

298

Radiation Damage Studies with Hadrons on Materials and Electronics  

E-Print Network (OSTI)

MNRC for the irradiation work esp. Bob Haslett. Sup- port ofare not as well understood esp. when doped with other rare60 or trace contaminants esp. from the rare earths are also

2004-01-01T23:59:59.000Z

299

Advanced Magnetic Materials for Next Generation Data Storage ...  

Science Conference Proceedings (OSTI)

All Solid State 2-Dimensional Li Battery · Alloy Design and ... Rare-Earth Magnets · Challenge to Development of Diamond Power Devices for Saving Energy.

300

The Department of Energy Releases Strategy on Critical Materials |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department of Energy today released its Critical Materials Strategy. The strategy examines the role of rare earth metals and other materials in the clean energy economy, based on extensive research by the Department during the past year. The report focuses on materials used in four technologies - wind turbines, electric vehicles, solar cells and energy-efficient lighting. "Each day, researchers and entrepreneurs across the United States are working to develop and deploy clean energy technologies that will enhance our security, reduce carbon pollution and promote economic prosperity. This

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

302

GistEarth (GistEarth)  

Science Conference Proceedings (OSTI)

... The Gist earth color map. High values are on top. ... Graphics Window (GfxWindowDestination), Home, Global (GlobalErrorScaling). ...

2013-08-23T23:59:59.000Z

303

Rare B Decays  

SciTech Connect

Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

Jackson, P.D.; /Victoria U.

2006-02-24T23:59:59.000Z

304

LANL | Solid Earth Geophysics | EES-17  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL : Earth & Environmental Sciences : Solid Earth Geophysics (EES-17) LANL : Earth & Environmental Sciences : Solid Earth Geophysics (EES-17) Home Publications Collaboration & Links Staff Research Highlights Ground-Based Nuclear Explosion Monitoring Geodynamics & National Security Nonlinear Elasticity Time Reversal Los Alamos Seismic Network Stimulated Porous Fluid Flow Resource Recovery Seismic & Acoustic Imaging Exploration Geophysics Induced Seismicity Volcanoes & Earthquakes Other Research CONTACTS Group Leader Ken Rehfeldt Administrative Contacts Jody Benson Cecilia Gonzales Geophysics (EES-17) The Geophysics Group supports the national security mission of Los Alamos National Laboratory by providing technical expertise to monitor movement of Earth's crust while predicting the effects of these events on the environment. Though our focus is on seismic monitoring, we also apply electric, magnetic, radionuclide, and acoustic technologies to monitor underground explosions, maintain our ability to conduct tests, and develop the Yucca Mountain Project. In addition, we study the nonlinear properties of earth materials, imaging with seismic waves, how seismic waves affect the interaction of porous rocks and fluids, use of seismic waves to characterize underground oil reservoirs, volcanology and volcanic seismicity, advanced computational physics of earth materials, and using drilling technology to study the crust of the earth. These tasks are complemented by our extensive background in both conventional and hot dry rock geothermal energy development and geophysical support of the Nevada Test Site.

305

Pantex Earth Day 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to Earth Day 2012 May 17, 2012 Julie Chavarria Earth Day 2012 Saturday, April 21 st 10:00 am - 2:00 pm Held at Thompson Park in Amarillo, TX Sponsored by B&W...

306

Propane earth materials drying techniques and technologies.  

E-Print Network (OSTI)

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The… (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

307

Rare Decays of the $?^{'}$  

E-Print Network (OSTI)

We have searched for the rare decays of the eta prime meson to e+ e- eta, e+ e- pizero, e+ e- gamma, and e mu in hadronic events at the CLEO II detector. The search is conducted on 4.80 fb^-1 of e+ e- collisions at the Cornell Electron Storage Ring. We find no signal in any of these modes, and set 90% confidence level upper limits on their branching fractions of 2.4 X 10^-3, 1.4 X 10^-3, 0.9 X 10^-3, and 4.7 X 10^-4, respectively. We also investigate the Dalitz plot of the common decay of the eta prime to pi+ pi- eta. We fit the matrix element with the Particle Data Group parameterization and find Re(alpha) = -0.021 +- 0.025, where alpha is a linear function of the kinetic energy of the eta.

R. A. Briere

1999-07-23T23:59:59.000Z

308

Materials Science & Technology 2006 Conference Proceedings  

Science Conference Proceedings (OSTI)

Rare Earth (R) Manganites, RMn2O5. .... C. Johnson, R. Gemmen, and C. Cross .... G.-r. Hu, X.-g. Gao, Z.-d. Peng, J. Li, and Y.-x. Liu. Fuel Cell Systems: Design ...

309

Earth & Aquatic Sciences | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth and Aquatic Sciences Earth and Aquatic Sciences SHARE Earth and Aquatic Sciences Create and apply new knowledge across multiple scales to aid decision makers on the stewardship of air, water and land resources. Many factors affect the fate, transport and transformation of metal and radionuclide contaminants found on DOE lands. A fundamental understanding of environmental inorganic and biological interactions is needed for deriving practical solutions to management of DOE lands. ORNL applies molecular to field-scale chemistry, hydrology and microbiology expertise, together with neutron scattering, nano-materials sciences facilities, computing resources and comprehensive models in environmental remediation sciences research. Multiple research projects are carried out with aims of

310

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

311

Earth, Space Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth, Space Sciences Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth A team of scientists is working to understand how local changes in hydrology might bring about major changes to the Arctic landscape, including the possibility of a large-scale carbon release from thawing permafrost. Bryan Travis, an expert in fluid dynamics, is author of the Mars global hydrology numerical computer model, or MAGHNUM, used for calculating heat and fluid transport phenomena. (MAGHNUM was previously

312

Earth's Core Hottest Layer  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth's Core Hottest Layer Earth's Core Hottest Layer Name: Alfred Status: Grade: 6-8 Location: FL Country: USA Date: Spring 2011 Question: Why is the inner core the hottest layer? How is that possible? Replies: There are two factors causing the center of the Earth hotter than various layers of the Earth's. First, the more dense is the layer. The denser layer, the hotter it will be. In addition, the source of the heating is due to heat produced by nuclear decay. These substances tend to be more dense than lower dense substances. So the source of heat (temperature) is higher, the greater will be the temperature. Having said all that, the reasons are rather more complicated in the "real" Earth. If the inner layers were less dense they would rise (bubble) to the "surface" leaving the inner layers more dense and thus hotter layers.

313

Earth & Environmental Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth & Environmental Science Earth & Environmental Science Earth & Environmental Science1354608000000Earth & Environmental ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Earth & Environmental Science Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Data Sources Organizations Journals Key Resources AGRICOLA The catalog and index to the collections of the National Agricultural Library, as well as a primary public source for world-wide access to agricultural information. BioOne A global, not-for-profit collaboration bringing together scientific societies, publishers, and libraries to provide access to critical, peer-reviewed research in the biological, ecological, and environmental

314

Earth Day event showcases LANL energy work  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day showcases energy work Earth Day showcases energy work Earth Day event showcases LANL energy work The public is invited to learn about projects in energy conservation, generation, research, and management at an Energy Town Hall April 21. April 19, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

315

Earth Week event all about energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Week event all about energy Earth Week event all about energy Earth Week event all about energy People all across Northern New Mexico can learn about how they can play a role in energy research and energy and fuel conservation at an upcoming Energy Town Hall. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

316

Original Google Earth Links | Open Energy Information  

Open Energy Info (EERE)

Original Google Earth Links Jump to: navigation, search Google Earth Google Earth.png Install Google Earth and explore: Renewable Energy Activity, by state Renewable Incentive...

317

Earth's Global Energy Budget  

Science Conference Proceedings (OSTI)

An update is provided on the Earth's global annual mean energy budget in the light of new observations and analyses. In 1997, Kiehl and Trenberth provided a review of past estimates and performed a number of radiative computations to better ...

Kevin E. Trenberth; John T. Fasullo; Jeffrey Kiehl

2009-03-01T23:59:59.000Z

318

Mechanical Properties of Lower-cost, Earth-abundant Chalcogenide ...  

Science Conference Proceedings (OSTI)

Presentation Title, Mechanical Properties of Lower-cost, Earth-abundant Chalcogenide Thermoelectric Materials, PbSe and PbS, with Additions of 0 to 4% CdS ...

319

Alkaline earth filled nickel skutterudite antimonide thermoelectrics  

DOE Patents (OSTI)

A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

Singh, David Joseph

2013-07-16T23:59:59.000Z

320

Dempsey-012114 - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Dempsey-012114 Dempsey-012114 MATERIALS SCIENCE SEMINAR SPEAKER: Nora Dempsey Institut Néel - CNRS, 
France TITLE: High performance hard magnetic films: from model systems to micro-system applications DATE: Monday, January 14, 2013 TIME: 11:00 a.m. PLACE: Building 223 / S-105 HOST: Jidong Samuel Jiang ABSTRACT: High performance hard magnetic materials are of growing importance for clean energy technologies (hybrid electric vehicles, gearless wind turbines...) and have great potential for use in micro-systems. In this talk I will report on the preparation and characterisation of NdFeB thick films. On the one hand these films are used as model systems to study magnetization reversal, with the aim of guiding the development of heavy rare earth free magnets. On the other, they are

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE - Office of Legacy Management -- International Rare Metals Refinery Inc  

Office of Legacy Management (LM)

Rare Metals Refinery Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a commercial operation not under the jurisdiction of DOE predecessor agencies NY.38-2 NY.38-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium, Plutonium NY.38-5 Radiological Survey(s): Yes NY.38-1 NY.38-5 Site Status: Eliminated from consideration under FUSRAP

322

Chapter 6: Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Materials : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from pollutant releases, habitat destruc- tion, and depletion of natural resources. This can occur during extraction and acquisition of raw materials, pro- "Then I say the Earth belongs to duction and manufacturing processes, and transporta- tion. In addition, some construction materials can harm

323

Development of materials for open-cycle MHD. Quarterly report for the period ending March 1983  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) is conducting an ongoing study of channel components for open-cycle, coal-fired magnetohydrodynamic (MHD) generators. Specifically, electrodes and insulators are being developed. The electrical conductivity has been measured on several compositions based on hafnium oxide, rare earth oxides, and indium oxide. Indium oxide at present appears to be the main constituent required for high conductivity. As part of the development, materials are being corrosion tested in both Montana Rosebud coal slag and potassium sulfate (K/sub 2/SO/sub 4/). The results from three coal slag tests and one K/sub 2/SO/sub 4/ test are discussed in this document.

Marchant, D.D.; Bates, J.L.

1983-07-01T23:59:59.000Z

324

J. Materials and Processes for Enhanced Performance  

Science Conference Proceedings (OSTI)

... and Recovery Process of Rare Metals from Oil Desulfurization Spent Catalyst ... Low-cost Precursors for In-situ Synthesis of Composite Materials Using ...

325

Second International Conference on Processing Materials for ...  

Science Conference Proceedings (OSTI)

The technical topics include Copper, Nickel, Zinc, Lead and Tin, Rare Metals, Nonferrous Alloys and Light Metals, High-Technology Materials: Electronic, ...

326

Coming to a Little Screen Near You: Copper Nanowires - Materials ...  

Science Conference Proceedings (OSTI)

Sep 23, 2011 ... Indium is also an expensive rare earth element, costing as much as $800 per kilogram. One alternative to an ITO film is to use inks containing ...

327

Modeling the earth system  

Science Conference Proceedings (OSTI)

The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

Ojima, D. [ed.

1992-12-31T23:59:59.000Z

328

Rare B decays at CDF  

SciTech Connect

The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

Farrington, Sinead M.; /Liverpool U.

2006-10-01T23:59:59.000Z

329

Earth Sciences report, 1989--1990  

Science Conference Proceedings (OSTI)

The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

1991-03-01T23:59:59.000Z

330

U.S. Department of Energy Critical Materials Strategy  

Science Conference Proceedings (OSTI)

This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010. Its main conclusions include: (a) Several clean energy technologies -- including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting -- use materials at risk of supply disruptions in the short term. Those risks will generally decrease in the medium and long term. (b) Clean energy technologies currently constitute about 20 percent of global consumption of critical materials. As clean energy technologies are deployed more widely in the decades ahead, their share of global consumption of critical materials will likely grow. (c) Of the materials analyzed, five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium), as well as indium, are assessed as most critical in the short term. For this purpose, 'criticality' is a measure that combines importance to the clean energy economy and risk of supply disruption. (d) Sound policies and strategic investments can reduce the risk of supply disruptions, especially in the medium and long term. (e) Data with respect to many of the issues considered in this report are sparse. In the report, DOE describes plans to (i) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the Department during November and December 2010; (ii) strengthen its capacity for information-gathering on this topic; and (iii) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. DOE will work with other stakeholders -- including interagency colleagues, Congress and the public -- to shape policy tools that strengthen the United States' strategic capabilities. DOE also announces its plan to develop an updated critical materials strategy, based upon additional events and information, by the end of 2011.DOE's strategy with respect to critical materials rests on three pillars. First, diversified global supply chains are essential. To manage supply risk, multiple sources of materials are required. This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies. In all cases, extraction and processing should be done in an environmentally sound manner. Second, substitutes must be developed. Research leading to material and technology substitutes will improve flexibility and help meet the material needs of the clean energy economy. Third, recycling, reuse and more efficient use could significantly lower world demand for newly extracted materials. Research into recycling processes coupled with well-designed policies will help make recycling economically viable over time.The scope of this report is limited. It does not address the material needs of the entire economy, the entire energy sector or even all clean energy technologies. Time and resource limitations precluded a comprehensive scope. Among the topics that merit additional research are the use of rare earth metals in catalytic converters and in petroleum refining. These topics are discussed briefly in Chapter 2.

Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B.

2010-12-01T23:59:59.000Z

331

Lab celebrates Earth Day  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab celebrates Earth Day Lab celebrates Earth Day Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab celebrates Earth Day Multiple activities focus on environmental protection. May 1, 2013 A team from Industrial Hygiene and Safety during the Great Garbage Grab A team from Industrial Hygiene and Safety during the Great Garbage Grab. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Great Garbage Grab From April 1 - 12 employees were encouraged to don work gloves and very attractive orange vests to pick up litter around their workplace-both on and off Lab property. This year's winner of the coveted Traveling Trash Trophy (for picking up the most litter) went to the Worker Safety and

332

Probing a Rare Material Spin State at NIST  

Science Conference Proceedings (OSTI)

... work, one of the very few studies of this particular spin state, which has ... serve as a test of current and future theoretical models of exotic spin states. ...

2013-07-08T23:59:59.000Z

333

Earth flyby anomalies  

Science Conference Proceedings (OSTI)

In the planet-centric system, a spacecraft should have the same initial and final energies, even though its energy and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small energy changes.

Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LAB.

2009-01-01T23:59:59.000Z

334

The Earth's ...as conduit  

E-Print Network (OSTI)

processes that take place on the Earth's surfaces are intimately coupled with the overly- ing air," explains Judith Perlinger. "An intense and complex exchange takes place when atmospheric chemicals, heat devices (MCCDs) which they use to collect semivolatile organic compounds (SOCs) present in trace

Honrath, Richard E.

335

Up to the waist in mud! : the assessment and application of earth-derivative architecture in rural Bangladesh  

E-Print Network (OSTI)

This thesis is about architecture that uses earth as the prime· building material in the context of rural Bangladesh. In extreme environmental conditions of annual floods, rain and atmospheric humidity, the use of earth, ...

Ahmed, K. Iftekhar

1991-01-01T23:59:59.000Z

336

Alkaline earth cation extraction from acid solution  

DOE Patents (OSTI)

An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

Dietz, Mark (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2003-01-01T23:59:59.000Z

337

Scientists Identify New Family of Iron-Based Absorber Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Earth-abundant materials in solar absorber films is critical for expanding the reach of photovoltaic (PV) technologies. The use of Earth-abundant and inexpensive Fe in PV...

338

Google Earth through a Keyhole  

E-Print Network (OSTI)

Google Earth through a Keyhole John Cloud NOAA Central Library #12;#12;Fort Huachuca, Arizona #12;#12;#12;Google Ocean #12;#12;The Roots of Google Earth 2001: Keyhole Corporation founded in Mountain View, California. Develops Keyhole Markup Language (KML), etc. 2003:Keyhole develops EarthSystemTM 2004: Google

Wright, Dawn Jeannine

339

Simulations Reveal That Earth's Silica Is Predominantly Superficial - NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Reveal Reveal Earth's Silica Is Predominantly Superficial Simulations Reveal Earth's Silica Is Predominantly Superficial May 24, 2010 Silica is one of the most common minerals on Earth. Not only does it make up two-thirds of our planet's crust, it is also used to create a variety of materials from glass to ceramics, computer chips and fiber optic cables. Yet new quantum mechanics results generated by a team of physicists from Ohio State University (OSU) show that this mineral only populates our planet superficially-in other words, silica is relatively uncommon deep within the Earth. Cross-section of the Earth Using several of the largest supercomputers in the nation, including the National Energy Research Scientific Computing Center's (NERSC) Cray XT4 "Franklin" system, the team simulated the behavior of silica in

340

Man on Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

Man on Earth Man on Earth Name: jmagee Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How long has man as a species existed on the planet? Replies: Human evolution is a matter of considerable debate. Since the phrase in the question, "man as a species," is a bit vague, here is a brief run-down of the fossil evidence for the evolution of hominids (animals able to walk upright): Australopithecus - the first hominid, appeared on the African savannas 2-3 million years ago. Brain size was 1/3 modern human's. Homo habilis - the first hominid to make and use tools. Homo erectus - a. k. a. Peking and Java man, evolved from Homo habilis about 1.5 million years ago, built fires, resided in huts, and had a brain capacity of 1,000 ml (versus modern man's 1,375 ml).

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermoelectric Materials Evaluation Program. Annual technical report for fiscal year 1979  

DOE Green Energy (OSTI)

Optimization was initiated with respect to performance, operating temperatures, and thermoelectric properties of an N-type material based on rare earth (neodymium and gadolinium) selenide technology. Effort was expanded to experimentally describe the chemical, electrical and physical behavior of P-type thermoelectric material over a range of temperatures. Emphasis was changed in P-type material research from basic properties to sublimation suppression by wrapping, and to the understanding of contact resistance problems at the hot end. Analytical performance calculations were made as an aid in couple development. In the area of module development an evaluation of the reduction of bypass-heat loss was made and module M-22R was placed on test. Parts were fabricated for M23R. Data on long term operating characteristics, ingradient compatibility, and reliability of elements and couples was obtained.

Hinderman, J.D.

1979-10-01T23:59:59.000Z

342

Superhydrophobic diatomaceous earth  

SciTech Connect

A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

Simpson, John T. (Clinton, TN); D'Urso, Brian R. (Clinton, TN)

2012-07-10T23:59:59.000Z

343

Senior Earth Scientist  

E-Print Network (OSTI)

appear today. My expertise is studying land vegetation using Earth orbiting satellites. I am assigned by NASA to the United States (US) Climate Change Science Program (CCSP) in Washington, where I co-chair the Observations Interagency Working Group. I have provided my resume for your information. NASA’s and NOAA’s Earth orbiting satellites make measurements that enable our understanding of climate change and the global integrated Earth system. These satellites provide high accuracy, high-spatial and high-temporal resolution, global observations of the atmosphere, ocean, and land surface that cannot be acquired by any other method. To understand climate change, satellite observations must be of sufficient duration to distinguish long-term trends from short-term cycles created by processes such as extreme weather and El Nino. Land vegetation is a critical aspect of the global carbon cycle because plants absorb carbon dioxide from the atmosphere via the process of photosynthesis and incorporate or store this carbon in wood and soil. In the global carbon cycle, carbon is exchanged among the biosphere, geosphere, hydrosphere, and atmosphere (Figure 1). The amount

Compton Tucker; Senior Earth Scientist; Compton Tucker; Before The

2009-01-01T23:59:59.000Z

344

COG: local decomposition for rare class analysis  

Science Conference Proceedings (OSTI)

Given its importance, the problem of predicting rare classes in large-scale multi-labeled data sets has attracted great attention in the literature. However, rare class analysis remains a critical challenge, because there is no natural way developed ... Keywords: K-means clustering, Local clustering, Rare class analysis, Support vector machines (SVMs)

Junjie Wu; Hui Xiong; Jian Chen

2010-03-01T23:59:59.000Z

345

Development, characterization and evaluation of materials for open cycle MHD. Quarterly report for the period ending June 1978  

DOE Green Energy (OSTI)

The objectives of this program are directed toward the development and characterization of high temperature ceramics for open-cycle, coal-fired MHD power generators. The current activities are directed to electrode and insulator materials, and include (1) determination of the effects of alkali seed on the behavior of ceramics in a dc electric field; (2) development and testing of improved high temperature ceramic electrodes and insulators with controlled composition, microstructure, and properties; and (3) characterization and evaluation of materials utilized in channels being tested for MHD power generator development. Research is reported on (1) evaluation of metal electrodes from 250 hour MHD test, (2) characterization and properties of USSR MgO insulating wall material, (3) thermal diffusivity/thermal conductivity of electrode and insulator materials, (4) coprecipitation of ceramic powders, (5) properties of yttria chromites, and (6) rare earth hafnates. (WHK)

Bates, J.L.; Marchant, D.D.; Daniel, J.L.

1978-10-01T23:59:59.000Z

346

Extraction-x-ray fluorescent determination of the rare earthelements in calcium fluoride  

Science Conference Proceedings (OSTI)

Fluorides of the alkaline earth metals, activated by rare earth ions, are used as active elements in lasers and scintillation detectors. In this work, the conditions of production of thin-layer emitters for the extraction x-ray fluorescent determination of 2.10/sup -4/-3.10/sup -3/% REE in calcium fluoride with preliminary concentration of the elements to be determined in the form of complexes with morin were studied. The possibility of a simultaneous determination of several REE present together was demonstrated. A mixture (4:1) of isopentanol and tributyl phosphate (TBP), analytical grade, which were additionally redistilled, was used.

Blank, A.B.; Belenko, L.E.; Shevtsov, N.I.

1986-08-01T23:59:59.000Z

347

Seminars 2012 - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Materials Science 2012 Seminar Archive January January 13th - Ming Tang Lawrence Livermore National Laboratory Stress-Diffusion Coupling in Olivine Cathodes for Li-ion Batteries January 16th - Jonathan Keeling University of St. Andrews, United Kingdom Condensation, superfluidity, and lasing of coupled light-matter systems January 23rd - Wade DeGottardi University of Illinois at Urbana-Champaign Majorana fermions in a spin-ladder system January 23rd - Sergey Artyukhin Moscow Institute of Physics and Technology Solitonic Arrays and Magnetoelectric Switching in Rare Earth Orthoferrites January 25th - Geoffrey Oxberry Massachusetts Institute of Technology Advances in the Model Reduction of Chemistry for Reacting Flow Simulations January 27th - Tianheng Han Massachusetts Institute of Technology

348

Qing'an Li - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

EM > Qing'an Li EM > Qing'an Li Qing'an Li Scientific Associate Sr Bldg. 223, A-113 Phone: 630-252-3996 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qing'an Li was an Assistant Research Scientist at Institute of Physics, Chinese Academy of Sciences after receiving his doctorate in July 1993 working on superconducting electronics. He was a postdoctoral fellow at University of Tokyo, Japan working on superconducting electronics in 1996. In 1997, he became a Visiting Scientist (postdoc) at the Materials Science Division of the Argonne National Laboratory, and started to study the transport properties of colossal magnetoresistance (CMR) materials in the Emerging Materials group. At the Institute of Physics, Chinese Academy of Sciences, Li was an Associated Research Scientist in 2000, a Research scientist, and Professor in 2001, working on magnetic and transport properties of transition metal oxides. In 2006, he visited the Materials Science Division of the Argonne National Laboratory as a Visiting Scientist, working on the transport properties of intermetallic compounds of rare-earth and transition metals, transition metal oxides, etc. and became a Scientific Associate Sr. in Emerging Materials group in 2009.

349

Rare Decays of the $\\eta^{'}$  

E-Print Network (OSTI)

We have searched for the rare decays of the eta prime meson to e+ e- eta, e+ e- pizero, e+ e- gamma, and e mu in hadronic events at the CLEO II detector. The search is conducted on 4.80 fb^-1 of e+ e- collisions at the Cornell Electron Storage Ring. We find no signal in any of these modes, and set 90% confidence level upper limits on their branching fractions of 2.4 X 10^-3, 1.4 X 10^-3, 0.9 X 10^-3, and 4.7 X 10^-4, respectively. We also investigate the Dalitz plot of the common decay of the eta prime to pi+ pi- eta. We fit the matrix element with the Particle Data Group parameterization and find Re(alpha) = -0.021 +- 0.025, where alpha is a linear function of the kinetic energy of the eta.

Briere, R A; Ford, W T; Gritsan, A; Krieg, H; Roy, J D; Smith, J G; Alexander, J P; Baker, R; Bebek, C; Berger, B E; Berkelman, K; Blanc, F; Boisvert, V; Cassel, David G; Dickson, M; Von Dombrowski, S; Drell, P S; Ecklund, K M; Ehrlich, R; Foland, A D; Gaidarev, P B; Galik, R S; Gibbons, L K; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hopman, P I; Jones, C D; Kreinick, D L; Lee, T; Liu, Y; Meyer, T O; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Thayer, J G; Thies, P G; Valant-Spaight, B L; Warburton, A; Avery, P; Lohner, M; Prescott, C; Rubiera, A I; Yelton, J; Zheng, J; Brandenburg, G; Ershov, A; Gao, Y S; Kim, D Y J; Wilson, R; Browder, T E; Li, Y; Rodríguez, J L; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Ernst, J; Gladding, G E; Gollin, G D; Hans, R M; Johnson, E; Karliner, I; Marsh, M A; Palmer, M; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Janicek, R; Patel, P M; Sadoff, A J; Ammar, R; Baringer, P; Bean, A; Besson, D; Coppage, D; Davis, R; Kotov, S A; Kravchenko, I V; Kwak, N; Zhao, X; Anderson, S; Frolov, V V; Kubota, Y; Lee, S J; Mahapatra, R; O'Neill, J J; Poling, R A; Riehle, T; Smith, A; Ahmed, S; Alam, M S; Athar, S B; Jian, L; Ling, L; Mahmood, A H; Saleem, M; Timm, S; Wappler, F; Anastassov, A; Duboscq, J E; Gan, K K; Gwon, C; Hart, T; Honscheid, K; Kagan, H; Kass, R; Lorenc, J; Schwarthoff, H; Spencer, M B; Von Törne, E; Zoeller, M M; Richichi, S J; Severini, H; Skubic, P L; Undrus, A E; Bishai, M; Chen, S; Fast, J; Hinson, J W; Lee, J; Menon, N; Miller, D H; Shibata, E I; Shipsey, I P J; Kwon, Y; Lyon, A L; Thorndike, E H; Jessop, C P; Lingel, K; Marsiske, H; Perl, Martin Lewis; Savinov, V; Ugolini, D W; Zhou, X; Coan, T E; Fadeev, V; Korolkov, I Ya; Maravin, Y; Narsky, I; Stroynowski, R; Ye, J; Wlodek, T; Artuso, M; Ayad, R; Dambasuren, E; Kopp, S E; Majumder, G; Moneti, G C; Mountain, R; Schuh, S; Skwarnicki, T; Stone, S; Titov, A; Viehhauser, G; Wang, J C; Wolf, A; Wu, J; Csorna, S E; McLean, K W; Marka, S; Xu, Z; Godang, R; Kinoshita, K; Lai, I C; Pomianowski, P A; Schrenk, S; Bonvicini, G; Cinabro, D; Greene, R; Perera, L P; Zhou, G J; Chan, S; Eigen, G; Lipeles, E; Schmidtler, M; Shapiro, A; Sun, W M; Urheim, J; Weinstein, A J; Würthwein, F; Jaffe, D E; Masek, G E; Paar, H P; Potter, E M; Prell, S; Sharma, V; Asner, D M; Eppich, A; Gronberg, J B; Hill, T S; Lange, D J; Morrison, R J; Nelson, T K; Richman, J D; Roberts, D

2000-01-01T23:59:59.000Z

350

Overview of rare K decays  

Science Conference Proceedings (OSTI)

The status and future prospects of searches for and studies of forbidden and highly suppressed K decays are reviewed. Here the author discusses three areas of recent activity in rare K decay. These are lepton-flavor violating decays, which are entirely forbidden in the Standard Model, K{sub S} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0}, which is of interest from the point of view of CP-violation, and `one loop` decays of the form K{sup 0,{+-}} {yields} ({pi}{sup 0,{+-}})l{bar l}, that can throw light on Standard Model CP-violation and determine parameters such as V{sub td}.

Littenberg, L.

1995-05-01T23:59:59.000Z

351

Low-cost Precursors for In-situ Synthesis of Composite Materials ...  

Science Conference Proceedings (OSTI)

Symposium, J. Materials and Processes for Enhanced Performance ... Separation and Recovery Process of Rare Metals from Oil Desulfurization Spent Catalyst.

352

Thermoelectric materials evaluation program. Quarterly technical task report No. 46. [Minnesota Mining and Manufacturing Company, Technical Ceramic Products Div. , St. Paul, 10/1 to 12/31/1975  

DOE Green Energy (OSTI)

This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables. (RWR)

Hampl, E.F. Jr.

1976-02-01T23:59:59.000Z

353

Earth System Analysis for Sustainability  

E-Print Network (OSTI)

Earth System Analysis for Sustainability By Hans JoachimSystem Analysis for Sustainability. MIT Press, Cambridge,the factors shaping sustainability yet undertaken and makes

Hamilton-Smith, Elery

2005-01-01T23:59:59.000Z

354

Stone's code reveals Earth's processes  

NLE Websites -- All DOE Office Websites (Extended Search)

determine the best methods to capture the greenhouse gas that increases global warming. August 27, 2013 Ian Stone At the Lab's Earth and Environmental Sciences (EES) Division,...

355

Primordial origins of Earth's carbon  

E-Print Network (OSTI)

In this chapter we review the astrophysical origins of Earth's carbon, starting from the products of the Big Bang and culminating with the Earth's formation. We review the measured compositions of different primitive objects including comets, various classes of meteorites and interstellar dust particles. We discuss the composition of the Solar Nebula, especially with regards to the distribution of volatiles such as carbon. We discuss dynamical models of planetary formation from planetesimals and planetary embryos, and the timescale for volatile delivery to the growing Earth from different sources. Finally, we review Earth's carbon reservoirs. Throughout the chapter we highlight open questions related to planet formation, meteoritics, and geochemistry.

Marty, Bernard; Raymond, Sean N

2012-01-01T23:59:59.000Z

356

Virtual Fieldwork Using Google Earth  

E-Print Network (OSTI)

Virtual Fieldwork Using Google Earth Advanced Techniques #12;Digital Explorer 1 Gough Square London Fieldwork Using Google Earth compiled by Jamie Buchanan-Dunlop Digital Explorer 71 Regent Studios 8 Andrews Buchanan-Dunlop © 2008 Google © 2008 Ricardo Sgrillo All rights reserved cover design by rob `at

Smith-Konter, Bridget

357

Bernard J. Wood Jonathan D. Blundy A predictive model for rare earth element partitioning  

E-Print Network (OSTI)

of natural compositions. Propagating Dqf into the Brice model we obtain an expression for h3 o in terms and anhydrous silicate melt as a function of pressure , temperature and bulk composition . The model is based is the Young's Modulus of the site, is the gas constant and is in K. Values of iM2 obtained by ®tting

van Westrenen, Wim

358

First-principles Investigation of Mg-Rare Earth Precipitates and ...  

Science Conference Proceedings (OSTI)

We investigate the coherency strain energy of Mg-?'' binary systems using first ... Using density functional theory (DFT), we explore the thermodynamic stability of ... Kinetic Monte Carlo Study of Fission Gas and Grain Growth in Nuclear Fuels.

359

Tetrataenite (FeNi)- A Potential Candidate For a Rare-Earth -Free ...  

Science Conference Proceedings (OSTI)

Estherville Tt shows flower-, stripe- and flame-like magnetic domain features that are diagnostic of a magnetically-uniaxial structure. The existence of multiple ...

360

Life Cycle Assessment of NdFeB Rare Earth Magnet Recycling  

Science Conference Proceedings (OSTI)

... of Modified Semi-Coke on the Advanced Treatment of Coking Wastewater's Oil ... The Revival of Onahama Smelter & Refinery from the Disaster by the Great ...

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

H19: Recycle Rare Earth from Waste Phosphor by a Two-step Method  

Science Conference Proceedings (OSTI)

The total RE (TRE) leaching rate was 97.871% and the leaching rates of yttrium, europium, ... Coupling Magnetism to Electricity in Multiferroic Heterostructures.

362

Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems  

E-Print Network (OSTI)

either by carbonate, chlorine or hydroxide complexes. Forions. The concentration of chlorine ions in the groundwaterhigher than 8.5. Even chlorine ions in small concentra-

Kvashnina, Kristina

2007-01-01T23:59:59.000Z

363

Neutron scattering characterization of pure and rare-earth modified zirconia catalysis.  

SciTech Connect

The combined application of neutron powder diffraction, small angle neutron scattering and neutron inelastic scattering has led to improved understanding of the crystal phases, defect structure, microstructure and hydroxyl/water dynamics in pure and lanthanide-modified zirconia catalysts. Powder diffraction experiments quantified the degree of stabilization and provided evidence for static, oxygen vacancy-induced atomic displacements in stabilized zirconia. Quantitative assessment of Bragg peak breadths led to measurements of ''grain size'', representing coherency length of long-range ordered atomic arrangements (crystals). Small angle neutron scattering provided a separate measurement of ''grain size'', representing the average size of the primary particles in the aggregates, and the evolution of porosity (micro- versus meso-) and surface roughness caused by RE modification and heat treatment. Finally, the dynamics of hydrogen atoms associated with surface hydroxyls and adsorbed water was investigated by neutron-inelastic scattering, revealing changes in frequency and band breadth of O-H stretch, H-O-H bend, and librational motion of water molecules.

Loong, C.-K.; Ozawa, M.; Richardson, J. W., Jr.; Suzuki, S.; Thiyagarajan, P.

1997-11-18T23:59:59.000Z

364

C22: The Influence of Rare-Earth Additives on Batio3–Ceramics ...  

Science Conference Proceedings (OSTI)

B7: Synthesis and Electrical Properties of K2NiF4-Type (Ca2-xLnx)MnO4 (Ln=Nd and Sm) · B8: Monitoring Oxygen Diffusion in Gd-Doped Ceria by Null ...

365

The progress of TiO2 nanocrystals doped with rare earth ions  

Science Conference Proceedings (OSTI)

In the past decades, TiO2 nanocrystals (NCs) have been widely studied in the fields of photoelectric devices, optical communication, and environment for their stability in aqueous solution, being nontoxic, cheapness, and so on. Among the three ...

Hai Liu; Lixin Yu; Weifan Chen; Yingyi Li

2012-01-01T23:59:59.000Z

366

Behavior Of Rare Earth Element In Geothermal Systems, A NewExploratio...  

Open Energy Info (EERE)

geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two....

367

Structure and dynamics in yttrium-based molten rare earth alkali fluorides  

E-Print Network (OSTI)

The transport properties of molten LiF-YF3 mixtures have been studied by pulsed field gradient nuclear magnetic resonance spectroscopy, potentiometric experiments, and molecular dynamics simulations. The calculated diffusion coefficients and electric conductivities compare very well with the measurements accross a wide composition range. We then extract static (radial distribution functions, coordination numbers distributions) and dynamic (cage correlation functions) quantities from the simulations. Then, we discuss the interplay between the microscopic structure of the molten salts and their dynamic properties. It is often considered that variations in the diffusion coefficient of the anions are mainly driven by the evolution of its coordination with the metallic ion (Y3+ here). We compare this system with fluorozirconate melts and demonstrate that the coordination number is a poor indicator of the evolution of the diffusion coefficient. Instead, we propose to use the ionic bonds lifetime. We show that the weak Y-F ionic bonds in LiF-YF3 do not induce the expected tendency of the fluoride diffusion coefficient to converge toward the one of yttrium cation when the content in YF3 increases. Implications on the validity of the Nernst-Einstein relation for estimating the electrical conductivity are discussed.

Maximilien Levesque; Vincent Sarou-Kanian; Mathieu Salanne; Mallory Gobet; Henri Groult; Catherine Bessada; Paul A. Madden; Anne-Laure Rollet

2013-02-19T23:59:59.000Z

368

PHOSPHORIC ACID EXTRACTION AND RARE EARTH RECOVERY FROM APATITES OF THE BRAZILIAN PHOSPHATIC ORES  

E-Print Network (OSTI)

and radioactive phosphogypsum annually produced, environmental problems bound to the phosphogypsum storage the environmental nuisances generated at the time of the phosphogypsum formation. On this purpose, it is necessary

Paris-Sud XI, Université de

369

Rare earth elements (REE) as geochemical clues to reconstruct hydrocarbon generation history.  

E-Print Network (OSTI)

??The REE distribution patterns and total concentrations of the organic matter of the Woodford shale reveal a potential avenue to investigate hydrocarbon maturation processes in… (more)

Ramirez-Caro, Daniel

2013-01-01T23:59:59.000Z

370

Rare earth : geomantic formulae for the production of works of art  

E-Print Network (OSTI)

This thesis describes the development of my study of the influence of chinese geomancy on my art. The emphasis is on art forms created for the transportation of my mind to the audience within encompassing space and sculpted ...

Chan-Bernard, Mei-ling

1990-01-01T23:59:59.000Z

371

Doping Supervalent Rare Earth Ion in LiFePO4/C through ...  

Science Conference Proceedings (OSTI)

... performance is evaluated via galvanostatic charge-discharge, EIS and CV. ... A18: Heat Capacity and Thermal Expansion Measurements of Solar Salts ... Advanced Nanomaterials Structures for Enhanced Solar Energy Conversion.

372

Rare-earth doped up-converting phosphors for an enhanced silicon solar cell response.  

E-Print Network (OSTI)

??Photovoltaic solar cells can generate electricity directly from sunlight without emitting harmful greenhouse gases. This makes them ideal candidates as large scale future energy producers… (more)

Shalav, Avi

2006-01-01T23:59:59.000Z

373

Understanding and Control of Coercivity in Non-Rare Earth Alnico ...  

Science Conference Proceedings (OSTI)

... and SQUID magnetometry and the results will be presented. Funding provided by DOE-EERE-FCVT Office through Ames lab Contract DE-AC02-07CH11358.

374

Computational Studies on Oxygen-ionic Conduction in Rare-earth ...  

Science Conference Proceedings (OSTI)

Development of oxygen-ionic conductors which have low activation energies in ... for reducing the lower limit of operating temperatures of solid oxide fuel cells. ... electronic densities of states, oxygen migration paths and activation energies in ...

375

Influence of Rare Earth on Hot Dip 55%Al-Zn Alloy Coating  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

376

Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems  

E-Print Network (OSTI)

supported by the Swedish Nuclear Fuel and Waste Managementsupported by the Swedish Nuclear Fuel and Waste ManagementActinides Studies Spent nuclear fuel from commercial nuclear

Kvashnina, Kristina

2007-01-01T23:59:59.000Z

377

The progress of photoluminescent properties of rare-earth-ions-doped phosphate one-dimensional nanocrystals  

Science Conference Proceedings (OSTI)

One-dimensional (1D) nanostructures, such as tubes, wires, rods, and belts, have aroused remarkable attentions over the past decade due to a great deal of potential applications, such as data storage, advanced catalyst, and photoelectronic devices . ...

Lixin Yu; Hai Liu

2010-01-01T23:59:59.000Z

378

J26: High Purity Samarium Acetate from Mixed Rare Earth Carbonates  

Science Conference Proceedings (OSTI)

A8: Microstructural Investigation of Nano-Calcium Phosphates Doped with Fluoride Ions .... D7: Surfactant Structure–property Relationship: Effect of Polypropylene ... E4: The Effect of Monobutyl Ether Ethylene Glycol on the Conductivity and ...

379

Multi-color long-lasting phosphorescence of rare earth ions in CdSiO  

Science Conference Proceedings (OSTI)

Institute of Applied Chemistry, Chinese Academy of Sciences,. Changchun 130022 ... Department of Chemistry, Jinan University, Guangzhou 510632, China .

380

Structure and dynamics in yttrium-based molten rare earth alkali fluorides  

E-Print Network (OSTI)

The transport properties of molten LiF-YF$_3$ mixtures have been studied by pulsed field gradient nuclear magnetic resonance spectroscopy, potentiometric experiments, and molecular dynamics simulations. The calculated diffusion coefficients and electric conductivities compare very well with the measurements accross a wide composition range. We then extract static (radial distribution functions, coordination numbers distributions) and dynamic (cage correlation functions) quantities from the simulations. Then, we discuss the interplay between the microscopic structure of the molten salts and their dynamic properties. It is often considered that variations in the diffusion coefficient of the anions are mainly driven by the evolution of its coordination with the metallic ion (Y$^{3+}$ here). We compare this system with fluorozirconate melts and demonstrate that the coordination number is a poor indicator of the evolution of the diffusion coefficient. Instead, we propose to use the ionic bonds lifetime. We show th...

Levesque, Maximilien; Salanne, Mathieu; Gobet, Mallory; Groult, Henri; Bessada, Catherine; Madden, Paul A; Rollet, Anne-Laure

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi  

DOE Patents (OSTI)

Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

Wiswall, R.H.

1960-05-10T23:59:59.000Z

382

Effects of a Rare Earth Addition on Unitemp(TM) 901  

Science Conference Proceedings (OSTI)

of Common Metals", Ames Laboratory,. ERDA, Iowa State University,. Ames, Iowa , 1976. W. G. Wilson, D. A. R. Kay and A. Vahed, J. Met., May 1974, pp. 14-23.

383

Studying Materials Under Extreme Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying Materials Under Extreme Pressure Studying Materials Under Extreme Pressure Coupling undulator radiation from Advanced Photon Source (APS) beamlines 3-ID and 13-ID to nuclear resonant inelastic scattering techniques, researchers have determined the phonon density of states for iron under pressures up to 153 gigapascals, equivalent to those found at the Earth's core. Image of the Earth's core. Although indirect measurements and theory have, since the early 1950s, produced an informed picture of the structure and composition of the materials that make up the core of the Earth, direct proof and the answers to some intriguing questions remain unanswered. Previously, ultrahigh-pressure experiments using nuclear resonant inelastic scattering have been difficult to carry out due the tiny samples required.

384

Search for Earth-like planets includes LANL star analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Search for earth-like planets Search for earth-like planets Search for Earth-like planets includes LANL star analysis The mission will not only be able to search for planets around other stars, but also yield new insights into the parent stars themselves. March 6, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

385

Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture  

DOE Patents (OSTI)

Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

West, Phillip B. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID); Wright, Jerry P. (Idaho Falls, ID)

2012-05-29T23:59:59.000Z

386

Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture  

DOE Patents (OSTI)

Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

West, Phillip B. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID); Wright, Jerry P. (Idaho Falls, ID)

2011-09-27T23:59:59.000Z

387

The Entire Environmental and Earth Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Tides Filtering Sediments Diamond Colors Iceberg Composition Ice Cores Slicks Geomagnetic Drift Earth's Core Geomagnetic Drift (2) Tilt of Earth's Axis Water's Origin Void...

388

Earth Day | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earth Day Earth Day Earth Day If you do not see the event begin at 3pm ET, please refresh your browser. Are you looking for ways to go green while saving yourself some green? Or are you interested in learning how to incorporate renewable energy options -- like solar, wind and geothermal -- into your home? This Earth Day, hang out with Energy Department experts to learn how you can reduce your energy use, improve your home's comfort and cut your energy bills. We hope you'll join us on April 22 at 3 pm ET for a Google+ Hangout on home energy efficiency tips and advice, and learn how you can submit your questions now. During the Hangout, we'll be sharing some of our Twitter followers' favorite energy-savings tips -- share yours now using #tipsEnergy. Panelists include:

389

Beginning of life on Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

Beginning of life on Earth Beginning of life on Earth Name: beatnik Status: N/A Age: 12 Location: N/A Country: N/A Date: Around 1993 Question: I am twelve years old and want to know how life began on earth. Replies: I am 43 years old and so would I! Scientists believe that lightning striking the atmosphere of the earth long ago caused certain simple chemicals like ammonia to form into more complicated chemicals that could lead to living cells. These chemicals then could hook together in chains to form molecules that direct life, such as RNA and DNA. One theory also says that fats in the primitive ocean acted on by waves, formed large globules enclosing these life directing chemicals, and that these structures eventually formed primitive cells. Then inside the cells, conditions could evolve to allow the chemistry of life to work better and better, and so on

390

Trellis Earth | Open Energy Information  

Open Energy Info (EERE)

Trellis Earth Trellis Earth Jump to: navigation, search Logo: Trellis Earth Name Trellis Earth Address 13315 NE Airport Way Place Portland, Oregon Zip 97230 Sector Efficiency Product Renewable bioplastic bags, cutlery, flatware and packaging Website http://www.trellisearth.com/ Coordinates 45.563182°, -122.524952° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.563182,"lon":-122.524952,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Earth Day Electronics Recycling Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day Electronics Recycling Collection The U.S. Department of Energy, Washington, DC in collaboration with UNICOR Federal Prison Industries C E L E B R A T E E A R T H D A Y A...

392

Stratospheric Satellites for Earth Observations  

Science Conference Proceedings (OSTI)

Advanced, robust, yet inexpensive observational platforms and networks of platforms will make revolutionary Earth science observations possible in the next 30 years. One new platform concept that is needed is a long-duration stratospheric balloon ...

Alexey Pankine; Kerry Nock; Zhanqing Li; David Parsons; Michael Purucker; Warren Wiscombe; Elliot Weinstock

2009-08-01T23:59:59.000Z

393

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

394

Greenhouse Earth: A Traveling Exhibition  

SciTech Connect

The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change.

Booth, W.H.; Caesar, S.

1992-09-01T23:59:59.000Z

395

The Annual Cycle of Earth Radiation Budget from Clouds and the Earth’s Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earth’s Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1° equal-angle grid are used for ...

Pamela E. Mlynczak; G. Louis Smith; David R. Doelling

2011-12-01T23:59:59.000Z

396

Unexpected Materials in Earth's Lowermost Mantle | Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

out experiments at an x-ray beamline at the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne National Laboratory. The researchers recreated in the lab the...

397

Near earth object fuels (neo-fuels): Discovery, prospecting and use  

DOE Green Energy (OSTI)

The 1992 discovery of a water-ice, near-Earth object (NEO) in the space near Earth is evaluated as a source of rocket fuel and life support materials for Earth orbit use. Nuclear thermal rockets using steam propellant are evaluated and suggested. The space geological formation containing such water-rich NEO`s is described. An architecture couples near-Earth object fuels (neo-fuel) extraction with use in Earth orbits. Preliminary mass payback analyses show that space tanker systems fueled from space can return in excess of 100 times their launched mass from the NEO, per trip. Preliminary cost estimates indicate neo-fuel costs at Earth orbit can be 3 orders of magnitude below today`s cost. A suggested resource verification plan is presented.

Zuppero, A.C.; Jacox, M.G.

1992-08-25T23:59:59.000Z

398

Near earth object fuels (neo-fuels): Discovery, prospecting and use  

DOE Green Energy (OSTI)

The 1992 discovery of a water-ice, near-Earth object (NEO) in the space near Earth is evaluated as a source of rocket fuel and life support materials for Earth orbit use. Nuclear thermal rockets using steam propellant are evaluated and suggested. The space geological formation containing such water-rich NEO's is described. An architecture couples near-Earth object fuels (neo-fuel) extraction with use in Earth orbits. Preliminary mass payback analyses show that space tanker systems fueled from space can return in excess of 100 times their launched mass from the NEO, per trip. Preliminary cost estimates indicate neo-fuel costs at Earth orbit can be 3 orders of magnitude below today's cost. A suggested resource verification plan is presented.

Zuppero, A.C.; Jacox, M.G.

1992-08-25T23:59:59.000Z

399

Reading Comprehension - The Earth's Energy Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

The Earth's Energy Budget The Earth's Energy Budget The way the Earth interacts with the sun's energy can be displayed in a diagram called the _________ Earth's energy budget globe warming schedule Earth's flow chart . It displays the sun's energy that reaches us and how much of that energy is _________ going absorbed and reflected destroyed wasted by the earth and its atmosphere. Solar energy reaches earth as _________ Superman a gas electromagnetic radiation quickly as possible . Once the energy reaches earth, some of it is absorbed by the atmosphere, including _________ lakes mountains people clouds . Some of it makes it to the earth's surface, and is absorbed by land and oceans. The amount of energy absorbed affects _________ tides temperature nothing fishing . The energy that is not absorbed by the earth or its atmosphere is _________

400

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Manuel, Oliver K

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Oliver K. Manuel

2009-05-05T23:59:59.000Z

402

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

403

THORIUM OXALATE-URANYL ACETATE COUPLED PROCEDURE FOR THE SEPARATION OF RADIOACTIVE MATERIALS  

DOE Patents (OSTI)

The recovery of fission products from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in acid and thorium oxalate is precipitated in ihe solution formed, whereby the fission products are carried on the thorium oxalate. The separated thorium oxalate precipitate is then dissolved in an aqueous oxalate solution and the solution formed is acidified, limiting ihe excess acidity to a maximum of 2 N, whereby thorium oxalate precipitates and carries lanthanum-rareearth- and alkaline-earth-metal fission products while the zirconium-fission-product remains in solution. This precipitate, too, is dissolved in an aqaeous oxalate solution at elevated temperature, and lanthanum-rare-earth ions are added to the solution whereby lanthanum-rare-earth oxalate forms and the lanthanum-rare-earth-type and alkalineearth-metal-type fission products are carried on the oxalate. The precipitate is separated from the solution.

Gofman, J.W.

1959-08-11T23:59:59.000Z

404

Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment  

Science Conference Proceedings (OSTI)

Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget ...

Bruce A. Wielicki; Bruce R. Barkstrom; Edwin F. Harrison; Robert B. Lee III; G. Louis Smith; John E. Cooper

1996-05-01T23:59:59.000Z

405

Temporal Interpolation Methods for the Clouds and the Earth’s Radiant Energy System (CERES) Experiment  

Science Conference Proceedings (OSTI)

The Clouds and the Earth’s Radiant Energy System (CERES) is a NASA multisatellite measurement program for monitoring the radiation environment of the earth–atmosphere system. The CERES instrument was flown on the Tropical Rainfall Measuring ...

D. F. Young; P. Minnis; D. R. Doelling; G. G. Gibson; T. Wong

1998-06-01T23:59:59.000Z

406

NEWTON's Environmental and Earth Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental and Earth Science References Environmental and Earth Science References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: >NASA's Earth Science Division NASA's Earth Science Division Find the answers to the big questions of Earth Science such as "How is the World Changing?" The information and articles are provided by NASA's Earth Science Division Geology.com Resources Teaching Earth Science - Geology.com Geology.com provides news and information about Geology and Earth Science. It has a teacher resource section as well, which provides a collection of classroom activities and lesson plans, for earth science in the classroom. IRIS's Seismographs in Schools Program IRIS's Seismographs in Schools Program Discover tools to share seismic data in real-time, classroom activities, and technical support documents for seismic instruments.

407

Rayleigh Scattering in Rare Gas Liquids  

E-Print Network (OSTI)

The Rayleigh scattering length has been calculated for rare-gas liquids in the ultraviolet for the frequencies at which they luminesce. The calculations are based on the measured dielectric constants in the gas phase, except in the case of xenon for which measurements are available in the liquid. The scattering length mayplace constraints on the design of some large-scale detectors, using uv luminescence, being proposed to observe solar neutrinos and dark matter. Rayleigh scattering in mixtures of rare-gas mixtures is also discussed.

G. M. Seidel; R. E. Lanou; W. Yao

2001-11-15T23:59:59.000Z

408

EVALUATION OF REACTOR CORE MATERIALS FOR A GAS-COOLED REACTOR EXPERIMENT  

DOE Green Energy (OSTI)

An evaluation of core materials for a gas-cooled reactor is being made. Work on the ZrH/sub n/ moderator has been confined to the high-hydrogen or delta- phase material. Methods for preparing sound hydride bodies of the highhydrogen composition have been developed. Both solid hydride and hydride powder compacts are being clad by a pressure-bonding technique. The hot hardness, tensile strength, thermal conductivity, thermal-expansion coefficient, and dissociation pressure of the delta-phase material are being determined. Control-material development was directed at rare-earth-oxide dispersions in Ni-chrome V or Co alloys. The reference fuel element is dispersedUO/sub 2/ in stainless steel. Studies include work on fabrication techniques and irradiation damage, and physical- and mechanical-property determinations. Several alternate fuels are being investigated. Gas-coolant studies involve N-metal and NH/sub 4/-metal reactions. Several additives to retard nitriding are being investigated. An in- pile-loop facility for testing reference materials is being constructed for operation in the Battelle Research Reactor. (auth)

Keller, D.L.

1957-07-11T23:59:59.000Z

409

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

410

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

411

Alternative Earth Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Earth Resources Inc Earth Resources Inc (Redirected from Nevada Geothermal Power) Jump to: navigation, search Logo: Alternative Earth Resources Inc Name Alternative Earth Resources Inc Address 840 - 1140 West Pender St. Place Vancouver, B.C. Zip V6E 4G1 Sector Geothermal energy Website http://www.alternative-earth.c References Alternative Earth Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Alternative Earth Resources Inc is a company based in Vancouver, B.C.. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture

412

Alternative Earth Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Alternative Earth Resources Inc Alternative Earth Resources Inc Name Alternative Earth Resources Inc Address 840 - 1140 West Pender St. Place Vancouver, B.C. Zip V6E 4G1 Sector Geothermal energy Website http://www.alternative-earth.c References Alternative Earth Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Alternative Earth Resources Inc is a company based in Vancouver, B.C.. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

413

Earth Day, Every Day | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earth Day, Every Day Earth Day, Every Day Earth Day, Every Day April 20, 2011 - 5:09pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs April 22, 2011 is the 41st celebration of Earth Day, a day set aside to inspire awareness and appreciation for the Earth's natural environment. The first Earth Day focused on the United States, but has grown over the years and is now celebrated in more than 175 countries every year. To help celebrate, the Department of Energy is holding Earth Week festivities at our headquarters here in Washington, D.C. throughout this week. This year's theme is "Earth Day, Every Day! Changing Behavior to Reduce DOE's Carbon Footprint." Part of the celebration will include an outdoor Community Day celebration

414

The Geostationary Earth Radiation Budget Project  

Science Conference Proceedings (OSTI)

This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute ...

J. E. Harries; J. E. Russell; J. A. Hanafin; H. Brindley; J. Futyan; J. Rufus; S. Kellock; G. Matthews; R. Wrigley; A. Last; J. Mueller; R. Mossavati; J. Ashmall; E. Sawyer; D. Parker; M. Caldwell; P. M. Allan; A. Smith; M. J. Bates; B. Coan; B. C. Stewart; D. R. Lepine; L. A. Cornwall; D. R. Corney; M. J. Ricketts; D. Drummond; D. Smart; R. Cutler; S. Dewitte; N. Clerbaux; L. Gonzalez; A. Ipe; C. Bertrand; A. Joukoff; D. Crommelynck; N. Nelms; D. T. Llewellyn-Jones; G. Butcher; G. L. Smith; Z. P. Szewczyk; P. E. Mlynczak; A. Slingo; R. P. Allan; M. A. Ringer

2005-07-01T23:59:59.000Z

415

2008 Earth Day Award Ceremony Photographs  

NLE Websites -- All DOE Office Websites (Extended Search)

Williams (NA-50) 2008 Earth Day Award Ceremony Left to right: Glenn Podonsky (HS-1) and Jeffrey Salmon (S-4) 2008 Earth Day Award Ceremony Left to right: Glenn Podonsky (HS-1)...

416

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

417

Google Earth Tour: How Contaminants Got There  

NLE Websites -- All DOE Office Websites (Extended Search)

Google Earth Tour: How Contaminants Got There Click here to load the tour...then click the play button below...

418

Materials - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Assessment The staff of the Energy Systems Division has a long history of technical and economic analysis of the production and recycling of materials for transportation...

419

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

420

Mass Transportation on the Earth Ludovic Rifford  

E-Print Network (OSTI)

Mass Transportation on the Earth Ludovic Rifford Universit´e Nice - Sophia Antipolis & Institut Mass Transportation on the Earth #12;The framework Let M be a smooth connected compact surface in Rn of the lengths of the curves (drawn on M) joining x to y. Ludovic Rifford Mass Transportation on the Earth #12

Rifford, Ludovic

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mass Transportation on the Earth Ludovic Rifford  

E-Print Network (OSTI)

Mass Transportation on the Earth Ludovic Rifford Universit´e de Nice - Sophia Antipolis & Institut Universitaire de France UPV/EHU Ludovic Rifford Mass Transportation on the Earth #12;The framework Let M Rifford Mass Transportation on the Earth #12;Transport maps Let µ0 and µ1 be probability measures on M. We

Rifford, Ludovic

422

Google Earth Tip Sheet Switch between  

E-Print Network (OSTI)

Google Earth Tip Sheet Hide/Show Sidebar Add Placemark Add Polygon Add Path Add Image Overlay Show/Hide Ruler Show Sunlight Switch between Sky and Earth Email Print View in Google Maps Drag to rotate the view item Stop TourTransparency slider Google Earth User Interface New Placemark Dialog Box Name will appear

Smith-Konter, Bridget

423

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments  

SciTech Connect

Importance sampling often drastically improves the variance of percentile and quantile estimators of rare events. We propose a sequential strategy for iterative refinement of importance distributions for sampling uncertain inputs to a computer model to estimate quantiles of model output or the probability that the model output exceeds a fixed or random threshold. A framework is introduced for updating a model surrogate to maximize its predictive capability for rare event estimation with sequential importance sampling. Examples of the proposed methodology involving materials strength and nuclear reactor applications will be presented. The conclusions are: (1) Importance sampling improves UQ of percentile and quantile estimates relative to brute force approach; (2) Benefits of importance sampling increase as percentiles become more extreme; (3) Iterative refinement improves importance distributions in relatively few iterations; (4) Surrogates are necessary for slow running codes; (5) Sequential design improves surrogate quality in region of parameter space indicated by importance distributions; and (6) Importance distributions and VRFs stabilize quickly, while quantile estimates may converge slowly.

Williams, Brian J. [Los Alamos National Laboratory; Picard, Richard R. [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

424

Earth Advantage | Open Energy Information  

Open Energy Info (EERE)

Advantage Advantage Jump to: navigation, search Name Earth Advantage Place Portland, Oregon Zip 97224 Product Earth Advantage partners with builders and developers to bring the most energy efficient ,sustainable and healthy homes to the market Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Earth Comfort | Open Energy Information  

Open Energy Info (EERE)

Comfort Comfort Jump to: navigation, search Name Earth Comfort Place Okemos, Michigan Zip 48864 Sector Geothermal energy Product Earth Comfort is a website that gives information on how geothermal heating and cooling works and links to how much it would cost, dealers, etc. Coordinates 42.71511°, -84.430264° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.71511,"lon":-84.430264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Adding STARFire Analysis Layers to Google Earth through a KML Network Link 1) Launch Google Earth  

E-Print Network (OSTI)

Adding STARFire Analysis Layers to Google Earth through a KML Network Link 1) Launch Google Earth 2) The network link will be added in the Places control within Google Earth. Select the node level in the tree layers for viewing within Google Earth. Double clicking on a layer will zoom you to the extent

427

High Temperature Integrated Thermoelectric Ststem and Materials  

DOE Green Energy (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

428

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

429

Rare B Meson Decays at the Tevatron  

SciTech Connect

Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the b {yields} s{mu}{sup +}{mu}{sup -} and B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from CDF II using 7 fb{sup -1} at the Fermilab Tevatron Collider.

Hopkins, Walter

2012-01-01T23:59:59.000Z

430

EMP: Earth Microbiome Project | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

EMP: Earth Microbiome Project EMP: Earth Microbiome Project EMP: Earth Microbiome Project The Earth Microbiome Project is a proposed massively multidisciplinary effort to analyze microbial communities across the globe. The general premise is to examine microbial communities from their own perspective. We propose to characterize the Earth by environmental parameter space into different biomes and then explore these using samples currently available from researchers across the globe. We will analyze 200,000 samples from these communities using metagenomics, metatranscriptomics and amplicon sequencing to produce a global Gene Atlas describing protein space, environmental metabolic models for each biome, approximately 500,000 reconstructed microbial genomes, a global metabolic model, and a

431

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

432

Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Thermoelectric materials can generate electricity or provide cooling by converting thermal gradients to electricity or electricity to thermal gradients. More efficient thermoelectric materials would make feasible the widespread use of thermoelectric converters in mundane applications. This report summarizes the state-of-the-art of thermoelectric materials including currently available materials and applications, new developments, and future prospects.

2000-01-14T23:59:59.000Z

433

Celebrate Earth Day! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earth Day! Earth Day! Celebrate Earth Day! April 20, 2010 - 10:25am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory Earth Day is a great time to commit to protecting the environment and saving money and energy at home. This year, April 22 marks the 40th anniversary of Earth Day. In spring 1970, Sen. Gaylord Nelson created Earth Day to "force this issue onto the national agenda." Addressing the Earth Day 1970 audience in Denver, Colo., Nelson said, "Our goal is not just an environment of clean air and water and scenic beauty. The objective is an environment of decency, quality and mutual respect for all other human being and all living creatures." I think Sen. Nelson would be proud of the current level of enthusiasm

434

Earth Power Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Earth Power Resources Inc Earth Power Resources Inc (Redirected from Earth Power Resources) Jump to: navigation, search Name Earth Power Resources Inc Address 2407 S Troost Avenue Place Tulsa, Oklahoma Zip 74114 Sector Geothermal energy Year founded 2000 References Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Earth Power Resources Inc is a company based in Tulsa, Oklahoma. Earth Power Resources Inc in Tulsa, OK is a private company categorized under: Electric Companies. Records show it was established in 2000 and incorporated in Oklahoma. References ↑ "Website" Retrieved from "http://en.openei.org/w/index.php?title=Earth_Power_Resources_Inc&oldid=598202"

435

DOE Co-Spnsors Earth Day Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Co-Sponsors Earth Day Activities DOE Co-Sponsors Earth Day Activities Free trees and native plants are available to the first participants at the Idaho Falls Earth Day festivities in Tautphaus Park. There are a number of educational and environmentally-oriented activities for children at the Earth Day celebration. This year's Earth Day in April marks the 38th celebration of its kind since former Senator Gaylord Nelson first set aside the day in 1970 to honor the environment in which we live. Now Earth Day has expanded across the globe as nearly over a billion people celebrate with events, both large and small, in nearly 200 hundred different countries. Idaho Falls will join the celebration on Saturday, April 26 at the Tautphaus Park Zoo and Hockey Shelter. The Idaho Falls Earth Day Celebration will be held from 10 a.m. to

436

Celebrate Earth Day! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrate Earth Day! Celebrate Earth Day! Celebrate Earth Day! April 20, 2010 - 10:25am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory Earth Day is a great time to commit to protecting the environment and saving money and energy at home. This year, April 22 marks the 40th anniversary of Earth Day. In spring 1970, Sen. Gaylord Nelson created Earth Day to "force this issue onto the national agenda." Addressing the Earth Day 1970 audience in Denver, Colo., Nelson said, "Our goal is not just an environment of clean air and water and scenic beauty. The objective is an environment of decency, quality and mutual respect for all other human being and all living creatures." I think Sen. Nelson would be proud of the current level of enthusiasm

437

Earth Sciences annual report, 1987  

Science Conference Proceedings (OSTI)

The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

Younker, L.W.; Donohue, M.L.; Peterson, S.J. (eds.)

1988-12-01T23:59:59.000Z

438

Final Report "Structure of Rare Isotopes"  

SciTech Connect

The Junior Investigator grant 'Structure of Rare Isotopes' (DE-FG02-07ER41529) supported research in low-energy nuclear theory from September 1, 2007 to August 31, 2010. It was the main goal of the proposed research to develop and optimize an occupation-number-based energy functional for the computation of nuclear masses, and this aim has been reached. Furthermore, progress was made in linking two and three-body forces from low-momentum interactions to pairing properties in nuclear density functionals, and in the description of deformed nuclei within an effective theory.

Papenbrock, Thomas

2012-05-09T23:59:59.000Z

439

Search for massive rare particles with MACRO  

E-Print Network (OSTI)

Massive rare particles have been searched for in the penetrating cosmic radiation using the MACRO apparatus at the Gran Sasso National Laboratories. Liquid scintillators, streamer tubes and nuclear track detectors have been used to search for magnetic monopoles (MMs). Based on no observation of such signals, stringent flux limits are established for MMs as slow as a few 10^(-5)c. The methods based on the scintillator and on the nuclear track subdetectors were also applied to search for nuclearites. Preliminary results of the searches for charged Q-balls are also presented.

The MACRO Collaboration

2000-09-01T23:59:59.000Z

440

Superhydrophobic Materials Technology-PVC Bonding Techniques  

SciTech Connect

The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: • wet?cleanable • anti?biofouling • waterproof • anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

2013-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Magnetic Materials for Energy Applications IV: Magnetocaloric Materials ... due to cost-effectiveness as well as superior magneto-thermal characteristics. ... metals and p-block elements can be explored in a time- and energy-saving manner.

442

PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS  

SciTech Connect

While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that {approx}0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for {approx}0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

Greenstreet, S.; Gladman, B. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia (Canada); Ngo, H. [Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario (Canada); Granvik, M. [Department of Physics, University of Helsinki, Helsinki (Finland); Larson, S., E-mail: sarahg@phas.ubc.ca [Department of Planetary Sciences, University of Arizona, Tucson, Arizona (United States)

2012-04-20T23:59:59.000Z

443

Development of materials for open-cycle MHD. Quarterly report ending December 1982  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) is conducting an ongoing study of channel components for open cycle, coal-fired magnetohydrodynamic generators. specifically, electrodes/insulators are being developed and tested. For this study, a hot-walled test channel with eight electrodes was fabricated for testing in the WESTF test facility at Westinghouse Research and Development Laboratory, Pittsburgh, Pennsylvania. The chanel is designed to operate hot on all four walls, thereby reducing the amount of condensed slag. The compositions of four of the electrodes in the test channel were based on hafnium oxide-rare earth oxides-indium oxide. The electrical conductivity has been measured on several compositions based on hafnium oxide-rare earth oxides-indium oxides. The results show that adequate conductivity may be obtained with reduced indium oxide content as long as praseodymium oxide is used as the rare earth.

Marchant, D.D.; Bates, J.L.

1983-03-01T23:59:59.000Z

444

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

445

Training Materials  

Science Conference Proceedings (OSTI)

Training Materials. NIST Handbook 44 Self-Study Course. ... Chapter 3 – Organization and Format of NIST Handbook 44 DOC. ...

2011-08-10T23:59:59.000Z

446

Material matting  

Science Conference Proceedings (OSTI)

Despite the widespread use of measured real-world materials, intuitive tools for editing measured reflectance datasets are still lacking. We present a solution inspired by natural image matting and texture synthesis to the material matting problem, ... Keywords: appearance models, material separation, matting, spatially-varying BRDFs, texture synthesis

Daniel Lepage; Jason Lawrence

2011-12-01T23:59:59.000Z

447

Materializing energy  

Science Conference Proceedings (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

448

Earth Day at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's celebration of Earth Day 2013 is all about sustainability as part of our commitment to Operational Excellence. Sustainable goals help us choose our direction as a...

449

VERDE: Visualizing Energy Resources Dynamically on Earth ...  

Technology Marketing Summary VERDE is a software application utilizing the Google Earth(c) platform to provide real time visualization of the electric ...

450

Glossary Term - Composition of the Earth's Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

the Earth's Atmosphere Source: Definition of the U.S. Standard Atmosphere (1976) CRC Handbook of Chemistry and Physics, 77th Edition Gas Formula Abundance percent by volume...

451

NEWTON's Environmental and Earth Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Dissolving Rocks Eye of Hurricane Time Limit on Earthquake Aftershocks Oxygen in Underwater Cave Limnic Eruptions Extraterrestrial Plate Tectonics Earth's Core Hottest Layer...

452

Materials Education Community  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium · Superalloys. Emerging Materials ...

453

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium · Superalloys. Emerging Materials ...

454

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium · Superalloys. Emerging Materials ...

455

Cosmic Ray Interactions in Shielding Materials  

SciTech Connect

This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

2011-09-08T23:59:59.000Z

456

Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument  

Science Conference Proceedings (OSTI)

A new method for determining unfiltered shortwave (SW), longwave (LW), and window radiances from filtered radiances measured by the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument is presented. The method uses ...

Norman G. Loeb; Kory J. Priestley; David P. Kratz; Erika B. Geier; Richard N. Green; Bruce A. Wielicki; Patricia O’Rawe Hinton; Sandra K. Nolan

2001-04-01T23:59:59.000Z

457

Long Atmospheric Waves and the Polar-Plane Approximation to the Earth’s Spherical Geometry  

Science Conference Proceedings (OSTI)

The spherical geometry of the earth is replaced by polar cylindrical geometry, with a plane tangential to the earth at the pole. The resulting frequency and structure of free motions in an isothermal, adiabatic atmosphere with a resting basic ...

Alison F. C. Bridger; Duane E. Stevens

1980-03-01T23:59:59.000Z

458

Earth Sciences Division Research Summaries 2006-2007  

Science Conference Proceedings (OSTI)

Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from J

DePaolo, Donald; DePaolo, Donald

2008-07-21T23:59:59.000Z

459

How Will You Encourage Your Coworkers to Save Energy this Earth Day? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Will You Encourage Your Coworkers to Save Energy this Earth How Will You Encourage Your Coworkers to Save Energy this Earth Day? How Will You Encourage Your Coworkers to Save Energy this Earth Day? March 24, 2011 - 7:30am Addthis Earth Day is less than a month away, and now is the time to plan for it! We always like to encourage personal energy savings, but since you have almost a month until Earth Day, why not check out Amy's entry from Monday for some resources on how you can help your coworkers save energy as well? You can find all the materials you need to get your own energy awareness program up and running-just in time for Earth Day! How will you encourage your coworkers to save energy this Earth Day? And while you're encouraging your coworkers to save energy, we'd like to encourage you to help us make Energy Savers better! We want your

460

Numerical Simulation of Thermomechanical Processes Coupled ...  

Science Conference Proceedings (OSTI)

Atomistic Simulation Studies of Materials Interfaces: Recent Insights and .... Thermochemical Models and Phase Equilibria of Urania Rare Earth Fluorite Phases.

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Simulation of Homogenous Precipitation Using the KWN Model and ...  

Science Conference Proceedings (OSTI)

Atomistic Simulation Studies of Materials Interfaces: Recent Insights and .... Thermochemical Models and Phase Equilibria of Urania Rare Earth Fluorite Phases.

462

Optimization of the Mechanical Alloying Process of Soft Magnetic Fe ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title ... Advances in Rare-earth Free Permanent Magnets · Anisotropic Curie ...

463

Modeling of Magnetic and Structural Phase Transformations in Co ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, Modeling ... Advances in Rare-earth Free Permanent Magnets · Anisotropic Curie

464

PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS  

Science Conference Proceedings (OSTI)

Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications.

HOLROYD,R.

2007-01-01T23:59:59.000Z

465

New results for rare muon decays  

Science Conference Proceedings (OSTI)

Branching-ratio limits obtained with the Crystal Box detector are presented for the rare muon decays ..mu.. ..-->.. eee, ..mu.. ..-->.. e..gamma.., and ..mu.. ..-->.. e..gamma gamma... These decays, which violate the conservation of separate lepton-family numbers, are expected to occur in many extensions to the standard model. We found no candidates for the decay ..mu.. ..-->.. eee, yielding an upper limit for the branching ratio of B/sub ..mu..3e/ .. e..gamma.. candidates yields an upper limit of B/sub ..mu..e..gamma../ .. e..gamma gamma.. candidates gives an upper limit of B/sub ..mu..e..gamma gamma../ < 7.2 x 10/sup -11/. These results strengthen the constraints on models that allow transitions between lepton families.

Mischke, R.E.; Bolton, R.D.; Bowman, J.D.; Cooper, M.D.; Frank, J.S.; Hallin, A.L.; Heusi, P.A.; Hoffman, C.M.; Hogan, G.E.; Mariam, F.G.

1986-01-01T23:59:59.000Z

466

Minor Materials  

Science Conference Proceedings (OSTI)

Table 1   Materials used in glass manufacture...Table 1 Materials used in glass manufacture Material Purpose Antimony oxide (Sb 2 O 3 ) Decolorizing and fining agent Aplite (K, Na, Ca, Mg, alumina silicate) Source of alumina Aragonite (CaCO 3 ) Source of calcium oxide Arsenic oxide (As 2 O 3 ) Fining and decolorizing agent Barite/barytes (BaSO 4 )...

467

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

468

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

469

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

470

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

471

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

472

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Materials Negotiable Licensing Microseismic Tracer Particles for Hydraulic Fracturing Negotiable Licensing A Photo-Stimulated Low Electron Temperature High Current...

473

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and ...

474

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

475

Materials Studio  

Science Conference Proceedings (OSTI)

Jan 14, 2008 ... G. Fitzgerald; G. Goldbeck-Wood; P. Kung; M. Petersen; L. Subramanian; J. Wescott, " Materials Modeling from Quantum Mechanics to The ...

476

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and ...

477

The Earth Radiation Budget Experiment (ERBE)  

Science Conference Proceedings (OSTI)

The Earth Radiation Budget Experiment (ERBE) is the first multi-satellite system designed to measure the Earth's radiation budget. It will fly on a low-inclination NASA satellite and two Sun-synchronous NOAA satellites during the mid-1980s. Each ...

Bruce R. Barkstrom

1984-11-01T23:59:59.000Z

478

Mass Transportation on the Earth Ludovic Rifford  

E-Print Network (OSTI)

Mass Transportation on the Earth Ludovic Rifford Universit´e de Nice - Sophia Antipolis Ludovic Rifford Mass Transportation on the Earth #12;The framework Let M be a smooth connected compact surface), as the minimum of the lengths of the curves (drawn on M) joining x to y. Ludovic Rifford Mass Transportation

Rifford, Ludovic

479

NETL 2011 Earth Day Poster Contest Winners  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day Poster Contest Winners Earth Day Poster Contest Winners 2011 Earth Day Poster Winners Announced We are proud to announce the winners of the 2011 NETL Earth Day Poster contest. Students from schools across the country participated this year and we have chosen the top three entries in each grade (K-5). NETL Earth Day medals will be presented to all winners and certificates will be given to all participants. Photos of the winning entries are displayed below by grade. * Click on picture to bring up a larger PDF version * 2012, 2011, 2010, 2009, 2008, 2007, 2006 Kindergarten Winners First Grade Winners Second Grade Winners Kindergarten First Grade Second Grade Third Grade Winners Fourth Grade Winners Fifth Grade Winners Third Grade Fourth Grade Fifth Grade Winners By Grade

480

Method for laser drilling subterranean earth formations  

DOE Patents (OSTI)

Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

Shuck, Lowell Z. (Morgantown, WV)

1976-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "rare earth materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Materials Science Advanced Materials News  

Science Conference Proceedings (OSTI)

... Contributes to Discovery of Novel Quantum Spin-Liquid Release Date ... Novel Filter Material Could Cut Natural Gas Refining Costs Release Date: 03 ...

2010-12-16T23:59:59.000Z

482

Materials Science Advanced Materials Portal  

Science Conference Proceedings (OSTI)

... to Discovery of Novel Quantum Spin-Liquid. illustration of metal organic framework Novel Filter Material Could Cut Natural Gas Refining Costs. ...

2013-06-27T23:59:59.000Z

483

Fusion for Earth and Space  

Science Conference Proceedings (OSTI)

The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.

Williams, Pharis E

2009-03-16T23:59:59.000Z

484

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

485

Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA  

E-Print Network (OSTI)

.00 120.00 121.00 122.00 201.00 202.00 WHAM (Sarnau) WHAM (Pen Y Bryn) WHAM (Hafod Fawr) WHAM (Newborough) WHAM (Beddgelert) WHAM (Moel Fammau) WHAM (Nercwys) WHAM (Stanner Rocks) WHAM (Llanfair Wood Welshpool) WHAM (Pystyll Pant Y Dwr) WHAM (The Forest Berriew) WHAM (Ffridd Y Drum, Mathrafal) WHAM (Esgair Nya

Burdige, David

486

A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties  

SciTech Connect

The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.

Lu Qing [Department of Radiology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dong Fang Rd, Shanghai 200127 (China); Wei Daixu [National Engineering Research Center for Nanotechnology, 28 East Jiang Chuan Rd, Shanghai 200241 (China); Cheng Jiejun [Department of Radiology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dong Fang Rd, Shanghai 200127 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dong Fang Rd, Shanghai 200127 (China); Zhu Jun, E-mail: yzjzhu@163.com [National Engineering Research Center for Nanotechnology, 28 East Jiang Chuan Rd, Shanghai 200241 (China)

2012-08-15T23:59:59.000Z

487

Absolute light yield measurements on SrF$_{2}$ and BaF$_{2}$ doped with rare earth ions  

E-Print Network (OSTI)

Results of absolute light output measurements on strontium and barium fluoride doped with PrF$_3$ and CeF$_3$ are presented and compared with scintillators having well-known light output (NaI-Tl, CsI-Tl, BGO). For pure SrF$_2$ crystal we obtain a value of about 28600 photons/MeV.

Shendrik, Roman

2013-01-01T23:59:59.000Z

488

REPM'10 -Proceedings of the 21st Workshop on Rare-Earth Permanent Magnets and their Applications  

E-Print Network (OSTI)

86 Permanent Magnet Sources for Magnetic Refrigeration J. ROUDAUT1 , J.-P. YONNET1 , A. KEDOUS for magnetic refrigeration but it remains difficult to compare their performance. To overcome this issue some recent studies have proposed different magnet performance criteria and calculated the design performance

Paris-Sud XI, Université de

489

APPLICATION OF MECHANICAL ACTIVATION TO PRODUCTION OF PYROCHLORE CERAMIC CONTAINING SIMULATED RARE-EARTH ACTINIDE FRACTION OF HLW  

SciTech Connect

Samples of zirconate pyrochlore ceramic (REE)2(Zr,U)2O7 (REE = La-Gd) containing simulated REE-An fraction of HLW were synthesized by two routes: (1) conventional cold compaction of oxide mixtures in pellets under pressure of 200 MPa and sintering of the pellets at 1550 C for 24 hours; and (2) using preliminary mechanical activation of oxide powders in a linear inductive rotator (LIV-0.5E) and a planetary mill - activator with hydrostatic yokes (AGO-2U) for 5 or 10 min. All the samples sintered at 1550 C were monolithic and dense with high mechanical integrity. As follows from X-ray diffraction (XRD) data, the ceramic sample produced without mechanical activation is composed of pyrochlore as major phase but contains also minor unreacted oxides. The samples prepared from pre-activated mixtures are composed of the pyrochlore structure phase only. Scanning electron microscopy (SEM) data also show higher structural and compositional homogeneity of the samples prepared from mechanically activated batches. The samples produced from oxide mixtures mechanically activated in the LIV for 10 min were slightly contaminated with iron resulting in formation of minor perovskite structure phase not detected by XRD but seen on SEM-images of the samples. Comparison of the samples prepared from non-activated and activated batches showed higher density, lower open porosity, water uptake, and elemental leaching for the samples fabricated from mechanically activated oxide mixtures.

Stefanovsky, S.V.; Kirjanova, O.I.; Chizhevskaya, S.V.; Yudintsev, S.V.; Nikonov, B.S.

2003-02-27T23:59:59.000Z

490

Structural disorder and magnetism in rare-earth (R) R117Co54+xSn112 +/- y  

SciTech Connect

The cubic R117Co54+xSn112±y compounds (R = La–Lu, except Pm, Eu, and Yb) have been synthesized and characterized using X-ray diffraction and magnetization measurements. The existence of the compounds with R = Ce, Pr, Sm, Gd, Tb, and Dy has been confirmed, while new compounds with R = Y, La, Nd, Ho, Er, Tm, and Lu have been discovered. All of the studied phases adopt the Dy117Co57Sn112-type crystal structures with a giant cubic cell (a ? 30 Å) when the proper heat treatment regime was selected. The lattice parameter decreases from La to Lu, in accordance with the lanthanide contraction and indicating the trivalent state for Ce in Ce117Co54.5Sn115.2. The Co/Sn compositional ratio increases when the size of the R atoms decreases. A single crystal investigation of Gd117Co56.4Sn114.3 confirms extensive structural disorder, particularly around the (1/2, 1/2, 1/2) location of the unit cell (4b site). Such disorder leads to an elongation of the thermal ellipsoids for the atoms surrounding this location. The magnetic measurements of the compounds with R = Ce, Gd and Tb indicate weak magnetic interactions and non-collinear alignment of magnetic moments in the ordered state. The electrical resistivity of Gd117Co56.4Sn114.3 shows interesting behavior with a change of sign at TC for the d?/dT parameter.

Mudryk, Y. [Ames Laboratory; Manfrinetti, P. [University of Genova; Smetana, V. [Ames Laboratory; Liu, J. [Ames Laboratory; Fornasini, M. L. [University of Genova; Provino, A. [University of Genova; Pecharsky, V. K. [University of Genova; Miller, Gordon J. [Ames Laboratory; Gschneidner Jr., Karl A. [Ames Laboratory

2013-01-02T23:59:59.000Z

491

LANL | Earth and Environmental Sciences Division (EES)  

NLE Websites -- All DOE Office Websites (Extended Search)

EES Capabilities EES Capabilities To connect to an expanded list of key capabilities and the people at Los Alamos National Laboratory who have experience in those areas, use our Capabilities Search feature. search Click on the links below to explore our major capabilities and their research applications. Each capabilities page is cross-linked to relevant thrust development activities within EES Division. Computational Geoscience Earth Surface & Subsurface Characterization Los Alamos Seismic Network (LASN) Atmosphere, Environment & Ecosystems Imaging & Analysis of Earth & Atmosphere Signatures Energy, Earth & Environmental Systems Analysis Waste Characterization & Management Medical Ultrasound Imaging Carbon Sequestration Time Reversal More on Partnering in Technology at Los Alamos National Laboratory

492

SC e-journals, Earth Sciences  

Office of Scientific and Technical Information (OSTI)

Earth Sciences Earth Sciences Acta hydrochimica et hydrobiologica Advances in Geosciences - OAJ Aerobiologia Agricultural & Forest Meteorology Agronomy Journal American Journal of Science, The Annual Review of Earth and Planetary Sciences Applied and Environmental Soil Science - OAJ Applied Geochemistry Applied Radiation and Isotopes Aquatic Geochemistry Atmospheric Chemistry and Physics - OAJ Atmospheric Environment BioEnergy Research Biogeochemistry Biogeosciences - OAJ Biology and Fertility of Soils Boundary-Layer Meteorology Bulletin of Canadian Petroleum Geology, The Bulletin of Engineering Geology and the Environment Bulletin of Environmental Contamination and Toxicology Bulletin of the American Meteorological Society Bulletin of the Ecological Society of America Bulletin of Volcanology

493

Earth Sciences Division collected abstracts: 1979  

Science Conference Proceedings (OSTI)

This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

Henry, A.L.; Schwartz, L.L.

1980-04-30T23:59:59.000Z

494

thermoelectric materials  

E-Print Network (OSTI)

It has been proven that the maximum cooling temperature of a thermoelectric material can be increased by using either pulsed operation or graded Seebeck profiles. In this paper, we show that the maximum cooling temperature can be further increased by the pulsed operation of optimal inhomogeneous thermoelectric materials. A random sampling method is used to obtain the optimal electrical conductivity profile of inhomogeneous materials, which can achieve a much higher cooling temperature than the best uniform materials under the steady-state condition. Numerical simulations of pulsed operation are then carried out in the time domain. In the limit of low thermoelectric figure-of-merit ZT, the finite-difference time-domain simulations are verified by an analytical solution for homogeneous material. This numerical method is applied to high ZT BiTe materials and simulations show that the effective figure-of-merit can be improved by 153 % when both optimal graded electrical conductivity profiles and pulsed operation are used. 1.

Q Zhou; Z Bian; A Shakouri

2007-01-01T23:59:59.000Z

495

Enhanced Geothermal in Nevada: Extracting Heat From the Earth...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable...

496

Glossary Term - 10 Most Abundant Elements in the Earth's Crust  

NLE Websites -- All DOE Office Websites (Extended Search)

the Earth's Crust Previous Term (10 Most Abundant Compounds in the Earth's Crust) Glossary Main Index Next Term (10 Most Abundant Elements in the Universe) 10 Most Abundant...

497

NNSA Celebrates Earth Week: Pantex employees plant trees as part...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA Celebrates Earth Week: Pantex employees plant ... NNSA Celebrates Earth Week: Pantex employees plant trees as...

498

Geothermal: Sponsored by OSTI -- Earth Sciences Division annual...  

Office of Scientific and Technical Information (OSTI)

Earth Sciences Division annual report, 1976. Research programs in Earth sciences Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

499

NETL 2012 Earth Day Poster Contest Winners  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Earth Day Poster Winners Announced 2 Earth Day Poster Winners Announced We are proud to announce the winners of the 2012 NETL Earth Day Poster contest. Students from schools across the country participated this year and we have chosen the top three entries in each grade (K-5). NETL Earth Day medals will be presented to all winners and certificates will be given to all participants. Photos of the winning entries are displayed below by grade. * Click on picture to bring up a larger PDF version * 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006 Kindergarten Winners First Grade Winners Second Grade Winners Kindergarten First Grade Second Grade Third Grade Winners Fourth Grade Winners Fifth Grade Winners Third Grade Fourth Grade Fifth Grade Winners By Grade Kindergarten 1st Place - Wyatt N. - Franklin Elementary - Vanderbilt, PA

500

Earth: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Earth: Energy Resources Earth: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Per Wikipedia, "Earth is the third planet from the Sun, and the largest of the terrestrial planets in the Solar System in terms of diameter, mass and density." Worldwide Alternative Energy Investments The following table summarizes worldwide alternative energy investments over time. All figures are in millions of U.S. dollars. Retrieved from "http://en.openei.org/w/index.php?title=Earth&oldid=72128" Categories: Stubs Places What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow