National Library of Energy BETA

Sample records for rare earth element

  1. Ecotoxicity of rare earth elements Rare earth elements (REEs) or rare earth metals is the

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Ecotoxicity of rare earth elements Info Sheet Rare earth elements (REEs) or rare earth metals isolated. Actually, most rare earth elements exist in the Earth's crust in higher concentrations than though most people have never heard of rare earth elements, sev- eral of them govern mankind's modern

  2. Rare Earth Element Mines, Deposits, and Occurrences

    E-Print Network [OSTI]

    Torgersen, Christian

    Rare Earth Element Mines, Deposits, and Occurrences by Greta J. Orris1 and Richard I. Grauch2 Open Table 1. Rare earth mineral codes and associated mineral names.......................................................................................6 Table 2. Non-rare earth mineral codes and associated mineral names

  3. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect (OSTI)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)] [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  4. Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1

    E-Print Network [OSTI]

    Deng, Xing-Wang

    Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1 , Jigang Lic,d,1 , Qing (sent for review May 15, 2014) It has long been observed that rare earth elements (REEs) regulate, such as rare earth elements (REEs), have been observed for a long time to be beneficial to plant growth (1, 2

  5. Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina

    E-Print Network [OSTI]

    Royer, Dana

    and analyzed for major ions, trace metals, and rare earth elements (REE). The concentrations of REE in the RioHydrogeochemistry and rare earth element behavior in a volcanically acidified watershed to oxidation of sulfide minerals. D 2005 Elsevier B.V. All rights reserved. Keywords: Rare earth elements

  6. Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare-metal

    E-Print Network [OSTI]

    Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare in the Northwest Territories of Canada represents one of the largest resources of zirconium, niobium, yttrium

  7. Behavior Of Rare Earth Element In Geothermal Systems, A NewExploratio...

    Open Energy Info (EERE)

    Citation Scott A. Wood. 2002. Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool. () : Geothermal Technologies Legacy Collection....

  8. DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    recovering rare earth elements from coal and coal byproduct streams, such as fly ash, coal refuse, and aqueous effluents," and "to report its findings and, if determined...

  9. RARE EARTHS--2003 60.1 RARE EARTHS

    E-Print Network [OSTI]

    . U.S. imports of cerium compounds and rare-earth metals and alloys decreased (table 5). YttriumRARE EARTHS--2003 60.1 RARE EARTHS By James B. Hedrick Domestic survey data and tables were, geographic information specialist. The rare earths are a moderately abundant group of 17 elements comprising

  10. The effect of rare earth elements on the texture and formability of asymmetrically rolled magnesium sheet

    SciTech Connect (OSTI)

    Alderman, Dr. Martyn [Magnesium Elektron North America; Cavin, Odis Burl [ORNL; Davis, Dr. Bruce [Magnesium Elektron North America; Muralidharan, Govindarajan [ORNL; Muth, Thomas R [ORNL; Peter, William H [ORNL; Randman, David [Magnesium Elektron North America; Watkins, Thomas R [ORNL

    2011-01-01

    The lack of formability is a serious issue when considering magnesium alloys for various applications. Standard symmetric rolling introduces a strong basal texture that decreases the formability; however, asymmetric rolling has been put forward as a possible route to produce sheet with weaker texture and greater ductility. It has also been shown in recent work that weaker textures can be produced through the addition of rare earth elements to magnesium alloys. Therefore, this study has been carried out to investigate the effect of rare earth additions on the texture changes during asymmetric rolling. Two alloys have been used, AZ31B and ZEK100. The effect that the rare earth additions have on the texture of asymmetrically rolled sheet and the subsequent changes in formability will be discussed.

  11. ?-decay of neutron-rich Z?60 nuclei and the origin of rare earth elements

    SciTech Connect (OSTI)

    Wu, J. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan and School of Physics and State key Laboratory of Nuclear Physics and Technology, Peking University (China); Nishimura, S.; Lorusso, G.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P. A.; Sakurai, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Xu, Z. Y. [Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo (Japan); Browne, F. [School of Computing Engineering and Mathematics, University of Brighton (United Kingdom); Daido, R.; Fang, Y. F.; Yagi, A.; Nishibata, H.; Odahara, A.; Yamamoto, T. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Ideguchi, E.; Aoi, N.; Tanaka, M. [Research Center for Nuclear Physics, Osaka University (Japan); Collaboration: EURICA Collaboration; and others

    2014-05-02

    A large fraction of the rare-earth elements observed in the solar system is produced in the astrophysical rapid neutron capture process (r-process). However, current stellar models cannot completely explain the relative abundance of these elements partially because of nuclear physics uncertainties. To address this problem, a ?-decay spectroscopy experiment was performed at RI Beam Factory (RIBF) at RIKEN, aimed at studying a wide range of very neutron-rich nuclei with Z?60 that are progenitors of the rare-earth elements with mass number A?460. The experiment provides a test of nuclear models as well as experimental inputs for r-process calculations. This contribution presents the experimental setup and some preliminary results of the experiment.

  12. Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements

    SciTech Connect (OSTI)

    Hashida, Masaki; Sakabe, Shuji; Izawa, Yasukazu [ARCBS, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan) and Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan) and Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2011-03-15

    Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross sections of IIIa rare-earth-metal elements ({sigma}{sub Sc}, {sigma}{sub Y}, and {sigma}{sub Gd}) with those of alkali metals or helium {sigma}{sub 0}, we found that {sigma}{sub 0{approx_equal}{sigma}Sc}<{sigma}{sub Y}<{sigma}{sub Gd{approx_equal}}2{sigma}{sub 0}at an impact energy of 1000 eV.

  13. RARE-EARTH METALS--1997 61.1 RARE-EARTH METALS

    E-Print Network [OSTI]

    RARE-EARTH METALS--1997 61.1 RARE-EARTH METALS By James B. Hedrick The rare earths are a relatively million, to thulium and lutetium, the least abundant rare-earth elements at about 0.5 parts per million. Scandium, atomic number 21, is the lightest rare-earth element. It is the 31st most abundant element

  14. Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica

    E-Print Network [OSTI]

    Howat, Ian M.

    Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica Paolo. We suggest that such ultra-low concentrations are unlikely to be representative of the real REE

  15. RARE EARTHS By James B. Hedrick

    E-Print Network [OSTI]

    ), a wholly earths are iron gray to silvery lustrous metals; rare-earth tariffs for Canada and Mexico were1 RARE EARTHS By James B. Hedrick The rare earths are a relatively abundant enacted on November 30, 1993, and covered of rare earths for the second consecutive year. group of elements that range

  16. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    E-Print Network [OSTI]

    Sneden, Christopher; Cowan, John J; Ivans, Inese I; Hartog, Elizabeth A Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  17. Phase stable rare earth garnets

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  18. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect (OSTI)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  19. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect (OSTI)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 ?m (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  20. 13.21 Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits RL Linnen, University of Western Ontario, London, ON, Canada

    E-Print Network [OSTI]

    Chakhmouradian, Anton

    13.21 Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits RL Linnen, University of rare metals in natural fluids 551 13.21.2.2.2 Aqueous complexation and mineral solubility 552 13 Acknowledgments 564 References 564 13.21.1 Introduction Rare-element mineral deposits, also called rare-metal

  1. Microstructure and properties of 17-4PH steel plasma nitrocarburized with a carrier gas containing rare earth elements

    SciTech Connect (OSTI)

    Liu, R.L., E-mail: ruiliangliu@126.com [National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yan, M.F., E-mail: yanmufu@hit.edu.cn [National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wu, Y.Q. [National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, C.Z. [College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001 (China)

    2010-01-15

    The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surface layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.

  2. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Ellis, Timothy W. (Ames, IA); Dennis, Kevin W. (Ames, IA); Hofer, Robert J. (Ames, IA); Branagan, Daniel J. (Ames, IA)

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  3. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  4. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO?-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore »proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO?. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO? will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO? driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO? to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use proces

  5. Good Earths and Rare Earths | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Rousseaux Senior Writer, Office of Science What does this mean for me? Rare earth elements -- dysprosium, neodymium, terbium, europium and yttrium -- are essential to a...

  6. RARE EARTHS--2002 61.1 RARE EARTHS

    E-Print Network [OSTI]

    of rare earths are iron gray to silvery lustrous metals that are typically soft, malleable, ductile decreased as imports of rare-earth alloys, compounds, and metals declined. Production of bastnäsiteRARE EARTHS--2002 61.1 RARE EARTHS By James B. Hedrick Domestic survey data and tables were

  7. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOE Patents [OSTI]

    Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  8. Rare Earth ? See Rare Earth, by Ward and Brownlee

    E-Print Network [OSTI]

    Walter, Frederick M.

    Rare Earth ? See Rare Earth, by Ward and Brownlee #12;N to date N = N* fs fGHZfp nH fl fi fc L/T ·N Earth is "Just Right" Yes, life on Earth has adapted to Earth, but ... Earth has just the right mass to be ·Tectonically-active ·Retain an atmosphere Earth has had a stable climate The Sun is particularly inactive

  9. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite,

    E-Print Network [OSTI]

    /31/98 Thorium ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth

  10. (Data in metric tons of yttrium oxide (Y2O3) content, unless noted) Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth

  11. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    /31/96 Thorium ores and concentrates (monazite) 2612.20.0000 Free Free. Rare-earth metals, scandium and yttrium Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth

  12. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite,

    E-Print Network [OSTI]

    and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth fluocarbonate mineral, was mined

  13. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    .20.0000 Free Free. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth

  14. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral

    E-Print Network [OSTI]

    .20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5 Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite, but was not recovered as a separate element during processing. Bastnasite, a rare-earth fluocarbonate mineral, was mined

  15. Ames Lab 101: Rare Earths

    SciTech Connect (OSTI)

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  16. Ames Lab 101: Rare Earths

    ScienceCinema (OSTI)

    Gschneidner, Karl

    2012-08-29

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  17. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All

    E-Print Network [OSTI]

    -31-05 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All yttrium and compounds containing by weight >19% to rare-earth compounds, including

  18. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All

    E-Print Network [OSTI]

    . Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All yttrium. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium nitrate, and other individual

  19. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All

    E-Print Network [OSTI]

    -31-06 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All yttrium and compounds containing by weight >19% to rare-earth compounds, including

  20. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2008. All

    E-Print Network [OSTI]

    12-31-08 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium Production and Use: The rare-earth element yttrium was not mined in the United States in 2008. All yttrium and compounds containing by weight >19% to rare-earth compounds, including

  1. [Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All

    E-Print Network [OSTI]

    . Rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All yttrium. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium nitrate, and other individual

  2. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium

    E-Print Network [OSTI]

    Relations 12-31-04 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium and compounds containing by weight >19% to rare-earth compounds, including

  3. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2003.

    E-Print Network [OSTI]

    Relations 12/31/03 Thorium ores and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium Production and Use: The rare-earth element yttrium was not mined in the United States in 2003. Yttrium and compounds containing by weight >19% to rare-earth compounds, including

  4. Ternary rare earth-lanthanide sulfides

    DOE Patents [OSTI]

    Takeshita, Takuo (Omiya, JP); Gschneidner, Jr., Karl A. (Ames, IA); Beaudry, Bernard J. (Ames, IA)

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  5. PROJECT SUMMARY Many metals, such as the rare earth elements, Nb, Ta, Ge, In, Ga...are finding new applications both

    E-Print Network [OSTI]

    Canet, Léonie

    PROJECT SUMMARY Many metals, such as the rare earth elements, Nb, Ta, Ge, In, Ga...are finding new years ago access to natural metal resources, which were both abundant and easily accessible, caused of geologic context, metal concentration in rocks, separation and concentration techniques, and recycling

  6. Am phases in the matrix of a U–Pu–Zr alloy with Np, Am, and rare-earth elements

    SciTech Connect (OSTI)

    Janney, Dawn E.; Kennedy, J. Rory; Madden, James W.; O’Holleran, Thomas P.

    2015-01-01

    Phases and microstructures in the matrix of an as-cast U-Pu-Zr alloy with 3 wt% Am, 2% Np, and 8% rare-earth elements were characterized by scanning and transmission electron microscopy. The matrix consists primarily of two phases, both of which contain Am: ?-(U, Np, Pu, Am) (~70 at% U, 5% Np, 14% Pu, 1% Am, and 10% Zr) and ?-(U, Np, Pu, Am)Zr2 (~25% U, 2% Np, 10-15% Pu, 1-2% Am, and 55-60 at% Zr). These phases are similar to those in U-Pu-Zr alloys, although the Zr content in ?-(U, Np, Pu, Am) is higher than that in ?-(U, Pu) and the Zr content in ?-(U, Np, Pu, Am)Zr2 is lower than that in ?-UZr2. Nanocrystalline actinide oxides with structures similar to UO2 occurred in some areas, but may have formed by reactions with the atmosphere during sample handling. Planar features consisting of a central zone of ?-(U, Np, Pu, Am) bracketed by zones of ?-(U, Np, Pu, Am)Zr2 bound irregular polygons ranging in size from a few micrometers to a few tens of micrometers across. The rest of the matrix consists of elongated domains of ?-(U, Np, Pu, Am) and ?-(U, Np, Pu, Am)Zr2. Each of these domains is a few tens of nanometers across and a few hundred nanometers long. The domains display strong preferred orientations involving areas a few hundred nanometers to a few micrometers across.

  7. Imestigation ol" Maenons in Rare Earth Metals

    E-Print Network [OSTI]

    Imestigation ol" Maenons in Rare Earth Metals b\\ Inelastic Neutron Scattering tL Bjerrum Moiler #12;BLANK PAGE #12;Riso Report No. 178 Investigation of Magnons in Rare Earth Metals by Inelastic NeutronN LANGF h. a. dec. #12;Contents Page PREFACE 7 I. INTRODUCTION *> 1. Magnetism of Rare Earth Metals 10 2

  8. Replacing the Rare Earth Intellectual Capital

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained personnel to bring the entire rare earth industry, from mining to original equipment manufacturers (OEM), up to full speed in the next few years. Accompanying this decline in technical expertise, innovation and new products utilizing rare earth elements has slowed dramatically, and it may take a decade or more to recapture America's leading role in technological advancements of rare earth containing products. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects of the industry from mining to OEM. Today, only about 1,500 people are employed in these fields. The ratio of non-technically trained persons to those with college degrees in the sciences or engineering varies from about 8 to 1 to about 4 to 1, depending on the particular area of the industry. Assuming an average of 6 to 1, the number of college degree scientists and engineers has decreased from about 4,000 to 250 employed today. In the magnetic industry the approximate numbers are: 6,000 total with 750 technically trained people in the 1980s to 500 totally employed today of which 75 have degrees. The paucity of scientists and engineers with experience and/or training in the various aspects of production and commercialization of the rare earths is a serious limitation to the ability of the US to satisfy its own needs for materials and technologies (1) to maintain our military strength and posture, (2) to assume leadership in critical energy technologies, and (3) to bring new consumer products to the marketplace. The lack of experts is of even greater national importance than the halting in the 1990s and the recent restart of the mining/benification/separation effort in the US; and thus governmental intervention and support for at least five to 10 years will be required to ameliorate this situation. To respond quickly, training programs should be established in conjunction with a national research center at an educational institution with a long tradition in multiple areas of rare earth and other critical elements research and technology. This center should

  9. Understanding of Rare Earth Metals from Theory | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Rare Earth Metals from Theory The rare earth metals are becoming increasingly applicable in our everyday life. The enormous importance of rare earths in the technology,...

  10. Improved method for preparing rare earth sesquichalcogenides

    DOE Patents [OSTI]

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  11. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2010-01-01

    300-500°C. Doping rare earth phosphate glasses with Ce, andRare Earth Phosphate Glass and Glass-Ceramic Protonconductivity of alkaline-earth doped rare earth phosphate

  12. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless noted)

    E-Print Network [OSTI]

    Imports:3 Thorium ore (monazite) -- -- -- -- 22 Rare-earth metals, alloys 271 352 235 284 406 Cerium Exports:3 Thorium ore, monazite -- -- 3 27 -- Rare-earth metals, alloys 71 44 194 329 456 Cerium compounds. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. 31.3% ad val

  13. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect (OSTI)

    Ryan Ott

    2012-09-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  14. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema (OSTI)

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  15. The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand

    E-Print Network [OSTI]

    Mancco, Richard

    2012-01-01

    This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

  16. ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES

    E-Print Network [OSTI]

    Boyer, Edmond

    397 ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES C thin evaporated foils of heavy rare earths (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in three different chemical of high energy incident electrons (75 keV) transmitted through thin foils of yttric rare earth elements

  17. Yttrium and rare earth stabilized fast reactor metal fuel

    DOE Patents [OSTI]

    Guon, Jerold (Woodland Hills, CA); Grantham, LeRoy F. (Calabasas, CA); Specht, Eugene R. (Simi Valley, CA)

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  18. Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light

    E-Print Network [OSTI]

    Han, Jinkyu

    2013-01-01

    Mn 2+ and some of rare earth metals showing 4f-5d transitionare typically transition metal or rare earth elements. The

  19. Usage of Dibutyl Phosphoric Acid and Its Zirconium Salt for Extraction of Transplutonium Elements and Rare Earths with Their Partitioning

    SciTech Connect (OSTI)

    Zilberman, B.Ya.; Fedorov, Yu.S.; Shmidt, O.V.; Goletskiy, N.D.; Shishkin, D.N.; Esimantovskiy, V.M.; Rodionov, S.A.; Egorova, O.N.; Palenik, Yu.V. [RPA 'Khlopin Radium Institute', 28, 2nd Murinsky ave., Saint-Petersburg 194021 (Russian Federation)

    2007-07-01

    Dibutyl phosphoric acid (HDBP) formed by tributyl phosphate (TBP) destruction is soluble both in aqueous alkaline solutions and in organic solvents in acidic media. So, the solvent based on HDBP and its zirconium salt (ZS-HDBP) dissolved in polar diluent, e.g. in diluted TBP, is interesting for radwaste treatment, minimizing the amount of secondary organic wastes. Addition of Zr to 0.2 mol/L HDBP dissolved in 30% TBP results in successful extraction of lanthanides and actinides at the optimum ratio Zr:HDBP=1:(8-9) from 1.5 mol/L HNO{sub 3}, followed by their back-washing with 5 mol/L HNO{sub 3}. Partitioning of yttrium and cerium RE subgroups (the latter together with TPE) with the separation factor from 5 to 50 is also possible with purification from molybdenum. Strontium is extracted by 0.4 mol/L ZS HDBP from 0.3 mol/L HNO{sub 3} and stripped with 1.5 mol/L HNO{sub 3}. ZS-HDBP solution in 30% TBP is also capable of extraction of residual Np, Pu and corrosion-born iron. Stripping of these elements requires salt-free complexants. Solvents containing ZS-HDBP have high capacity, while TBP presence doubles it because of synergetic effect. The maximum solvent loading of 0.2 mol/L ZSHDBP in xylene was found as 8.0 g/L Eu and {approx}6 g/L Mo. The mixture of DTPA and formic acid is suitable for TPE/RE partitioning using ZS-HDBP as a solvent with separation factors for Ce/Am and Eu/Am of 67 and 9, respectively. Two variants of two-cycle flowsheet for TPE and RE partitioning after their joint recovery have been proposed, which differs by order of the cycles with acidic and buffer media at the partitioning. Both variants were successfully tested using simulate solutions on the centrifugal contactor rig with TPE/RE separation factor being {approx}60, the major impurity being Nd. Correction of the solvent composition because of HDBP loss due to its solubility in aqueous phase, especially at acidity less than 0.2 mol/L HNO{sub 3}, was also taken into consideration. Further investigations on HLW partitioning were aimed at Cs, Sr, TPE and RE joint extraction with the mixture of chlorinated cobalt dicarbollide (CCD) and ZSHDBP (dissolved in fluorinated diluent F-3). Joint recovery of Cs, Sr, TPE with RE, Mo and Fe from 0.5-3.0 mol/L HNO{sub 3} was demonstrated in the presence of polyethylene glycol (PEG). Extraction system is stable and has good hydrodynamic properties. A synergetic effect was observed in the system especially at the acidity 0.5-1 mol/L.TPE and RE back-washing with 5-8 mol/L HNO{sub 3} is possible, while Cs and Sr back-washing needs cation replacement. Such a result can achieved also without Zr, but with 0.5-1.5 mol/L HDBP in F-3. (authors)

  20. Rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    SciTech Connect (OSTI)

    Lewis, A.J.; Palmer, M.R.; Kemp, A.J. [Bristol Univ. (United Kingdom)] [Bristol Univ. (United Kingdom); Sturchio, N.C. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm: their chondrite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg{sup -1} ({ge}162 ppm), and {Sigma}REE concentrations in sinter are {ge}181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu{sup 2+} is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in mixing and dilution of the geothermal fluids and may have lead to changes in the extent and nature of REE complexing. 37 refs., 7 figs., 4 tabs.

  1. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  2. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, April D. (Knoxville, TN); Modine, Frank A. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN); Alim, Mohammad A. (Medina, OH); Mahan, Gerald D. (Oak Ridge, TN); Bartkowiak, Miroslaw (Oak Ridge, TN)

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  3. Electronic structure of rare-earth metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic structure of rare-earth metals The rare-earth metals are becoming increasingly applicable in our everyday life. The enormous importance of rare-earths in the technology,...

  4. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  5. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA)

    1986-09-16

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  6. On the Rare Earth Frontier

    E-Print Network [OSTI]

    Klinger, Julie Michelle

    2015-01-01

    might shed light on nuclear fission and was the first toproduced during nuclear fission and is only found, on Earth,neutron-induced nuclear fission of uranium and identified

  7. Rare earth phosphors and phosphor screens

    DOE Patents [OSTI]

    Buchanan, Robert A. (Palo Alto, CA); Maple, T. Grant (Sunnyvale, CA); Sklensky, Alden F. (Sunnyvale, CA)

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  8. Are Earths Rare? Perhaps Not

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic SpinsSolicitations & BusinessAre Earths

  9. Laminated rare earth structure and method of making

    DOE Patents [OSTI]

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  10. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOE Patents [OSTI]

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  11. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect (OSTI)

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S. [Vanderbilt University: 2301 Vanderbilt Place/PMB 351831, Nashville, TN 37235 (United States)

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  12. ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS

    E-Print Network [OSTI]

    Boyer, Edmond

    ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS A. R. MACKINTOSH H. C. Mrsted Institute terres rares Ikgeres. Abstract. -The magnetic properties of the light rare earth metals are reviewed the last decade, the magnetism of the heavy rare earth metals is now rather well understood. The magnetic

  13. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  14. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  15. MATERIALS WORLD January 201216 Dr Steve Barrett from the University of Liverpool, UK, has been studying rare earth metals for

    E-Print Network [OSTI]

    Barrett, Steve D.

    studying rare earth metals for 20 years. Here he explains how preparation of the surface layer is crucial to the functionality of these scarce elements. S tudies into the properties of rare earth metals have been active since of the geometric and electronic structure of single crystal rare earth metal surfaces were published. Studies

  16. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  17. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  18. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  19. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  20. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  1. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  2. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    SciTech Connect (OSTI)

    Riedemann, Trevor

    2011-01-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  3. 10 Questions for a Materials Scientist: Mr. Rare Earth -- Dr...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Questions for a Materials Scientist: Mr. Rare Earth -- Dr. Karl A. Gschneidner, Jr. 10 Questions for a Materials Scientist: Mr. Rare Earth -- Dr. Karl A. Gschneidner, Jr. April...

  4. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  5. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  6. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    at Mountain Pass were further processed into rare-earth compounds and metal products. The United States,980 3,770 2,840 5,800 Rare-earth metals, alloy 226 525 468 240 390 Exports: 2 Cerium compounds 840 1,350 1,640 992 730 Rare-earth metals, alloys 4,930 1,380 3,030 2,080 1,000 Other rare-earth compounds 455

  7. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    ) -- -- -- -- -- Rare-earth metals, alloy 867 784 564 188 250 Cerium compounds 2,590 2,680 2,080 1,500 1,400 Mixed REOs (monazite or various thorium materials) -- 1 61 18 1 Rare-earth metals, alloys 733 1,470 1,390 4,920 640 categories increased when compared with those of 2009--the categories "Rare-earth metals, alloy" and "Rare-earth

  8. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    ) -- -- -- -- 20 Rare-earth metals, alloy 880 867 784 679 210 Cerium compounds 2,170 2,590 2,680 2,080 1,190 Mixed (monazite or various thorium materials) -- -- 1 61 23 Rare-earth metals, alloys 636 733 1,470 1,390 6128 RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

  9. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    Thorium ore (monazite) -- -- -- 22 -- Rare-earth metals, alloys 352 235 284 905 442 Cerium compounds 806 1:3 Thorium ore, monazite -- 3 27 -- -- Rare-earth metals, alloys 44 194 329 444 272 Cerium compounds.20.0000 Free Free. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. 31

  10. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    -- -- -- -- Imports: Thorium ore (monazite) -- 22 56 11 --3 Rare-earth metals, alloys 284 905 429 529 760 Cerium 121 123 Exports: Thorium ore, monazite 27 -- -- -- --3 Rare-earth metals, alloys 329 444 250 991 856 (monazite) 2612.20.0000 Free Free. Rare-earth metals, whether or not intermixed or interalloyed 2805

  11. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    : Thorium ore (monazite) -- -- 22 56 --3 Rare-earth metals, alloys 235 284 905 429 507 Cerium compounds 1 Exports: Thorium ore, monazite 3 27 -- -- --3 Rare-earth metals, alloys 194 329 444 250 879 Cerium for individual rare-earth metals and compounds, with most import categories slightly behind 1996's record high

  12. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  13. Scintillation of rare earth doped fluoride nanoparticles

    SciTech Connect (OSTI)

    Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Ballato, J. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Yukihara, E. G. [Physics Department, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States); DeVol, T. A. [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634-0905 (United States)

    2011-09-12

    The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

  14. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    ,380 840 1,350 1,400 Rare-earth metals, alloys 1,470 1,390 4,920 1,380 3,400 Other rare-earth compounds 1,750 5,480 2,300 Rare-earth oxides, compounds 9,900 8,820 5,130 3,980 3,700 Rare-earth metals, alloy 784 scrap. Import Sources (2007­10): Rare-earth metals, compounds, etc.: China, 79%; France, 6%; Estonia, 4

  15. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA) [Richland, WA; Hoffmann, Markus M. (Richland, WA) [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  16. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA); Hoffmann, Markus M. (Richland, WA)

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  17. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  18. Enhanced pinning in mixed rare earth-123 films

    DOE Patents [OSTI]

    Driscoll, Judith L. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  19. Midbarrel hydrocracking process employing rare earth pillared clays

    SciTech Connect (OSTI)

    Gortsema, F.P.; McCauley, J.R.; Miller, J.G. Rabo, J.A.

    1991-02-26

    This patent describes improvement in a process for hydrocracking hydrocarbons boiling above about 700{degrees} F. to midbarrel fuel products boiling between about 300{degrees} F. and about 700{degrees} F. which includes contacting the hydrocarbons with hydrogen under effective hydrocracking conditions in the presence of a catalyst composition consisting of at least one hydrogenation component and at least one cracking component. The improvement comprises utilizing as the cracking component an expanded clay including pillars comprising at least one pillaring metal, at least one rare earth element and oxygen located between the sheets of at least one clay mineral or synthetic analogue thereof.

  20. Critical Materials Institute's rare-earth recycling tech goes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute's rare-earth recycling tech goes commercial OAK RIDGE, Tenn., Aug. 10, 2015-The Critical Materials Institute is celebrating its first commercial...

  1. DOE Announces RFI on Rare Earth Metals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy has released a Request for Information (RFI) soliciting information on rare earth metals and other materials used in the energy sector. The request is specifically...

  2. Rare-earth innovation to improve nylon manufacturing | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare-earth innovation to improve nylon manufacturing Contacts: For release: March 18, 2015 Igor I. Slowing, Critical Materials Institute, (515)-294-1959 Laura Millsaps, Ames...

  3. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    concentratese 10,000 5,000 5,000 5,000 5,000 Imports:2 Thorium ore (monazite) 11 -- -- -- -- Rare-earth metals,720 7,760 11,200 9,070 Ferrocerium, alloys 121 117 120 118 138 Exports:2 Rare-earth metals, alloys 991-2000): Monazite: Australia, 67%; and France, 33%. Rare-earth metals, compounds, etc.: China, 74%; France, 21

  4. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    concentratese 5,000 5,000 5,000 5,000 5,000 Imports:2 Thorium ore (monazite) -- -- -- -- -- Rare-earth metals,720 7,760 11,200 9,150 6,930 Ferrocerium, alloys 117 120 118 118 100 Exports:2 Rare-earth metals, alloys-2001): Rare-earth metals, compounds, etc.: China, 66%; France, 27%; Japan, 3%; Estonia, 2%; and other, 2

  5. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    ) 56 11 -- -- -- Rare-earth metals, alloys 429 529 953 1,780 2,370 Cerium compounds 3,180 1,810 4,940 3 metals, alloys 250 991 724 1,600 1,830 Cerium compounds 6,100 5,890 4,640 3,960 3,870 Other rare-earth-99): Monazite: Australia, 67%; France, 33%; Rare-earth metals, compounds, etc.: China, 71%; France, 23%; Japan

  6. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    ,260 10,900 11,400 8,550 10,600 Ferrocerium, alloys 89 111 105 130 140 Exports:2 Rare-earth metals, alloys-05): Rare-earth metals, compounds, etc.: China, 76%; France, 9%; Japan, 4%; Russia, 3%; and other, 8.20.0000 Free. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. Cerium

  7. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    ) -- -- -- -- -- Rare-earth metals, alloy 1,420 1,450 1,130 804 945 Cerium compounds 3,850 2,540 2,630 1,880 2,210 Mixed, compounds 9,150 7,260 10,900 11,400 9,800 Ferrocerium, alloys 118 89 111 105 142 Exports:2 Rare-earth metals-04): Rare-earth metals, compounds, etc.: China, 76%; France, 14%; Japan, 6%; Austria, 2%; and other, 2

  8. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    at Mountain Pass, CA, were further processed into rare-earth compounds and metal products. The United States -- -- -- -- 7,000 Exports: 2 Cerium compounds 1,380 840 1,350 1,640 1,100 Rare-earth metals, alloys 1,390 4,980 3,770 2,700 Rare-earth metals, alloy 679 226 525 468 280 Thorium ore (monazite or various thorium

  9. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    , compounds 7,760 11,200 9,150 7,260 10,900 Ferrocerium, alloys 120 118 118 89 111 Exports:2 Rare-earth metals Sources (1999-2002): Rare-earth metals, compounds, etc.: China, 66%; France, 25%; Japan, 4%; Estonia, 3) 2612.20.0000 Free. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad

  10. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    -- Rare-earth metals, alloy 1,130 804 880 867 831 Cerium compounds 2,630 1,880 2,170 2,590 3,090 Mixed metals, alloys 1,190 1,010 636 733 1,470 Cerium compounds 1,940 2,280 2,210 2,010 1,690 Other rare-earth-06): Rare-earth metals, compounds, etc.: China, 84%; France, 6%; Japan, 4%; Russia, 2%; and other, 4

  11. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    or various thorium materials) -- -- -- -- -- Rare-earth metals, alloy 804 880 867 784 807 Cerium compounds 1 metals, alloys 1,010 636 733 1,470 1,580 Cerium compounds 2,280 2,210 2,010 1,470 1,620 Other rare-earth (2004-07): Rare-earth metals, compounds, etc.: China, 87%; France, 5%; Japan, 4%; Russia, 2%; and other

  12. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    10,000 e 5,000 5,000 Imports:3 Thorium ore (monazite) 22 56 11 -- -- Rare-earth metals, alloys 905,720 5,600 Ferrocerium, alloys 78 107 121 117 122 Exports:3 Rare-earth metals, alloys 444 250 991 724 1%; Rare-earth metals, compounds, etc.: China, 75%; France, 19%; Japan, 3%; United Kingdom, 1%; and other

  13. Proposal for laser-cooling of rare-earth ions

    E-Print Network [OSTI]

    Lepers, Maxence; Wyart, Jean-François; Dulieu, Olivier

    2015-01-01

    The efficiency of laser-cooling relies on the existence of an almost closed optical-transition cycle in the energy spectrum of the considered species. In this respect rare-earth elements exhibit many transitions which are likely to induce noticeable leaks from the cooling cycle. In this work, to determine whether laser-cooling of singly-ionized erbium Er$^+$ is feasible, we have performed accurate electronic-structure calculations of energies and spontaneous-emission Einstein coefficients of Er$^+$, using a combination of \\textit{ab initio} and least-square-fitting techniques. We identify five weak closed transitions suitable for laser-cooling, the broadest of which is in the kilohertz range. For the strongest transitions, by simulating the cascade dynamics of spontaneous emission, we show that repumping is necessary, and we discuss possible repumping schemes. We expect our detailed study on Er$^+$ to give a good insight into laser-cooling of neighboring ions like Dy$^+$.

  14. Proposal for laser-cooling of rare-earth ions

    E-Print Network [OSTI]

    Maxence Lepers; Ye Hong; Jean-François Wyart; Olivier Dulieu

    2015-08-25

    The efficiency of laser-cooling relies on the existence of an almost closed optical-transition cycle in the energy spectrum of the considered species. In this respect rare-earth elements exhibit many transitions which are likely to induce noticeable leaks from the cooling cycle. In this work, to determine whether laser-cooling of singly-ionized erbium Er$^+$ is feasible, we have performed accurate electronic-structure calculations of energies and spontaneous-emission Einstein coefficients of Er$^+$, using a combination of \\textit{ab initio} and least-square-fitting techniques. We identify five weak closed transitions suitable for laser-cooling, the broadest of which is in the kilohertz range. For the strongest transitions, by simulating the cascade dynamics of spontaneous emission, we show that repumping is necessary, and we discuss possible repumping schemes. We expect our detailed study on Er$^+$ to give a good insight into laser-cooling of neighboring ions like Dy$^+$.

  15. Reduction Chemistry of Rare-Earth Metal Complexes: Toward New Reactivity and Properties

    E-Print Network [OSTI]

    Huang, Wenliang

    2013-01-01

    reduction chemistry of rare-earth metal complexes supportedof a series of rare-earth metal arene complexes. Highlightsmechanism for rare-earth metals; (2) the synthesis of the

  16. Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems

    E-Print Network [OSTI]

    Kvashnina, Kristina

    2007-01-01

    bombardment for twelve rare-earths metals [1] . Accord- ingal. [3] have showed that rare-earth metals such as La has aof most of the rare- earths metals, oxides, and chlorides.

  17. POWDER METALLURGICAL PROCESSING OF MAGNETOSTRICTIVE MATERIALS BASED ON RARE EARTH-IRON INTERMETALLIC COMPOUNDS

    E-Print Network [OSTI]

    Malekzadeh, Manoochehr

    2011-01-01

    by using an excess of rare earth metals during the course ofCrystal structure of rare earth-transition metal Laves phasemagnetostrictions among rare earth-transition metal as well

  18. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    ) -- -- -- -- -- Rare-earth metals, alloy 2,470 1,420 1,450 1,130 790 Cerium compounds 4,310 3,850 2,540 2,630 1 metals, alloys 1,650 884 1,300 1,190 1,240 Cerium compounds 4,050 4,110 2,740 1,940 2,000 Other rare-earth-03): Rare-earth metals, compounds, etc.: China, 67%; France, 17%; Japan, 4%; Estonia, 4%; and other, 8

  19. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes

    E-Print Network [OSTI]

    Huang, W; Huang, W; Dulong, F; Khan, SI; Cantat, T; Diaconescu, PL

    2014-01-01

    of Aromatic C-H Bonds by Rare Earth Metal Complexes Wenliangone week prior to use. Rare earth metal oxides (scandium,

  20. Rapporteur's Report - workshop on rare earth elements

    Broader source: Energy.gov (indexed) [DOE]

    below and above ground, and the material flows that connect them Common underpinning science giving opportunities for joint research or exchange of research tools. A range of...

  1. MAGNETISM AND SUPERCONDUCTIVITY OF ANOMALOUS RARE-EARTH METALS AND ALLOYS

    E-Print Network [OSTI]

    Boyer, Edmond

    MAGNETISM AND SUPERCONDUCTIVITY OF ANOMALOUS RARE-EARTH METALS AND ALLOYS B. COQBLIN Laboratoire de impurities. 1. Introduction. -The rare-earth metals can be divided in two groups : - The (( normal )) rare-earths lantha- num are (( anomalous )) rare-earths metals. The same duality exists in alloys with rareearth

  2. METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /. VALENCE INSTABILITIES, superconductivity, electron-phonon and band theory, to name a few. 2. Properties of normal rare earth metals. - Before discussing rare earth valence instabilities, three relevant general features of rare earth metals

  3. METALLIC HYDRIDES. Magnetic properties of laves-phase rare earth hydrides

    E-Print Network [OSTI]

    Boyer, Edmond

    METALLIC HYDRIDES. Magnetic properties of laves-phase rare earth hydrides J. J. Rhyne and G. E on the rare earth site. The rare earth spins disorder at a temperature lower than the bulk Tc in ErFe2 H3 5 per formula unit assuming complete occupation of 3 tetrahedral sites. The heavy rare earth (RFe2

  4. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  5. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA)

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  6. High efficiency rare-earth emitter for thermophotovoltaic applications

    SciTech Connect (OSTI)

    Sakr, E. S.; Zhou, Z.; Bermel, P., E-mail: pbermel@purdue.edu [Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, 1205 W. State St., West Lafayette, Indiana 47907 (United States)

    2014-09-15

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573?K (1300?°C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  7. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOE Patents [OSTI]

    Huang, Yuhong (West Hills, CA); Wei, Qiang (West Hills, CA); Zheng, Haixing (Oak Park, CA)

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  8. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOE Patents [OSTI]

    McMasters, O.D.

    1986-09-02

    Rods of magnetostrictive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube. 5 figs.

  9. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  10. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  11. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  12. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  13. Magnetism of the rare earth, 3d --Theoretical review Abstract. --Compounds of rare earth and transition metals exhibit unusual and quite different behaviour. In

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and secondly those determined mainly by rare earth metals. The first group are those rich in transition metal except TCo2, TNi5, T2Ni7, TNi3, TNi2. When the transition metal is magnetic, the coupling between rare-earth temperature are much smaller, and magnetic properties bear resemblances with rare earth metals. Thus we

  14. Effects of simulated rare earth recycling wastewaters on biological nitrification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Riman, Richard E.; Navrotsky, Alexandra

    2015-07-16

    Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N.more »europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.« less

  15. Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators

    SciTech Connect (OSTI)

    Kramer, Matthew; McCallum, Kendall; Anderson, Iver; Constantinides, Steven

    2012-06-29

    With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements.

  16. Good Earths and Rare Earths | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorge Gardea-Torresdey,Good Earths and

  17. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema (OSTI)

    Schatz, Hendrick [Michigan State University, East Lansing, Michigan, United States

    2010-01-08

    Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  18. Rare-earth tantalates and niobates suitable for use as nanophosphors

    SciTech Connect (OSTI)

    Nyman, May D; Rohwer, Lauren E.S& gt

    2013-11-19

    A family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  19. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles recently patented a new design for electric vehicle motors that use non-rare earth magnets. While most plug-in electric vehicles (PEVs) use motors with rare earth...

  20. Nuclear-Decay Studies of Neutron-Rich Rare-Earth Nuclides

    E-Print Network [OSTI]

    Chasteler, R.M.

    2010-01-01

    Hau88 and references therein]. Nuclide Experimental Qp. Ave.Studies of Neutron-Rich Rare-Earth Nuclides by University ofof Neutron-Rich Rare-Earth Nuclides Robert Mark Chasteler

  1. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals

    SciTech Connect (OSTI)

    Shen, J; Cui, HZ; Huang, XP; Gong, MG; Qin, W; Kirkeminde, A; Cui, J; Ren, SQ

    2015-01-01

    Earth abundant manganese bismuth (MnBi) has long been of interest due to its largemagnetocrystalline anisotropy and high energy density for advanced permanent magnet applications. However, solution synthesis of MnBi phase is challenging due to the reduction potential mismatch between Mn and Bi elements. In this study, we show a versatile MnBi synthesis method involving the metal co-reduction followed by thermal annealing. The magnetically hard MnBi crystalline phase is then exchange coupled with magnetically soft cobalt coating. Our processing approach offers a promising strategy for manufacturing rare-earth-free magnetic nanocrystals.

  3. Synthesis and Characterization of Rare-earth-free Magnetic Manganese Bismuth Nanocrystals

    SciTech Connect (OSTI)

    Shen, Jian Q.; Cui, Huizhong; Huang, Xiaopeng; Gong, Maogang; Qin, Wei; Kirkeminde, Alec; Cui, Jun; Ren, Shenqiang

    2015-01-01

    Earth abundant manganese bismuth (MnBi) has long been of interest due to its large magnetocrystalline anisotropy and high energy density for advanced permanent magnet applications. However, solution synthesis of MnBi phase is challenging due to the reduction potential mismatch between Mn and Bi elements. In this study, we show a versatile MnBi synthesis method involving the metal co-reduction followed by thermal annealing. The magnetically hard MnBi crystalline phase is then exchange coupled with magnetically soft cobalt coating. Our processing approach offers a promising strategy for manufacturing rare-earth-free magnetic nanocrystals.

  4. Structure of liquid transition and rare earth metals S. N. Khanna and F. Cyrot-Lackmann

    E-Print Network [OSTI]

    Boyer, Edmond

    L-45 Structure of liquid transition and rare earth metals S. N. Khanna and F. Cyrot-Lackmann Groupe It is shown that the observed structure factors of transition and rare earth liquid metals can be reaso- nably. The difference is particularly large for V, Ti, and rare earth metals which are precisely the metals where

  5. A Rare Earth-DOTA-Binding Antibody: Probe Properties and Binding Affinity across the Lanthanide Series

    E-Print Network [OSTI]

    Fisher, Andrew J.

    1) binds transition metals and rare earths with extreme stability under physiological conditionsA Rare Earth-DOTA-Binding Antibody: Probe Properties and Binding Affinity across the Lanthanide affinity and exquisite specificity.1 An antibody that binds rare earth complexes selectively could be used

  6. Valence, coordination number, and PAV cells in metallic rare earth compounds F. L. Carter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Valence, coordination number, and PAV cells in metallic rare earth compounds F. L. Carter Naval, generalized coordination numbers, and Pauling's metallic valences are given for 24 intermetallic rare earth self-consistently it was necessary to increase the rare earth metal (/-character and hence decrease

  7. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  8. Half-metallic to insulating behavior of rare-earth nitrides C. M. Aerts,1

    E-Print Network [OSTI]

    Svane, Axel Torstein

    Half-metallic to insulating behavior of rare-earth nitrides C. M. Aerts,1 P. Strange,1 M. Horne,1 W in the literature that rare-earth nitrides may form half-metallic ferromagnets.6­8 This is sur- prising because 30 January 2004 The electronic structure of the rare-earth nitrides is studied systematically using

  9. Review Article: Rare-earth monosulfides as durable and efficient cold cathodesa) Marc Cahayb)

    E-Print Network [OSTI]

    Boolchand, Punit

    structure, rare-earth monosulfides offer a more stable alternative to alkali metals to attain lowReview Article: Rare-earth monosulfides as durable and efficient cold cathodesa) Marc Cahayb made of these materials are very unstable. Beginning in 2001, we have studied rare-earth (RE

  10. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01

    various transition or rare-earth metals provide a rich ?eldTransition Metal (Mn) and Rare Earth (Gd) Doped AmorphousTransition Metal (Mn) and Rare Earth (Gd) Doped Amorphous

  11. The formation of crystals in glasses containing rare earth oxides

    SciTech Connect (OSTI)

    Fadzil, Syazwani Mohd [Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Hrma, Pavel [Pohang University of Science and Technology (POSTECH), Pohang, South Korea and Pacific Northwest National Laboratory, Richland, Washington (United States); Crum, Jarrod [Pacific Northwest National Laboratory, Richland, Washington (United States); Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt [National University of Malaysia, Bandar Baru Bangi, Selangor (Malaysia)

    2014-02-12

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{sub 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients T{sub B2O3}, T{sub SiO2}, T{sub CaO}, and T{sub RE2O3} were also evaluated using a recently published study.

  12. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect (OSTI)

    Wisby, I., E-mail: ilana.wisby@npl.co.uk; Tzalenchuk, A. Ya. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E. [Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296, Gothenburg (Sweden); Gwilliam, R. [Advanced Technology Institute, Faculty of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Meeson, P. J. [Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Lindström, T. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom)

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1?MHz and spin linewidths of 50–65?MHz.

  13. Synthesis and characterization of monodisperse spherical SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles with core-shell structure

    SciTech Connect (OSTI)

    Wang, H.; Yang, J.; Zhang, C.M. [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Lin, J., E-mail: jlin@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2009-10-15

    Spherical SiO{sub 2} particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Sm{sup 3+}, Er{sup 3+}, Ho{sup 3+}) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln{sup 3+} ion mainly shows its characteristic emissions in the core-shell particles from Gd{sub 2}O{sub 3}:Ln{sup 3+} (Eu{sup 3+}, Tb{sup 3+}, Sm{sup 3+}, Dy{sup 3+}, Er{sup 3+}, Ho{sup 3+}) shells. - Graphical abstract: The advantages of core-shell phosphors are the easy availability of homogeneous spherical morphology in different size, and its corresponding luminescence color can change from red, yellow to green.

  14. [Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: Rare earths were mined by one U.S. company in 2012. Bastnasite, a rare-earth

    E-Print Network [OSTI]

    and concentrates (monazite) 2612.20.0000 Free. Rare-earth metals, scandium and yttrium, whether or not intermixed Production and Use: Rare earths were mined by one U.S. company in 2012. Bastnasite, a rare-earth% Y2O3 2846.90.4000 Free. Other rare-earth compounds, including yttrium oxide >85% Y2O3, yttrium

  15. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal

    E-Print Network [OSTI]

    Suter, Dieter

    in a rare-earth-metal-ion-doped crystal Lars Rippe, Mattias Nilsson, and Stefan Kröll Department of Physics on optical interactions in rare-earth- metal-ion-doped crystals. The optical transition lines of the rare-earth-metal out in preparation for two-qubit gate operations in the rare-earth-metal-ion-doped crystals

  16. Reduction Chemistry of Rare-Earth Metal Complexes: Toward New Reactivity and Properties

    E-Print Network [OSTI]

    Huang, Wenliang

    2013-01-01

    Elsner, A. ; Milliken, M. As hybrid cars gobble rare metals,rare-earths are heavily used in fuel-efficient hybrid cars.In a leading model of hybrid car, 1 kilogram of neodymium

  17. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  18. Synthesis, Characterization and Structural Transformation of A Condensed Rare Earth Metal Coordination Polymer

    E-Print Network [OSTI]

    Li, Jing

    Synthesis, Characterization and Structural Transformation of A Condensed Rare Earth Metal metals under hydrothermal conditions.5 In this work, 1,4-benzenedicarboxylic acid has been selected

  19. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    SciTech Connect (OSTI)

    Jia, Shuang

    2008-12-15

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  20. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2015-09-16

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore »and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  1. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    E-Print Network [OSTI]

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  2. EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2011-01-01

    8erkeley Laboratory (LBL), the Earth Sciences Division, wasactivation analysis: rare earth element distribution (D)can be used to generate earth- quake records for use in

  3. Influence of rare earth doping on thermoelectric properties of SrTiO{sub 3} ceramics

    SciTech Connect (OSTI)

    Liu, J. Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.

    2013-12-14

    Thermoelectric properties of SrTiO{sub 3} ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO{sub 3} ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO{sub 3} ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr{sub 0.8}La{sub 0.18}Yb{sub 0.02}TiO{sub 3} ceramics were prepared, whose ZT value at 1?023?K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr{sub 0.8}La{sub 0.2}TiO{sub 3} (ZT?=?0.26)

  4. Grant Helps Make U.S. Rare Earth Magnets More Common

    Broader source: Energy.gov [DOE]

    Sintered rare earth magnets - which are vital components in hybrid vehicle motors and wind turbine generators - are a $4 billion worldwide industry. Landisville, Pa.-based Electron Energy Corporation is hoping to bring a share of that market (and jobs) to the U.S. with their sintered rare earth magnet innovation.

  5. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    SciTech Connect (OSTI)

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  6. Dialing in color with rare earth metals: facile photoluminescent production of true white light

    E-Print Network [OSTI]

    Tew, Gregory N.

    Dialing in color with rare earth metals: facile photoluminescent production of true white light of lanthanide ions which is the focus of this report. Rare earth metal complexes have relatively good Combining polymeric architectures with metal ions produces hybrid materials with extremely rich properties

  7. Rare Earth ? N = N* fs fGHZ fp nH fl

    E-Print Network [OSTI]

    Walter, Frederick M.

    Rare Earth ? #12;N to date N = N* fs fGHZ fp nH fl ·N* = 4 x 1011 ·fs = 0.2 ·fGHZ = 0.1 ·fp = 0.8 ·nH = 2 ·fl = 1.0 N = 1.3 x 1010 #12;The Goldilocks Effect Earth is "Just Right" Yes, life on Earth has adapted to Earth, but ... Earth has just the right mass to be ·Tectonically-active ·Retain

  8. Modeling the value recovery of rare earth permanent magnets at end-of-life

    SciTech Connect (OSTI)

    Cong, Liang; Jin, Hongyue; Fitsos, Pete; McIntyre, Timothy; Yih, Yuehwern; Zhao, Fu; Sutherland, John W.

    2015-01-01

    Permanent magnets containing rare earth elements (REEs) such as Dysprosium and Neodymium offer an advantage over non-REE containing magnets (e.g., ferrite and AlNiCo) in terms of power relative to size. However, REE availability has varied significantly in recent years leading to volatility in the cost of rare earth permanent magnets (REPMs). The supply of REEs can be increased by recycling consumer products and industrial machinery that contain REPMs at product end-of-life (EOL). This paper discusses the REE recovery process for EOL products. The optimal dismantling of products is examined with an emphasis placed on obtaining used REPMs. The challenge of collecting, managing, transporting, and processing used products is addressed through the development of a cost model for REPM recovery. This model is used to investigate several EOL strategies for recovering REPMs. Sensitivity analysis is conducted to identify the key factors that influence value recovery economics. A hard disk drive serves as a case study for model demonstration.

  9. Modeling the value recovery of rare earth permanent magnets at end-of-life

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cong, Liang; Jin, Hongyue; Fitsos, Pete; McIntyre, Timothy; Yih, Yuehwern; Zhao, Fu; Sutherland, John W.

    2015-01-01

    Permanent magnets containing rare earth elements (REEs) such as Dysprosium and Neodymium offer an advantage over non-REE containing magnets (e.g., ferrite and AlNiCo) in terms of power relative to size. However, REE availability has varied significantly in recent years leading to volatility in the cost of rare earth permanent magnets (REPMs). The supply of REEs can be increased by recycling consumer products and industrial machinery that contain REPMs at product end-of-life (EOL). This paper discusses the REE recovery process for EOL products. The optimal dismantling of products is examined with an emphasis placed on obtaining used REPMs. The challenge ofmore »collecting, managing, transporting, and processing used products is addressed through the development of a cost model for REPM recovery. This model is used to investigate several EOL strategies for recovering REPMs. Sensitivity analysis is conducted to identify the key factors that influence value recovery economics. A hard disk drive serves as a case study for model demonstration.« less

  10. Modeling the Value Recovery of Rare Earth Permanent Magnets at End-of-Life

    SciTech Connect (OSTI)

    McIntyre, Timothy J [ORNL

    2015-01-01

    Permanent magnets containing rare earth elements (REEs) such as Dysprosium and Neodymium offer an advantage over non-REE containing magnets (e.g. ferrite or AlNiCo) in terms of power relative to size. However, REE availability has varied significantly in recent years leading to volatility in the cost of rare earth permanent magnets (REPMs). The supply of REEs can be increased by recycling consumer products and industrial machinery that contain REPMs at product end-of-life (EOL). This paper discusses the REE recovery process for EOL products. The optimal dismantling of products is examined with an emphasis placed on obtaining used REPMs. The challenge of collecting, managing, transporting, and processing used products is addressed through the development of a cost model for REPM recovery. This model is used to investigate several EOL strategies for recovering REPMs. Sensitivity analysis is conducted to identify the key factors that influence value recovery economics. A hard disk drive serves as a case study for model demonstration.

  11. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect (OSTI)

    Dargis, Rytis, E-mail: dargis@translucentinc.com; Clark, Andrew; Erdem Arkun, Fevzi [Translucent, Inc., 952 Commercial St., Palo Alto, California 94303 (United States); Grinys, Tomas; Tomasiunas, Rolandas [Institute of Applied Research, Vilnius University, Sauletekio al. 10, LT-10223 Vilnius (Lithuania); O'Hara, Andy; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712 (United States)

    2014-07-01

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  12. Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms

    E-Print Network [OSTI]

    Chu, Xi

    Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients; published 29 March 2007 The dynamic scalar and tensor polarizabilities of the rare-earth-metal atoms coefficients for the interactions of the rare-earth-metal atoms with helium atoms. The static polarizabilities

  13. The impact of trade costs on rare earth exports : a stochastic frontier estimation approach.

    SciTech Connect (OSTI)

    Sanyal, Prabuddha; Brady, Patrick Vane; Vugrin, Eric D.

    2013-09-01

    The study develops a novel stochastic frontier modeling approach to the gravity equation for rare earth element (REE) trade between China and its trading partners between 2001 and 2009. The novelty lies in differentiating betweenbehind the border' trade costs by China and theimplicit beyond the border costs' of China's trading partners. Results indicate that the significance level of the independent variables change dramatically over the time period. While geographical distance matters for trade flows in both periods, the effect of income on trade flows is significantly attenuated, possibly capturing the negative effects of financial crises in the developed world. Second, the total export losses due tobehind the border' trade costs almost tripled over the time period. Finally, looking atimplicit beyond the border' trade costs, results show China gaining in some markets, although it is likely that some countries are substituting away from Chinese REE exports.

  14. Rare earth/iron fluoride and methods for making and using same

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Wheelock, John T. (Neveda, IA); Peterson, David T. (Ames, IA)

    1991-12-17

    A particulate mixture of Fe.sub.2 O.sub.3 and RE.sub.2 O.sub.3, where RE is a rare earth element, is reacted with an excess of HF acid to form an insoluble fluoride compound (salt) comprising REF.sub.3 and FeF.sub.3 present in solid solution in the REF.sub.3 crystal lattice. The REF.sub.3 /FeF.sub.3 compound is dried to render it usable as a reactant in the thermite reduction process as well as other processes which require an REF.sub.3 /FeF.sub.3 mixture. The dried REF.sub.3 /FeF.sub.3 compound comprises about 5 weight % to about 40 weight % of FeF.sub.3 and the balance REF.sub.3 to this end.

  15. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2010-01-01

    Phosphate Glass and Glass-Ceramic Proton Conductors Hannah.phosphate glasses and glass-ceramics were investigated. Therare earth phosphate ceramics, glasses, and glass-ceramics

  16. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    E-Print Network [OSTI]

    Khan, Sami

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth ...

  17. Need rare-earths know-how? The Critical Materials Institute offers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research Contacts: For release: Dec. 1, 2015 Alex King, Director, Critical...

  18. Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex

    E-Print Network [OSTI]

    Huang, Yanyi

    Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex form 18 October 2001 Abstract A bilayer organic light-emitting diode using a blue-fluorescent yttrium

  19. Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals

    E-Print Network [OSTI]

    Vanhoutte, Michiel

    Broadband and anisotropic light emission from rare-earth doped tellurite thin films is demonstrated using Er[superscript 3+]-TeO[subscript 2] photonic crystals (PhCs). By adjusting the PhC parameters, photoluminescent light ...

  20. The effect of machine and material parameters on rare earth roller separation

    E-Print Network [OSTI]

    Hu, Esther, S.B. Massachusetts Institute of Technology

    2009-01-01

    This study addresses the affect of machine and material factors on the separation of PET plastic and aluminum on the Rare Earth Roller magnetic separator. The purposes of this study are to gain a better understanding of ...

  1. Origin of enhanced magnetization in rare earth doped multiferroic bismuth ferrite

    SciTech Connect (OSTI)

    Nayek, C.; Thirmal, Ch.; Murugavel, P., E-mail: muruga@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 36 (India); Tamilselvan, A.; Balakumar, S. [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 25 (India)

    2014-02-21

    We report structural and magnetic properties of rare earth doped Bi{sub 0.95}R{sub 0.05} FeO{sub 3} (R?=?Y, Ho, and Er) submicron particles. Rare earth doping enhances the magnetization and the magnetization shows an increasing trend with decreasing dopant ionic radii. In contrast to the x-ray diffraction pattern, we have seen a strong evidence for the presence of rare earth iron garnets R{sub 3}Fe{sub 5}O{sub 12} in magnetization measured as a function of temperature, in selected area electron diffraction, and in Raman measurements. Our results emphasised the role of secondary phases in the magnetic property of rare earth doped BiFeO{sub 3} compounds along with the structural distortion favoring spin canting by increase in Dzyaloshinskii-Moriya exchange energy.

  2. R&D carries cerium substitute for rare-earth magnets story |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D carries cerium substitute for rare-earth magnets story R&D Magazine carried a story about Ames Laboratory research that uses cheaper and readily available cerium to replace...

  3. Vehicle Technologies Office Merit Review 2015: Non-Rare Earth Motor Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non-rare earth...

  4. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth...

    Office of Scientific and Technical Information (OSTI)

    Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides Citation Details In-Document Search Title: Pressure Dependence of the Charge-Density-Wave Gap in...

  5. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Office of Environmental Management (EM)

    (PEVs) use motors with rare earth metals, these materials are expensive, their prices have been highly volatile (from 80kg to 750kg), and their supply may fall short...

  6. A mathematical simulation of earth satellite explosion debris orbital elements 

    E-Print Network [OSTI]

    Mabrey, Wayne Edward

    1970-01-01

    A MATHEMATICAL SIKJLATION OF EARTH SATELLITE EXPLOSION DEBRIS ORBITAI ELEMENTS A Thesis WAYNE EDWARD NABREY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of NASTER OF SCIENCE... Nay 1970 Major Subject Nathematics A MATHEMATICAL SlmZATION OZ EARTH SATELLITE EXPLOSION DEBRIS ORBITAL ELEMENTS A Thesis WAI? EDWARD MABREY Approved as to style and content by: haxrman o ommi tee Head o epartment mber Member May 1...

  7. Behavior of Rare Earth Elements in Geothermal Systems- A New...

    Open Energy Info (EERE)

    Geothermal Systems- A New ExplorationExploitation Tool? Abstract NA Author Scott A. Wood Published Department of Geology and Geological Engineering University of Idaho, 2001...

  8. CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum6Materials3 CMI

  9. Behavior Of Rare Earth Element In Geothermal Systems, A New

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc

  10. Behavior of Rare Earth Elements in Geothermal Systems- A New

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindIncExploration/Exploitation Tool? |

  11. Coherent storage of microwave excitations in rare-earth nuclear spins

    E-Print Network [OSTI]

    Gary Wolfowicz; Hannes Maier-Flaig; Robert Marino; Alban Ferrier; Hervé Vezin; John J. L. Morton; Philippe Goldner

    2014-12-23

    Interfacing between various elements of a computer - from memory to processors to long range communication - will be as critical for quantum computers as it is for classical computers today. Paramagnetic rare earth doped crystals, such as Nd$^{3+}$:Y$_2$SiO$_5$ (YSO), are excellent candidates for such a quantum interface: they are known to exhibit long optical coherence lifetimes (for communication via optical photons), possess a nuclear spin (memory) and have in addition an electron spin that can offer hybrid coupling with superconducting qubits (processing). Here we study two of these three elements, demonstrating coherent storage and retrieval between electron and $^{145}$Nd nuclear spin states in Nd$^{3+}$:YSO. We find nuclear spin coherence times can reach 9 ms at $\\approx 5$ K, about two orders of magnitude longer than the electron spin coherence, while quantum state and process tomography of the storage/retrieval operation reveal an average state fidelity of 0.86. The times and fidelities are expected to further improve at lower temperatures and with more homogeneous radio-frequency excitation.

  12. Computer modelling of the reduction of rare earth dopants in barium aluminate

    SciTech Connect (OSTI)

    Rezende, Marcos V. dos S; Valerio, Mario E.G. [Department of Physics, Federal University of Sergipe, 49100-000 Sao Cristovao, SE (Brazil); Jackson, Robert A., E-mail: r.a.jackson@chem.keele.ac.uk [School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom)

    2011-08-15

    Long lasting phosphorescence in barium aluminates can be achieved by doping with rare earth ions in divalent charge states. The rare earth ions are initially in a trivalent charge state, but are reduced to a divalent charge state before being doped into the material. In this paper, the reduction of trivalent rare earth ions in the BaAl{sub 2}O{sub 4} lattice is studied by computer simulation, with the energetics of the whole reduction and doping process being modelled by two methods, one based on single ion doping and one which allows dopant concentrations to be taken into account. A range of different reduction schemes are considered and the most energetically favourable schemes identified. - Graphical abstract: The doping and subsequent reduction of a rare earth ion into the barium aluminate lattice. Highlights: > The doping of barium aluminate with rare earth ions reduced in a range of atmospheres has been modelled. > The overall solution energy for the doping process for each ion in each reducing atmosphere is calculated using two methods. > The lowest energy reduction process is predicted and compared with experimental results.

  13. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nobre, G. P. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palumbo, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hoblit, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dietrich, F. S. [Walnut Creek, CA (United States)

    2015-02-01

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. These results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.

  14. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    E-Print Network [OSTI]

    G. P. A. Nobre; A. Palumbo; F. S. Dietrich; M. Herman; D. Brown; S. Hoblit

    2014-12-22

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. These results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.

  15. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-65 THE ELECTRON/C STRUCTURE OF RARE-EARTHS.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /C STRUCTURE OF RARE-EARTHS. Band structures of rare earth metals(*) B. N. Harmon Ames Laboratory structure of the rare earth metals. The first calculations for the paramagnetic state of these fascinating structure of rare earth metals. The reviews by Dimmock [I] and Freeman [2] are well known. In addition a new

  16. Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations

    SciTech Connect (OSTI)

    Shelly X. Li; Steven D. Herrmann; Michael F. Simpson

    2009-09-01

    Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations Shelly X. Li, Steven D. Herrmann, and Michael F. Simpson Pyroprocessing Technology Department Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID 83415 USA Abstract - A series of six bench-scale liquid cadmium cathode (LCC) tests was performed to obtain basic separation data with focus on the behavior of rare earth elements. The electrolyte used for the tests was a mixed salt from the Mk-IV and Mk-V electrorefiners, in which spent metal fuels from Experimental Breeder Reactor-II (EBR-II) had been processed. Rare earth (RE) chlorides, such as NdCl3, CeCl3, LaCl3, PrCl3, SmCl3, and YCl3, were spiked into the salt prior to the first test to create an extreme case for investigating rare earth contamination of the actinides collected by a LCC. For the first two LCC tests, an alloy with the nominal composition of 41U-30Pu-5Am-3Np-20Zr-1RE was loaded into the anode baskets as the feed material. The anode feed material for Runs 3 to 6 was spent ternary fuel (U-19Pu-10Zr). The Pu/U ratio in the salt varied from 0.6 to 1.3. Chemical and radiochemical analytical results confirmed that U and transuranics can be collected into the LCC as a group under the given run conditions. The RE contamination level in the LCC product was up to 6.7 wt% of the total metal collected. The detailed data for partitioning of actinides and REs in the salt and Cd phases are reported in the paper.

  17. Origin of Low-Lying Enhanced E1 Strength in Rare-Earth Nuclei

    E-Print Network [OSTI]

    M. Spieker; S. Pascu; A. Zilges; F. Iachello

    2015-05-17

    The experimental $E1$ strength distribution below 4 MeV in rare-earth nuclei suggests a local breaking of isospin symmetry. In addition to the octupole states, additional $1^-$ states with enhanced E1 strength have been observed in rare-earth nuclei by means of ($\\gamma,\\gamma'$) experiments. By reproducing the experimental results, the spdf interacting boson model calculations provide further evidence for the formation of an $\\alpha$ cluster in medium-mass nuclei and might provide a new understanding of the origin of low-lying E1 strength.

  18. Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth Doped Crystal

    E-Print Network [OSTI]

    Christopher O'Brien; Nikolai Lauk; Susanne Blum; Giovanna Morigi; Michael Fleischhauer

    2014-07-25

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of $\\pi$-pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare earth doped crystals, we make use of a special transfer protocol using staggered $\\pi$-pulses. We predict total transfer efficiencies on the order of 90%.

  19. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles

    E-Print Network [OSTI]

    Derom, S; Pillonnet, A; Benamara, O; Jurdyc, A M; Girard, C; Francs, G Colas des

    2013-01-01

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) are achieved by tuning either the dipolar or quadrupolar particle resonance to the rare earth ions excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  20. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    SciTech Connect (OSTI)

    Jia, Li-Ping; Zhang, Qiang [Department of Chemistry, Tongji University, Shanghai 200092 (China); State Key Laboratory of Pollution Control and Resource Reuse (Tongji University) (China); Yan, Bing, E-mail: byan@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); State Key Laboratory of Pollution Control and Resource Reuse (Tongji University) (China)

    2014-07-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF{sub 5} (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd{sup 3+}, Eu{sup 3+}, Tb{sup 3+}) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba{sub 2}LaF{sub 7}:Yb, Tm(Er), Ba{sub 2}REF{sub 7}:Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed.

  1. Hydrogen absorption characteristics of oxygen-stabilized rare-earth iron intermetallic compounds

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydrogen absorption characteristics of oxygen-stabilized rare-earth iron intermetallic compounds M Abstract. -- The thermal behavior of oxygen-stabilized RjFegO^-hydrogen (R = Y, Dy, Ho) systems was studied decade to the study of the hydrogenation characte- ristics of a variety of intermetallic compounds, our

  2. Thermal treatment for increasing magnetostrictive response of rare earth-iron alloy rods

    DOE Patents [OSTI]

    Verhoeven, J.D.; McMasters, O.D.

    1989-07-18

    Magnetostrictive rods formed from rare earth-iron alloys are subjected to a short time heat treatment to increase their magnetostrictive response under compression. The heat treatment is preferably carried out at a temperature of from 900 to 1,000 C for 20 minutes to six hours.

  3. Synthesis, Computations and Characterizations of Low Dimensional Rare-Earth Compounds 

    E-Print Network [OSTI]

    Chen, Chun-Yu

    2014-04-28

    coupling possible. Four new rare-earth compounds were synthesized in this work, I. Gd_(9)Br_(16)O_(4), II. Gd_(6)Br_(7)Si_(2), III. Pr_(3)Si and IV. Pr_(2)I_(2)Ge. The first two gadolinium bromide compounds exhibit 1-dimensional Ln-Ln-bonded motifs imbedded...

  4. Magnetic behaviour of the rare earth binary R-Fe alloys

    SciTech Connect (OSTI)

    Cabral, F.A.O.; Turtelli, R.S.; Gama, S.; Machado, F.L.A. )

    1989-09-01

    Thermomagnetic analysis and coercive field measurements in rare-earth-rich alloys of the systems Fe-Ce, Fe-Pr and Fe-Nd suggest the presence of two different magnetically hard phases in all these systems. These phases can be metastable and their magnetic properties are strongly affected by heat-treatments at 600{sup 0}C.

  5. Ternary rare earth-lanthanide sulfides. [Re = Eu, Sm or Yb

    DOE Patents [OSTI]

    Takeshita, Takuo; Gschneidner, K.A. Jr.; Beaudry, B.J.

    1986-03-06

    Disclosed is a new ternary rare earth sulfur compound having the formula La/sub 3-x/M/sub x/S/sub 4/, where M is europium, samarium, or ytterbium, with x = 0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000/sup 0/C.

  6. Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba{sub 2}LnOsO{sub 6} (Ln=rare earths)

    SciTech Connect (OSTI)

    Hinatsu, Yukio Doi, Yoshihiro; Wakeshima, Makoto

    2013-10-15

    The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Os{sup 5+} ions are structurally ordered at the M site of the perovskite BaMO{sub 3}. Magnetic susceptibility and specific heat measurements show that an antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Magnetic ordering of Ln{sup 3+} moments occurs when the temperature is furthermore decreased. - Graphical abstract: The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. An antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Measurements and analysis of the specific heat for Ba{sub 2}PrOsO{sub 6} show that magnetic ordering of the Pr{sup 3+} moments should have occurred at ?20 K. Display Omitted.

  7. Two types of rare earth-organic frameworks constructed by racemic tartaric acid

    SciTech Connect (OSTI)

    Jiang Zhanguo [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Lv Yaokang [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Cheng Jianwen [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Feng Yunlong, E-mail: sky37@zjnu.edu.cn [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2012-01-15

    Hydrothermal reactions of rare earth oxides with racemic tartaric acid (H{sub 2}tar) yielded 7 rare earth(III) MOFs with general formulas [R{sub 2}(tar){sub 3}(H{sub 2}O){sub 2}]{sub n} (R=Y (1), Sm (4), Eu (5), Tb (6), Dy (7)) and [R{sub 2}(tar){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 2}]{sub n}{center_dot}4nH{sub 2}O (R=La (2), Nd (3)). X-ray powder diffraction analysis and single-crystal X-ray diffraction analysis reveal that they present two different structural types. MOFs 1, 4, 5, 6 and 7 are isostructural and crystallize in the orthorhombic non-centrosymmetric space group Iba2, and feature unusual fsc-3,4-Iba2 topology. MOFs 2 and 3 are isostructural and crystallize in monoclinic P2{sub 1}/c space group and display rare fsx-4,5-P2{sub 1}/c topology containing hydrophilic channels bounded by triple helical chains along a axis. MOFs 3, 4, 5, 6 and 7 exhibit intense lanthanide characteristic photoluminescence at room temperature. - Graphical Abstract: [R{sub 2}(tar){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 2}]{sub n}{center_dot}4nH{sub 2}O (R=La (2), Nd (3)) display rare fsx-4,5-P2{sub 1}/c topology containing hydrophilic channels bounded by triple helical chains along a axis. Highlights: Black-Right-Pointing-Pointer Two types of rare earth MOFs were synthesized by hydrothermal conditions. Black-Right-Pointing-Pointer MOFs feature unusual fsc-3,4-Iba2 and rare fsx-4,5-P2{sub 1}/c topology structures. Black-Right-Pointing-Pointer MOFs exhibit intense lanthanide characteristic photoluminescence.

  8. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore »have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less

  9. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  10. Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect

    E-Print Network [OSTI]

    H. Sabri

    2015-06-11

    The spectral statistics of even-even rare-earth nuclei are investigated by using all the available empirical data for Ba, Ce, Nd, Sm, Gd, Dy, Er, Yb and Hf isotopes. The Berry- Robnik distribution and Maximum Likelihood estimation technique are used for analyses. An obvious deviation from GOE is observed for considered nuclei and there are some suggestions about the effect due to mass, deformation parameter and shell model configurations.

  11. Structural and crystal chemical properties of rare-earth titanate pyrochlores

    SciTech Connect (OSTI)

    Farmer, James Matthew; Boatner, Lynn A; Chakoumakos, Bryan C; Du, Mao-Hua; Lance, Michael J; Rawn, Claudia J.; Bryan, Jeff C.

    2014-01-01

    Rare-earth titanates, RE2Ti2O7 (where RE = a rare-earth) with the pyrochlore structure continue to be investigated for use as potential stable host materials for nuclear and actinide-rich wastes. Accordingly, the present work is directed towards the elucidation of the fundamental structural, physical, and thermochemical properties of this class of compounds. Single-crystals of the rare earth pyrochlores were synthesized using a high-temperature flux technique and were subsequently characterized using single-crystal X-ray diffraction. The cubic lattice parameters display an approximately linear correlation with the RE-site cation radius. Theoretical calculations of the lattice constants and bond lengths of the subject materials were carried out using density functional theory, and the results are compared to the experimental values. The Sm and Eu titanates exhibit a covalency increase between the REO8 and TiO6 polyhedra resulting in a deviation from the increasing linear lattice parameter through the transition series. Gd2Ti2O7 with the 4f7 half-filled f-orbital Gd3+ sub-shell exhibits the lowest 48f oxygen positional parameter. The coefficient of thermal expansion for the rare-earth titanate series is approximately linear, and it has a range of 10.1 11.2 x 10-6 C-1. Raman spectroscopy indicated that the ~530 cm-1 peak associated with the Ti-O stretching mode follows a general trend of decreasing frequency with increasing RE reduced mass.

  12. Method of increasing magnetostrictive response of rare earth-iron alloy rods

    DOE Patents [OSTI]

    Verhoeven, J.D.; McMasters, O.D.; Gibson, E.D.; Ostenson, J.E.; Finnemore, D.K.

    1989-04-04

    This invention comprises a method of increasing the magnetostrictive response of rare earth-iron (RFe) magnetostrictive alloy rods by a thermal-magnetic treatment. The rod is heated to a temperature above its Curie temperature, viz. from 400 to 600 C; and, while the rod is at that temperature, a magnetic field is directionally applied and maintained while the rod is cooled, at least below its Curie temperature. 2 figs.

  13. First-principles study of He point-defects in HCP rare-earth metals

    SciTech Connect (OSTI)

    Li, Yang; Chen, Ru; Peng, SM; Long, XG; Wu, Z.; Gao, Fei; Zu, Xiaotao

    2011-05-01

    He defect properties in Sc, Y, Gd, Tb, Dy, Ho, Er and Lu were studied using first-principles calculations based on density functional theory. The results indicate that the formation energy of an interstitial He atom is smaller than that of a substitutional He atom in all hcp rare-earth metals considered. Furthermore, the tetrahedral interstitial position is more favorable than an octahedral position for He defects. The results are compared with those from bcc and fcc metals.

  14. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979,page C5-40 High field magnetoresistanceof silver containing rare-earth impurities

    E-Print Network [OSTI]

    Boyer, Edmond

    and exchange scattering. 1. General. -Rare-earth impurities in metals give rise to an anisotropic magnetoresistanceof silver containing rare-earth impurities J. C. Ousset I.N.S.A., UniversitC Paul Sabatier, 31000 magnetoresistance dis- appears for Gd impurities (L = 0) and changes its sign half-way in the heavy rare-earth

  15. JOURNAL DE PHYSIQUE Colloque C5, suppliment au no 5, Tome 40, Mai 1979,page C5-46 High-temperature Hall effect in rare earth metals

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -temperature Hall effect in rare earth metals M. V. Vedernikov, V. G. Dvunitkin and N. I. Moreva A. F. Ioffe. Abstract. - Up to date the Hall effect in rare earth metals (REM) was studied rather extensively below at http://dx.doi.org/10.1051/jphyscol:1979518 #12;HIGH-TEMPERATURE HALL EFFECT IN RARE EARTH METALS C5

  16. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  17. Visible light activated photocatalytic behaviour of rare earth modified commercial TiO{sub 2}

    SciTech Connect (OSTI)

    Tobaldi, D.M.; Seabra, M.P.; Labrincha, J.A.

    2014-02-01

    Highlights: • RE gave more surface hydroxyl groups attached to the photocatalyst's surface. • RE gave the modified and fired samples a high specific surface area. • Photocatalytic activity was assessed in gas–solid phase under visible-light exposure. • Thermal treated RE-TiO{sub 2}s showed a superior visible-light photocatalytic activity. • La-TiO{sub 2} was the best performing photocatalyst. - Abstract: A commercial TiO{sub 2} nanopowder, Degussa P25, was modified with several rare earth (RE) elements in order to extend its photocatalytic activity into the visible range. The mixtures were prepared via solid-state reaction of the precursor oxides, and thermally treated at high temperature (900 and 1000 °C), with the aim of investigating the photocatalytic activity of the thermally treated samples. This thermal treatment was chosen for a prospective application as a surface layer in materials that need to be processed at high temperatures. The photocatalytic activity (PCA) of the samples was assessed in gas–solid phase – monitoring the degradation of isopropanol (IPA) – under visible-light irradiation. Results showed that the addition of the REs lanthanum, europium and yttrium to TiO{sub 2} greatly improved its photocatalytic activity, despite the thermal treatment, because of the presence of more surface hydroxyl groups attached to the photocatalyst's surface, together with a higher specific surface area (SSA) of the modified and thermally treated samples, with regard to the unmodified and thermally treated Degussa P25. The samples doped with La, Eu and Y all had excellent PCA under visible-light irradiation, even higher than the untreated Degussa P25 reference sample, despite their thermal treatment at 900 °C, with lanthanum producing the best results (i.e. the La-, Eu- and Y-TiO{sub 2} samples, thermally treated at 900 °C, had, respectively, a PCA equal to 26, 27 and 18 ppm h{sup ?1} – in terms of acetone formation – versus 15 ppm h{sup ?1} for the 900 °C thermally treated Degussa P25). On the other hand, Ce–TiO{sub 2}s had no significant photocatalytic activity.

  18. Structural transition in rare earth doped zirconium oxide: A positron annihilation study

    SciTech Connect (OSTI)

    Chakraborty, Keka; Bisoi, Abhijit

    2012-11-15

    Graphical abstract: New microstructural analysis and phase transition of rare earth doped mixed oxide compounds such as: Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where x = 0.0 ? x ? 2.0) that are potentially useful as solid oxide fuels, ionic conductors, optoelectronic materials and most importantly as radiation resistant host for high level rad-waste disposal, structural transition in the system is reported through positron annihilation spectroscopy as there is an indication in the X-ray diffraction analysis. Highlights: ? Zirconium oxide material doped with rare earth ions. ? The method of positron annihilation spectroscopy suggests a phase transition in the system. ? The crystal structure transformation from pure pyrochlore to defect fluorite type of structure is shown by X-ray diffraction results. -- Abstract: A series of compounds with the general composition Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where 0 ? x ? 2.0) were synthesized by chemical route and characterized by powder X-ray diffraction (XRD) analysis. The rare earth ion namely Sm{sup +3} in the compound was gradually replaced with another smaller and heavier ion, Dy{sup +3} of the 4f series, there by resulting in order–disorder structural transition, which has been studied by positron annihilation lifetime and Doppler broadening spectroscopy. This study reveals the subtle electronic micro environmental changes in the pyrochlore lattice (prevalent due to the oxygen vacancy in anti-site defect structure of the compound) toward its transformation to defect fluorite structure as found in Dy{sub 2}Zr{sub 2}O{sub 7}. A comparison of the changes perceived with PAS as compared to XRD analysis is critically assayed.

  19. Recent results at ultrahigh spin: Terminating states and beyond in mass 160 rare-earth nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paul, E. S.; Rees, J. M.; Hampson, P.; Riley, M. A.; Simpson, J.; Ayangeakaa, A. D.; Baron, J. S.; Carpenter, M. P.; Chiara, C. J.; Garg, U.; et al

    2015-01-01

    A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the 146Gd closed core. The results are presented here for such non-collective oblate (? = 60°) terminating states in odd-Z 155Ho, odd–odd 156Ho, and even–even 156Er, where they are compared with neighboring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65?, is reviewed.

  20. Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm

    SciTech Connect (OSTI)

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Kilbane, Deirdre; White, John; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Forschungszentrum Dresden, Bautzner Landstrs. 400, D-01328 Dresden (Germany)

    2010-09-13

    We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5-6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B{sub 4}C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm {+-}1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.

  1. U.S. Rare Earth Magnet Patents Table | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA| ReactionSite Map Site MapU.S. Rare Earth Magnet

  2. A rare opportunity beckons

    SciTech Connect (OSTI)

    Gschneidner, K

    2011-02-01

    There is a great deal of uncertainty for the future of rare-earth production. Rare-earths are a collection of 17 chemical elements in the periodic table, which include scandium and yttrium as well as the 15 lanthanides, such as dysprosium and ytterbium. China has a stranglehold on today's rare-earth market, which was worth about $3bn in 2010, with the country accounting for about 95% of worldwide production. Yet China's future actions can only be guessed at best. In September it halted shipments of rare-earth elements to Japan over a diplomatic spat concerning the detention of a Chinese trawler captain. Although the ban was later lifted, the episode raised concerns around the world about China's rare-earth monopoly and its use in diplomacy. China has already warned that it will not export any rare-earth material in the coming years as it expects its own consumption of rare-earth metals to increase. The country has introduced export taxes as well as production and export quotas, and also refused to grant any new rare-earth mining licences. Furthermore, because its reserves are limited and China's internal markets are growing so rapidly, the country has suggested it will no longer export products that require rare-earth elements, especially those that need heavy rare-earth elements, such as terbium and dysprosium. China's actions have led to huge rises in the cost of rare-earth materials and products. Dysprosium oxide, for example, has shot up from $36 per kilogram in 2005 to a massive $305 per kilogram by late last year. This could have a huge impact on much of today's electronics industry, given that rare-earth elements are ubiquitous in electric motors, computers, batteries, liquid-crystal displays (LCDs) and mobile phones. Neodymium-iron-boron permanent magnets, for example, are used as computer spindle drives. The question is: what can be done to ensure that China's dominance of the rare-earth industry does not affect the military and energy security of the US and other nations? Rare-earth elements are relatively plentiful in the Earth's crust but they are widely dispersed, which makes mining them economically nonviable. The rare-earth industry first took off in the early 1960s with the discovery of the intense red luminescence of europium when excited by electrons. This was quickly utilized by TV manufacturers in the US, which used the material to produce the colour red. Indeed, many of the rare-earth applications arise because each element is unique and so certain elements exhibit behaviours that match a particular application, such as neodymium for lasers and magnets or europium and terbium for the red and green colours in TVs. In the 1960s annual production of rare-earth elements was about 2000 tonnes, with the US company Molycorp supplying 50% of the rare-earth oxides from the Mountain Pass mine in California. This monopoly was broken in the early 1990s when China first began to export separated rare-earth oxides and metals. By the late 1990s China was moving up the supply chain to higher-value products such as magnets and phosphors. Since the turn of the century it has supplied finished products including computers, LCDs and mobile phones. Production of rare-earth elements, which has been increasing by about 10% every year since the 1960s, reached 97,000 tonnes by 2009. Fortunately, new deposits of rare-earths are being discovered all over the world, which means that China now accounts for about 30% of worldwide deposits, rather than 70% as widely thought in the 1980s. But to take advantage of this and break the monopoly, governments outside China need to open new rare-earth deposits, especially those with high concentrations of the heavier rare-earth elements. They also need to expand and open new manufacturing facilities for products that need rare-earths, as well as train scientists to replace the intellectual capital lost during the last 20-30 years because of the Chinese monopoly. The bottom line is that to reduce the rest of the world's dependence on China for a sufficient and continuous supply of rare-ear

  3. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979,page C5-8 The evidence for anisotropic rare-earth-conduction electron interactions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - electric power of rare-earth impurities in metals and rare-earth intermetallic compounds-conduction electron (k-f) interaction. We consider rare-earth ions in two important contexts, as impurities in metals for anisotropic rare-earth-conduction electron interactions P. M. Levy Department of Physics, New York University

  4. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  5. High fidelity readout scheme for rare-earth solid state quantum computing

    E-Print Network [OSTI]

    A. Walther; L. Rippe; Y. Yan; J. Karlsson; D. Serrano; A. N. Nilsson; S. Bengtsson; S. Kröll

    2015-03-29

    We propose and analyze a high fidelity readout scheme for a single instance approach to quantum computing in rare-earth-ion-doped crystals. The scheme is based on using different species of qubit and readout ions, and it is shown that by allowing the closest qubit ion to act as a readout buffer, the readout error can be reduced by more than an order of magnitude. The scheme is shown to be robust against certain experimental variations, such as varying detection efficiencies, and we use the scheme to predict the expected quantum fidelity of a CNOT gate in these solid state systems. In addition, we discuss the potential scalability of the protocol to larger qubit systems. The results are based on parameters which we believed are experimentally feasible with current technology, and which can be simultaneously realized.

  6. Modification of phonon processes in nano-structured rare-earth-ion-doped crystals

    E-Print Network [OSTI]

    Lutz, Thomas; Thiel, Charles W; Cone, Rufus L; Barclay, Paul E; Tittel, Wolfgang

    2015-01-01

    Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable, or improve, persistent spectral hole-burning and optical coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and certain approaches to optical quantum memories. We specifically discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the telecommunication band, and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y$_2$SiO$_5$, a widely-used material in current quantum memory research.

  7. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    E-Print Network [OSTI]

    Zhong, Tian; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous...

  8. Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei

    E-Print Network [OSTI]

    Oishi, Tomohiro; Hinohara, Nobuo

    2016-01-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mo...

  9. Structure and magnetism of epitaxial rare-earth-transition-metal films

    SciTech Connect (OSTI)

    Fullerton, E.E.; Sowers, C.H.; Pearson, J.P.; Bader, S.D.

    1996-10-01

    Growth of epitaxial transition-metal superlattices; has proven essential in elucidating the role of crystal orientation and structure on magnetic properties such as giant magnetoresistance, interlayer coupling, and magnetic surface anisotropies. Extending these studies to the growth of epitaxial rare earth-transition metal (RE-TM) films and superlattices promises to play an equally important role in exploring and optimizing the properties of hard magnets. For instance, Skomski and Coey predict that a giant energy product (120 MG Oe) is possible in multilayer structures consisting of aligned hard-magnet layers exchanged coupled with soft-phase layers with high magnetization. Epitaxy provides one route to synthesizing such exchange-hardened magnets on controlled length scales. Epitaxial growth also allows the magnetic properties to be tailored by controlling the crystal orientation and the anisotropies of the magnetic layers and holds the possibility of stabilizing metastable phases. This paper describes the epitaxy and magnetic properties for several alloys.

  10. Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators

    SciTech Connect (OSTI)

    McAuslan, D. L.; Korystov, D.; Longdell, J. J. [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, Department of Physics, University of Otago, Dunedin, New Zealand. (New Zealand)

    2011-06-15

    We perform an investigation into the properties of Pr{sup 3+}:Y{sub 2}SiO{sub 5} whispering-gallery-mode resonators as a first step toward achieving the strong coupling regime of cavity QED with rare-earth-metal-ion-doped crystals. Direct measurement of cavity QED parameters are made using photon echoes, giving good agreement with theoretical predictions. By comparing the ions at the surface of the resonator to those in the center, it is determined that the physical process of making the resonator does not negatively affect the properties of the ions. Coupling between the ions and resonator is analyzed through the observation of optical bistability and normal-mode splitting.

  11. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics

    SciTech Connect (OSTI)

    Preston, Daniel J.; Miljkovic, Nenad; Sack, Jean; Queeney, John; Wang, Evelyn N., E-mail: enwang@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Enright, Ryan [Thermal Management Research Group, Efficient Energy Transfer (etaET) Department, Bell Labs Ireland, Dublin 15 (Ireland)

    2014-07-07

    Vapor condensation is routinely used as an effective means of transferring heat, with dropwise condensation exhibiting a 5???7x heat transfer improvement compared to filmwise condensation. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings, which are often not robust and therefore undesirable for industrial implementation. Natural surface contamination due to hydrocarbon adsorption, particularly on noble metals, has been explored as an alternative approach to realize stable dropwise condensing surfaces. While noble metals are prohibitively expensive, the recent discovery of robust rare earth oxide (REO) hydrophobicity has generated interest for dropwise condensation applications due to material costs approaching 1% of gold; however, the underlying mechanism of REO hydrophobicity remains under debate. In this work, we show through careful experiments and modeling that REO hydrophobicity occurs due to the same hydrocarbon adsorption mechanism seen previously on noble metals. To investigate adsorption dynamics, we studied holmia and ceria REOs, along with control samples of gold and silica, via X-Ray photoelectron spectroscopy (XPS) and dynamic time-resolved contact angle measurements. The contact angle and surface carbon percent started at ?0 on in-situ argon-plasma-cleaned samples and increased asymptotically over time after exposure to laboratory air, with the rare earth oxides displaying hydrophobic (>90°) advancing contact angle behavior at long times (>4 days). The results indicate that REOs are in fact hydrophilic when clean and become hydrophobic due to hydrocarbon adsorption. Furthermore, this study provides insight into how REOs can be used to promote stable dropwise condensation, which is important for the development of enhanced phase change surfaces.

  12. An analysis of crystal structure of selected rare earth fluorides by means of electron diffraction and transmission 

    E-Print Network [OSTI]

    Barr, Dennis Brannon

    1967-01-01

    AN ANALYSIS OF CRYSTAL STRUCTURE OF SELECTED RARE EARTH FLUORIDES BY MEANS OF ELECTRON DIFFRACTION AND TRANSMISSION A Thesis by DENNIS BRANNON BARR Submitted to the Graduate College of the T e~a s All M Univ e r s ity in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1967 Major Subject: Physics AN ANALYSIS OF CRYSTAL STRUCTURE OF SELECTED RARE EARTH FLUORIDES BY MEANS OF ELECTRON DIFFRACTION AND TRANSMISSION A Thesis by DENNIS BRANNON BARR Approved...

  13. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    SciTech Connect (OSTI)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  14. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids

    SciTech Connect (OSTI)

    Sekatski, Pavel; Sangouard, Nicolas; Gisin, Nicolas; Afzelius, Mikael [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland); Riedmatten, Hugues de [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08015 Barcelona (Spain)

    2011-05-15

    Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable delay. We show how this technique can be implemented in solid state systems by appropriately shaping the inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic solution to entangle remote rare-earth-metal-doped solids in a heralded way.

  15. Physics PhD scholarship available in one the worlds top 10 cities Scanning Tunneling Microscopy studies of rare earth nitrides and related materials

    E-Print Network [OSTI]

    Hickman, Mark

    studies of rare earth nitrides and related materials This is an opportunity to explore how new rare earth nitride materials can be made and how they can be probed using scanning tunneling microscopy. Scanning Tunneling Microscopy is a powerful tool to obtain both atomic resolution imaging of the surface of materials

  16. Doubling Estimates of Light Elements in the Earth's Core | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relation of both hcp-Fe and the iron-silicon alloy at 300 K. The inner core of the Earth is the remotest area on the globe, mostly impossible to study directly. It is an area...

  17. Towards an optical potential for rare-earths through coupled channels

    SciTech Connect (OSTI)

    Nobre, G. P. A.; Herman, M.; Palumbo, A.; Hoblit, S.; Brown, D.; Dietrich, F. S.

    2014-11-11

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich et al., a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.

  18. Synthesis and evaluation of ultra-pure rare-earth-coped glass for laser refrigeration

    SciTech Connect (OSTI)

    Patterson, Wendy M; Hehlen, Markus P; Epstein, Richard I; Sheik-bahae, Mansoor

    2009-01-01

    Significant progress has been made in synthesizing and characterizing ultra-pure, rare-earth doped ZIBLAN (ZrF{sub 4}-InF{sub 3}BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass capable of laser refrigeration. The glass was produced from fluorides which were purified and subsequently treated with hydrofluoric gas at elevated temperatures to remove impurities before glass formation. Several Yb3 +-doped samples were studied with degrees of purity and composition with successive iterations producing an improved material. We have developed a non-invasive, spectroscopic technique, two band differential luminescence thermometry (TBDLT), to evaluate the intrinsic quality of the ytterbium doped ZIBLAN used for laser cooling experiments. TBDLT measures local temperature changes within an illuminated volume resulting solely from changes in the relative thermal population of the excited state levels. This TBDLT technique utilizes two commercially available band pass filters to select and integrate the 'difference regions' of interest in the luminescence spectra. The goal is to determine the minimum temperature to which the ytterbium sample can cool on the local scale, unphased by surface heating. This temperature where heating and cooling are exactly balanced is the zero crossing temperature (ZCT) and can be used as a measure for the presence of impurities and the overall quality of the laser cooling material. Overall, favorable results were obtained from 1 % Yb3+-doped glass, indicating our glasses are desirable for laser refrigeration.

  19. Luminescent nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method

    SciTech Connect (OSTI)

    Hirano, Masanori Dozono, Hayato

    2013-08-15

    Luminescent nanocrystals based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}, were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y{sub 3?x}Eu{sub x}NbO{sub 7}–4ZrO{sub 2} that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu{sup 3+7}F{sub 0}?{sup 5}L{sub 6}, and {sup 7}F{sub 0}?{sup 5}D{sub 2} excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 1} and {sup 5}D{sub 0}?{sup 7}F{sub 2} transitions of Eu{sup 3+}, respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 2} transition increased as heat-treatment temperature rose from 800 to 1200 °C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}) formed via hydrothermal route. Display Omitted - Highlights: • Nanocrystals composed of 50 mol% Y{sub 3?x}Eu{sub x}NbO{sub 7} and 50 mol% ZrO{sub 2} was directly formed. • The nanocrystals were hydrothermally formed under weakly basic conditions at 240 °C. • The Y{sub 3}NbO{sub 7} showed an UV-blue and broad-band emission under excitation at 240 nm. • The emission is originated from the niobate octahedral group [NbO{sub 6}]{sup 7?}. • The nanocrystals showed orange and red luminescences ({sup 5}D{sub 0}?{sup 7}F{sub 1} and {sup 5}D{sub 0}?{sup 7}F{sub 2} , Eu{sup 3+})

  20. Rare-earth chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm)

    SciTech Connect (OSTI)

    Slater, Brianna R.; Bie, Haiying; Stoyko, Stanislav S. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Bauer, Eric D.; Thompson, Joe D. [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2012-12-15

    The ternary rare-earth-metal chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm) have been prepared by reactions of the elements at 1000 Degree-Sign C in the presence of excess gallium used as a self-flux. Their structures are derived by inserting Cr atoms into a quarter of the empty Ga{sub 6} octahedral clusters found in the parent binary gallides REGa{sub 3} (AuCu{sub 3}-type), although single-crystal X-ray diffraction studies suggest that complex superstructures may be adopted. An ideal ordered Y{sub 4}PdGa{sub 12}-type structure was successfully refined for a crystal of Dy{sub 4}CrGa{sub 12} (Pearson symbol cI34, space group Im3{sup Macron }m, Z=2, a=8.572(1) A). Magnetic measurements on single-crystal samples reveal ferromagnetic or possibly ferrimagnetic ordering for the Tb, Dy, and Er members (T{sub C}=22, 15, and 2.8 K, respectively) and antiferromagnetic ordering for the Ho member (T{sub N}=7.5 K). Band structure calculations on a hypothetical 'Y{sub 4}CrGa{sub 12}' model suggest that the Cr atoms carry no local magnetic moment. - Graphical abstract: RE{sub 4}CrGa{sub 12} is derived by inserting Cr atoms into empty Ga{sub 6} octahedral clusters present in the parent binary gallides REGa{sub 3}. Highlights: Black-Right-Pointing-Pointer RE{sub 4}MGa{sub 12} (previously known for M=Fe, Ni, Pd, Pt, Ag) has been extended to M=Cr. Black-Right-Pointing-Pointer RE{sub 4}CrGa{sub 12} compounds show predominantly ferromagnetic ordering. Black-Right-Pointing-Pointer Band structure calculations suggest that Cr atoms carry no local magnetic moment.

  1. Magnetic, dielectric, and magneto-dielectric properties of rare-earth-substituted Aurivillius phase Bi?Fe?.?Co?.?Ti?O??

    SciTech Connect (OSTI)

    Zuo, X. Z.; Yang, J., E-mail: jyang@issp.ac.cn; Yuan, B.; Tang, X. W.; Zhang, K. J.; Zhu, X. B.; Song, W. H.; Dai, J. M., E-mail: jmdai@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, D. P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Sun, Y. P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-10-21

    We investigate the magnetic, dielectric, and magnetodielectric properties of rare-earth-substituted Aurivillius phase Bi?Fe?.?Co?.?Ti?O??. The room-temperature ferromagnetic behavior is observed in all samples, and the rare-earth-substituted samples exhibit an enhanced magnetization. The weak ferromagnetism can be ascribed to the spin canting of the antiferromagnetic coupling of the Fe-based and Co-based sublattices via Dzyaloshinsky-Moriya interaction. The dielectric loss of all samples exhibits two dielectric relaxation peaks corresponding to two different relaxation mechanisms. One relaxation process with E{sub a}=0.5 eV is related to the hoping process of oxygen vacancies and the other one with E{sub a}=1.6 eV can be ascribed to the intrinsic conduction. The Gd-doped sample exhibits a remarkable magnetodielectric effect (9.4%) at RT implying this Aurivillius phase may be the potential candidate for magnetodielectric applications.

  2. X-ray resonant magnetic scattering and x-ray magnetic circular dichroism branching ratios, L[subscript 3] / L[subscript 2], for heavy rare earths

    SciTech Connect (OSTI)

    Lee, Yongbin; Kim, Jong-Woo; Goldman, Alan I.; Harmon, Bruce N. (Iowa State)

    2010-07-19

    In this study we have used first principles electronic structure methods to investigate the detailed contributions to the L{sub 3}/L{sub 2} branching ratio in the heavy rare earth elements. The calculations use the full potential, relativistic, linear augmented plane wave method with the LSDA+U approach for consideration of the local 4f electronic orbitals. With no spin orbit coupling (SOC) in the conducting bands, and with the same radial function for the 2p{sub 3/2} and 2p{sub 1/2} core states, the branching ratio (BR) is exactly 1:-1 for the x-ray magnetic circular dichroism spectra of the ferromagnetic heavy rare earth metals. However, with full SOC the BR ranges from 1.5 to 6.0 in going from Gd to Er. The energy and spin dependence of the 5d radial functions are important. The results point to problems with modified atomic models which have been proposed to explain the BR. Recent x-ray resonant magentic scattering experiments on (Gd,Tb,Dy,Ho,Er,Tm)Ni{sub 2}Ge{sub 2} are discussed.

  3. Synthesis, structural characterization and magnetic properties of RE{sub 2}MgGe{sub 2} (RE=rare-earth metal)

    SciTech Connect (OSTI)

    Suen, Nian-Tzu; Tobash, Paul H. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

    2011-11-15

    A series of rare-earth metal-magnesium-germanides RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) has been synthesized by reactions of the corresponding elements at high temperature. Their structures have been established by single-crystal and powder X-ray diffraction and belong to the Mo{sub 2}FeB{sub 2} structure type (space group P4/mbm (No. 127), Z=2; Pearson symbol tP10). Temperature dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for all members of the family, excluding Y{sub 2}MgGe{sub 2}, Sm{sub 2}MgGe{sub 2}, and Lu{sub 2}MgGe{sub 2}. At cryogenic temperatures (ca. 60 K and below), most RE{sub 2}MgGe{sub 2} phases enter into an antiferromagnetic ground-state, except for Er{sub 2}MgGe{sub 2} and Tm{sub 2}MgGe{sub 2}, which do not undergo magnetic ordering down to 5 K. The structural variations as a function of the decreasing size of the rare-earth metals, following the lanthanide contraction, and the changes in the magnetic properties across the series are discussed as well. - Graphical Abstract: The structure of RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) can be best viewed as 2-dimensional slabs of Mg and Ge atoms (anionic sub-lattice), and layers of rare-earth metal atoms (cationic sub-lattice) between them. Within this description, one should consider the Ge-Ge dumbbells (formally Ge{sup 6-}{sub 2}), interconnected with square-planar Mg atom as forming flat [MgGe{sub 2}] layers (z=0), stacked along the c-axis with the layers at z=1/2, made of rare-earth metal cations (formally RE{sup 3+}). Highlights: > RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) are new ternary germanides. > Their structures can be recognized as a 1:1 intergrowth of CsCl- and AlB{sub 2}-like slabs. > Ge atoms are covalently bound into Ge{sub 2} dumbbells. > Most RE{sub 2}MgGe{sub 2} phases are antiferromagnetically ordered at cryogenic temperatures.

  4. Separation of americium, curium, and rare earths from high-level wastes by oxalate precipitation: experiments with synthetic waste solutions

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1980-01-01

    The separation of trivalent actinides and rare earths from other fission products in high-level nuclear wastes by oxalate precipitation followed by ion exchange (OPIX) was experimentally investigated using synthetic wastes and a small-scale, continuous-flow oxalic acid precipitation and solid-liquid separation system. Trivalent actinide and rare earth oxalates are relatively insoluble in 0.5 to 1.0 M HNO/sub 3/ whereas other fission product oxalates are not. The continuous-flow system consisted of one or two stirred-tank reactors in series for crystal growth. Oxalic acid and waste solutions were mixed in the first tank, with the product solid-liquid slurry leaving the second tank. Solid-liquid separation was tested by filters and by a gravity settler. The experiments determined the fraction of rare earths precipitated and separated from synthetic waste streams as a function of number of reactors, system temperature, oxalic acid concentration, liquid residence time in the process, power input to the stirred-tank reactors, and method of solid-liquid separation. The crystalline precipitate was characterized with respect to form, size, and chemical composition. These experiments are only the first step in converting a proposed chemical flowsheet into a process flowsheet suitable for large-scale remote operations at high activity levels.

  5. Features of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals

    SciTech Connect (OSTI)

    Romaka, V. A., E-mail: vromaka@polynet.lviv.ua [National Academy of Sciences of Ukraine, Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics (Ukraine); Fruchart, D.; Hlil, E. K. [CNRS, Institute Neel (France); Gladyshevskii, R. E. [Ivan Franko Lviv National University (Ukraine); Gignoux, D. [CNRS, Institute Neel (France); Romaka, V. V.; Kuzhel, B. S. [Ivan Franko Lviv National University (Ukraine); Krayjvskii, R. V. [Lvivska Politechnika National University (Ukraine)

    2010-03-15

    The crystal structure, density of electron states, electron transport, and magnetic characteristics of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals (R) have been studied in the ranges of temperatures 1.5-400 K, concentrations of rare-earth metal 9.5 x 10{sup 19}-9.5 x 10{sup 21} cm{sup -3}, and magnetic fields H {<=} 15 T. The regions of existence of Zr{sub 1-x}R{sub x}NiSn solid solutions are determined, criteria for solubility of atoms of rare-earth metals in ZrNiSn and for the insulator-metal transition are formulated, and the nature of 'a priori doping' of ZrNiSn is determined as a result of redistribution of Zr and Ni atoms at the crystallographic sites of Zr. Correlation between the concentration of the R impurity, the amplitude of modulation of the bands of continuous energies, and the degree of occupation of potential wells of small-scale fluctuations with charge carriers is established. The results are discussed in the context of the Shklovskii-Efros model of a heavily doped and compensated semiconductor.

  6. JOURNAL DE PHYSIQUE Colloque CS, supplPment au nO. 6, Tome 41, juin 1980,page C5-297 INTERMEDIATE VALENCE : THEORETICAL MODELS FOR ANOFALOUS RARE-EARTH ALLOYS AND COMPOUNDS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    temperature behaviour of compounds such as CeA12, CeA13 or TmSe . 1. Introduction.-The rare-earth metals is applied. The normal rare-earth metals have been extensively studied and already revie- wed in detail /1 VALENCE : THEORETICAL MODELS FOR ANOFALOUS RARE-EARTH ALLOYS AND COMPOUNDS B. Coqblin

  7. JOURNAL DE PHYSIQUE Colloque C5, supplment au n 5, Tome 40, Mai 1979, page C5-273 The physics and the technology of rare earth permanent magnets

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to forecast the type of substitution to employ on the rare earth or transition metals, as a means and the technology of rare earth permanent magnets J. P. Haberer and H. Lemaire Aimants UGIMAG S.A., France Résumé rare earth base alloys have magnetic properties which substantially exceed the values obtained before

  8. JOURNAL DE PHYSIQUE Colloque C5, supple'ment au no 5, Tome 40, Mai 1979, page C5-54 Hyperfine fields of S-rare earth impurities in noble hosts

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    that the trivalent rare earth (e.g. Gd3+)contributes two s-p electrons, for monovalent hosts like noble metals fields of S-rare earth impurities in noble hosts A. Troper, 0.L. T. de Menezes and A. A. Gomes Centro previously developed for rare earth impurities diluted in s-p hosts [I]. Numerical results for the hyperfine

  9. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979,page C5-71 The de Haas-van Alphen effect and the Fermi surfaces of rare earth metals

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -van Alphen effect and the Fermi surfaces of rare earth metals R. C . Young Department of Physics, University (some transition metals, rare earths, inter- metallic compounds) it is difficult to achieve an & of even been achieved for Fermi surface investigation of rare earth metals. Substantial dHvA results have now

  10. Improved estimates of rare K decay matrix elements from K{sub l3} decays

    SciTech Connect (OSTI)

    Mescia, Federico; Smith, Christopher

    2007-08-01

    The estimation of rare K decay matrix elements from K{sub l3} experimental data is extended beyond LO in chiral perturbation theory. Isospin-breaking effects at next-to-leading order (and partially next-to-next-to-leading order) in the chiral perturbation theory expansion, as well as QED radiative corrections, are now accounted for. The analysis relies mainly on the cleanness of two specific ratios of form factors, for which the theoretical control is excellent. As a result, the uncertainties on the K{sup +}{yields}{pi}{sup +}{nu}{nu} and K{sub L}{yields}{pi}{sup 0}{nu}{nu} matrix elements are reduced by a factor of about 7 and 4, respectively, and similarly for the direct CP-violating contributions to K{sub L}{yields}{pi}{sup 0}e{sup +}e{sup -} and K{sub L}{yields}{pi}{sup 0}{mu}{sup +}{mu}{sup -}. They could be reduced even further with better experimental data for the K{sub l3} slopes and the K{sub l3}{sup +} branching ratios. As a result, the nonparametric errors for B(K{yields}{pi}{nu}{nu}) and for the direct CP-violating contributions to B(K{sub L}{yields}{pi}{sup 0}l{sup +}l{sup -}) are now completely dominated by those on the short-distance physics.

  11. Compound and Elemental Analysis At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    relatively high pH and low concentrations of sulfate and chloride. References Scott A. Wood (2002) Behavior Of Rare Earth Element In Geothermal Systems, A New...

  12. Characterization of ferromagnetic saturation at 4.2K of selected bulk rare earth metals for compact high-field superconducting cyclotrons

    E-Print Network [OSTI]

    Norsworthy, Mark A. (Mark Andrew)

    2010-01-01

    The saturation magnetization of the rare earth ferromagnetic metals gadolinium and holmium was investigated. Cylindrical samples were placed in a superconducting test magnet and induced magnetic field measured at various ...

  13. Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Microstructure-electromechanical property correlations in rare-earth- substituted BiFeO3 epitaxial November 2010; published online 24 November 2010 Structure-electromechanical property correlations in rare to the formation of the boundary.5 While the origin of the enhanced electromechanical re- sponse was theoretically

  14. Ternary rare-earth zinc arsenides REZn{sub 1-x}As{sub 2} (RE=La-Nd, Sm)

    SciTech Connect (OSTI)

    Stoyko, Stanislav S. [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)

    2011-09-15

    The ternary rare-earth zinc arsenides REZn{sub 1-x}As{sub 2} (RE=La-Nd, Sm) were prepared by reaction of the elements at 800 deg. C. Single-crystal and powder X-ray diffraction analysis revealed a defect SrZnBi{sub 2}-type average structure for the La member (Pearson symbol tI16, space group I4/mmm, Z=4; a=4.0770(9) A, c=20.533(5) A), in contrast to defect HfCuSi{sub 2}-type average structures for the remaining RE members (Pearson symbol tP8, space group P4/nmm, Z=2; a=4.0298(5)-3.9520(4) A, c=10.222(1)-10.099(1) A in the progression from Ce to Sm). The homogeneity range is not appreciable (estimated to be narrower than 0.6<1-x<0.7 in SmZn{sub 1-x}As{sub 2}) and the formula REZn{sub 0.67}As{sub 2} likely represents the Zn-rich phase boundary. The Ce-Nd members are Curie-Weiss paramagnets. LaZn{sub 0.67}As{sub 2} shows activated behavior in its electrical resistivity, whereas SmZn{sub 0.67}As{sub 2} exhibits anomalies in its temperature dependence of the electrical resistivity. - Graphical abstract: LaZn{sub 1-x}As{sub 2} adopts a SrZnBi{sub 2}-type structure whereas the remaining members of the REZn{sub 1-x}As{sub 2} series (RE=Ce-Nd, Sm) adopt a HfCuSi{sub 2}-type structure. Highlights: > REZn{sub 1-x}As{sub 2} adopts SrZnBi{sub 2}-type (RE=La) or HfCuSi{sub 2}-type (RE=Ce-Nd, Sm) structures. > Trends in RE substitution and local distortion around Zn-centered tetrahedra can be rationalized by geometrical factors. > Zn vacancies occur to reduce Zn-As and As-As antibonding interactions.

  15. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    SciTech Connect (OSTI)

    Peter Kelly Sokolowski

    2007-12-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE{sub 2}Fe{sub 14}B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 10{sup 5}-10{sup 6}K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH){sub max} for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF{sub 3}). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the need for post atomization treatment, otherwise a necessary step for oxidation and corrosion resistance. Stability of these thin films was attributed to the reduction of each RE's respective oxide during processing; recognizing that fluoride compounds exhibit a slightly higher (negative) free energy driving force for formation. Formation of RE-type fluorides on the surface was evidenced through x-ray photoelectron spectroscopy (XPS). Concurrent research with auger electron spectroscopy has been attempted to accurately quantify the depth of fluoride formation in order to grasp the extent of fluorination reactions with spherical and flake particulate. Gas fusion analysis on coated powders (dia. <45 {micro}m) from an optimized experiment indicated an as-atomized oxygen concentration of 343ppm, where typical, nonpassivated RE atomized alloys exhibit an average of 1800ppm oxygen. Thermogravimetric analysis (TGA) on the same powder revealed a decreased rate of oxidation at elevated temperatures up to 300 C, compared to similar uncoated powder.

  16. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites

    SciTech Connect (OSTI)

    Hayes, J.R.; Grosvenor, A.P. (Saskatchewan)

    2011-11-07

    Rare-earth orthoferrites, REFeO{sub 3} (RE=rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO{sub 3} compounds (RE=La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is.

  17. Preprint of the paper "A Boundary Element Numerical Approach for Earthing Grid Computation"

    E-Print Network [OSTI]

    Colominas, Ignasi

    ~na, SPAIN Abstract Analysis and design of substation earthing involves computing the equivalent re- sistance in the margin of error [4]. A Boundary Element approach for the numerical computation of substation grounding introduced in the BEM formulation to reduce computational cost for speci#12;c choices of the test and trial

  18. Rare Earths and the Future of the U.S. Wind Industry

    E-Print Network [OSTI]

    McCalley, James D.

    Reserves in 2014 China 85% United States 7% India 3% Russia 2% Australia 2% Thailand 1% Vietnam market, driving U.S. mines out of business · In 2010, two major events · China cuts all exports of rare per kg · Chinese practices of export quotas and tariffs may have contributed to price spike · World

  19. From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth element

    E-Print Network [OSTI]

    Boyer, Edmond

    From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition, and S. Cravatte (2013), From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic waters (112 samples) in the Southern Tropical Pacific. The relatively detailed picture of these tracer

  20. Stable isotope and Rare Earth Element evidence for recent ironstone pods within the Archean Barberton

    E-Print Network [OSTI]

    Hren, Michael

    (up to $200 m long) hematite and goethite ironstone bodies within the 3.2 to 3.5 Ga Barberton of goethite and hematite components of the ironstones to determine whether these deposits reflect formation. Goethite d18 O values range from À0.7 to +1.0& and dD from À125 to À146&, which is consistent

  1. Bernard J. Wood Jonathan D. Blundy A predictive model for rare earth element partitioning

    E-Print Network [OSTI]

    van Westrenen, Wim

    of natural compositions. Propagating Dqf into the Brice model we obtain an expression for h3 o in terms and anhydrous silicate melt as a function of pressure , temperature and bulk composition . The model is based is the Young's Modulus of the site, is the gas constant and is in K. Values of iM2 obtained by ®tting

  2. Rare earth elements in the sediments of Lake Baikal Lawrence M. Och a

    E-Print Network [OSTI]

    Wehrli, Bernhard

    as an example for early stage ocean formation (e.g. Crane et al., 1991; Granina et al., 2010). In addition, like most of the ocean, the water column of Lake Baikal is pervasively oxic with a constant chemical; Vologina and Sturm, 2009; Watanabe et al., 2009; Och et al., 2012), leads oxygen to penetrate deeply

  3. Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| Department ofConstructionvarious

  4. Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| Department ofConstructionvariousfor a Clean Energy

  5. DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes onand Coal Byproducts | Department of

  6. Watch a Rare Earth Elements Event Live This Morning | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste Isolationof EnergyDepartment

  7. A strong magneto-optical activity in rare-earth La{sup 3+} substituted M-type strontium ferrites

    SciTech Connect (OSTI)

    Hu Feng; Liu Xiansong; Zhu Deru [Engineering Technology Research Center of Magnetic Materials, Anhui Province, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Fernandez-Garcia, Lucia; Suarez, Marta; Luis Menendez, Jose [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo Superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO - Principado de Asturias, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2011-06-01

    M-type strontium ferrites with substitution of Sr{sup 2+} by rare-earth La{sup 3+} were prepared by conventional ceramic technology. The structure, magnetic properties, and magneto-optical Kerr activity of Sr{sub 1-x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.05, 0.10, 0.15, 0.20) were investigated by x-ray diffraction (XRD), vibrating sample magnetometer (VSM), and magneto-optical ellipsometry, respectively. X-ray diffraction showed that the samples sintered at 1290 deg. C for 3 h were single M-type hexagonal ferrites. The magnetic properties were remarkably changed due to the valence change of Fe ions induced by the substitution of La ions. Most significantly, an important magneto-optical activity was induced in the La{sup 3+} substituted M-type strontium ferrites around 3 eV.

  8. Testing Skyrme energy-density functionals with the QRPA in low-lying vibrational states of rare-earth nuclei

    E-Print Network [OSTI]

    J. Terasaki; J. Engel

    2011-05-19

    Although nuclear energy density functionals are determined primarily by fitting to ground state properties, they are often applied in nuclear astrophysics to excited states, usually through the quasiparticle random phase approximation (QRPA). Here we test the Skyrme functionals SkM* and SLy4 along with the self-consistent QRPA by calculating properties of low-lying vibrational states in a large number of well-deformed even-even rare-earth nuclei. We reproduce trends in energies and transition probabilities associated with gamma-vibrational states, but our results are not perfect and indicate the presences of multi-particle-hole correlations that are not included in the QRPA. The Skyrme functional SkM* performs noticeably better than SLy4. In a few nuclei, changes in the treatment of the pairing energy functional have a significant effect. The QRPA is less successful with "beta-vibrational" states than with the gamma-vibrational states.

  9. Low-temperature specific heat of rare-earth-doped silicate glasses D. A. van de Straat, J. Baak, and H. B. Brom

    E-Print Network [OSTI]

    Schmidt, Thomas

    Low-temperature specific heat of rare-earth-doped silicate glasses D. A. van de Straat, J. Baak, The Netherlands Received 31 July 1995 The specific heat Cv of Pr3 - and Eu3 -doped silicate glasses has been for the two-level-system TLS contribution to the specific heat, Cv TLS . The values of Cv TLS and noticeably

  10. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides Sami Khan, Gisele Azimi, Bilge Yildiz, and Kripa K. Varanasi

    E-Print Network [OSTI]

    Yildiz, Bilge

    hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs of hydrocarbon adsorption on the wettability of rare earth oxide ceramics Appl. Phys. Lett. 105, 011601 (2014 with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms

  11. Rare-earth transition-metal gallium chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se)

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2014-02-15

    Six series of quaternary rare-earth transition-metal chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce{sub 3}Al{sub 1.67}S{sub 7}-type, space group P6{sub 3}, Z=2) with cell parameters in the ranges of a=9.5–10.2 Å and c=6.0–6.1 Å for the sulphides and a=10.0–10.5 Å and c=6.3–6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE{sub 3}FeGaS{sub 7} (RE=La, Pr, Tb) and RE{sub 3}CoGaS{sub 7} (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga–Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La{sub 3}FeGaS{sub 7} indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level. - Graphical abstract: The series of chalcogenides RE{sub 3}MGaS{sub 7}, which form for a wide range of rare-earth and transition metals (M=Fe, Co, Ni), adopt highly anisotropic structures containing chains of M-centred octahedra and stacks of Ga-centred tetrahedra. Display Omitted - Highlights: • Six series (comprising 33 compounds) of chalcogenides RE{sub 3}MGaCh{sub 7} were prepared. • They adopt noncentrosymmetric hexagonal structures with high anisotropy. • Most compounds are paramagnetic; some show antiferromagnetic ordering. • Ga L-edge XANES confirms presence of cationic Ga species.

  12. Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys

    SciTech Connect (OSTI)

    Oster, Nathaniel

    2012-04-23

    The goal of this work is to investigate methods in which anisotropy could be induced in fine-grained alloys. We have identified two general processing routes to creating a fine, textured microstructure: form an amorphous precursor and devitrify in a manner that induces texture or form the fine, textured microstructure upon cooling directly from the liquid state. Since it is possible to form significant amounts of amorphous material in RE-Fe-B alloys, texture could be induced through biasing the orientationof the crystallites upon crystallization of the amorphous material. One method of creating this bias is to form glassy material and apply uniaxial pressure during crystallization. Experiments on this are presented. All of the work presented here utilizes melt-spinning, either to create precursor material, or to achieve a desired final microstructure. To obtain greater control of the system to process these materials, a study was done on the effects of heating the wheel and modifying the wheel’s surface finish on glass formation and phase selection. The second general approach—creating the desired microstructure directly from the liquid—can be done through directional rapid solidification. In particular, alloys melt-spun at low tangential wheel speeds often display directional columnar growth through a portion of the ribbon. By refining and stabilizing the columnar growth, a highly textured fine microstructure is achieved. The effects of adding a segregating element (Ag) on the columnar growth are characterized and presented.

  13. Selecting the suitable dopants: electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate

    E-Print Network [OSTI]

    Assadi, M H N; Yu, A B

    2012-01-01

    Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to regenerate electricity from waste heat. In this work, three elements with outmost electronic configurations, (1) an open d shell (Ni), (2) a closed d shell (Zn), and (3) an half fill f shell (Eu) with a maximum unpaired electrons, were selected to outline the dopants' effects on electronic and crystallographic structures of Na0.75CoO2. Systematic ab initio density functional calculations showed that the formation energy of these dopants was found to be lowest when residing on sodium layer and ranked as -1.1 eV, 0.44 eV and 3.44 eV for Eu, Ni and Zn respectively. Furthermore Ni was also found to be stable when substituting Co ion. As these results show great harmony with existing experimental data, they provide new insights into the fundamental principle of dopant selection for manipulating the physical properties in the development of high performance sodium cobaltate based thermoelectric materials.

  14. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    SciTech Connect (OSTI)

    Kusne, AG; Gao, TR; Mehta, A; Ke, LQ; Nguyen, MC; Ho, KM; Antropov, V; Wang, CZ; Kramer, MJ; Long, C; Takeuchi, I

    2014-09-15

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

  15. Optical and dielectric characteristics of the rare-earth metal oxide Lu{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Ordin, S. V., E-mail: stas_ordin@mail.ru; Shelykh, A. I. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2010-05-15

    The characteristics of the Lu{sub 2}O{sub 3} oxide and their variations controlled by compositional defects are studied. The defects are anion vacancies produced on partial reduction of the oxide. Such defects exhibit features typical of quantum objects and have a profound effect on the optical transmittance spectrum, the character of conduction (insulator or semiconductor properties) and the order of magnitude of the permittivity {epsilon} (capable of varying from 11.2 to 125). The structural features of vacancies in the oxides are considered, and the effect of vacancies on the polarization, conductivity, and lattice vibrations is studied. The studies are carried out in the temperature range 200-900 K, the wavelength range 0.03-50 {mu}m, and the current frequency range 10{sup 2}-10{sup 5} Hz. The rare-earth metal oxides attract interest for applications in microelectronics due to their high permittivity (several times higher than the permittivity of SiO{sub 2}) and, hence, the prospects for use of these oxides instead of SiO{sub 2}.

  16. Spatial inhomogeneity in RFeAs(O,F)(R=Pr,Nd) as revealed by studies of the rare earth crystal field excitations

    SciTech Connect (OSTI)

    Goremychkin, E. A. [Argonne National Laboratory (ANL); Osborn, R. [Argonne National Laboratory (ANL); Wang, Cuihuan [ORNL; Lumsden, Mark D [ORNL; McGuire, Michael A [ORNL; Safa-Sefat, Athena [ORNL; Sales, Brian C [ORNL; Mandrus, David [ORNL; Ronnow, H. M. [Lab for Quantum Magnetism, Switzerland; Su, Y. [Forschungszentrum Julich, Julich, Germany; Christianson, Andrew D [ORNL

    2011-01-01

    We report inelastic neutron-scattering measurements of crystal-field transitions in PrFeAsO, PrFeAsO{sub 0.87}F{sub 0.13}, and NdFeAsO{sub 0.85}F{sub 0.15}. Doping with fluorine produces additional crystal-field excitations, providing evidence that there are two distinct charge environments around the rare-earth ions, with probabilities that are consistent with a random distribution of dopants on the oxygen sites. The 4f electrons of the Pr{sup 3+} and Nd{sup 3+} ions have nonmagnetic and magnetic ground states, respectively, indicating that the enhancement of T{sub c} compared to LaFeAsO{sub 1-x}F{sub x} is not due to rare-earth magnetism.

  17. Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator

    SciTech Connect (OSTI)

    McAuslan, D. L.; Longdell, J. J.; Sellars, M. J. [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, Department of Physics, University of Otago, Dunedin (New Zealand); Laser Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2009-12-15

    We investigate the possibility of achieving the strong coupling regime of cavity quantum electrodynamics using rare-earth-metal-ions as impurities in monolithic optical resonators. We conclude that due to the weak oscillator strengths of the rare-earth-metals, it may be possible but difficult to reach the regime where the single photon Rabi frequency is large compared to both the cavity and atom decay rates. However, reaching the regime where the saturation photon and atom numbers are less than one should be much more achievable. We show that in this 'bad cavity' regime, transfer of quantum states and an optical phase shift conditional on the state of the atom is still possible and suggest a method for coherent detection of single dopants.

  18. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 1. Scandium Group (Sc, Y, La)

    SciTech Connect (OSTI)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warsaw (Poland); Gumi?ski, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warsaw (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha (China)

    2014-03-15

    This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) are treated as the input substances in this report. The literature has been covered through the end of 2013.

  19. New rare-earth double-layered-perovskite oxyuorides, RbLnTiNbO6F (Ln La, Pr, Nd)

    E-Print Network [OSTI]

    Spinu, Leonard

    New rare-earth double-layered-perovskite oxy¯uorides, RbLnTiNbO6F (Ln La, Pr, Nd) Gabriel Caruntu¯uoride perovskites, RbLnTiNbO6F (Ln La, Pr, Nd), have been synthesized. Rietveld re®nement of X-ray powder-ray diffraction; D. Crystal structure 1. Introduction Layered perovskite compounds belonging to the Dion

  20. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    SciTech Connect (OSTI)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki [Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.

  1. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity of rare earth metals near the melting point and the vacancy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of rare earth metals near the melting point and the vacancy mechanism of melting T. Gorecki (*) Max mesurtes par d'autres auteurs sur les mktaux des terres rares (Y, La, Ce, Pr, Nd, Sm, Dy, Tm). Abstract for the difference of the heat capacity of the liquid and solid metal in the neighbourhood of the melting point. From

  2. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Crerar, Shane J. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)] [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Grosvenor, Andrew P. [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9 (Canada)] [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9 (Canada)

    2012-12-15

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative to Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support assignment of anionic Sb atoms. Black-Right-Pointing-Pointer Fitted valence band spectra show shifts in the 4f band as RE is changed.

  3. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  4. Synthesis and crystal structure of the isotypic rare earth thioborates Ce[BS{sub 3}], Pr[BS{sub 3}], and Nd[BS{sub 3}

    SciTech Connect (OSTI)

    Hunger, Jens; Borna, Marija [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kniep, Ruediger, E-mail: kniep@cpfs.mpg.d [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany)

    2010-03-15

    The orthothioborates Ce[BS{sub 3}], Pr[BS{sub 3}] and Nd[BS{sub 3}] were prepared from mixtures of the rare earth (RE) metals together with amorphous boron and sulfur summing up to the compositions CeB{sub 3}S{sub 6}, PrB{sub 5}S{sub 9} and NdB{sub 3}S{sub 6}. The following preparation routes were used: solid state reactions with maximum temperatures of 1323 K and high-pressure high-temperature syntheses at 1173 K and 3 GPa. Pr[BS{sub 3}] and Nd[BS{sub 3}] were also obtained from rare earth chlorides RECl{sub 3} and sodium thioborate Na{sub 2}B{sub 2}S{sub 5} by metathesis type reactions at maximum temperatures of 1073 K. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The thioborates are isotypic and crystallize in the orthorhombic spacegroup Pna2{sub 1} (No. 33; Z=4; Ce: a=7.60738(6)A, b=6.01720(4)A, c=8.93016(6)A; Pr: a=7.56223(4)A, b=6.00876(2)A, c=8.89747(4)A; Nd: a=7.49180(3)A, b=6.00823(2)A, c=8.86197(3)A) . The crystal structures contain isolated [BS{sub 3}]{sup 3-} groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of undulated kagome nets, which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure The isotypic orthothioborates Ce[BS{sub 3}], Pr[BS{sub 3}] and Nd[BS{sub 3}] were prepared using different preparation routes. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The crystal structures contain isolated [BS{sub 3}]{sup 3-} groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of corrugated kagome nets (sketched with blue dotted lines), which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species.

  5. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    SciTech Connect (OSTI)

    Redon, N.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rosse, B.; Stezowski, O. [IPN Lyon, IN2P3/CNRS, Universite Claude Bernard Lyon-1, F-69622 Villeurbanne Cedex (France); Prevost, A. [IPN Lyon, IN2P3/CNRS, Universite Claude Bernard Lyon-1, F-69622 Villeurbanne Cedex (France); CSNSM Orsay, IN2P3/CNRS, Bat 104, F-91405 Orsay Campus (France); Nolan, P.J.; Andreoiu, C.; Boston, A.J.; Descovich, M.; Evans, A.O.; Gros, S.; Norman, J.; Page, R.D.; Paul, E.S.; Rainovski, G.; Sampson, J. [Oliver Lodge Laboratory, University of Liverpool, P.O. Box 147, Liverpool L69 7ZE (United Kingdom); France, G. de; Casandjian, J. M. [GANIL, B.P. 55027, F-14076 Caen Cedex (France)] [and others

    2004-02-27

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  6. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  7. Transformability of t-ZrO{sub 2} and lattice parameters in plasma sprayed rare-earth oxides stabilized zirconia coatings

    SciTech Connect (OSTI)

    Khor, K.A.; Yang, J.

    1997-11-01

    Coatings of zirconia alloys are mostly used in high-temperature environments as thermal barrier coatings (TBC) to fight hostile working environments and boost energy efficiency. CaO, MgO and Y{sub 2}O{sub 3} are added into zirconia to stabilize the cubic and tetragonal forms and prevent catastrophic cracking as a result of the volume changes on t {r_arrow} m transformation. However, zirconia fully stabilized with either CaO or MgO has been shown to be destabilized on thermal cycling over 1,000 C. Y{sub 2}O{sub 3} stabilized ZrO{sub 2} is stable towards vaporization at high temperature (1,200 C). However, it also encounters the problem of destabilization when it is attacked by the mineral constituents in fuel oil. The destabilization resulted in a detrimental volume change of 3--5%, which can lead to failure, especially if thermal cycling across the transformation temperature takes place. Previous studies on the rare-earth oxide-zirconia system used solid state reaction of mixed powders that are likely to yield chemical inhomogeneities. Recent studies on rapid solidified ZrO{sub 2}-Y{sub 2}O{sub 3} and rare earth oxides stabilized zirconia systems by a hammer and anvil apparatus, which claims to be capable of obtaining compositional homogeneities, suggest the formation of a t{prime} phase that is non-transformable.

  8. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report ofEnergyEarlyEarth

  9. Partitioning of light lithophile elements during basalt eruptions on Earth and application to Martian shergottites

    E-Print Network [OSTI]

    Edmonds, Marie

    2014-12-18

    source of water for the surface and subsurface during 495 the Amazonian. Earth and Planetary Science Letters 292, 132-138. 496 McSween, H., Stolper, E., 1978. Shergottite Meteorites, i: Mineralogy and Petrography, 497 Lunar and Planetary Institute...

  10. Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  11. Iron Isotope and Rare Earth Element Patterns of the Neoproterozoic Fulu Formation, South China: Implications for Late Proterozoic Ocean Chemistry

    E-Print Network [OSTI]

    Goldbaum, Elizabeth

    2014-01-01

    V. W. (1981). Chemical diagenesis in Narragansett Bayinfluences on the diagenesis of Beecher's Trilobite Bed andvalue unaffected by diagenesis. 4. Results and Discussion

  12. Iron-Nitride-Based Magnets: Synthesis and Phase Stabilization of Body Center Tetragonal (BCT) Metastable Fe-N Anisotropic Nanocomposite Magnet- A Path to Fabricate Rare Earth Free Magnet

    SciTech Connect (OSTI)

    None

    2012-01-01

    REACT Project: The University of Minnesota will develop an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials. The ultimate goal of this project is to demonstrate a prototype with magnetic properties exceeding state-of-the-art commercial magnets.

  13. An iterative finite element time-domain method for simulating three-dimensional electromagnetic diffusion in earth

    E-Print Network [OSTI]

    Um, E.S.

    2013-01-01

    of an axially symmetric earth for vertical magnetic dipoleDevelopment Grants from Earth Sciences Division. Editor Dr.electromagnetic diffusion in earth Evan Schankee Um, 1 Jerry

  14. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    , Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y Nivedita Thiagarajan, Cin-Ty Aeolus Lee* Department of Earth Science, MS-126, Rice University, Houston, TX elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish

  15. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, Terry R. (Wheaton, IL); Ackerman, John P. (Downers Grove, IL); Tomczuk, Zygmunt (Orland Park, IL); Fischer, Donald F. (Glen Ellyn, IL)

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  16. Precision muonic-atom measurements of nuclear quadrupole moments and the Sternheimer effect in rare-earth atoms

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1983-10-31

    The ground-state quadrupole moments of /sup 151/Eu, /sup 153/Eu, /sup 155/Gd, /sup 157/Gd, /sup 159/Tb, /sup 163/Dy, /sup 167/Er, /sup 177/Hf, /sup 179/Hf, /sup 191/Ir, and /sup 193/Ir were determined with an uncertainty of less than one percent by measuring the quadrupole hyperfine-splitting energies of muonic M x rays. The results are used to determine experimentally Sternheimer shielding factors for the 4f, 5d, and 6p electronic states of the respective atoms. The deduced shielding factors for the 5d electronic states were found to vary considerably among these elements, presumably as a result of configuration mixing.

  17. JOURNAL DE PHYSIQUE Colloque C6, suppliment au no 8, Tome 39, aotit 1978, page C6-1379 LONG RANGE MAGNETIC ORDER I N THE SUPERCONDUCTING STATE OF HEAVY RARE EARTH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MAGNETIC ORDER I N THE SUPERCONDUCTING STATE OF HEAVY RARE EARTH MOLYBDENUM SULFIDES AND THEIR PSEUDOTERNARY COMPOUNDS M. Ishikawa, 0. Fischer and J. Muller De'pmtement de Physique de Za MatiBre Condense Qgalement exposds. Abstract.- Various experimental evidences for long range magnetic order

  18. Crystal and electronic structures of CaAl{sub 2}Si{sub 2}-type rare-earth copper zinc phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu)

    SciTech Connect (OSTI)

    Blanchard, Peter E.R.; Stoyko, Stanislav S.; Cavell, Ronald G. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.c [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2011-01-15

    The quaternary rare-earth phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 {sup o}C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (Pearson symbol hP5, space group P3-bar m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP{sub 2} and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP{sub 2} model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP{sub 2} (RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e{sup -} per formula unit, as demonstrated by the formation of a solid solution in GdCu{sub x}Zn{sub 2-x}P{sub 2} (1.0{<=}x{<=}1.3), while still retaining the CaAl{sub 2}Si{sub 2}-type structure. Because the Cu 2p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP{sub 2} (RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms. -- Graphical abstract: The absence of a band gap in the semimetallic quaternary rare-earth phosphides RECuZnP{sub 2} permits the formation of a solid solution such as GdCu{sub x}Zn{sub 2-x}P{sub 2} through hole-doping of the valence band. Display Omitted

  19. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    SciTech Connect (OSTI)

    Yan, Ka King

    2013-05-02

    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe{sub 2}){sub 3} and KC(SiHMe{sub 2}){sub 3}TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe{sub 2}){sub 3} with potassium benzyl. KC(SiHMe{sub 2}){sub 3}TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing ?-SiH groups M{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe{sub 2}){sub 3}. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) are prepared from MI{sub 2} and 2 equiv of KC(SiHMe{sub 2}){sub 3}. The compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and La{C(SiHMe{sub 2}){sub 3}}{sub 3} react with 1 equiv of B(C{sub 6}F{sub 5}){sub 3} to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe{sub 2}){sub 3}}{sub 2}HB(C{sub 6}F{sub 5}){sub 3}, respectively. The corresponding reactions of Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu) give the ?-SiH abstraction product [{(Me{sub 2}HSi){sub 3}C}{sub 2}LnC(SiHMe{sub 2}){sub 2}SiMe{sub 2}][HB(C{sub 6}F{sub 5}){sub 3}] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2 }or TMEDA) and Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) and 2 equiv of B(C{sub 6}F{sub 5}){sub 3} give the expected dicationic M{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and dicationic mono(silylalkyl) LnC(SiHMe{sub 2}){sub 3}{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2} (Ln = Y, Lu, La), respectively. Salt metathesis reactions of Cp{sub 2}(NR{sub 2})ZrX (X = Cl, I, OTf; R = t-Bu, SiHMe{sub 2}) and lithium hydrosilazide ultimately afford hydride products Cp{sub 2}(NR{sub 2})ZrH that suggest unusual ?-hydrogen elimination processes. A likely intermediate in one of these reactions, Cp{sub 2}Zr[N(SiHMe{sub 2})t-Bu][N(SiHMe{sub 2}){sub 2}], is isolated under controlled synthetic conditions. Addition of alkali metal salts to this zirconium hydrosilazide compound produces the corresponding zirconium hydride. However as conditions are varied, a number of other pathways are also accessible, including C-H/Si-H dehydrocoupling, ?-abstraction of a CH, and ?-abstraction of a SiH. Our observations suggest that the conversion of (hydrosilazido)zirconocene to zirconium hydride does not follow the classical four-center ?- elimination mechanism. Elimination and abstraction reactions dominate the chemistry of ligands containing ?- hydrogen. In contrast, Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}H and Cp{sub 2}Zr{N(SiHMe{sub 2}){sub 2}}Me undergo selective ?-CH bond activation to yield the azasilazirconacycle Cp{sub 2Zr}{?{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}}, even though there are reactive ?-hydrogen available for abstraction. The ?-SiH groups in metallacycle provide access to new pathways for sixteen-electron zirconium alkyl compounds, in which Cp{sub 2}Zr{?{sup 2}-N(SiHMe{sub 2})SiHMeCH{sub 2}} undergoes a rare ?-bond metathesis reaction with ethylene. The resulting vinyl intermediate undergoes ?-hydrogen abstraction to reform ethylene and a silanimine zirconium species that reacts with ethylene to give a metallacyclopentane as the isolated product. The pendent ?-SiH in metallocycle also reacts with paraformaldehyde through an uncatalyzed hydrosilylation to form an exocyclic methoxysilyl moiety, while the zirconium-carbon bond in metallocycle is surprisingly inert toward formaldehyde. Still, the Zr-C moiety in metallocycle is available for chemistry, and it interacts with the carbon monoxide and strong electrophile B(C{sub 6}F{sub 5}){sub 3} to provide Cp{sub 2}Zr[?{sup 2}- OC(=CH{sub 2})SiMeHN(SiHMe

  20. Raman spectra of R{sub 2}O{sub 3} (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study

    SciTech Connect (OSTI)

    Abrashev, M. V.; Todorov, N. D.; Geshev, J.

    2014-09-14

    Raman spectra of R{sub 2}O{sub 3} (R—Sc, Er, Y, Ho, Gd, Eu, and Sm) powders with C-type bixbyite crystal structure are measured. With the help of these data and ones, previously published for other oxides from the same structural family, general dependencies of the frequencies of the Raman peaks on the cubic crystal unit cell parameter are constructed. Using these dependencies and knowing the symmetry of the peaks for one of the oxides, determined from previous single-crystal measurements, it is possible to find out the symmetry of the peaks from the spectra of all compounds. It was found that the frequency of the six lowest frequency peaks scales with the square root of the mass of the rare earth showing that mainly R ions take part in these vibrations. These results agree with performed here lattice dynamical calculations. The anomalous softening of the frequency of some peaks in the spectra of Eu{sub 2}O{sub 3} is discussed.

  1. Magnetic ordering of divalent europium in double perovskites Eu{sub 2}LnTaO{sub 6} (Ln=rare earths)

    SciTech Connect (OSTI)

    Misawa, Yoshitaka; Doi, Yoshihiro [Division of Chemistry, Hokkaido University, Sapporo 060-0810 (Japan); Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp [Division of Chemistry, Hokkaido University, Sapporo 060-0810 (Japan)

    2011-06-15

    Structures and magnetic properties of double perovskite-type oxides Eu{sub 2}LnTaO{sub 6} (Ln=Eu, Dy-Lu) were investigated. These compounds adopt a distorted double perovskite structure with space group P2{sub 1}/n. Magnetic susceptibility, specific heat, and {sup 151}Eu Moessbauer spectrum measurements show that the Eu{sup 2+} ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at {approx}4 K, and that Ln{sup 3+} ions at the 6-coordinate site are in the paramagnetic state down to 1.8 K. - Graphical abstract: Magnetic properties of double perovskite-type oxides Eu{sub 2}LnTaO{sub 6} (Ln=Eu, Dy-Lu) were investigated. Magnetic susceptibility, specific heat, and {sup 151}Eu Moessbauer spectrum measurements show that the Eu{sup 2+} ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at {approx}4 K. Highlights: > Crystal structures of double perovskites Eu{sub 2}LnTaO{sub 6} (Ln=rare earth) were determined. > We found that these compounds show an antiferromagnetic ordering at {approx}4 K. > The magnetic ordering is due to the interactions of Eu{sup 2+} ions. > It was elucidated by specific heat and {sup 151}Eu Moessbauer spectrum measurements.

  2. K{sub 3}Ln[OB(OH){sub 2}]{sub 2}[HOPO{sub 3}]{sub 2} (Ln=Yb, Lu): Layered rare-earth dihydrogen borate monohydrogen phosphates

    SciTech Connect (OSTI)

    Zhou Yan [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Hoffmann, Stefan [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Huang Yaxi [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Prots, Yurii; Schnelle, Walter; Menezes, Prashanth W.; Carrillo-Cabrera, Wilder; Sichelschmidt, Joerg [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Mi Jinxiao [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Kniep, Ruediger, E-mail: kniep@cpfs.mpg.de [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany)

    2011-06-15

    Two isotypic layered rare-earth borate phosphates, K{sub 3}Ln[OB(OH){sub 2}]{sub 2}[HOPO{sub 3}]{sub 2} (Ln=Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction (R3-bar , Z=3, Yb: a=5.6809(2) A, c=36.594(5) A, V=1022.8(2) A{sup 3}, Lu: a=5.6668(2) A, c=36.692(2) A, V=1020.4(1) A{sup 3}). The crystal structure can be described in terms of stacking of Glaserite-type slabs consisting of LnO{sub 6} octahedra interlinked by phosphate tetrahedra and additional layers of [OB(OH){sub 2}]{sup -} separated by K{sup +} ions. Field and temperature dependent measurements of the magnetic susceptibility of the Yb-compound revealed Curie-Weiss paramagnetic behavior above 120 K ({mu}{sub eff}=4.7 {mu}{sub B}). Magnetic ordering was not observed down to 1.8 K. - Graphical abstract: Two isotypic layered rare-earth borate phosphates, K{sub 3}Ln[OB(OH){sub 2}]{sub 2}[HOPO{sub 3}]{sub 2} (Ln = Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction. The structure can be described by stacking of Glaserite-type slabs and dihydrogen borate layers separated by potassium cations. Highlights: > First hydrothermal synthesis of rare-earth borate phosphates. > Instead of microcrystalline powders the synthesis of single crystals was achieved. > Successful single-crystal X-ray structure determination. > 2D arrangement of magnetic rare-earth ions. > EPR spectrum of Yb{sup 3+} at 5 K.

  3. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    SciTech Connect (OSTI)

    Sarrao, J L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Tobash, P H [UNIV. OF DE; Bobev, S [UNIV. OF DE

    2009-01-01

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  4. New high pressure rare earth tantalates RE{sub x}Ta{sub 2}O{sub 5+1.5x} (RE=La, Eu, Yb)

    SciTech Connect (OSTI)

    Zibrov, Igor P.; Filonenko, Vladimir P.; Zakharov, Nikolai D.; Nikishina, Elena E.; Lebedeva, Elena N.

    2013-07-15

    Rare earth tantalates La{sub 0.075}Ta{sub 2}O{sub 5.113}, Eu{sub 0.089}Ta{sub 2}O{sub 5.134} and Yb{sub 0.051}Ta{sub 2}O{sub 5.077} have been prepared by solid state reaction at P=7.0 GPa and T=1050–1100 °C and studied by X-ray diffraction, thermal analysis and electron microscopy. Low hydrated amorphous tantalum, lanthanum, europium and ytterbium hydroxides were used as starting materials. Aqueous as well as anhydrous compounds were obtained. Title tantalates are crystallized in the structure type of F–Ta{sub 2}O{sub 5} [Zibrov et al. Russ. J. Inorg. Chem. 48 (2003) 464–471] [5]. The structure was refined by the Rietveld method from X-ray powder diffractometer data: La{sub 0.075}Ta{sub 2}O{sub 5.113}, a=10.5099(2), b=7.2679(1), c=6.9765(1) Å, V=532.90(1) Å{sup 3}, Z=6, space group Ibam; Eu{sub 0.089}Ta{sub 2}O{sub 5.134}, a=10.4182(3), b=7.2685(1), c=6.9832(1) Å, V=528.80(2) Å{sup 3}, Z=6, space group Ibam; Yb{sub 0.051}Ta{sub 2}O{sub 5.077}, a=10.4557(2), b=7.3853(1), c=6.8923(1) Å, V=532.21(1) Å{sup 3}, Z=6, space group Ibam. RE atoms do not replace the tantalum in its positions but the only water in the channels of the structure. Highly charged cations RE{sup +3} compress the unit cell so that its volume becomes less than that of F–Ta{sub 2}O{sub 5}. Significant decrease of the unit cell volume after water removal from the structure is possible due to the puckering of pentagonal bipyramid layers and change of the corrugation angle in the layer. - Graphical abstract: The structure of RE{sub x}Ta{sub 2}O{sub 5+1.5x} and its HRTEM image (“A” arrows show empty channel, “B” arrows show filled channel). - Highlights: • We synthesized new tantalates of RE under high pressure high temperature conditions. • RE atoms replace water molecules in the channels of the structure. • Aqueous as well as anhydrous tantalates were obtained. • Highly charged cations RE{sup +3} compress the unit cell decreasing RE–O distances.

  5. JOURNAL DE PHYSIQUE Colloque C2, suppl&mentau no 3, Tome 40, mars 1979,page C2-135 MOSSBAUER AND MAGNET1C MEASUREMENTS I N AMORPHOUS RARE EARTH-TRANS I T 1ON METAL F I LMS

    E-Print Network [OSTI]

    Boyer, Edmond

    AND MAGNET1C MEASUREMENTS I N AMORPHOUS RARE EARTH-TRANS I T 1ON METAL F I LMS T. Katayama, Y. Nishihara, Y perpendicular to the film phous rare earth-transition metal (R-T) films, being planes. But the spectra of B,., is the isomer shift relative to metallic iron, H the hyperfine field at the maximum proba&ility in P(H) curve

  6. JOURNALDE PHYSIQUE ColloqueC1, suppl4mentau nO 1 , Tome41,janvier 1980,page C1-25 ELECTRONIC R E W T I O N IN RARE EARTH METALS AND ALLOYS -A NON-KRAFZERS W P L E : m3+

    E-Print Network [OSTI]

    Boyer, Edmond

    T I O N IN RARE EARTH METALS AND ALLOYS - A NON-KRAFZERS W P L E : m3+ N.S. Dixon, L.S. F r i t z , Y relaxation i n rare earth materials has been a subject of considerable i n t e r e s t i n recent years. Several metallic thulium compounds, Tm, TmA1, h C u , and Tm,Y1-xCu, were studied using MEssbauer

  7. Photoluminescence properties of rare earths (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+}) activated NaInW{sub 2}O{sub 8} wolframite host lattice

    SciTech Connect (OSTI)

    Asiri Naidu, S.; Boudin, S. [Laboratoire de Cristallographie et Sciences des Materiaux, ENSICAEN, Universite de Caen, CNRS, 6 Bd Marechal Juin, F-14050 Caen (France); Varadaraju, U.V. [Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Raveau, B., E-mail: bernard.raveau@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Materiaux, ENSICAEN, Universite de Caen, CNRS, 6 Bd Marechal Juin, F-14050 Caen (France)

    2012-01-15

    The photoluminescence (PL) studies on NaIn{sub 1-x}RE{sub x}W{sub 2}O{sub 8}, with RE=Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+} phases have shown that the relative contribution of the host lattice and of the intra-f-f emission of the activators to the PL varies with the nature of the rare earth cation. In the case of Dy{sup 3+} and Tm{sup 3+} activators, with yellow and blue emission, respectively, the energy transfer from host to the activator plays a major role. In contrast for Eu{sup 3+}, with intense red emission, the host absorption is less pronounced and the intra-f-f transitions of the Eu{sup 3+} ions play a major role, whereas for Tb{sup 3+} intra-f-f transitions are only observed, giving rise to green emission. - Graphical abstract: NaInW{sub 2}O{sub 8} double tungstate doped with Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}and Tm{sup 3+} shows characteristic emission of intense red for Eu{sup 3+}, yellow for Dy{sup 3+}, green for Tb{sup 3+} and blue for Tm{sup 3+}. Highlights: Black-Right-Pointing-Pointer Characteristic emissions of rare earths (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+} and Tm{sup 3+}) are observed NaInW{sub 2}O{sub 8} wolframite. Black-Right-Pointing-Pointer Energy transfer from host to the activators (Eu{sup 3+} Dy{sup 3+} Tm{sup 3+} is observed. Black-Right-Pointing-Pointer PL properties of rare earth ions depend on minor structural variations in the host lattice.

  8. Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3

    SciTech Connect (OSTI)

    Cao, Qing

    2012-07-26

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family (R = rare earths, 0 ? x ? 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R{sub 5(Si{sub x}Ge{sub 1-x}){sub 4} compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er{sub 5}Si{sub 4} compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd{sub 5}Si{sub 4}-type orthorhombic to Gd{sub 5}Si{sub 2}Ge{sub 2}-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 ?C. Successful future utilization of the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family in novel devices depends on a fundamental understanding of the structure-property interplay on the nanoscale level, which makes a complete understanding of the microstructure of this family especially important. Past scanning electron microscopy (SEM) observation has shown that nanometer-thin plates exist in every R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} (“5:4”) phase studied, independent of initial parent crystal structure and composition. A comprehensive electron microscopy study including SEM, energy dispersive spectroscopy (EDS), selected area diffraction (SAD), and high resolution transmission electron microscopy (HRTEM) of a selected complex 5:4 compound based on Er rather than Gd, (Er{sub 0.9Lu{sub 0.1}){sub 5}Si{sub 4}, has produced data supporting the assumption that all the platelet-like features present in the R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} family are hexagonal R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 3} (“5:3”) phase and possess the same reported orientation relationship that exists for the Gd{sub 5}Ge{sub 4} and Gd{sub 5}Si{sub 2}Ge{sub 2} compounds, i.e. [010](102?){sub m} || [101?0](12?11){sub p}. Additionally, the phase identification in (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4} carried out using X-ray powder diffraction (XRD) techniques revealed that the low amount of 5:3 phase is undetectable in a conventional laboratory Cu K? diffractometer due to detection limitations, but that extremely low amounts of the 5:3 phase can be detected using high resolution powder diffraction (HRPD) employing a synchrotron source. These results suggest that use of synchrotron radiation for the study of R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds should be favored over conventional XRD for future investigations. The phase stability of the thin 5:3 plates in a Gd{sub 5}Ge{sub 4} sample was examined by performing long-term annealing at very high temperature. The experimental results indicate the plates are thermally unstable above 1200?C. While phase transformation of 5:3 to 5:4 occurs during the annealing, the phase transition is still fairly sluggish, being incomplete even after 24 hours annealing at this elevated temperature. Additional experiments using laser surface melting performed on the surface of a Ho{sub 5}(Si{sub 0.8}Ge{sub 0.}2){sub 4} sample showed that rapid cooling will suppress the precipitation of 5:3 plates. Bulk microstructure studies of polycrystalline and monocrystalline Gd{sub 5}Ge{sub 3} compounds examined using optical microscopy, SEM and TEM also show a series of linear features present in the Gd{sub 5}Ge{sub 3} matrix, similar in appearance in many ways to the 5:3 plates observed in R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} compounds. A systematic microscopy analysis of these linear features revealed they also are thin plates with a stoichiometric composition of Gd{sub 5}Ge{sub 4} with an orthorhombic structure. The orientation relationship between the 5:3 matrix and the precipitate 5:4 thin plates was determined as [101?0] (12?11){s

  9. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  10. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  11. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region

    SciTech Connect (OSTI)

    Zhang, Zhi-Jun; Lin, Xiao; Graduate School of Chinese Academy of Science, Beijing, 100039 ; Zhao, Jing-Tai; Zhang, Guo-Bin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? We report the VUV spectroscopic properties of rare-earth ions in K{sub 2}LnZr(PO{sub 4}){sub 3}. ? The O{sup 2?}-Eu{sup 3+} charge transfer bands at about 220 nm have been observed. ? The 4f–5d spin-allowed and spin-forbidden transitions of Tb{sup 3+} have been observed. ? There is energy transfer between the host and rare-earth activators. -- Abstract: Rare earth (RE = Sm, Eu, Tb, Dy and Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) have been synthesized by solid-state reaction method, and their vacuum ultraviolet (VUV) excitation luminescent characteristics have been investigated. The band in the wavelength range of 130–157 nm and the other one range from 155 to 216 nm with the maximum at about 187 nm in the VUV excitation spectra of these compounds are attributed to the host lattice absorption and O–Zr charge transfer transition, respectively. The charge transfer bands (CTB) of O{sup 2?}-Sm{sup 3+}, O{sup 2?}-Dy{sup 3+} and O{sup 2?}-Tm{sup 3+}, in Sm{sup 3+}, Dy{sup 3+} and Tm{sup 3+}-activated samples, have not been obviously observed probably because the 2p electrons of oxygen are tightly bound to the zirconium ion in the host lattice. For Eu{sup 3+}-activated samples, the relatively weak O{sup 2?}-Eu{sup 3+} CTB at about 220 nm is observed. And for Tb{sup 3+}-activated samples, the bands at 223 and 258 nm are related to the 4f-5d spin-allowed and spin-forbidden transitions of Tb{sup 3+}, respectively. It is observed that there is energy transfer between the host lattice and the luminescent activators (e.g. Eu{sup 3+}, Tb{sup 3+}). From the standpoint of luminescent efficiency, color purity and chemical stability, K{sub 2}GdZr(PO{sub 4}){sub 3}:Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} are attractive candidates for novel yellow, red, green-emitting PDP phosphors.

  12. EARTH SCIENCES DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    of electrolytes: IX, rare earth chlorides, nitrates, andU E OF AQUIFER RESPONSE TO EARTH TIDES AS A MEANS O F SLawrence Berkeley Laboratory, Earth Sciences Division, 1977.

  13. Ternary rare-earth ruthenium and iridium germanides RE{sub 3}M{sub 2}Ge{sub 3} (RE=Y, Gd–Tm, Lu; M=Ru, Ir)

    SciTech Connect (OSTI)

    Oliynyk, Anton O.; Stoyko, Stanislav S.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2013-06-15

    Through arc-melting reactions of the elements and annealing at 800 °C, the ternary rare-earth germanides RE{sub 3}Ru{sub 2}Ge{sub 3} and RE{sub 3}Ir{sub 2}Ge{sub 3} have been prepared for most of the smaller RE components (RE=Y, Gd–Tm, Lu). In the iridium-containing reactions, the new phases RE{sub 2}IrGe{sub 2} were also generally formed as by-products. Powder X-ray diffraction revealed orthorhombic Hf{sub 3}Ni{sub 2}Si{sub 3}-type structures (space group Cmcm, Z=4) for RE{sub 3}M{sub 2}Ge{sub 3} (M=Ru, Ir) and monoclinic Sc{sub 2}CoSi{sub 2}-type structures (space group C2/m, Z=4) for RE{sub 2}IrGe{sub 2}. Full crystal structures were determined by single-crystal X-ray diffraction for all members of RE{sub 3}Ru{sub 2}Ge{sub 3} (a=4.2477(6) Å, b=10.7672(16) Å, c=13.894(2) Å for RE=Y; a=4.2610(3)–4.2045(8) Å, b=10.9103(8)–10.561(2) Å, c=14.0263(10)–13.639(3) Å in the progression of RE from Gd to Lu) and for Tb{sub 3}Ir{sub 2}Ge{sub 3} (a=4.2937(3) Å, b=10.4868(7) Å, c=14.2373(10) Å). Both structures can be described in terms of CrB- and ThCr{sub 2}Si{sub 2}-type slabs built from Ge-centred trigonal prisms. However, band structure calculations on Y{sub 3}Ru{sub 2}Ge{sub 3} support an alternative description for RE{sub 3}M{sub 2}Ge{sub 3} based on [M{sub 2}Ge{sub 3}] layers built from linked MGe{sub 4} tetrahedra, which emphasizes the strong M–Ge covalent bonds present. The temperature dependence of the electrical resistivity of RE{sub 3}Ru{sub 2}Ge{sub 3} generally indicates metallic behaviour but with low-temperature transitions visible for some members (RE=Gd, Tb, Dy) that are probably associated with magnetic ordering of the RE atoms. Anomalously, Y{sub 3}Ru{sub 2}Ge{sub 3} exhibits semiconductor-like behaviour of uncertain origin. Magnetic measurements on Dy{sub 3}Ru{sub 2}Ge{sub 3} reveal antiferromagnetic ordering at 3 K and several unusual field-dependent transitions suggestive of complex spin reorientation processes. - Graphical abstract: RE{sub 3}M{sub 2}Ge{sub 3} (M=Ru, Ir) adopts the Hf{sub 3}Ni{sub 2}Si{sub 3}-type structure containing slabs built up from Ge-centred trigonal prisms. - Highlights: • Crystal structures of RE{sub 3}Ru{sub 2}Ge{sub 3} (RE=Y, Gd–Tm, Lu) and Tb{sub 3}Ir{sub 2}Ge{sub 3} were determined. • Strong M–Ge covalent bonds were confirmed by band structure calculations. • Most RE{sub 3}Ru{sub 2}Ge{sub 3} members except Y{sub 3}Ru{sub 2}Ge{sub 3} exhibit metallic behaviour. • Dy{sub 3}Ru{sub 2}Ge{sub 3} displays unusual field-dependent magnetic transitions.

  14. Life Before Earth

    E-Print Network [OSTI]

    Alexei A. Sharov; Richard Gordon

    2013-03-28

    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization, and emergence of novel functional niches associated with existing genes. Linear regression of genetic complexity on a log scale extrapolated back to just one base pair suggests the time of the origin of life 9.7 billion years ago. This cosmic time scale for the evolution of life has important consequences: life took ca. 5 billion years to reach the complexity of bacteria; the environments in which life originated and evolved to the prokaryote stage may have been quite different from those envisaged on Earth; there was no intelligent life in our universe prior to the origin of Earth, thus Earth could not have been deliberately seeded with life by intelligent aliens; Earth was seeded by panspermia; experimental replication of the origin of life from scratch may have to emulate many cumulative rare events; and the Drake equation for guesstimating the number of civilizations in the universe is likely wrong, as intelligent life has just begun appearing in our universe. Evolution of advanced organisms has accelerated via development of additional information-processing systems: epigenetic memory, primitive mind, multicellular brain, language, books, computers, and Internet. As a result the doubling time of complexity has reached ca. 20 years. Finally, we discuss the issue of the predicted technological singularity and give a biosemiotics perspective on the increase of complexity.

  15. Capturing near-Earth asteroids around Earth Zaki Hasnain n

    E-Print Network [OSTI]

    Ross, Shane

    Capturing near-Earth asteroids around Earth Zaki Hasnain n , Christopher A. Lamb, Shane D. Ross Keywords: Near-Earth asteroids Asteroid capture a b s t r a c t The list of detected near-Earth asteroids metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating

  16. Rare-earth metal gallium silicides via the gallium self-flux method. Synthesis, crystal structures, and magnetic properties of RE(Ga1–xSix)? (RE=Y, La–Nd, Sm, Gd–Yb, Lu)

    SciTech Connect (OSTI)

    Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Saha, Shanta; Kirshenbaum, Kevin; Greene, Richard; Paglione, Johnpierre [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2013-05-01

    Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(GaxSi1–x)? (0.38?x?0.63), which crystallize with the tetragonal ?-ThSi? structure type (space group I4?/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic ?-GdSi? structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGaxSi2–x–y (RE=Ho, Er, Tm; 0.33?x?0.40, 0.10?y?0.18). LuGa?.?????Si?.????? crystallizes with the orthorhombic YbMn?.??Si?.?? structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the ?-ThSi? and ?-GdSi?-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in ?-ThSi? structure type. • Heavy rare-earth gallium silicides crystallize in ?-GdSi? structure type. • LuGaSi crystallizes in a defect variant of the YbMn?.??Si?.?? structure type.

  17. Tin oxide thick film by doping rare earth for detecting traces of CO{sub 2}: Operating in oxygen-free atmosphere

    SciTech Connect (OSTI)

    Xiong, Ya; Zhang, Guozhu; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng, E-mail: csxie@mail.hust.edu.cn

    2014-04-01

    Highlights: • La, Gd, and Lu doped SnO{sub 2} with their sensing properties toward CO{sub 2} were compared. • The microstructures of SnO{sub 2}-based nanoparticles were elaborately characterized. • La-SnO{sub 2} thick film shows superior response toward trace ppm CO{sub 2}. • Our sensing material can be recommended to employ in oxygen-free environment. - Abstract: SnO{sub 2} thick films doped with atomic ratios ranging from 0 up to 8 at.% La, 8 at.% Gd, 8 at.% Lu were fabricated, respectively, via hydrothermal and impregnation methods. The crystal phase, morphology, and chemical composition of the SnO{sub 2}-based nanoparticles were characterized by XRD, FE-SEM, EDX, HRTEM and XPS. Sensing properties of La-SnO{sub 2}, Gd-SnO{sub 2}, Lu-SnO{sub 2} films, as well as the pure SnO{sub 2} film, were analyzed toward CO{sub 2} in the absence of O{sub 2}. It was found that the optimal doping element was La and the best doping ratio was 4 at.%. The maximum response appeared at an operating temperature of 250 °C, on which condition the 4 at.% La-SnO{sub 2} exhibited a remarkable improvement of response from 5.12 to 29.8 when increasing CO{sub 2} concentration from 50 to 500 ppm. Furthermore, the working mechanism underlying such enhancement in CO{sub 2}-sensing functions by La additive in the absence of O{sub 2} was proposed and discussed.

  18. Synthesis, crystal structure and properties of Mg{sub 3}B{sub 36}Si{sub 9}C and related rare earth compounds RE{sub 3?x}B{sub 36}Si{sub 9}C (RE=Y, Gd–Lu)

    SciTech Connect (OSTI)

    Ludwig, Thilo; Pediaditakis, Alexis; Sagawe, Vanessa; Hillebrecht, Harald

    2013-08-15

    We report on the synthesis and characterisation of Mg{sub 3}B{sub 36}Si{sub 9}C. Black single crystals of hexagonal shape were yielded from the elements at 1600 °C in h-BN crucibles welded in Ta ampoules. The crystal structure (space group R3{sup ¯}m, a=10.0793(13) Å, c=16.372(3) Å, 660 refl., 51 param., R{sub 1}(F)=0.019; wR{sub 2}(F{sup 2})=0.051) is characterized by a Kagome-net of B{sub 12} icosahedra, ethane like Si{sub 8}-units and disordered SiC-dumbbells. Vibrational spectra show typical features of boron-rich borides and Zintl phases. Mg{sub 3}B{sub 36}Si{sub 9}C is stable against HF/HNO{sub 3} and conc. NaOH. The micro-hardness is 17.0 GPa (Vickers) and 14.5 GPa (Knoop), respectively. According to simple electron counting rules Mg{sub 3}B{sub 36}Si{sub 9}C is an electron precise compound. Band structure calculations reveal a band gap of 1.0 eV in agreement to the black colour. Interatomic distances obtained from the refinement of X-ray data are biased and falsified by the disorder of the SiC-dumbbell. The most evident structural parameters were obtained by relaxation calculation. Composition and carbon content were confirmed by WDX measurements. The small but significant carbon content is necessary by structural reasons and frequently caused by contaminations. The rare earth compounds RE{sub 3?x}B{sub 36}Si{sub 9}C (RE=Y, Dy–Lu) are isotypic. Single crystals were grown from a silicon melt and their structures refined. The partial occupation of the RE-sites fits to the requirements of an electron-precise composition. According to the displacement parameters a relaxation should be applied to obtain correct structural parameters. - Graphical abstract: Single crystals of the new boridesilicide Mg{sub 3}B{sub 36}Si{sub 9}C were obtained from the elements in a Si-melt. Besides B{sub 12}-icosahedra and ethan-like Si{sub 8}-units it contains a disordered SiC-dumbbell. Correct distances were obtained by relaxation calculation based on the X-ray data. Highlights: • Black single crystals of Mg{sub 3}B{sub 36}Si{sub 9}C were yielded from the elements at 1600 °C. • The rare earth compounds RE{sub 3–x}B{sub 36}Si{sub 9}C (RE=Y, Gd–Lu) are isotypic. • Correct structural parameters result from X-ray data and subsequent relaxation.

  19. Modeling of optical amplifier waveguide based on silicon nanostructures and rare earth ions doped silica matrix gain media by a finite-difference time-domain method: comparison of achievable gain with Er3+ or Nd3+ ions dopants

    E-Print Network [OSTI]

    Cardin, Julien; Dufour, Christian; Gourbilleau, Fabrice

    2015-01-01

    A comparative study of the gain achievement is performed in a waveguide optical amplifier whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd 3+) or erbium ions (Er 3+). Due to the large difference between population levels characteristic times (ms) and finite-difference time step (10 --17 s), the conventional auxiliary differential equation and finite-difference time-domain (ADE-FDTD) method is not appropriate to treat such systems. Consequently, a new two loops algorithm based on ADE-FDTD method is presented in order to model this waveguide optical amplifier. We investigate the steady states regime of both rare earth ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 10 4 mW.mm-2. Furthermore, the three dimensional distribution of achievable gain per unit length has been estimated in this pumping range. The Nd 3+ doped waveguide shows a higher gross...

  20. Rare-earth-rich tellurides: Gd{sub 4}NiTe{sub 2} and Er{sub 5}M{sub 2}Te{sub 2} (M=Co, Ni)

    SciTech Connect (OSTI)

    Magliocchi, Carmela; Meng, Fanqin; Hughbanks, Timothy . E-mail: trh@mail.chem.tamu.edu

    2004-11-01

    Three new rare earth metal-rich compounds, Gd{sub 4}NiTe{sub 2}, and Er{sub 5}M{sub 2}Te{sub 2} (M=Ni, Co), were synthesized in direct reactions using R, R{sub 3}M, and R{sub 2}Te{sub 3} (R=Gd, Er; M=Co, Ni) and single-crystal structures were determined. Gd{sub 4}NiTe{sub 2} is orthorhombic and crystallizes in space group Pnma with four formula units per cell. Lattice parameters at 110(2)K are a=15.548(9), b=4.113(2), c=11.7521(15)A. Er{sub 5}Ni{sub 2}Te{sub 2} and Er{sub 5}Co{sub 2}Te{sub 2} are isostructural and crystallize in the orthorhombic space group Cmcm with two formula units per cell. Lattice parameters at 110(2)K are a=3.934(1), b=14.811(4), c=14.709(4)A, and a=3.898(1), b=14.920(3), c=14.889(3)A, respectively. Metal-metal bonding correlations were analyzed using the empirical Pauling bond order concept.

  1. ANISO TROPIE ET MAGNETOSTRICTION MAGNETOCRYS T A L L N AM SOTROPYIN RARE EARTHSANDTHEIRALLOYS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . -Magnetocrystalline anisotropy of rare earth impurities doped in Gd metal was measured by torque method constants of rare earth metals was first attempted by Liu and al. [I]for Dy through the observation determination of the aniso- tropy constants. In the present experiments, one species of rare earth metals

  2. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  3. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01

    polymer   electrolyte   membrane   fuel   cells   (PEMFC),   alkaline   fuel   cells   (AFC),   molten   carbonate  

  4. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01

    the   amount   of   useful   energy  extracted  from  the  1.8)   ?  =  useful  energy  /  total  energy  Fuel  cells  extract  useful  energy  from  a  chemical  

  5. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01

    of   delivered   energy   today  is  produced  using  energy   conversion   and   storage   problems   faced   by   the   world   today.  today.   i   Contents   1  Introduction .1   1.1  Motivation   ..1   1.1.1  Electrochemical  Energy  

  6. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01

    membrane   fuel   cells   (PEMFC),   alkaline   fuel  temperature   Catalyst   PEMFC   Polymer   membrane   H 3 Oof   the   SOFC   and   PEMFC   membrane   materials  

  7. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01

    5   A  comparison  of  the  PEM,  SOFC,  and  PCFC  fuel  solid   oxide   fuel   cells   (SOFC).    The  electrolyte  immobilized)   OH -­?   MCFC   SOFC   Molten   Ceramic  

  8. rare earth recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m

  9. Earth Sciences Environmental Earth Sciences,

    E-Print Network [OSTI]

    Brierley, Andrew

    86 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society of London

  10. Earth Sciences Environmental Earth Sciences,

    E-Print Network [OSTI]

    Brierley, Andrew

    94 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint placement. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society

  11. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  12. Three series of quaternary rare-earth transition-metal pnictides with CaAl{sub 2}Si{sub 2}-type structures: RECuZnAs{sub 2}, REAgZnP{sub 2}, and REAgZnAs{sub 2}

    SciTech Connect (OSTI)

    Stoyko, Stanislav S.; Ramachandran, Krishna K.; Blanchard, Peter E.R. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Rosmus, Kimberly A.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2014-05-01

    Three series of quaternary rare-earth transition-metal pnictides REMM?Pn{sub 2} (M=Cu, Ag; M?=Zn; Pn=P, As) have been prepared by reaction of the elements at 800 °C, with crystal growth promoted through the addition of iodine. The extent of RE substitution is broad in these series: RECuZnAs{sub 2} (RE=Y, La-Nd, Sm, Gd–Lu), REAgZnP{sub 2} (RE=La–Nd, Sm, Gd–Dy), and REAgZnAs{sub 2} (RE=La-Nd, Sm, Gd-Dy). Powder and single-crystal X-ray diffraction analysis revealed that they adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (space group P3{sup ¯}m1, Z=1), in which Cu or Ag atoms are disordered with Zn atoms over the unique tetrahedrally coordinated transition-metal site. Magnetic measurements indicated Curie–Weiss behavior for several members of the RECuZnAs{sub 2} and REAgZnP{sub 2} series. Core-line X-ray photoelectron spectra (XPS) collected on some RECuZnAs{sub 2} members corroborate the charge assignment deduced by the Zintl concept for these compounds, (RE{sup 3+})(M{sup 1+})(Zn{sup 2+})(Pn{sup 3?}){sub 2}. Optical diffuse reflectance spectra and valence band XPS spectra established that these compounds are small band-gap semiconductors (up to ?0.8 eV in REAgZnP{sub 2}) or semimetals (RECuZnAs{sub 2}). Band structure calculations also support this electronic structure and indicate that the band gap can be narrowed through appropriate chemical substitution (RE=smaller atoms, M=Cu, and Pn=As). - Graphical abstract: Cu or Ag atoms are disordered with Zn atoms over the tetrahedral site within relatively rigid [M{sub 2}Pn{sub 2}] slabs in three series of quaternary pnictides adopting the CaAl{sub 2}Si{sub 2}-type structure. - Highlights: • Three series (comprising 25 compounds) of pnictides REMM'Pn{sub 2} were prepared. • Cu or Ag atoms are disordered with Zn atoms within relatively rigid [M{sub 2}Pn{sub 2}] slabs. • They are semimetals or small band-gap semiconductors. • RECuZnAs{sub 2} and REAgZnP{sub 2} are generally paramagnetic.

  13. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES.

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    2001-06-29

    The origin of the chemical elements show a wide diversity with some of these elements having their origin in antiquity. Still other elements have been synthesized within the past fifty years via nuclear reactions on heavy elements, because these other elements are unstable and radioactive and do not exist in nature. The names of the elements come from many sources including mythological concepts or characters; places, areas or countries; properties of the element or its compounds, such as color, smell or its inability to combine; and the names of scientists. There are also some miscellaneous names as well as some obscure names for particular elements. The claim of discovery of an element has varied over the centuries. Many claims, e.g., the discovery of certain rare earth elements of the lanthanide series, involved the discovery of a mineral ore from which an element was later extracted. The honor of discovery has often been accorded not to the person who first isolated the element but to the person who discovered the original mineral itself, even when the ore was impure and contained many elements. The reason for this is that in the case of these rare earth elements, the ''earth'' now refers to oxides of a metal not to the metal itself. This fact was not realized at the time of their discovery, until the English chemist Humphry Davy showed that earths were compounds of oxygen and metals in 1808. In the early discoveries, the atomic weight of an element and spectral analysis of the element were not available. Later both of these elemental properties would be required before discovery of the element would be accepted. In general, the requirements for discovery claims have tightened through the years and claims that were previously accepted would no longer meet the minimum constraints now imposed. There are cases where the honor of discovery is not given to the first person to actually discover the element but to the first person to claim the discovery in print. If a publication was delayed, the discoverer has often historically been ''scooped'' by another scientist.

  14. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  15. NO HEAVY-ELEMENT DISPERSION IN THE GLOBULAR CLUSTER M92

    SciTech Connect (OSTI)

    Cohen, Judith G., E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-10-20

    Although there have been recent claims that there is a large dispersion in the abundances of the heavy neutron capture elements in the old Galactic globular cluster M92, we show that the measured dispersion for the absolute abundances of four of the rare earth elements within a sample of 12 luminous red giants in M92 ({<=}0.07 dex) does not exceed the relevant sources of uncertainty. As expected from previous studies, the heavy elements show the signature of the r-process. Their abundance ratios are essentially identical to those of M30, another nearby globular cluster of similar metallicity.

  16. Rare earths for life: an 85th birthday visit with Mr. Rare Earth | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications The NREL QueueTechnologies |

  17. Earth's Three

    E-Print Network [OSTI]

    Hacker, Randi

    2010-11-17

    Broadcast Transcript: From Mongolia, land of fermented mare's milk, comes this beguiling morsel of nomadic oral tradition. It's called yertonciin gorav or Earth's Three. Earth's three what? Well, Earth's three top things in a number of categories...

  18. Earth Sciences Environmental Earth Sciences,

    E-Print Network [OSTI]

    Brierley, Andrew

    84 Earth Sciences­ Environmental Earth Sciences, Geology MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint Honours Degrees) and among the most research-intensive in Europe. Features * The Department of Earth and Environmental

  19. Chemical pressure and hidden one-dimensional behavior in rare...

    Office of Scientific and Technical Information (OSTI)

    report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to...

  20. Galactic Cosmochronometry from Radioactive Elements in the Spectra of Very Old Metal-Poor Stars

    E-Print Network [OSTI]

    C. Sneden; J. E. Lawler; J. J. Cowan

    2001-09-12

    In a short review of neutron-capture elemental abundances in Galactic halo stars, emphasis is placed on the use of these elements to estimate the age of the Galactic halo. Two prominent characteristics of neutron-capture elements in halo stars are their large star-to-star scatter in the overall abundance level with respect to lighter elements, and the dominance of r-process abundance patterns at lowest stellar metallicities. The r-process abundance signature potentially allows the direct determination of the age of the earliest Galactic halo nucleosynthesis events, but further developments in r-process theory, high resolution spectroscopy of very metal-poor stars, and in basic atomic data are needed to narrow the uncertainties in age estimates. Attention is brought to the importance of accurate transition probabilities in neutron-capture element cosmochronometry. Recent progress in the transition probabilities of rare earth elements is discussed, along with suggestions for future work on other species.

  1. Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800°C and 1 GPa: Implications for rare earth element transport in high-grade metamorphic fluids

    E-Print Network [OSTI]

    Tropper, P; Tropper, P; Manning, CE; Harlov, DE

    2013-01-01

    Institute of Mineralogy and Petrography, Faculty of Geo- andInstitute of Mineralogy and Petrography, Faculty of Geo- and

  2. JOURNAL DE PHYSIQUE Colloque C5, suppKment au no 5, Tome 40, Mai 1979, page C5-24 Nonlinear s-f exchange interaction effect and magnetic properties of rare

    E-Print Network [OSTI]

    Boyer, Edmond

    -f exchange interaction effect and magnetic properties of rare earth metals K. Kaino and T. Kasuya. Introduction. - Rare earth metals are known as the most typical materials in which the s-f exchange model electrons in rare earth metals is the existenceof the flat surfaceperpendicular to c-axis [3], which

  3. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    E-Print Network [OSTI]

    Arenholz, Elke

    2008-01-01

    a variety of both rare earth and transition metal elements [of transition metals and rare earths, respectively. Thein transition-metal-oxide and rare-earth compounds. Strong

  4. Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-process Rich, Metal-Poor Stars, and Rare Earth Lab Data

    E-Print Network [OSTI]

    Lawler, J E; Cowan, J J; Ivans, I I; Hartog, E A Den

    2009-01-01

    Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process ...

  5. 146 Earth Science 147 Earth Science

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    146 Earth Science 147 Earth Science ESCI 101 The Earth or ESCI 102 Evolution of the Earth or ESCI 107 Oceans and Global Change or ESCI 108 Crises of the Earth ESCI 105 Introductory Lab for Earth Geophysics I ESCI 444 Exploration Geophysics II or ESCI 446 Solid Earth Geophysics Math and Other Sciences

  6. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  7. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  8. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  9. The Search for Heavy Elements

    ScienceCinema (OSTI)

    None

    2010-01-08

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  10. Earth's Magnetosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 years ago - are a pair of donut shaped zones of charged particles that surround Earth and occupy the inner region of our planet's Magnetosphere. The outer belt contains...

  11. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  12. RARE BOOKS DIVISION SPECIAL COLLECTIONS

    E-Print Network [OSTI]

    Clayton, Dale H.

    . The Rare Books Division holds materials totaling approximately 80,000 items including books, pamphlets

  13. Rare Hadronic B Decays

    SciTech Connect (OSTI)

    Bevan, A.J.

    2006-06-07

    Rare hadronic B-meson decays allow us to study CP violation. The class of B-decays final states containing two vector mesons provides a rich set of angular correlation observables to study. This article reviews some of the recent experimental results from the BABAR and Belle collaborations.

  14. Earth Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements Report ofEnergyEarlyEarthEarth

  15. Mechanical stiffening and thermal softening of rare earth chalcogenides

    SciTech Connect (OSTI)

    Shriya, S.; Varshney, Dinesh [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India); Singh, Namita, E-mail: namita.singh.2050@gmail.com [Department of Physics, Ranchi College, Ranchi University Ranchi- 834008, Jharkhand (India); Varshney, M. [Department of Physics, M. B. Khalsa College, Raj Mohallah, Indore-452002 (India)

    2014-04-24

    The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})

  16. DOE Announces Second RFI on Rare Earth Metals | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials in other technologies, such as fluid cracking catalysts in petroleum refineries. Finally, the updated strategy will identify specific steps forward for...

  17. Non-Rare Earth magnetic materials (Agreement ID:19201)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    E-Print Network [OSTI]

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  19. Non-Rare Earth High-Performance Wrought Magnesium Alloys

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Microstructural investigations of rare-earth transition-metal...

    Broader source: Energy.gov (indexed) [DOE]

    (2008), identify neodymium in its role in high-performance magnets, as being vital for hybrid cars as part of the EU's attempt to reduce the problem of future energy supply. In...

  1. Ames Lab scientist hopes to improve rare earth purification process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a joint educational effort by Ames Laboratory Public Affairs and the Green School of Journalism and Communication at Iowa State University. Students in Greenlee Professor Michael...

  2. A High Efficiency Rare Earth-Free Orange Emitting Phosphor

    SciTech Connect (OSTI)

    Polikarpov, Evgueni; Catalini, David; Padmaperuma, Asanga B.; Das, Partha; Lemmon, Teresa L.; Arey, Bruce W.; Fernandez, Carlos A.

    2015-04-01

    This work reports the synthesis at relatively low temperatures of a highly emissive AlN:Mn2+ emitter. Though the AlN matrix shows an emission peak at a similar position to the emission peak observed for AlN:Mn product, the Mn-containing species generates red emission by a different mechanism, which was supported by the emission life time studies. The PLQY of the AlN:Mn emitter was measured to be 82%, the highest ever reported on a RE free-based phosphor.

  3. Synthesis, Structure and Characterization Of Polynuclear Rare Earth Alkoxide Clusters 

    E-Print Network [OSTI]

    Dempsey, Scotty Lee

    2014-04-30

    The versatile polyol/polyamine supporting ligand TDCI (1,3,5-tris(dimethylamino)- 1,3,5-trideoxy-cis-inositol was synthesized, and several lanthanide complex clusters of this ligand were produced.The coordination chemistry ...

  4. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    SciTech Connect (OSTI)

    De Jonghe, Lutgard C.; Ray, Hannah L.; Wang, Ruigang

    2008-12-03

    The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

  5. Research project -Master Thesis Investigation of mixed rare earth

    E-Print Network [OSTI]

    to their superior flux pinning properties and high critical transition temperature. The latter renders this family and environmentally friendly energy landscape in the future [1]. Such wires may stimulate the production of CO2 to an energy reduction comparable to 42 energy plants. High Temperature Superconducting (HTS) wires based

  6. Ultracold chemistry with alkali-metal-rare-earth molecules

    E-Print Network [OSTI]

    Makrides, C; Pradhan, G B; Petrov, A; Kendrick, B K; González-Lezana, T; Balakrishnan, N; Kotochigova, S

    2014-01-01

    A first principles study of the dynamics of $^6$Li($^{2}$S) + $^6$Li$^{174}$Yb($^2\\Sigma^+$)$ \\to ^6$Li$_2(^1\\Sigma^+$) + $^{174}$Yb($^1$S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fitting of a three-dimensional potential energy surface for the Li$_2$Yb system and quantum dynamics calculations of varying complexities, ranging from exact quantum dynamics within the close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reasonable agreement with the full close-coupling calculations. The effect of the three-body term in the interaction potential is explored by comparing quantum dynamics results from a pairwise potential that neglects the three-body term to that derived from the full interaction potential. Inclusion of the three-body term in the close-coupling calculations was found to reduce the limiting rate ...

  7. Naphthacene Based Organic Thin Film Transistor With Rare Earth Oxide

    SciTech Connect (OSTI)

    Konwar, K. [Department of Physics, Digboi College, Digboi-786171, Assam (India); Baishya, B. [Department of Physics, Dibrugarh University, Dibrugarh-786004, Assam (India)

    2010-12-01

    Naphthacene based organic thin film transistors (OTFTs) have been fabricated using La{sub 2}O{sub 3}, as the gate insulator. All the OTFTs have been fabricated by the process of thermal evaporation in vacuum on perfectly cleaned glass substrates with aluminium as source-drain and gate electrodes. The naphthacene film morphology on the glass substrate has been studied by XRD and found to be polycrystalline in nature. The field effect mobility, output resistance, amplification factor, transconductance and gain bandwidth product of the OTFTs have been calculated by using theoretical TFT model. The highest value of field effect mobility is found to be 0.07x10{sup -3} cm{sup 2}V{sup -1}s{sup -1} for the devices annealed in vacuum at 90 deg. C for 5 hours.

  8. Rare earth zirconium oxide buffer layers on metal substrates

    DOE Patents [OSTI]

    Williams, Robert K. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN); Chirayil, Thomas G. (Knoxville, TN); Lee, Dominic F. (Knoxville, TN); Goyal, Amit (Knoxville, TN); Feenstra, Roeland (Knoxville, TN)

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0

  9. Ultracold chemistry with alkali-metal-rare-earth molecules

    E-Print Network [OSTI]

    C. Makrides; J. Hazra; G. B. Pradhan; A. Petrov; B. K. Kendrick; T. González-Lezana; N. Balakrishnan; S. Kotochigova

    2014-10-28

    A first principles study of the dynamics of $^6$Li($^{2}$S) + $^6$Li$^{174}$Yb($^2\\Sigma^+$)$ \\to ^6$Li$_2(^1\\Sigma^+$) + $^{174}$Yb($^1$S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fitting of a three-dimensional potential energy surface for the Li$_2$Yb system and quantum dynamics calculations of varying complexities, ranging from exact quantum dynamics within the close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reasonable agreement with the full close-coupling calculations. The effect of the three-body term in the interaction potential is explored by comparing quantum dynamics results from a pairwise potential that neglects the three-body term to that derived from the full interaction potential. Inclusion of the three-body term in the close-coupling calculations was found to reduce the limiting rate coefficients by a factor of two. The reaction exoergicity populates vibrational levels as high as $v=19$ of the $^6$Li$_2$ molecule in the limit of zero collision energy. Product vibrational distributions from the close-coupling calculations reveal sensitivity to inclusion of three-body forces in the interaction potential. Overall, the results indicate that a simplified model based on the long-range potential is able to yield reliable values of the total reaction rate coefficient in the ultracold limit but a more rigorous approach based on statistical quantum or quantum close-coupling methods is desirable when product rovibrational distribution is required.

  10. Rules for understanding rare-earth magnetic compounds 

    E-Print Network [OSTI]

    Roy, Lindsay Elizabeth

    2009-06-02

    Results of spin density functional theory (SDFT) calculations were used to construct and check features of a generally applicable semi-quantitative approach to understanding magnetic coupling in gadolinium-containing ...

  11. What would we do without rare earths? | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminars andWeylWhat the Blank MakesWhat

  12. Thermoelectric Properties of Rare-Earth-Ruthenium-Germanium Compounds |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel: Name:Departmentand inreceiver survey

  13. Modeling Magnetism in Rare-Earth Intermetallic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission Mission MissionofLaboratory Modeling Magnetism

  14. Mr. Rare Earth easing into retirement | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMove dataKiel ing , ActingActingP. O.Mr.

  15. Non-Rare Earth magnetic materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects onPlatinum Bimetallicmagnetic

  16. Rare-earth nanoparticles for catalysis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2

  17. Microsoft Word - rare earth speech 3-18 6am

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. " 21Strategies,AmericanInspector231.1BU.S.

  18. DOE Science Showcase - Rare Earth Metal Research from DOE Databases |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01TechnicalScientific andScientific andof ScientificOffice ofOSTI,

  19. CMI Offers Webinars on Critical Materials and Rare Earths | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActToolsForNorth CarolinaCCI -Outreach inMaterials

  20. Mr. Rare Earth easing into retirement | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GEUtilizingTotal Energy

  1. The Ames Process for Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016 « Prev NextDirectory:

  2. What are the Rare Earths? | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubic Feet)CompletesResearchWhat areWhat

  3. Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVESDepartmentSpecial Report:Department of Energy

  4. Extraordinary Responsive Rare Earth Magnetic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans - Permeation Measurement System Y-12

  5. Estimated Rare Earth Reserves and Deposits | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind ProjectsEfficiencyPreparedKYAQuarter 2013Erin

  6. Rare Earth Metals & Alloys | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton DeliveryRadioactive MaterialsTechnologiesNNSA

  7. Rare Earth Metals for Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton DeliveryRadioactive MaterialsTechnologiesNNSARare

  8. Rare Earths -- The Fraternal Fifteen | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton DeliveryRadioactive

  9. DOE Announces RFI on Rare Earth Metals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathas released a Request for Information

  10. Breaking Earth Poems

    E-Print Network [OSTI]

    Hernandez, Scott Mcnaul

    2012-01-01

    CALIFORNIA RIVERSIDE Breaking Earth Poems A Thesis submittedFestival……………………………………………………………………..…..14 Earth Against Mylittle else in their hands. Earth Against My Back I lay in

  11. Earth & Environmental Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth & Environmental Science Earth & Environmental Science1354608000000Earth & Environmental ScienceSome of these resources are LANL-only and will require Remote Access.No...

  12. Rare B Decays

    SciTech Connect (OSTI)

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  13. Nat. Hazards Earth Syst. Sci., 7, 495506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 495­506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System as a function of the hazard, the elements at risk and the vul- nerability. From a natural sciences perspective

  14. Essays on International Trade Policy

    E-Print Network [OSTI]

    Tesfayesus, Asrat

    2013-01-01

    of Precious Metals, of Rare-Earth Metals, of RadioactiveElements of Rare-Earth Metals, of Radioactive Elements or of

  15. US-Japan rare elements meeting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed| DepartmentOFAdvancedGrid Implementation31,

  16. Pyrometallurgical processes for recovery of actinide elements

    SciTech Connect (OSTI)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  17. Situ Discovery Electrostatic Potential, Trapping Electrons and Mediating Fast Reconnection Earth's Magnetotail

    E-Print Network [OSTI]

    Egedal, Jan

    phase distributions, measured Wind spacecraft a rare crossing diffusion region in Earth's magnetotail Wind enter Earth's magnetosphere [4], and integral magnetic substorms the aurora phenomena [5 a reconnection event encountered Wind spacecraft in Earth's mag­ netotail [9,10]. This event, observed deep

  18. GOOGLE EARTH QUICK GUIDE (1)Google Earth Features

    E-Print Network [OSTI]

    Smith-Konter, Bridget

    GOOGLE EARTH QUICK GUIDE (1)Google Earth Features The Google Earth of the Google Earth window. Often when opening up the Google Earth program, the view screen will be a view of the entire Earth from space. Navigation bar

  19. Trace element geochemistry of ordinary chondrite chondrules: the type I/type II chondrule dichotomy

    E-Print Network [OSTI]

    Jacquet, Emmanuel; Gounelle, Matthieu

    2015-01-01

    We report trace element concentrations of silicate phases in chondrules from LL3 ordinary chondrites Bishunpur and Semarkona. Results are similar to previously reported data for carbonaceous chondrites, with rare earth element (REE) concentrations increasing in the sequence olivine ~ 10 K/h) than type I chondrules. Appreciable Na concentrations (3-221 ppm) are measured in olivine from both chondrule types; type II chondrules seem to have behaved as closed systems, which may require chondrule formation in the vicinity of protoplanets or planetesimals. At any rate, higher solid concentrations in type II chondrule forming regions may explain the higher oxygen fugacities they record compared to type I chondrules. Type I and type II chondrules formed in different environments and the correlation between high solid concentrations and/or oxygen fugacities with rapid cooling rates is a key constraint that chondrule formation models must account for.

  20. Protecting Life on Earth

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    Review: Protecting Life on Earth: An Introduction to thePeter B. Protecting Life on Earth: An Introduction to theof Protecting Life on Earth is “to explain to an intelligent

  1. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES Earth and Environmental Sciences (EES) Sustainable energy, climate impacts, nuclear threat detection, and environmental management are primary focus areas of earth and...

  2. Magnesium transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Miller, William E. (Naperville, IL); Pierce, R. Dean (Naperville, IL)

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.

  3. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  4. Earth's Mineral Evolution

    E-Print Network [OSTI]

    Downs, Robert T.

    Earth's Mineral Evolution :: Astrobiology Magazine - earth science - evol...rth science evolution Extreme Life Mars Life Outer Planets Earth's Mineral Evolution Summary (Nov 14, 2008): New research. Display Options: Earth's Mineral Evolution Based on a CIW news release Mineral Kingdom Has Co

  5. Earth Structure Introduction

    E-Print Network [OSTI]

    Earth Structure Introduction Earth Structure (2nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm © WW Norton, unless noted otherwise #12;© EarthStructure (2nd ed) 210/4/2010 Aerial views #12;© EarthStructure (2nd ed) 310/4/2010 http://www.globalchange.umich.edu/Ben/ES/ #12

  6. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  7. Balancing Search and Stability: Interdependencies Among Elements of Organizational Design*

    E-Print Network [OSTI]

    Kimbrough, Steven Orla

    Balancing Search and Stability: Interdependencies Among Elements of Organizational Design* Jan W Design Abstract: We examine how and why elements of organizational design depend on one another. An agent-based simulation allows us to model three design elements and two contextual variables that have rarely been

  8. Argonne's Earth Day 2011

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne celebrated Earth Day on April 21, 2011 with an event that featured green activities and information booths.

  9. Rare decays at the Tevatron

    SciTech Connect (OSTI)

    Farrington, S.M.; /Liverpool U.

    2006-01-01

    The confidence level limits of the CDF and D0 searches for the B{sub s}{sup 0}, B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}{phi} rare decays are presented.

  10. Spectroscopic Studies of Extremly Metal-Poor Stars with Subaru/HDS:II.The r-process Elements, Including Thorium

    E-Print Network [OSTI]

    S. Honda; W. Aoki; T. Kajino; H. Ando; T. C. Beers; H. Izumiura; K. Sadakane; M. Takada-Hidai

    2004-02-12

    We present the abundance analyses for the neutron-capture elements, and discuss the observed abundance distributions in very metal-poor stars with excesses of r-process elements. As has been found by previous abundance studies, the star-to-star scatter in the abundances of neutron-capture elements are very large. The abundance patterns of the heavy neutron-capture elements (56 $\\leq$ Z $\\leq$ 70) in seven objects with moderate to large excesses of the neutron-capture elements are similar to that of the solar system r-process component. These results strongly suggest that the heavy neutron-capture elements in these objects are primarily synthesized by the r-process. On the other hand, the abundance ratios of the light neutron-capture elements (38 $\\leq$ Z $\\leq$ 46) exhibit a rather large dispersion. Our inspection of the correlation between Sr and Ba abundances in very metal-poor stars reveals that the dispersion of the Sr abundances clearly decreases with increasing Ba abundance. This results support previous suggestions that the light neutron-capture elements are likely to have been produced in different astrophysical sites from those associated with the production of the heavier ones. The Th/Eu abundance ratios (log(Th/Eu)) measured for the seven r-process-enhanced stars range from -0.10 to -0.59. Since these very metal-poor stars are believed to be formed in the early Galaxy, this result means that a small dispersion appears in the abundance ratios between Th and rare-earth elements, such as Eu, in very metal-poor stars. In order to apply the Th/Eu ratios to estimates of stellar ages, further understanding for the Th production by the r-process nucleosynthesis is required.

  11. Earth Systems Science Earth Systems Science at UNH

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Earth Systems Science Earth Systems Science at UNH THE UNH Institute for the Study of Earth, Oceans, and Space (EOS) Earth Systems Research Center is dedicated to understanding the Earth as an integrative scientists and students study the Earth's ecosystems, atmosphere, water, and ice using field measurements

  12. Review: Rare Plants of Washington State

    E-Print Network [OSTI]

    Miller, Ryder W.

    2013-01-01

    to the Rare Plants of Washington Pamela Camp and John G.John G. , eds. Field Guide to the Rare Plants of Washington.Seattle, WA: University of Washington Press, 2011. 408pp.

  13. Rare Iron Oxide in Ancient Chinese Pottery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Iron Oxide in Ancient Chinese Pottery Rare Iron Oxide in Ancient Chinese Pottery Print Friday, 26 September 2014 14:37 Jian ware (or Tenmoku) ceramic bowls, famous for their...

  14. PARTICLE-SIZE-INDUCED VALENCE CHANGES IN SAMARIUM CLUSTERS

    E-Print Network [OSTI]

    Mason, M.G.

    2013-01-01

    weakly in some rare- earth metals. 11 This possibilitya general feature of the rare-earth metals. All of the rarethe bulk metals. The remaining nine rare-earth elements must

  15. Strongly correlated electron behavior in As-based and thin film Sb-based filled skutterudites

    E-Print Network [OSTI]

    Baumbach, Ryan Eagle

    2009-01-01

    and Chemistry of Rare Earths Vol 1 - Metals, eds K. A.and Chemistry of Rare Earths Vol 1 - Metals, eds K. A.in transition metal, rare earth, and actinide elements [1,

  16. Programmatic Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Supersedes DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

  17. Uranium chloride extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Pierce, R. Dean (Naperville, IL)

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  18. Uranium chloride extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  19. Carbon-Based Magnets: Discovery & Design of Novel Permanent Magnets using Non-strategic Elements having Secure Supply Chains

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: VCU is developing a new magnet for use in renewable power generators and EV motors that requires no rare earth minerals. Rare earths are difficult and expensive to process, but they make electric motors and generators smaller, lighter, and more efficient. VCU would replace the rare earth minerals in EV motor magnets with a low-cost and abundant carbon-based compound that resembles a fine black powder. This new magnet could demonstrate the same level of performance as the best commercial magnets available today at a significantly lower cost. The ultimate goal of this project is to demonstrate this new magnet in a prototype electric motor.

  20. Salt transport extraction of transuranium elements from lwr fuel

    DOE Patents [OSTI]

    Pierce, R. Dean (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Miller, William E. (Naperville, IL)

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  1. Salt transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  2. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  3. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  4. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Supersedes DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  5. Earth Day 2010: Earth Day 40th Anniversary Poster

    E-Print Network [OSTI]

    Nowacka, Izabela

    2010-01-01

    EGJ Issue 30 Earth Day 2010 ISSN 1076-7975 In celebration of 40 Earth Day the Electronic GreenEconomics, Poznan, Poland. Earth image used from www.sxc.hu.

  6. The Crystal Structures of Some RM and RM2 Compounds (where R=rare earth metal and M=non-rare earth metal)

    SciTech Connect (OSTI)

    K.A. Gschneidner, Jr; Ya. Mudryk; A.T. Becker; J.L. Larson

    2008-08-05

    The non-cubic crystal structures of YIn, YPd and YAu are reported for the first time. YIn has the disordered tetragonal L1{sub 0} CuAu-type structure, and both YPd and YAu are isostructural with the orthorhombic B33 CrB -type structure. The lattice parameters for some C15 MgCu{sub 2}-type Laves phase (Tb{sub x}Dy{sub 1-x})Al{sub 2} alloys (x=0.25,0.50,0.75 and 1.0) have been measured and are found to vary linearly with composition between x=0.25 and 1.0.

  7. Earth Sciences | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fully coupled, and intermodel comparison are underway. Moving forward, Earth system models that imbed a stochastic representation of variable Earth system behavior such...

  8. Earth Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fully coupled, and intermodel comparison are underway. Moving forward, Earth system models that imbed a stochastic representation of variable Earth system behavior such...

  9. Earth-Abundant Materials

    Broader source: Energy.gov [DOE]

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  10. Rammered Earth Wall 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    "And Man Shall Have Dominion Over the Earth": Rhetorical Evangelical Christians are not typically associated with mainstream environmentalism. This thesis examines the mythical traditions underpinning the efforts by some Evangelicals to re...

  11. LANL Studies Earth's Magnetosphere

    ScienceCinema (OSTI)

    Daughton, Bill

    2014-08-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  12. Table A1. Major, trace and rare earth element compositions1 of volcanic rocks from Hoodoo Mountain volcano (Edwards et al. 2001; Bulletin Volcanology). 94-6694-6594-4994-4594-4493-16893-14193-10693-08593-07493-05093-03293-02993-02893-01693-00793-002Label

    E-Print Network [OSTI]

    Russell, Kelly

    ), trachyandesite (Ta). Basalts are from Little Bear Mountain. 3 Wt. % SiO2 content of samples reported

  13. Geoneutrinos and Heat Production in the Earth: Constraints and Implications

    ScienceCinema (OSTI)

    McDonough, Bill [University of Maryland, College Park, Maryland, United States

    2010-01-08

    Recent results from antineutrino (geoneutrino) studies at KamLAND are coincident with geochemical models of Th and U in the Earth.  KamLAND and Borexino detectors are on line, thus uncertainties in counting statistics will be reduced as data are accumulated.  The SNO+ detector, situated in the middle of the North American plate will come on line in ~3 yrs and will be best suited to yield a precise estimate of the continental contribution to the Earth?s Th & U budget.  The distribution of heat producing elements in the Earth drives convection and plate tectonics.  Geochemical models posit that ~40% of the heat producing elements are in the continental crust, with the remainder in the mantle.  Although models of core formation allow for the incorporation of heat producing elements, the core contribution of radiogenic heating is considered to be negligible.  Most parameterized convection models for the Earth require significant amounts of radiogenic heating of the Earth, a factor of two greater than geochemical models predict.  The initial KamLAND results challenge these geophysical models and support geochemical models calling for a significant contribution from secular cooling of the mantle.

  14. Physical Earth Science Is Physical Earth Science right for me?

    E-Print Network [OSTI]

    Martin, Ralph R.

    Physical Earth Science Is Physical Earth Science right for me? If you are interested in learning a Physical Earth Science degree. The skills you will gain are wide-ranging and will provide a good basis for employment in almost any sector. Are all Physical Earth Science degrees the same? Universities do not have

  15. Observations of Near-Earth Asteroids Impact Hazard to Earth

    E-Print Network [OSTI]

    Throop, Henry

    Observations of Near-Earth Asteroids and the Impact Hazard to Earth Henry Throop! Physics on Earth Potchefstroom Parys Sasolburg 20 km #12;Parys 3 km #12;Vredefort Impact Crater Looking from outer Impactor? · Origin: One of several million Near Earth Asteroids (NEAs) · a = 1.6 AU; e = 0.5; i = 4

  16. Chemical composition of Earth-like planets

    E-Print Network [OSTI]

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  17. Earth Day 2014 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Day 2014 Earth Day 2014 Earth Day 2014 This year, we're celebrating Earth Day all week long. It's Earth Week on Energy.gov We're focusing on climate change, highlighting...

  18. Modeling the earth system

    SciTech Connect (OSTI)

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  19. Earth shelter goes international

    SciTech Connect (OSTI)

    Boyer, L.L.

    1983-06-01

    Since the mid-1970's earth sheltered buildings in the US have become more numerous and important as a contemporary passive building concept. Further, an intense international interest has now developed, as evidenced by a number of important activities. One of these events is the 1983 International Conference on Energy Efficient Buildings with Earth Shelter Protection to be conducted during 1-6 August in Sydney, Australia. A review of past activities leading up to this event, as well as a brief review of the conference program, is the subject of this discussion.

  20. Earth sheltered housing phenomenon

    SciTech Connect (OSTI)

    Boyer, L.L.

    1981-06-21

    Both national and international attention has recently been focused on earth sheltered construction as an emerging energy alternative. This is especially true for the High Plains region of the central United States. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. However, the dramatic potentials for energy savings have served as a strong secondary inducement to the burgeoning construction activity in what is now viewed as a contemporary dwelling concept. The typical characteristics of such dwellings are reviewed as well as the educational challenge awaiting professional input to this developing boom in earth sheltered construction. 12 refs.

  1. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving onEarth Day Earth Day An error4

  2. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    SciTech Connect (OSTI)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. . Hawaii Inst. of Geophysics); Gerlach, D.C. ); Chen, B.; Takahashi, P.; Thomas, D.M. Evans and Associates, Redwood City, CA )

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  3. The Global Anthropogenic Lead Experiment Earth, Atmospheric and Planetary Sciences

    E-Print Network [OSTI]

    Einat, Aharonov

    The Global Anthropogenic Lead Experiment Ed Boyle Earth, Atmospheric and Planetary Sciences Reuer Rick Kayser Boyle Lab, arriving in Rio at the end of EN 367 #12;The Global Anthropogenic Lead Experiment · Lead is a volatile element and it is emitted by high temperature industrial activities (smelting

  4. Earth sheltered industrial/utility park. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A proposed industrial park in Cumberland, Wisconsin is discussed. Planners identified 4 land use elements for the site. A concept feasibility study for the earth-covered industrial park, an analysis of energy flows within the Cumberland community, and a resource and technology assessment of biomass feedstocks for a possible community scale bioenergy facility are discussed. (MCW)

  5. The Sun-Earth Connection The Temperature of the Earth

    E-Print Network [OSTI]

    Walter, Frederick M.

    The Sun-Earth Connection #12;The Temperature of the Earth The Earth is in equilibrium with the Sun absorbed from the Sun with ­the heat radiated by the Earth. Heat in = heat out #12; 4R 2T 4 (1-a) R 2 (L / 4 d2) Energy Balance #12;Heat In · Energy input comes from the Sun (internal heat is negligible

  6. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect (OSTI)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  7. Discrete Element Modeling

    SciTech Connect (OSTI)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  8. Nat. Hazards Earth Syst. Sci., 8, 918, 2008 www.nat-hazards-earth-syst-sci.net/8/9/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    mechanical properties, as well as changes of pore water pressure and flow of this water inside their pores. Coupled finite element numerical codes are a useful tool to assess the safety of these dams. In this paper Introduction Earth dams are geo-structures usually analysed very care- fully from the seismic point of view

  9. Earth Democracy: Justice, Sustainability, and Peace

    E-Print Network [OSTI]

    Anderson, Byron

    2006-01-01

    Review: Earth Democracy: Justice, Sustainability, and PeaceUniversity, USA Vandana Shiva. Earth Democracy: Justice,Acid-free, recycled paper. Earth Democracy is a movement

  10. Chapter 32: Beyond the earth

    E-Print Network [OSTI]

    Hart, Gus

    1 Chapter 32: Beyond the earth Did you read chapter 32 before coming to class? A. Yes B the planets. We began our study of the history of the solar system by studying the history of the earth decreased. How about the rest of the solar system? Some stats on the Sun Time for light to reach Earth · 8

  11. Superhydrophobic diatomaceous earth

    SciTech Connect (OSTI)

    Simpson, John T.; D'Urso, Brian R.

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  12. f all Earth's natural hazards, tsunamis are among the most irregular and infrequent. Yet,

    E-Print Network [OSTI]

    O f all Earth's natural hazards, tsunamis are among the most irregular and infrequent. Yet, they pose a major threat to coastal populations. Although tsunamis cannot be prevented, community tsunami in Japan and the 2004 Indian Ocean tsunami have focused world attention on the rare but very real

  13. The rare decay $H\\to Z?$ in perturbative QCD

    E-Print Network [OSTI]

    Thomas Gehrmann; Sam Guns; Dominik Kara

    2015-08-21

    The rare Higgs boson decay $H\\to Z\\gamma$ is forbidden at tree-level. In the Standard Model, it is loop-mediated through a $W$ boson or a heavy quark. We analytically compute the QCD correction to the heavy quark loop, confirming earlier purely numerical results, that were obtained for on-shell renormalization. The small quark mass expansion of the decay matrix element contains only single-logarithmic contributions at each perturbative order, which is in contrast to the double logarithms observed in $H\\to \\gamma\\gamma$. We investigate the numerical interplay of bottom and top quark contributions, and the dependence of the result on the renormalization scheme.

  14. Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems

    E-Print Network [OSTI]

    Kvashnina, Kristina

    2007-01-01

    container. In most nuclear waste management programs, thisthe Swedish Nuclear Fuel and Waste Management Co. (SKB), bythe Swedish Nuclear Fuel and Waste Management Co. (SKB), by

  15. Rare earth-iron magnetostrictive materials and devices using these materials

    DOE Patents [OSTI]

    Savage, Howard T. (Greenbelt, MD); Clark, Arthur E. (Adelphi, MD); McMasters, O. Dale (Ames, IA)

    1981-12-29

    Grain-oriented polycrystalline or single crystal magnetostrictive materials n the general formula Tb.sub.x Dy.sub.1-x Fe.sub.2-w, Tb.sub.x Ho.sub.1-x Fe.sub.2-w, Sm.sub.x Dy.sub.1-x Fe.sub.x-w, Sm.sub.x Ho.sub.1-x Fe.sub.2-w, Tb.sub.x Ho.sub.y Dy.sub.z Fe.sub.2-w, or Sm.sub.x Ho.sub.y Dy.sub.z Fe.sub.2-w, wherein O.ltoreq.w.ltoreq.0.20, and x+y+z=1. X, y, and z are selected to maximize the magnetostrictive effect and the magnetomechanical coupling coefficient K.sub.33. These material may be used in magnetostrictive transducers, delay lines, variable frequency resonators, and filters.

  16. A metallurgical approach toward alloying in rare earth permanen magnet systems

    SciTech Connect (OSTI)

    Branagan, D. J.

    1995-02-23

    The approach was developed to allow microstructural enhancement and control during solidification and processing. Compound additions of Group IVA, VA, or VIA transition metals (TM) and carbon were added to Nd{sub 2}Fe{sub 14}B (2-14-1). Transition metal carbides formed in IVA (TiC, ZrC, HfC) and Group VA (VC, NbC, TaC) systems, but not in the VIA system. The alloying ability of each TM carbide was graded using phase stability, liquid and equilibrium solid solubility, and high temperature carbide stability. Ti with C additions was chosen as the best system. The practically zero equilibrium solid solubility means that the Ti and C additions will ultimately form TiC after heat treatment which allows the development of a composite microstructure consisting of the 2-14-1 phase and TiC. Thus, the excellent intrinsic magnetic properties of the 2-14-1 phase remain unaltered and the extrinsic properties relating to the microstructure are enhanced due to the TiC stabilized microstructure which is much more resistant to grain growth. When Ti + C are dissolved in the liquid melt or solid phases, such as the glass or 2-14-1 phase, the intrinsic properties are changed; favorable changes include increased glass forming ability, reduced optimum cooling rate, increased optimum energy product, and enhanced nucleation kinetics of crystallization.

  17. THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES By...

    Office of Scientific and Technical Information (OSTI)

    are sufficient and binders are not required. 3 4. Measurements can be made on each crystalline phase in samples con- taining multiple components. Thermal expansion data are...

  18. Rare earth : geomantic formulae for the production of works of art

    E-Print Network [OSTI]

    Chan-Bernard, Mei-ling

    1990-01-01

    This thesis describes the development of my study of the influence of chinese geomancy on my art. The emphasis is on art forms created for the transportation of my mind to the audience within encompassing space and sculpted ...

  19. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    E-Print Network [OSTI]

    K. Nomura; R. Rodríguez-Guzmán; L. M. Robledo

    2015-07-17

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean field calculations with the Gogny energy density functional. The link between both frameworks is the ($\\beta_2\\beta_3$) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive and negative parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited $0^{+}$ states and its connection with double octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and octupole collective structure fairly well, and turns out to be consistent with GCM results obtained with the Gogny force.

  20. Synthesis and characterization of rare earth doped ZrO{sub 2} nanophosphors

    SciTech Connect (OSTI)

    Agrawal, Sadhana E-mail: jsvikasdubey@gmail.com; Dubey, Vikas E-mail: jsvikasdubey@gmail.com

    2014-10-24

    In this paper, we reports synthesis, characterization and thermoluminescence (TL) glow curves of europium and dysprosium activated zirconium dioxide (ZrO{sub 2}: Eu{sup 3+}, Dy{sup 3+}) phosphor with variable concentration of europium and fixed concentration of dysprosium. The sample was prepared by the Solid state method; thereafter, the TL glow curves were recorded for different concentration of europium with 20 min UV exposure at a heating rate of 6.7°C/s. The trapping parameters for synthesized phosphors of ZrO{sub 2}: Eu{sup 3+}, Dy{sup 3+} have been calculated by using a peak shape method. The sample was characterized for structural analysis by XRD (X-ray diffraction) and morphological analysis by FEGSEM (field emission gun scanning electron microscope) and FTIR (Fourier transform infrared spectroscopy). The effect of variable europium concentration and fixed dysprosium concentration on TL studies were interpreted and the formation of trap depth and reproducibility of prepared phosphor were analyzed by TL glow curves. The peak temperature on TL less than 200°C shows the formation of deep trapping in prepared sample. The high temperature peak shows the less fading and more stability in prepared sample.

  1. Promotion effect of cobalt-based catalyst with rare earth for the ethanol steam reforming

    SciTech Connect (OSTI)

    Chiou, Josh Y. Z.; Chen, Ya-Ping; Yu, Shen-Wei; Wang, Chen-Bin

    2013-12-16

    Catalytic performance of ethanol steam reforming (ESR) was investigated on praseodymium (Pr) modified ceria-supported cobalt oxide catalyst. The ceria-supported cobalt oxide (Ce-Co) catalyst was prepared by co-precipitation-oxidation (CPO) method, and the doped Pr (5 and 10 wt% loading) catalysts (Pr{sub 5}?Ce?Co and Pr{sub 10}?Ce?Co) were prepared by incipient wetness impregnation method. The reduction pretreatment under 250 and 400 °C (H250 and H400) was also studied. All samples were characterized by XRD, TPR and TEM. Catalytic performance of ESR was tested from 250 to 500 °C in a fixed-bed reactor. The doping of Pr into the ceria lattice has significantly promoted the activity and reduced the coke formation. The products distribution also can be influenced by the different reduction pretreatment. The Pr{sub 10}?Ce?Co?H400 sample is a preferential ESR catalyst, where the hydrogen distribution approaches 73% at 475 °C with less amounts (< 2%) of CO and CH{sub 4}.

  2. Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

  3. Vehicle Technologies Office Merit Review 2014: Non-Rare Earth High-Performance Wrought Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non...

  4. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect (OSTI)

    Magee, E. W., E-mail: magee1@llnl.gov; Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ?10{sup ?7} Torr at ?1000?°C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  5. Reduction Chemistry of Rare-Earth Metal Complexes: Toward New Reactivity and Properties

    E-Print Network [OSTI]

    Huang, Wenliang

    2013-01-01

    4 Activation by Lanthanum and Lutetium Naphthalene Complexesyttrium, lanthanum, and lutetium (group 3 metals) areYttrium, lanthanum, and lutetium naphthalene complexes:

  6. Determination of contamination in rare earth materials by prompt gamma activation analysis (PGAA)

    E-Print Network [OSTI]

    Perry, D.L.; English, G.A.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.

    2004-01-01

    Erbium (68) Thulium (69) Lutetium (71) Gd 2 O 3 Tb 4 O 7 Dyholmium, erbium, thulium and lutetium were represented and

  7. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes

    E-Print Network [OSTI]

    Huang, W; Huang, W; Dulong, F; Khan, SI; Cantat, T; Diaconescu, PL

    2014-01-01

    of naphthalene mediated by lutetium(III). Comments on Schemethe coordination of the lutetium ions on the same ring at ayttrium, lanthanum, and lutetium) were purchased from

  8. Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. U.S. Rare Earth Magnet Patents Table © 9-9-2015 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2001 Issued: August 9, 2005 Expires: Sept 2021 6,926,963 Assignee: Sumitomo Metal Mining Co., Ltd. (Tokyo, JAPAN) Highly weather-resistant magnet powder and magnet produced...

  10. U.S. Rare Earth Magnet Patents Table © 6-2-2015 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of permanent magnetic motors with broader and flexible in material selection space and cost selection space What is claimed is: 1. A composite permanent magnetic material,...

  11. Rare-Earth Surface Alloying: A New Phase for GdAu{sub 2}

    SciTech Connect (OSTI)

    Corso, M.; Schiller, F.; Fernandez, L. [DIPC and Centro de Fisica de Materiales (CSIC-UPV/EHU), E-20018 San Sebastian (Spain); Verstraete, M. J. [DIPC and Centro de Fisica de Materiales (CSIC-UPV/EHU), E-20018 San Sebastian (Spain); ETSF and Nano-bio Spectroscopy Group (UPV/EHU), E-20018 San Sebastian (Spain); Ormaza, M. [Departamento de Fisica Aplicada I (UPV/EHU), E-20018 San Sebastian (Spain); Greber, T. [Physics Institute, University of Zurich, CH-8057 Zurich (Switzerland); Torrent, M. [CEA, DAM, DIF, F-91297, Arpajon (France); Rubio, A. [DIPC and Centro de Fisica de Materiales (CSIC-UPV/EHU), E-20018 San Sebastian (Spain); ETSF and Nano-bio Spectroscopy Group (UPV/EHU), E-20018 San Sebastian (Spain); Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin (Germany); Ortega, J. E. [DIPC and Centro de Fisica de Materiales (CSIC-UPV/EHU), E-20018 San Sebastian (Spain); Departamento de Fisica Aplicada I (UPV/EHU), E-20018 San Sebastian (Spain)

    2010-07-02

    Surface alloying is a powerful way of varying physical and chemical properties of metals, for a number of applications from catalysis to nuclear and green technologies. Surfaces offer many degrees of freedom, giving rise to new phases that do not have a bulk counterpart. However, the atomic characterization of distinct surface compounds is a major task, which demands powerful experimental and theoretical tools. Here we illustrate the process for the case of a GdAu{sub 2} surface phase of extraordinary crystallinity. The combined use of surface-sensitive techniques and state-of-the-art ab initio calculations disentangles its atomic and electronic properties. In particular, the stacking of the surface layers allows for gadolinium's natural ferromagnetic state, at variance with the bulk phase, where frustration leads to antiferromagnetic interlayer coupling.

  12. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth...

    Office of Scientific and Technical Information (OSTI)

    of the optical properties of CeTesub 3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral...

  13. Processing of Transparent Rare Earth Doped Zirconia for High Temperature Light Emission Applications

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2014-01-01

    Phase Compositions of the Zirconia Scale During Oxidation ofTetragonal Yttria-Stabilized Zirconia Ceramics: Influence oftetragonal yttria-stabilized zirconia,” Solid State Ionics,

  14. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus; Zhang, Fen

    2014-05-13

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  15. Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems

    E-Print Network [OSTI]

    Kvashnina, Kristina

    2007-01-01

    Y.Y. , Br. Corros. J. , 29 (1994) p.315. 34 Pourbaix M. ,Libredes Bruxelles (1945), Pourbaix M. , 1966. Atlas of37, 1903 (1995) [26] M. Pourbaix, PhD Thesis, Unversite

  16. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics

    E-Print Network [OSTI]

    Preston, Daniel John

    Vapor condensation is routinely used as an effective means of transferring heat, with dropwise condensation exhibiting a 5???7x heat transfer improvement compared to filmwise condensation. However, state-of-the-art techniques ...

  17. Ames Lab scientist hopes to improve rare earth purification process | The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand Los Alamos NationalAmericanAmes

  18. Aljazeera story on rare earths features Alex King | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2PAliceMarkovitz About

  19. U.S. Rare Earth Magnet Patents Table © 1-5-2016 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two Electron RecoverableArea: U.S.19,117 19,591

  20. U.S. Rare Earth Magnet Patents Table © 11-10-2015 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA| ReactionSite Map Site Map

  1. Organic-Inorganic Complexes Containing a Luminescent Rare Earth-Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctoberConsumption (Million Cubic

  2. Non-Rare Earth High-Performance Wrought Magnesium Alloys | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects onPlatinum Bimetallic

  3. Alternative High-Performance Motors with Non-Rare Earth Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJune 2,2-13) AllEnergyEnergy

  4. GROUND-STATE PROPERTIES OF RARE-EARTH METALS: AN EVALUATION OF

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent: FreeformArticle) |DENSITY-FUNCTIONAL THEORY

  5. GROUND-STATE PROPERTIES OF RARE-EARTH METALS: AN EVALUATION OF

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent: FreeformArticle) |DENSITY-FUNCTIONAL

  6. Production and characterization of thin film group IIIB, IVB and rare earth

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers'(x≤2)Article) |NuclearandCore/Shell Nanocrystalhydrides

  7. Rare-earth neutral metal injection into an electron beam ion trap plasma

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect PulseSummary (Programbatteries as(Journal Article) |

  8. Rare-earth neutral metal injection into an electron beam ion trap plasma

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect PulseSummary (Programbatteries as(Journal Article)

  9. Microsoft Word - US-EU WORKSHOP on RARE EARTHS Program 20101206

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May2.docTechnicalBARACK07 AnnualGovernmentBy

  10. Microsoft Word - ARPA-E_RareEarth_Workshop_Overview_v6

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May2.doc Microsoft Word -5.doc MicrosoftARPA-E

  11. News about Rare Earths, New or Critical Materials, and Their Uses: |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64 2.251OptimizedOxygen: PoisonNews

  12. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof Energy FishMANAGEMENTAMERICADepartment of

  13. ARPA-E Workshop on Rare Earth and Critical Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25CommunicationAPBF

  14. DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us »BuildingsInfrastructure Support

  15. 10 Questions for a Materials Scientist: Mr. Rare Earth -- Dr. Karl A.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/ The Office of10Gschneidner, Jr. |

  16. DOE Announces Second RFI on Rare Earth Metals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathas released a Request fortoday

  17. Equatorial Magnetosonic Waves in the Earth's Inner Magnetosphere

    E-Print Network [OSTI]

    Ma, Qianli

    2015-01-01

    The Earth’s magnetosphere . . . . . . . . .properties of magnetosonic wave events in the Earth’sviii List of Figures The Earth’s dipole magnetic field. R 0

  18. Regular unipotent elements Elements unipotents reguliers

    E-Print Network [OSTI]

    Bonnafé, Cédric

    GF . Alors il existe un ´el´ement unipotent r´egulier v dans LF tel que RG LPG u = L v o`u G u est un ´el´ement unipotent r´egulier de GF et soit uL = resG L u. Alors RG LPG u = L uL . L

  19. LamontDoherty Earth Observatory The Earth Institute at Columbia UniversityThe Earth Institute at Columbia Univ

    E-Print Network [OSTI]

    12 12 Lamont­Doherty Earth Observatory The Earth Institute at Columbia UniversityThe Earth-DOHERTYEARTHOBSERVATORYTHEEARTHINSTITUTEATCOLUMBIAUNIVERSITYBIENNIALREPORT2000­2002 #12;Lamont-Doherty Earth Observatory is renowned in the internationLamont-Doherty Earth suc- cess and innovation in advancing understanding of Earth, for itcess and innovation in advancing

  20. Earth and Atmospheric Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth and Atmospheric Sciences Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling...