Sample records for rapidly growing share

  1. he economies of China and India are grow-ing at a rapid clip. But these nations seem

    E-Print Network [OSTI]

    Vermont, University of

    30 T he economies of China and India are grow- ing at a rapid clip. But these nations seem with a vengeance, given their enormous populations. And their "real" eco- nomic improvements, once the costs

  2. Training Veterans to Work in the Rapidly Growing Solar Industry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1TrackingTrails

  3. Wind power is a rapidly growing and evolving field that crosses traditional academic disciplines and increasingly

    E-Print Network [OSTI]

    Delaware, University of

    ways in which society's understanding and acceptance of renewable energy power generation can impactWind power is a rapidly growing and evolving field that crosses traditional academic disciplines and increasingly requires practitioners who understand the relationships among the various components of wind

  4. Fact #867: April 6, 2015 Car-Sharing and Ride-Summoning Are a Growing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast TenPrice of Gasoline

  5. Photovoltaic (PV)energy conversion is a rapidly growing technology for converting solar energy into electricity. The current production is over 20

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    Photovoltaic (PV)energy conversion is a rapidly growing technology for converting solar energy to about $1.50 per watt, from over $100/W in the 1970s. The current generation of technology is mainly polymers, is making rapid strides towards becoming the low cost material of choice for PV energy conversion

  6. aerobacter aerogenes growing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing Mycobacterial Infection CiteSeer Summary: acquired surgical-site infections (SSI) caused by rapidly growing mycobacteria (RGM). All episodes of RGM infection occurred...

  7. aspergillus niger growing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing Mycobacterial Infection CiteSeer Summary: acquired surgical-site infections (SSI) caused by rapidly growing mycobacteria (RGM). All episodes of RGM infection occurred...

  8. Room to grow | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room to grow Room to grow Released: June 26, 2012 New lithium ion battery strategy offers more energy, longer life cycle In situ transmission electron microscopy at EMSL was used...

  9. Diabetes: The Growing Epidemic

    E-Print Network [OSTI]

    Diamant, Allison L.; Babey, Susan H.; Brown, E. Richard; Hastert, Theresa A.

    2007-01-01T23:59:59.000Z

    Research Brief August 2007 Diabetes: The Growing Epidemicof people diagnosed with diabetes in California continues tohad been diagnosed with diabetes, up from 1.5 million in

  10. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  11. What Really Grows Exports

    E-Print Network [OSTI]

    Myers, Lawrence C.

    What Really Grows Exports Bringing It All Back Home Should We Be Afraid of Accruals? Products of Their Environment a report on new research from the tuck school of business at dartmouth | fall 2014 Do exporters Competitiveness Diagnostic Toolkit," which was written to help developing nations increase their exports

  12. Grow Iron, Slow Pollution | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grow Iron, Slow Pollution Grow Iron, Slow Pollution Scientists connect previous studies on electron transport in hematite Making a Deposit: Scanning electron micrographs of...

  13. Growing Blackberries In Texas.

    E-Print Network [OSTI]

    Morris, H. F.; Garner, C. F.; Hancock, Bluefford; Smith, Harlan

    1962-01-01T23:59:59.000Z

    Experiment , Substation No. 2, Tyler. LAWTON is an erect-growing variety with good plant vigor and medium-early maturity. It , is unusually vigorous, with the parent stool protluc- ing up to seven new canes each season. There ale many laterals 2 to 3... of these insects attack the berry plant and its fruit after the cover crop has been plowed under. Some growers consider it more economical to provide the required nutrients in a sidedressing and to allow the natural seeding of weeds and grasses to provide...

  14. Growing Giant Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You| Blandine Jerome

  15. Cost Sharing What is Cost Sharing?

    E-Print Network [OSTI]

    Tsien, Roger Y.

    sharing using various data fields (bin, fund, PI, index, etc.) x Create a Bin Generate a bin where cost;3 Cost Sharing Steps Search for & Create a Bin Search Results Display Select AWARD Type the correct data1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources

  16. Car Sharing Scheme Car Share Scheme

    E-Print Network [OSTI]

    Martin, Ralph R.

    Car Sharing Scheme Car Share Scheme The cost is now reduced to £10 per member of staff per share but only own one vehicle between them do not qualify for the car share scheme. A commitment is required for all members of the scheme to car share at all times when they are in work each working day

  17. Growing America's Energy Future | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral GuidanceEnergy LaunchingGrowing America's

  18. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  19. Sharing Data at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Data Sharing Data Data sharing naturally divides into three different categories: a single user accessing data from multiple platforms, multiple users accessing data from a...

  20. Mobile Proactive secret sharing

    E-Print Network [OSTI]

    Schultz, David Andrew

    2007-01-01T23:59:59.000Z

    This thesis describes mobile proactive secret sharing (MPSS), an extension of proactive secret sharing. Mobile proactive secret sharing is much more flexible than proactive secret sharing in terms of group membership: ...

  1. Growing Up in Scotland: Growing Up in Rural Scotland 

    E-Print Network [OSTI]

    Jamieson, Lynn; Bradshaw, Paul; Ormston, Rachel

    2008-03-12T23:59:59.000Z

    This report uses data from the Growing up in Scotland ( GUS) study to explore what is distinctive about growing up in rural, remote and small-town Scotland in comparison with urban Scotland. Findings are based on the first sweep of GUS, which...

  2. Engaging and Growing Small Contractor Businesses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Growing Small Contractor Businesses Engaging and Growing Small Contractor Businesses Better Buildings Neighborhood Program Workforce Peer Exchange Call: Engaging and Growing...

  3. Share Your Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your Stories Participate with us Participate Become a Volunteer Share Your Stories Museum Fan Downloads Q&A Blog Contact us invisible utility element Share your Stories updated...

  4. Grow Missouri Loan Fund (Missouri)

    Broader source: Energy.gov [DOE]

    The Grow Missouri Loan Fund is open to private companies with fewer than 500 existing employees. One of the key advantages of the program is that the funding can be used as a prior commitment for...

  5. Shared State for Client-Server Mining

    E-Print Network [OSTI]

    Dwarkadas, Sandhya

    them up-to-date. The client can then map the data structure(s) from the virtual shared dataspace under. Parthasarathy y , and S. Dwarkadas z 1 Introduction For many organizations the explosive growth in data collection techniques and database technology has resulted in large and dynamically growing datasets

  6. Fast-growing willow shrub named `Canastota`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

    2007-05-15T23:59:59.000Z

    A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

  7. Generalized quantum secret sharing

    SciTech Connect (OSTI)

    Singh, Sudhir Kumar; Srikanth, R. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Optics Group, Raman Research Institute, Bangalore-560080 (India)

    2005-01-01T23:59:59.000Z

    We explore a generalization of quantum secret sharing (QSS) in which classical shares play a complementary role to quantum shares, exploring further consequences of an idea first studied by Nascimento, Mueller-Quade, and Imai [Phys. Rev. A 64, 042311 (2001)]. We examine three ways, termed inflation, compression, and twin thresholding, by which the proportion of classical shares can be augmented. This has the important application that it reduces quantum (information processing) players by replacing them with their classical counterparts, thereby making quantum secret sharing considerably easier and less expensive to implement in a practical setting. In compression, a QSS scheme is turned into an equivalent scheme with fewer quantum players, compensated for by suitable classical shares. In inflation, a QSS scheme is enlarged by adding only classical shares and players. In a twin-threshold scheme, we invoke two separate thresholds for classical and quantum shares based on the idea of information dilution.

  8. Organization of growing random networks

    SciTech Connect (OSTI)

    Krapivsky, P. L.; Redner, S.

    2001-06-01T23:59:59.000Z

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  9. focusing on research still growing

    E-Print Network [OSTI]

    Cesare, Bernardo

    Dical sciences anD international stuDies MATHEMATICS, PHYSICAL SCIENCES, INFORMATION AND COMMUNICATION of pharmaceutical anD pharmacological sciences PSYCHOLOGY Department of philosophy, sociology, eDucation anD applieD49 focusing on research still growing SOCIAL SCIENCES AND HUMANITIES ECONOMICS AND STATISTICS

  10. Life Sciences Shared Resources

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Life Sciences Shared Resources Cancer.Dartmouth.eduMarch 2012 201202-19201202-19 #12;SHARED RESOURCES MANAGEMENT MANAGEMENT TEAM: Mark Israel, MD Director, Norris Cotton Cancer Center Bob Gerlach, MPA Associate Director, Norris Cotton Cancer Center CraigTomlinson, PhD Associate Director for Shared Resources

  11. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    On carbon footprints and growing energy use Curtis M.reductions in the carbon footprint of a growing organizationhis own organization's carbon footprint and answers this

  12. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  13. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  14. Growing Potatoes in Your Home Garden

    E-Print Network [OSTI]

    Douches, David S.

    Growing Potatoes in Your Home Garden Grow Potatoes in Your Home Garden! Kelly A. Zarka and David S. Douches Ph.D. Potato Breeding and Genetics Program Michigan State University Why grow potatoes in your home garden? *Growing potatoes produces a bountiful harvest....depending on which variety your choose

  15. DATA SHARING WORKBOOK Introduction

    E-Print Network [OSTI]

    Baker, Chris I.

    not to. Such data are difficult if not impossible to replicate because of cost (e.g., large nationalDATA SHARING WORKBOOK · Introduction · Protecting the Rights and Privacy of Human Subjects · Protecting Proprietary Data · Examples of Data Sharing o Data Archives o Federated Data Systems o Data

  16. ShaRE Account

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'JuanSubmitting a ShaRE

  17. Sharing Data at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'JuanSubmittingSharing

  18. Awardee Share Procedures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automationj. Indirect Charges k.Awardee Share

  19. The automobile share

    SciTech Connect (OSTI)

    Fiala, E.

    1996-12-31T23:59:59.000Z

    Out of a conversion of 120 billions metric tons of fossil carbon per year 1 billion are traffic related. But this amount is growing steadily. The global automobile density is about 10 automobiles per capita. It grows with 1.7% per year, as fast as the population. The number of automobiles doubles in 25 years. In all groups of developed countries the automobile density increased from 5 to 50 automobiles per capita in less than 50 years so far. Where is the fuel for the 1 billion automobiles of the year 2030 or 2050? Can one reduce this number or what chances does one have to reduce the adverse consequences? Whatever the number of motor vehicles will be, man will have the chance to reduce fuel consumption and therefore CO{sub 2}-emission together with other emissions considerably.

  20. Reactor Sharing Program

    SciTech Connect (OSTI)

    Vernetson, W.G.

    1993-01-01T23:59:59.000Z

    Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

  1. Fast-growing willow shrub named `Canastota`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-15T23:59:59.000Z

    A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

  2. Growth in metals production for rapid photovoltaics deployment

    E-Print Network [OSTI]

    Kavlak, Goksin

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. We quantify the effect of PV deployment levels on the scale of annual metals production. If a ...

  3. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  4. Green Button Initiative Growing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Initiative Growing Green Button Initiative Growing May 17, 2013 - 1:17pm Addthis The Green Button initiative, which is the common-sense idea that electricity customers should...

  5. Silicon crystal growing by oscillating crucible technique

    DOE Patents [OSTI]

    Schwuttke, G.H.; Kim, K.M.; Smetana, P.

    1983-08-03T23:59:59.000Z

    A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

  6. Multiparty quantum secret sharing

    SciTech Connect (OSTI)

    Zhang Zhanjun [School of Physics and Material Science, Anhui University, Hefei 230039 (China); Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Li Yong [Department of Physics, Huazhong Normal University, Wuhan 430079 (China); Man Zhongxiao [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2005-04-01T23:59:59.000Z

    Based on a quantum secure direct communication (QSDC) protocol [Phys. Rev. A 69 052319 (2004)], we propose a (n,n)-threshold scheme of multiparty quantum secret sharing of classical messages (QSSCM) using only single photons. We take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which only all quantum information receivers collaborate can the original qubit be reconstructed. A general idea is also proposed for constructing multiparty SSQI schemes from any QSSCM scheme.

  7. Gain Sharing.PDF

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGO 2009 AnnualDepartment of

  8. ShaRE Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-Organic FrameworksCredit LineOur

  9. ShaRE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNewsOurAD Exploreimage of

  10. Berkeley Lab Shares

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearch This pageResearchBerkeley

  11. Variable Crop Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Sammons, Ray

    1980-01-01T23:59:59.000Z

    )OC lAL45.7 173 1. 1224 Texas Agricultural Extension Service The Texas A&M University System Daniel C. Pfannstiel,Director colleg e Station, Texas / f , ' '~ :';,; ,,: ''': ~ " k , -~. _Variable _Crop Share _Leases ... Marvin... Sartin and Ray Sammons* Renting or leasing farmland is part of many modern farming operations and increases average farm size in U. S. agriculture. Economies of size are vitally import ant to farm operations as they strive to cope with the continuous...

  12. How Plants Grow name______________ Plants can grow from more than just seeds. Let's look at

    E-Print Network [OSTI]

    Koptur, Suzanne

    How Plants Grow name______________ Plants can grow from more than just seeds. Let's look at some of these ways you can grow plants. CUTTINGS Many plants can be started from cuttings (pieces of a bigger plant). A good place to make a cutting is fromone of the growing points of the plant (stem-tip). Some plants like

  13. Reusing Shares in Secret Sharing Schemes Yuliang Zheng

    E-Print Network [OSTI]

    Zheng, Yuliang

    Reusing Shares in Secret Sharing Schemes Yuliang Zheng Thomas Hardjono Jennifer Seberry The Centre for The Computer Journal 1 #12;Reusing Shares in Secret Sharing Schemes Abstract A (t w) threshold scheme is a method for sharing a secret among w shareholders so that the collaboration of at least t shareholders

  14. Social disruption caused by tobacco growing

    E-Print Network [OSTI]

    Marty Otanez

    2008-01-01T23:59:59.000Z

    Child labour still blights Kazakhstan: too little being doneand cotton growing in Kazakhstan. Almaty: ILO/MOT; 2006. 66.excessively long hours. 63 Kazakhstan: Children as young as

  15. Overlooked? The Growing Threat of Desertification

    E-Print Network [OSTI]

    Zhu, Julian

    2012-01-01T23:59:59.000Z

    Overlooked? The Growing Threat of Desertification Julian Zhuovergrazing directly threat- ens the natural resilience ofspite the fact that the threat of desertification is both

  16. Maine Company Growing with Weatherization Work

    Broader source: Energy.gov [DOE]

    Maine's BIOSAFE Environmental Services expands into weatherization, assisting low-income families with their services and creating jobs as business grows.

  17. Sandia National Laboratories: growing autotrophic microalgae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growing autotrophic microalgae The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University On July 25, 2013, in Biofuels, Energy, News, News...

  18. Practical Mobile Proactive Secret Sharing

    E-Print Network [OSTI]

    Dryjanski, David

    2008-01-01T23:59:59.000Z

    Secret sharing schemes are needed to store and protect secrets in large scale distributed systems. These schemes protect a secret by dividing the it into shares and distributing the shares to multiple shareholders. This ...

  19. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07T23:59:59.000Z

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  20. Growing Potatoes in Your Home Garden

    E-Print Network [OSTI]

    Douches, David S.

    Growing Potatoes in Your Home Garden A Guide to Growing Potatoes In Your Home Garden Yes potatoes! Potatoes, along with many other vegetables, can be prepared as part of a healthy diet. Luckily, potatoes are versatile and are easy to prepare. Whether baked, boiled, roasted or fried

  1. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01T23:59:59.000Z

    enclosures for growing algae (OMEGA). J. Sustainableenclosures for growing algae (OMEGA). Bioresour. Technol.enclosures for growing algae (OMEGA). Journal of Sustainable

  2. Policy enabled information sharing system

    DOE Patents [OSTI]

    Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.

    2014-09-02T23:59:59.000Z

    A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.

  3. Sharing Lessons Learned

    SciTech Connect (OSTI)

    Mohler, Bryan L.

    2004-09-01T23:59:59.000Z

    Workplace safety is inextricably tied to the culture – the leadership, management and organization – of the entire company. Nor is a safety lesson fundamentally different from any other business lesson. With these points in mind, Pacific Northwest National Laboratory recast its lessons learned program in 2000. The laboratory retained elements of a traditional lessons learned program, such as tracking and trending safety metrics, and added a best practices element to increase staff involvement in creating a safer, healthier work environment. Today, the Lessons Learned/Best Practices program offers the latest business thinking summarized from current external publications and shares better ways PNNL staff have discovered for doing things. According to PNNL strategic planning director Marilyn Quadrel, the goal is to sharpen the business acumen, project management ability and leadership skills of all staff and to capture the benefits of practices that emerge from lessons learned. A key tool in the PNNL effort to accelerate learning from past mistakes is one that can be easily implemented by other firms and tailored to their specific needs. It is the weekly placement of Lessons Learned/Best Practices articles in the lab’s internal electronic newsletter. The program is equally applicable in highly regulated environments, such as the national laboratories, and in enterprises that may have fewer external requirements imposed on their operations. And it is cost effective, using less than the equivalent of one fulltime person to administer.

  4. Evaluating Crop-Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Brints, Norman

    1979-01-01T23:59:59.000Z

    -SHARE LEASES Marvin Sartin and Norman Brints* There are many approaches for evaluating a crop-share lease. The easiest and most commonly used method relies on history and tradition. Throughout most of Texas, share leases have tra ditionally been one...-third for grain and one-fourth for cotton. While such agreements continue, the economic factors governing farming operations have changed, thus creating a need for reexamin ing terms of share leases. An accepted approach to evaluating sharing arrangements...

  5. Social disruption caused by tobacco growing

    E-Print Network [OSTI]

    Marty Otanez

    2008-01-01T23:59:59.000Z

    suffocating. The smell and the poison grow in your mouth.of the question going near that poison [tobacco pesticides].doesn’t let me do the poison now because of what happened

  6. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    as overall energy use grows and fossil fuels remain the mainmarketed energy supply comes from carbon-rich fossil fueland fossil fuels as they are used today makes energy

  7. Orthopedic Correction of Growing Retrognathic Hyperdivergent Patients

    E-Print Network [OSTI]

    Carrillo, Roberto

    2014-05-13T23:59:59.000Z

    The purpose of this prospective study was to determine whether dental intrusion is effective in treating growing retrognathic hyperdivergent patients without negatively affecting the roots and periodontal structures. The sample consisted of 17 (7...

  8. Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret

    E-Print Network [OSTI]

    Bernstein, Phil

    Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret (Extended Abstract) Josh Cohen Benaloh \\Lambda Abstract In 1979, Blackley and Shamir independently proposed schemes by which a secret can a homomorphism property attained by these and several other secret sharing schemes which allows multiple secrets

  9. Only tough choices in Meeting growing demand

    SciTech Connect (OSTI)

    NONE

    2007-12-15T23:59:59.000Z

    U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

  10. Looking at Resource Sharing Costs

    E-Print Network [OSTI]

    Leon, Lars; Kress, Nancy

    2012-05-23T23:59:59.000Z

    Purpose – This paper is the result of a small cost study of resource sharing services in 23 North American libraries. Trends that have affected resource sharing costs since the last comprehensive study are discussed. Design/methodology approach...

  11. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  12. Online Secret Sharing Christian Cachin

    E-Print Network [OSTI]

    Cachin, Christian

    On­line Secret Sharing Christian Cachin Institute for Theoretical Computer Science ETH Z¨urich CH. Abstract. We propose a new construction for computationally secure secret sharing schemes with general access structures where all shares are as short as the secret. Our scheme provides the capability

  13. Fast-growing willow shrub named `Tully Champion`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

    2007-08-28T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  14. Urban dwelling environments in rapidly growing cities : case study, Unayzah, Saudi Arabia

    E-Print Network [OSTI]

    Alohali, Yousef Nasser

    1983-01-01T23:59:59.000Z

    The study is concerned with two critical issues: a) the housing situation of middle income groups; b) the use of land in new developments. A tentative planning model for urban land development and a survey of existing ...

  15. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Environmental Management (EM)

    cost-share public-private partnerships to help sustainably develop cost-competitive biofuels and bioproducts in the United States from non-food biomass resources....

  16. Community Shared Solar: Expansions Underway in Solar America Communities

    Broader source: Energy.gov [DOE]

    Community shared solar is expanding rapidly as a model ownership structure for solar PV. By offering customers an option to purchase or lease part of a larger solar array instead of having to purchase the entire system, the model greatly expands participatory opportunities to a large new market segment of citizens and customers, with very low or no cost to local government.

  17. Preserving con dentiality when sharing medical database the Cellsecu system

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    , with the rapid advances in the computerization of medical data, the question of protecting medical recordsPreserving con dentiality when sharing medical database the Cellsecu system Yu-Cheng Chiang y that contains sensitive information in medical database by automatically removing, generalizing, and expanding

  18. Growing Dry Beans for an Emerging Market

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Growing Dry Beans for an Emerging Market JOIN US FOR AN EVENING WITH JACK LAZOR, OF BUTTERWORKS FARM AND JOE BOSSEN, OF VERMONT BEAN CRAFTERS APRIL 10TH , 2012, 6:15-8PM AT THE KELLOGG-HUBBARD LIBRARY EAST MONTPELIER ROOM 135 MAIN ST., MONTPELIER, VT 05602 Jack Lazor has grown dry beans for local

  19. Growing Sandalwood in Nepal--Potential

    E-Print Network [OSTI]

    Standiford, Richard B.

    Growing Sandalwood in Nepal--Potential Silvicultural Methods and Research Priorities1 Peter E. Neil 2 Abstract: Interest in sandalwood has increased recently in Nepal as a result of a royal directive establishment of sandalwood in Nepal. The silvicultural methods discussed could well be of use to other

  20. Carbon nanotubes grow in combustion flames Issued on March 31, 2014

    E-Print Network [OSTI]

    Takahashi, Ryo

    Carbon nanotubes grow in combustion flames Issued on March 31, 2014 Quantum chemical simulations reveal an unprecedented relationship between the mechanism of carbon nanotube growth and hydrocarbon of carbon nanotube (CNT) growth and hydrocarbon combustion actually share many similarities. In studies

  1. EDX - Share and Share Alike | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western Systems Power PoolOctober 17,ECR AnnualEDX - Share

  2. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy An error occurred. Unable to execute Javascript. Bioenergy: America's Energy Future is a...

  3. Bioproducts: Enabling Biofuels and Growing the Bioeconomy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts: Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Breakout Session 2B-Integration of Supply Chains II:...

  4. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based...

  5. A groupware interface to a shared file system

    E-Print Network [OSTI]

    Faltemier, Timothy Collin

    2005-02-17T23:59:59.000Z

    , as the Internet grows, so does the distance between users and the Local Area Network. With this increase in distance, the latency increases as well. This creates a problem when multiple users attempt to work in a shared environment. Traditionally, the only... way to collaborate over the Internet required the use of locks. These requirements motivated the creation of the State Difference Transformation algorithm that allows users non-blocking and unconstrained interaction across the Internet on a tree...

  6. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Jingjie; Liberton, Michelle; Cliften, Paul F.; Head, Richard D.; Jacobs, Jon M.; Smith, Richard D.; Koppenaal, David W.; Brand, Jerry J.; Pakrasi, Himadri B.

    2015-01-30T23:59:59.000Z

    Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO2, a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcus elongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotrophic growth, comparable to heterotrophic industrial hosts such as yeast. Synechococcus 2973 can be readily transformed for facile generation of desired knockout and knock-in mutations. Genome sequencing coupled with global proteomics studies revealed that Synechococcus 2973 is a close relative of the widely studied cyanobacterium Synechococcus elongatusmore »PCC 7942, an organism that grows more than two times slower. A small number of nucleotide changes are the only significant differences between the genomes of these two cyanobacterial strains. Thus, our study has unraveled genetic determinants necessary for rapid growth of cyanobacterial strains of significant industrial potential.« less

  7. Determining Cropland Share Rental Arrangements

    E-Print Network [OSTI]

    Dhuyvetter, Kevin C.; Kastens, Terry L.; Outlaw, Joe

    1999-06-23T23:59:59.000Z

    Determining Cropland Share Rental Arrangements Kevin C. Dhuyvetter, Terry L. Kastens and Joe L. Outlaw * Many crop producers rely heavily on rented land in their farming operations. The rental arrangements between landowners and producers can...

  8. Category:RAPID Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPolitical ActionQuantitativeThisRAPID

  9. RAPID/Roadmap/17 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador: EnergyRAPID/Roadmap/12-FD-h-CO-a

  10. RAPID/Roadmap/5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <dg <

  11. RRTT - Rapid Response Team for Transmission

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P URFIof Clean EnergyRapid

  12. RAPID/Roadmap/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b < RAPID‎ |RAPID/Roadmap/Geothermal

  13. Rapid Scan AERI Observations: Benefits and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cureEnergy StorageRapid Scan

  14. RAPID/About | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: Energy Resources JumpRAM CapitalRAPID/About

  15. RAPID/Outreach | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <NewRAPID/Outreach <

  16. RAPID/Overview | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <NewRAPID/Outreach

  17. RAPID/Roadmap/14 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14 <

  18. RAPID/Roadmap/9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc < <

  19. RAPID/Roadmap/Coverage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i

  20. RAPID/Roadmap/Geo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-iGeo <

  1. RAPID/Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-iGeo

  2. GROW, EXPORT, ATTRACT, SUPPORT Universities' contribution to Scotland's economic growth

    E-Print Network [OSTI]

    Edinburgh, University of

    GROW, EXPORT, ATTRACT, SUPPORT Universities' contribution to Scotland's economic growth #12;Contents Summary Grow 3 Export 5 Attract 10 Support 21 #12;Universities are recognised throughout the world to grow the GVA it contributes to Scotland. Universities have a growing export role, with international

  3. EDX - Share and Share Alike | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River Site for Use by theDelivery,ECONOMICEDUCATIONEDX

  4. Workload Decomposition for Particle Simulation Applications on Hierarchical Distributed-Shared Memory

    E-Print Network [OSTI]

    Vlad, Gregorio

    for High Performance Computing. Bus-based shared memory multiprocessor systems (SMPs) are rapidly spreading-bandwidth interconnection network, are increasingly established and used to provide high performance computing at a low cost

  5. Growing Americas Energy Future

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber2008 |of 2014 |

  6. Growing the Future Bioeconomy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber2008 |of 2014

  7. What Makes Clouds Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRuraltheWelcome NationalEngineer Chris

  8. Growing America's Energy Future | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs, and International Relations ofGrossBoard Meeting

  9. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  10. Many Small Consumers, One Growing Problem: Achieving Energy Savings for Electronic Equipment Operating in Low Power Modes

    E-Print Network [OSTI]

    energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate the market. Other sectors such as commercial for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested

  11. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees' ScholarshipAlbina

  12. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees' ScholarshipAlbinaChad

  13. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'

  14. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan Idrobo Juan Idrobo

  15. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan Idrobo Juan

  16. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan Idrobo JuanKathy

  17. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan Idrobo

  18. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan IdroboMiaofang Chi

  19. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan IdroboMiaofang

  20. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan IdroboMiaofangD.

  1. ShaRE - Staff Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'Juan

  2. ShaRE Credit Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-Organic FrameworksCredit Line

  3. shared Smart Grid Investment Grant

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclearand Characterization ofC u r r e n t I s s u e s C u

  4. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  5. Fast-growing willow shrub named `Tully Champion`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-08-28T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  6. Growing Brazilian demand to spur gas network in South America

    SciTech Connect (OSTI)

    Deffarges, E.H. (Booz Allen and Hamilton, San Francisco, CA (United States)); Maurer, L.I.A. (Booz Allen and Hamilton, Sao Paulo (Brazil))

    1993-01-18T23:59:59.000Z

    A recent combination in South America of economic and geopolitical factors is prompting development of a new integrated gas-pipeline network in the continent's Southern Cone. The crucial factors include privatization, regional integration, economic growth, and environmental concerns. The area, Latin America's largest regional entity, includes Brazil (population 150 million and a 1990 GNP of about $375 billion, 9th largest in the world), Argentina (population 32 million and the third largest Latin American economy after Brazil and Mexico), Bolivia, Chile, Paraguay, and Uruguay. Argentina, Brazil, Paraguay, and Uruguay are members of the MercoSur economic bloc whose objective is to develop free trade in the region. There are very few integrated pipeline networks in the world. Besides the giant North American system, with hundreds of producers and pipelines, there is only one other large integrated network. It connects continental European countries to their outside suppliers such as Norway, the C.I.S., and Algeria. The emergence of a new pipeline system is therefore important for the natural-gas industry worldwide and even more so if it occurs in a region now growing rapidly after a decade of economic difficulties.

  7. Sharing local energy infrastructure : organizational models for implementing microgrids and district energy systems in urban commercial districts

    E-Print Network [OSTI]

    Sherman, Genevieve Rose

    2012-01-01T23:59:59.000Z

    There is a growing trend in cities toward establishing localized, shared energy infrastructure. As existing energy infrastructure ages and demand increases, cities face rising energy costs and security risks combined with ...

  8. Growing quantum states with topological order

    E-Print Network [OSTI]

    Letscher, Fabian; Fleischhauer, Michael

    2015-01-01T23:59:59.000Z

    We discuss a protocol for growing states with topological order in interacting many-body systems using a sequence of flux quanta and particle insertion. We first consider a simple toy model, the superlattice Bose Hubbard model, to explain all required ingredients. Our protocol is then applied to fractional quantum Hall systems in both, continuum and lattice. We investigate in particular how the fidelity, with which a topologically ordered state can be grown, scales with increasing particle number N. For small systems exact diagonalization methods are used. To treat large systems with many particles, we introduce an effective model based on the composite fermion description of the fractional quantum Hall effect. This model also allows to take into account the effects of dispersive bands and edges in the system, which will be discussed in detail.

  9. Analysis of fuel shares in the industrial sector

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.

    1986-06-01T23:59:59.000Z

    These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

  10. Shared energy savings (SES) contracting

    SciTech Connect (OSTI)

    Aldridge, D.R. Jr. [Army Corps of Engineers, Huntsville, AL (United States)

    1995-11-01T23:59:59.000Z

    This paper discusses the use of a Shared Energy Savings (SES) contract as the procurement vehicle to provide, install, and maintain closed-loop ground-coupled heat pumps (CLGCHP`s) for 4,003 family-housing units at Fort Polk, Louisiana. In addition to the requirement relative to heat pumps, the contract allows the energy service company (ESCO) to propose additional projects needed to take full advantage of energy cost-saving opportunities that may exist at Fort Polk. The paper traces the development of the SES contract from feasibility study through development of the request for proposal (RFP) to contract award and implementation. In tracing this development, technical aspects of the project are set forth and various benefits inherent in SES contracting are indicated. The paper concludes that, due to the positive motivation inherent in the shared-savings, as well as partnering aspects of SES contracts, SES contracting is well suited to use as a procurement vehicle.

  11. Umatilla Tribes to Grow Native Plants for Hanford | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptemberDepartmentUmatilla Tribes to Grow

  12. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  13. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  14. Solar Ready Vets: Preparing Our Veterans to Join the Growing...

    Office of Environmental Management (EM)

    Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce April 6, 2015 - 2:27pm...

  15. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

  16. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, R.W.

    1982-09-20T23:59:59.000Z

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  17. RAPID | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: Energy Resources JumpRAM Capital

  18. Fast-growing willow shrub named `Oneida`

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-01T23:59:59.000Z

    A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

  19. Fast-growing willow shrub named `Millbrook`

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-04-24T23:59:59.000Z

    A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

  20. Fast-growing willow shrub named `Millbrook`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-04-24T23:59:59.000Z

    A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

  1. Fast-growing willow shrub named `Oneida`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P. (Marcellus, NY) [Marcellus, NY; Kopp, Richard F. (Marietta, NY) [Marietta, NY; Smart, Lawrence B. (Geneva, NY) [Geneva, NY; Volk, Timothy A. (Syracuse, NY) [Syracuse, NY

    2007-05-01T23:59:59.000Z

    A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

  2. Fast-growing shrub willow named `Owasco`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-07-03T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  3. Fast-growing willow shrub named `Otisco`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-09-11T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  4. Property:RAPID/Contact/ID8/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Position RAPID/Contact/ID8/Name

  5. Lecture Notes in Secret Sharing Carles Padro

    E-Print Network [OSTI]

    Lecture Notes in Secret Sharing Carles Padr´o Nanyang Technological University, Singapore Version 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Secret Sharing.2 Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Threshold Secret

  6. On carbon footprints and growing energy use

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01T23:59:59.000Z

    Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

  7. Mold susceptibility of rapidly renewable materials used in wall construction

    E-Print Network [OSTI]

    Cooper, Aaron McGill

    2009-05-15T23:59:59.000Z

    ..................................................................................................................................70 viii viii LIST OF FIGURES Page Figure 1. Mold remediation work following Hurricane Katrina (Szabo, 2006). ............... 6 Figure 2. Mushroom/perlite composite insulation growing in a dish (Chua, 2007)........ 14 Figure 3... & Sterling, 1997; Pugliese, 2006). Rapidly renewable products, due to their high cellulose and carbohydrate content, are highly susceptible to mold when exposed to moisture. Therefore, these materials may not be a part of a good long-term solution...

  8. Fast-growing willow shrub named `Otisco`

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-09-11T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  9. Fast-growing shrub willow named `Owasco`

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-07-03T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  10. Finding & Sharing Information about Energy Efficiency | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Finding & Sharing Information about Energy Efficiency Finding & Sharing Information about Energy Efficiency June 29, 2011 - 12:27pm Addthis Drew Bittner Communications Lead, Office...

  11. Global implications of Rapid: an international system facilitating inexpensive resource sharing

    E-Print Network [OSTI]

    Leon, Lars

    2008-09-29T23:59:59.000Z

    of the system vendor. International implications including copyright, ability to interact with various types of interlibrary loan managing systems, scanning and human interactions will be reviewed. This paper will conclude with an assessment to whether a...

  12. Metals Production Requirements for Rapid Photovoltaics Deployment

    E-Print Network [OSTI]

    Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

  13. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13T23:59:59.000Z

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  14. Advances in rapid prototyping

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  15. Sweden and the growing energy market

    SciTech Connect (OSTI)

    Leckstroem, R.E. [Swedish Association of Local Authorities, Stockholm (Sweden)

    1996-12-31T23:59:59.000Z

    Considerable changes have taken place within the Swedish energy system in recent years. Biofuels, for example, are steadily capturing greater market share. The most dramatic changes in biofuels have occurred in the district heating sector. Processed or upgraded fuels such as briquettes and pellets have become increasingly attractive heating alternatives in the single-family house sector. This development has come about largely as a result of Sweden`s long-term national energy policy, which states that the Swedish energy system, as far as possible, must be based on domestic and renewable energy sources with a minimum of detrimental impact on environment. Today`s basic and overall strategy seeks to utilize the pricing system of the competitive market to realize this program and to allocate energy resources. One consequence of this mode of thinking is the internalization of environmental costs in the pricing system. Another consequence is the Swedish electricity market reform that came into force this year. Many companies are now using the {open_quotes}greenness{close_quotes} of their products as a sales argument in their marketing. In the new competitive market, much attention has come to rest on the concept of {open_quotes}green energy{close_quotes} in general and on {open_quotes}green electricity{close_quotes} in particular. In a {open_quotes}bottom-to-top{close_quotes} perspective the behavior and preferences of consumers will be of considerable importance to energy supply companies.

  16. On-line secret sharing Laszlo Csirmaz

    E-Print Network [OSTI]

    Tardos, Gábor

    On-line secret sharing L´aszl´o Csirmaz G´abor Tardos Abstract In a perfect secret sharing scheme the dealer distributes shares to participants so that qualified subsets can recover the secret, while unqualified subsets have no information on the secret. In an on-line secret sharing scheme the dealer assigns

  17. UNCONDITIONALLY SECURE MULTIPARTY COMPUTATION AND SECRET SHARING

    E-Print Network [OSTI]

    Shpilrain, Vladimir

    UNCONDITIONALLY SECURE MULTIPARTY COMPUTATION AND SECRET SHARING DIMA GRIGORIEV AND VLADIMIR". Finally, we propose a secret sharing scheme where an advantage over Shamir's and other known secret sharing schemes is that nobody, including the dealer, ends up knowing the shares (of the secret) owned

  18. "Explosive" atom movement is new window into growing metalnanostructu...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    movement is new window into growing metal nanostructures Michael Tringides, Materials Science and Engineering , 515-294-6439 Breehan Gerleman Lucchesi, Public Affairs,...

  19. Growing Up in Scotland: Food and Activity - Summary Report 

    E-Print Network [OSTI]

    Government, Scottish

    2009-03-18T23:59:59.000Z

    This report uses data from the Growing Up in Scotland study to explore issues related to, food and activity in Scotland specifically in relation to young children....

  20. FOA aimed at growing expansive database of Renewable Energy and...

    Open Energy Info (EERE)

    FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Home > Groups > Utility Rate Graham7781's picture Submitted by...

  1. The Economic Consequences of Sharing Security Information Esther Gal-Or1

    E-Print Network [OSTI]

    Camp, L. Jean

    Information technology (IT) security has emerged as an important issue in the last decade. To promote the disclosure and sharing of cyber-security information amongst firms, the US federal government has encouraged-commerce con- tinues to grow, so does cyber crime. According to Jupiter Media Metrix, cyber-security issues

  2. DNA MICROARRAY DATA CLUSTERING USING GROWING SELF ORGANIZING NETWORKS

    E-Print Network [OSTI]

    Koprinska, Irena

    the cells in the two different conditions are extracted and labeled with different fluorescent dyes (e developed incremental, competitive and self-organizing neural networks (Growing Cell Structures and Growing is to compare gene expression levels in two different samples (e.g. healthy and diseased cells). RNA from

  3. Coordination and sharing at the interfaces

    E-Print Network [OSTI]

    Lin, Vivian I-Wen, 1972-

    2002-01-01T23:59:59.000Z

    This thesis examines properties of a type of coordinate structure that involves shared material (i.e., elements above the point coordination that c-command all of the conjuncts), what is referred to as a sharing structure. ...

  4. Shared Control Multiprocessors A Paradigm for Supporting

    E-Print Network [OSTI]

    Wilsey, Philip A.

    control architectures. This model, called shared control, overcomes the inefficiency of SIMD machinesShared Control Multiprocessors ­ A Paradigm for Supporting Control Parallelism on SIMD Abstract Parallel architectures are commonly classified according to their control organization as either

  5. Quantum Strongly Secure Ramp Secret Sharing

    E-Print Network [OSTI]

    Paul Zhang; Ryutaroh Matsumoto

    2014-08-08T23:59:59.000Z

    Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced. This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can no longer be leaked.

  6. Optimal risk sharing under distorted probabilities

    E-Print Network [OSTI]

    Ludkovski, Michael; Young, Virginia R.

    2009-01-01T23:59:59.000Z

    theory of risk. Geneva Pap. Risk Insurance Theory 25, 141–A. : Two-persons ef?cient risk-sharing and equilibria for36(2), 189–223 (2008) Optimal risk sharing under distorted

  7. Scheduling with Fixed Maintenance, Shared Resources and ...

    E-Print Network [OSTI]

    2015-02-07T23:59:59.000Z

    Nov 17, 2014 ... maintenance constraints, blending and shared resources. ...... tegrated fixed time interval preventive maintenance and production for schedul-.

  8. Secret sharing using artificial neural network

    E-Print Network [OSTI]

    Alkharobi, Talal M.

    2004-11-15T23:59:59.000Z

    ................................................................................ 1 1.1 The Rise of Computer Crime ................................................... 1 1.2 Importance of Information Security......................................... 3 1.3 Introduction to Secret Sharing... ............................ 9 2.1.1 Shares building phase................................................... 10 2.1.2 Shares distribution phase.............................................. 11 2.1.3 Secret reconstruction phase.......................................... 12...

  9. Hierarchical Threshold Secret Sharing Tamir Tassa

    E-Print Network [OSTI]

    Beimel, Amos

    Hierarchical Threshold Secret Sharing Tamir Tassa Abstract We consider the problem of threshold secret sharing in groups with hierarchical structure. In such settings, the secret is shared among and the presence of higher level participants is imperative to allow the recovery of the common secret. Even though

  10. Generalized Secret Sharing and Monotone Functions

    E-Print Network [OSTI]

    Bernstein, Phil

    Generalized Secret Sharing and Monotone Functions Josh Benaloh University of Toronto Jerry Leichter Yale University January 9, 1996 Abstract Secret Sharing from the perspective of threshold schemes has of the secret sharing functions which we may wish to form. For example, if it is desirable to divide a secret

  11. Space Efficient Secret Sharing: A Recursive Approach

    E-Print Network [OSTI]

    1 Space Efficient Secret Sharing: A Recursive Approach Abhishek Parakh and Subhash Kak Abstract This paper presents a k-threshold secret sharing technique that distributes a secret S into shares of size |S| k-1 , where |S| denotes the secret size. This bound is close to the optimal bound of |S| k

  12. Quantum secret sharing with qudit graph states

    SciTech Connect (OSTI)

    Keet, Adrian; Fortescue, Ben; Sanders, Barry C. [Institute for Quantum Information Science, University of Calgary, Alberta, T2N 1N4 (Canada); Markham, Damian [LTCI-CNRS, Telecom ParisTech, 37/39 rue Dareau, F-75014 Paris (France)

    2010-12-15T23:59:59.000Z

    We present a unified formalism for threshold quantum secret sharing using graph states of systems with prime dimension. We construct protocols for three varieties of secret sharing: with classical and quantum secrets shared between parties over both classical and quantum channels.

  13. Hierarchical Threshold Secret Sharing Tamir Tassa #

    E-Print Network [OSTI]

    Tassa, Tamir

    Hierarchical Threshold Secret Sharing Tamir Tassa # December 6, 2006 Abstract We consider the problem of threshold secret sharing in groups with hierarchical structure. In such settings, the secret of the common secret. Even though secret sharing in hierarchical groups has been studied extensively in the past

  14. Hierarchical Threshold Secret Sharing Tamir Tassa

    E-Print Network [OSTI]

    Tassa, Tamir

    Hierarchical Threshold Secret Sharing Tamir Tassa Division of Computer Science, The Open University tassa@yahoo.com Abstract. We consider the problem of threshold secret sharing in groups with hierarchical structure. In such settings, the secret is shared among a group of participants

  15. Hierarchical Threshold Secret Sharing Tamir Tassa

    E-Print Network [OSTI]

    Tassa, Tamir

    Hierarchical Threshold Secret Sharing Tamir Tassa December 6, 2006 Abstract We consider the problem of threshold secret sharing in groups with hierarchical structure. In such settings, the secret is shared among and the presence of higher level participants is imperative to allow the recovery of the common secret. Even though

  16. CECC'08 L. Csirmaz: Secret Sharing Schemes 1 / 35 Secret Sharing Schemes

    E-Print Network [OSTI]

    Csirmaz, László

    CECC'08 L. Csirmaz: Secret Sharing Schemes 1 / 35 Secret Sharing Schemes: Solved & Unsolved Problems Laszlo Csirmaz Central European University July 3, 2008 #12;CECC'08 L. Csirmaz: Secret Sharing Schemes 2 / 35 Secret Sharing Scheme { the beginning Contents 1 Secret Sharing Scheme { the beginning 2 De

  17. Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    by the year 2020 [2]. Wind turbines can operate either with a fixed speed or a variable speed. In the case and then as fluctuations in the electrical power on the grid. The variable-speed turbine operation offers several major acoustical [3]. Among variable speed constant-frequency wind turbines, the doubly fed induction generator

  18. > UtopiaCompression Corporation (UC) is a rapidly growing, High Tech > company with core competency in computational intelligence, developing

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    competency in computational intelligence, developing > and marketing a range of intelligent technologies discovery 3D object/scene modeling fusion and > visualization with a host of applications. of > Homeland Security, Dept. of Energy, US Missile Defense Agency, NIST, > Aerospace Industry prime contractor

  19. Economic Development for a Growing Economy Tax Credit Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to...

  20. Economic Development for a Growing Economy Tax Credit (Indiana)

    Broader source: Energy.gov [DOE]

    The Economic Development for a Growing Economy Tax Credit is awarded to businesses with projects that result in net new jobs. The tax credit must be a major factor in the company’s decision to move...

  1. System development & validation process for emerging growing organizations

    E-Print Network [OSTI]

    Almazán López, José Antonio

    2009-01-01T23:59:59.000Z

    This thesis has the main purpose of presenting the Development and Validation phase of the product development system from the point of view of an emerging and growing product development organization, denoting the obstacles ...

  2. Learn How To Grow Your Business Through Government Contracting

    Broader source: Energy.gov [DOE]

    OPEN for Government Contracts presents: Summit for Success is a FREE event hosted by American Express OPEN. The "Grow Your Business Through Government Contracting” events are FREE, day-long events focusing on small business government contracting.

  3. The Cold War approaches and Y-12s workload grows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approaches and Y-12's workload grows Many changes took place after the end of World War II in August, 1945. Y-12's population went from 22,000 workers in August, 1945 to a mere...

  4. Laplacian Growth: Random Matrices and singularities of growing

    E-Print Network [OSTI]

    Fominov, Yakov

    (exterior)-incompressible liquid with high viscosity Oil (exterior)-incompressible liquid with high fronts 2007 #12;#12;#12;Growing branches as Stokes lines Stochastic geometry: measure on a space

  5. Circulating Fluidized Bed (CFB) Boilers Market will grow due...

    Open Energy Info (EERE)

    Energy Concerns to Push Global Market to Grow at 8.1% CAGR from 2013 to 2019 Oil Shale Market is Estimated to Reach USD 7,400.70 Million by 2022 more Group members (32)...

  6. Growing Up in Scotland: Summary of Findings from Year 1 

    E-Print Network [OSTI]

    Government, Scottish

    2007-01-08T23:59:59.000Z

    The Growing Up in Scotland study ( GUS) is an important new longitudinal research project aimed at tracking the lives of a cohort of Scottish children from the early years, through childhood and beyond. Its principal aim is to provide information...

  7. Growing Up in Scotland: Year 3 - Food and Activity 

    E-Print Network [OSTI]

    Marryat, Louise; Valeria, Skafida; Webster, Catriona

    2009-01-21T23:59:59.000Z

    This report uses data from the Growing Up in Scotland study to explore the prevalence of, and many issues related to, food and activity in Scotland specifically in relation to young children....

  8. Growing Up in Scotland: Non Resident Parents - Summary Report 

    E-Print Network [OSTI]

    Government, Scottish

    2009-03-11T23:59:59.000Z

    The Growing Up in Scotland study (GUS) is an important longitudinal research project aimed at tracking the lives of a cohort of Scottish children from the early years, through childhood and beyond....

  9. Growing Up in Scotland: first research report on Sweep 1 

    E-Print Network [OSTI]

    Anderson, Simon; Bradshaw, Paul; Cunningham-Burley, Sarah; Hayes, Fenella; Jamieson, Lynn; MacGregor, Andy; Marryat, Louise; Wasoff, Fran

    The Growing Up in Scotland study ( GUS) is an important and ambitious new longitudinal research project aimed at tracking the lives of a cohort of Scottish children from the early years, through childhood and beyond. Funded by the Scottish Executive...

  10. Growing Up in Scotland: Year 3 - Non-resident Parents 

    E-Print Network [OSTI]

    Marryat, Louise; Reid, Susan; Wasoff, Fran

    2009-01-21T23:59:59.000Z

    This report uses data from the Growing Up in Scotland study (GUS) to explore the prevalence of, and many issues related to, non-resident parenthood in Scotland specifically in relation to young and very young children. ...

  11. Growing Up in Scotland: Pregnancy, Birth and Early Parenting 

    E-Print Network [OSTI]

    Government, Scottish

    2007-01-08T23:59:59.000Z

    The Growing Up in Scotland study ( GUS) is an important new longitudinal research project aimed at tracking the lives of a cohort of Scottish children from the early years, through childhood and beyond. Its principal aim is to provide information...

  12. New constraints on Northern Hemisphere growing season net flux

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE L12807AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE Levin,Northern Hemisphere growing season net flux Z. Yang, 1 R. A.

  13. Two-dimensional ultrasonic computed tomography of growing bones.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Two-dimensional ultrasonic computed tomography of growing bones. P. Lasaygues, E. Franceschini, R: Ultrasonic Computed Tomography, Bone imaging, Born approximation, iterative distorted method I. INTRODUCTION imaging process, using ultrasonic computed tomography. Although this method is known to provide

  14. Growing Energy - How Biofuels Can Help End America's Oil Dependence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27 percent of U.S. global warming pollution, as well as soot and smog that damage human lungs. NRDC.Growing.Energy.Final.3.pdf More Documents & Publications Biofuels & Greenhouse...

  15. A Mechanism for Dynamic Ride Sharing based on Parallel Auctions Alexander Kleiner, Bernhard Nebel and Vittorio Amos Ziparo

    E-Print Network [OSTI]

    Nebel, Bernhard

    A Mechanism for Dynamic Ride Sharing based on Parallel Auctions Alexander Kleiner, Bernhard Nebel,nebel}@informatik.uni-freiburg.de Algorithmica Srl, Rome, Italy, ziparo@algorithmica.it Abstract Car pollution is one of the major causes of green- house emissions, and traffic congestion is rapidly becoming a social plague. Dynamic Ride Sharing

  16. A synchronized cell suspension method for growing virus

    E-Print Network [OSTI]

    Zuloaga Guillermo Gerardo

    1970-01-01T23:59:59.000Z

    : g (Hs bar j An@net L9~p'0 ABSTRACT A Synchronized Cell Suspension Method. for Growing Virus. (August 1970) Guillermo Gerardo Zuloaga, Licentiate, Buenos Aires, Argentina; M. S. , Texas ARM University Directed. by: Dr. Stewart Mc...Connell The purpose of this study was to develop tech- niques for growing viruses in a synchronized. suspen- sion cell culture system. Virus replication in such a system should potentially yield a greater quantity of high quality antigen essential for vaccine...

  17. Rapid prototyping of green composites

    E-Print Network [OSTI]

    Peek, Nadya (Nadya Meile)

    2010-01-01T23:59:59.000Z

    Rapid prototyping employs digital fabrication techniques to quickly manufacture parts. However, the available materials are not yet suitable for making strong, large or durable objects. Composites are materials which are ...

  18. You Share, I Share: Network Effects and Economic Incentives in P2P File-Sharing System

    E-Print Network [OSTI]

    Salek, Mahyar; Kempe, David

    2011-01-01T23:59:59.000Z

    We study the interaction between network effects and external incentives on file sharing behavior in Peer-to-Peer (P2P) networks. Many current or envisioned P2P networks reward individuals for sharing files, via financial incentives or social recognition. Peers weigh this reward against the cost of sharing incurred when others download the shared file. As a result, if other nearby nodes share files as well, the cost to an individual node decreases. Such positive network sharing effects can be expected to increase the rate of peers who share files. In this paper, we formulate a natural model for the network effects of sharing behavior, which we term the "demand model." We prove that the model has desirable diminishing returns properties, meaning that the network benefit of increasing payments decreases when the payments are already high. This result holds quite generally, for submodular objective functions on the part of the network operator. In fact, we show a stronger result: the demand model leads to a "cov...

  19. Essays on Trade and Production Sharing

    E-Print Network [OSTI]

    Noguera, Guillermo Marcelo

    2011-01-01T23:59:59.000Z

    1.2 The Value Added Content of Trade . . . . . 1.33.4 Trade Costs over Time . . . . . . . . . . . 3.5One . . . . . . . . . .Sharing and Trade in 2 Augmented

  20. Scheduling with Fixed Maintenance, Shared Resources and ...

    E-Print Network [OSTI]

    Christina N Burt

    2014-11-30T23:59:59.000Z

    Nov 30, 2014 ... Scheduling with Fixed Maintenance, Shared Resources and Nonlinear Feedrate Constraints: a Mine Planning Case Study. Christina N Burt ...

  1. Sharing Metadata: Building Collections and Communities

    E-Print Network [OSTI]

    Chandler, Robin L.; Westbrook, Bradley D.; Rundblad, Kevin

    2009-01-01T23:59:59.000Z

    Metadata: Building Collections  and Communities Robin afford to think about collections only in  the context of an  institution's collections. Sharing Metadata: Building 

  2. Efficient multiparty quantum-secret-sharing schemes

    SciTech Connect (OSTI)

    Xiao Li; Deng Fuguo [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, MOE, Beijing 100084 (China); Long Guilu [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, MOE, Beijing 100084 (China); Center of Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Center for Quantum Information, Tsinghua University, Beijing 100084 (China); Pan Jianwei [Institute for Experimental Physics University of Vienna, Boltzmanngasse 5, Vienna 9 (Austria)

    2004-05-01T23:59:59.000Z

    In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.

  3. CSASC L. Csirmaz: Secret sharing on infinite structures 1 / 29 Secret Sharing on Infinite Structures

    E-Print Network [OSTI]

    Csirmaz, László

    CSASC L. Csirmaz: Secret sharing on infinite structures 1 / 29 Secret Sharing on Infinite: Secret sharing on infinite structures 2 / 29 Threshold scheme ­ a case study Contents 1 Threshold scheme, graphs, and graphs #12;CSASC L. Csirmaz: Secret sharing on infinite structures 3 / 29 Threshold scheme

  4. File:RAPID Toolkit Flyer.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf Jump to:student-HS.pdf Jump to:RAPID Toolkit

  5. File:RAPID Toolkit Flyer.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at Methil JumpPrimer.pdf Jump to:RAPID

  6. Wisconsin Rapids, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation, searchRapids, Wisconsin:

  7. RAPID/Roadmap/12-FD-h | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador: EnergyRAPID/Roadmap/12-FD-h <

  8. RAPID/Roadmap/13-FD-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador: EnergyRAPID/Roadmap/12-FD-h

  9. RAPID/Roadmap/15-CO-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador: EnergyRAPID/Roadmap/12-FD-h-CO-a

  10. RAPID/Roadmap/19-CO-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c < RAPID‎

  11. RAPID/Roadmap/19-CO-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <

  12. RAPID/Roadmap/19-TX-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <d <

  13. RAPID/Roadmap/3-CO-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <d <a

  14. RAPID/Roadmap/3-CO-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <d <ab

  15. RAPID/Roadmap/3-FD-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <d <abe

  16. RAPID/Roadmap/3-TX-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <d

  17. RAPID/Roadmap/3-TX-g | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <dg <

  18. RAPID/Roadmap/8 (1) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <dg <

  19. RAPID/Roadmap/8-TX-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <dg <f

  20. RAPID/Roadmap/9 (1) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <dg <f

  1. RAPID/Roadmap/Geo/Getting Started | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-c <dg

  2. RAPID/Roadmap/14-ID-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory and

  3. RAPID/Roadmap/14-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory andb

  4. RAPID/Roadmap/14-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory andbc

  5. RAPID/Roadmap/14-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory

  6. RAPID/Roadmap/14-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatorya <

  7. RAPID/Roadmap/14-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatorya

  8. RAPID/Roadmap/14-NM-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatoryad

  9. RAPID/Roadmap/14-NV-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatoryada

  10. RAPID/Roadmap/14-NV-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID

  11. RAPID/Roadmap/9-FD-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,c <RAPID/Roadmap/9-FD-c

  12. RAPID/Roadmap/9-FD-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,cRAPID/Roadmap/9-FD-e <

  13. RAPID/Roadmap/9-FD-g | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,cRAPID/Roadmap/9-FD-e

  14. Rapid Deployment Shelter System | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery,Assistance ProgramLivingstonRandallRapid

  15. East Grand Rapids, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro,Canton, Ohio:InformationForkRapids,

  16. Rapid Solar Mirror Characterization with Fringe Reflection Techniques -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cureEnergy StorageRapid

  17. Cedar Rapids, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar Jump to:CeCapPointRapids,

  18. Working with SRNL - Our Facilities- Rapid Fabrication Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresentedMetal HydrideHighPrimaryRapid

  19. RAPID/Geothermal/Water Use/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎RAPID/Geothermal/Water

  20. RAPID/Roadmap/12-FD-i | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) RedirectaRAPID/Roadmap/12-FD-i

  1. RAPID/Roadmap/14-AK-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14 <c

  2. RAPID/Roadmap/14-AK-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14 <cd

  3. RAPID/Roadmap/14-AZ-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14

  4. RAPID/Roadmap/14-CA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14a <

  5. RAPID/Roadmap/14-CA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14a <d

  6. RAPID/Roadmap/14-CO-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14a <db

  7. RAPID/Roadmap/14-CO-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14a

  8. RAPID/Roadmap/14-CO-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14ad <

  9. RAPID/Roadmap/14-FD-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14ad

  10. RAPID/Roadmap/14-FD-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14adFD-c

  11. RAPID/Roadmap/14-HI-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14adFD-ca

  12. RAPID/Roadmap/14-HI-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14adFD-cad

  13. RAPID/Roadmap/14-ID-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <

  14. RAPID/Roadmap/14-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <a

  15. RAPID/Roadmap/14-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <ae

  16. RAPID/Roadmap/14-NM-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <aec

  17. RAPID/Roadmap/14-NM-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d

  18. RAPID/Roadmap/14-NV-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dc <

  19. RAPID/Roadmap/14-NV-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dc <d

  20. RAPID/Roadmap/14-NV-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dc <de

  1. RAPID/Roadmap/14-OR-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dc

  2. RAPID/Roadmap/14-OR-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dcd <

  3. RAPID/Roadmap/14-OR-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dcd <f

  4. RAPID/Roadmap/14-TX-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-dcd

  5. RAPID/Roadmap/19-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |g <RAPID/Roadmap/19-WA-c

  6. RAPID/Roadmap/7-FD-g | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎RAPID/Roadmap/7-FD-g <

  7. RAPID/Roadmap/7-FD-h | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎RAPID/Roadmap/7-FD-g <h

  8. RAPID/Roadmap/7-FD-i | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎RAPID/Roadmap/7-FD-g

  9. RAPID/Roadmap/7-FD-k | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎ |

  10. RAPID/Roadmap/7-HI-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎ |b

  11. RAPID/Roadmap/7-ID-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎ |bc

  12. RAPID/Roadmap/7-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎

  13. RAPID/Roadmap/7-NV-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎c

  14. RAPID/Roadmap/7-OR-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎cb

  15. RAPID/Roadmap/7-OR-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎cbd

  16. RAPID/Roadmap/7-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <

  17. RAPID/Roadmap/7-TX-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-c <

  18. RAPID/Roadmap/7-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-c <WA-a

  19. RAPID/Roadmap/8-AZ-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-c

  20. RAPID/Roadmap/8-CA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <

  1. RAPID/Roadmap/8-CA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <d

  2. RAPID/Roadmap/8-CA-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <df

  3. RAPID/Roadmap/8-CO-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <dfa

  4. RAPID/Roadmap/8-CO-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <dfac

  5. RAPID/Roadmap/8-FD-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca

  6. RAPID/Roadmap/8-HI-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-a <

  7. RAPID/Roadmap/8-ID-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-a

  8. RAPID/Roadmap/8-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-aa

  9. RAPID/Roadmap/8-NM-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-aac

  10. RAPID/Roadmap/8-NM-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-aacd

  11. RAPID/Roadmap/8-NM-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-aacdf

  12. RAPID/Roadmap/8-NV-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-caHI-aacdfc

  13. RAPID/Roadmap/8-NV-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k

  14. RAPID/Roadmap/8-OR-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc < RAPID‎ |

  15. RAPID/Roadmap/8-TX-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc < RAPID‎

  16. RAPID/Roadmap/8-UT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc < RAPID‎a

  17. RAPID/Roadmap/8-UT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc < RAPID‎ac

  18. RAPID/Roadmap/8-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc <

  19. RAPID/Roadmap/9-FD-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc <

  20. RAPID/Roadmap/9-FD-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc

  1. RAPID/Roadmap/9-FD-i | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i < RAPID‎

  2. RAPID/Roadmap/9-FD-j | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <

  3. RAPID/Roadmap/9-FD-k | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <k <

  4. RAPID/Roadmap/9-HI-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <k <a

  5. RAPID/Roadmap/9-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <k

  6. RAPID/Roadmap/9-OR-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-a

  7. RAPID/Roadmap/9-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-aa

  8. RAPID/Roadmap/9-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-aab

  9. RAPID/Roadmap/9-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-aabc

  10. RAPID/Roadmap/Geo/Sections | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-iGeo <source

  11. RAPID/Solar/Environment/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-iGeoCalifornia

  12. Secret-Sharing for NP Ilan Komargodski

    E-Print Network [OSTI]

    Secret-Sharing for NP Ilan Komargodski Moni Naor Eylon Yogev Abstract A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any

  13. Secret-Sharing for NP Ilan Komargodski

    E-Print Network [OSTI]

    Naor, Moni

    Secret-Sharing for NP Ilan Komargodski Moni Naor Eylon Yogev July 22, 2014 Abstract A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret

  14. Rational Secret Sharing without Broadcast Amjed Shareef,

    E-Print Network [OSTI]

    Rational Secret Sharing without Broadcast Amjed Shareef, Department of Computer Science use the concept of rational secret sharing, which was initially introduced by Halpern and Teague [2], where players' preferences are that they prefer to learn the secret than not, and moreover they prefer

  15. Graph Decompositions and Secret Sharing Schemes 1

    E-Print Network [OSTI]

    Stinson, Douglas

    Graph Decompositions and Secret Sharing Schemes 1 C. Blundo and A. De Santis Dipartimento di In this paper, we continue a study of secret sharing schemes for access structures based on graphs. Given a graph G, we require that a subset of participants can compute a secret key if they contain an edge of G

  16. Matroids and quantum-secret-sharing schemes

    SciTech Connect (OSTI)

    Sarvepalli, Pradeep; Raussendorf, Robert [Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z1 (Canada)

    2010-05-15T23:59:59.000Z

    A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.

  17. Secret-Sharing for NP Ilan Komargodski

    E-Print Network [OSTI]

    Secret-Sharing for NP Ilan Komargodski Moni Naor Eylon Yogev June 11, 2014 Abstract A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret

  18. Shared Solar Programs: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The third webinar in the Solar Technical Assistance Team (STAT) 2013 webinar series, this webinar provides an overview of issues related to shared solar, the critical elements of a program to make it successful, and examples of locations that have implemented a shared solar or community-based solar program.

  19. Surfing gravitational waves: can bigravity survive growing tensor modes?

    E-Print Network [OSTI]

    Luca Amendola; Frank Koennig; Matteo Martinelli; Valeria Pettorino; Miguel Zumalacarregui

    2015-03-09T23:59:59.000Z

    The theory of bigravity offers one of the simplest possibilities to describe a massive graviton while having self-accelerating cosmological solutions without a cosmological constant. However, it has been shown recently that bigravity is affected by early-time fast growing modes on the tensor sector. Here we argue that we can only trust the linear analysis up to when perturbations are in the linear regime and use a cut-off to stop the growing of the metric perturbations. This analysis, although more consistent, still leads to growing tensor modes that are unacceptably large for the theory to be compatible with measurements of the cosmic microwave background (CMB), both in temperature and polarization spectra. In order to suppress the growing modes and make the model compatible with CMB spectra, we find it necessary to either fine-tune the initial conditions, modify the theory or set the cut-off for the tensor perturbations of the second metric much lower than unity. Initial conditions such that the growing mode is sufficiently suppresed can be achieved in scenarios in which inflation ends at the GeV scale.

  20. Surfing gravitational waves: can bigravity survive growing tensor modes?

    E-Print Network [OSTI]

    Amendola, Luca; Martinelli, Matteo; Pettorino, Valeria; Zumalacarregui, Miguel

    2015-01-01T23:59:59.000Z

    The theory of bigravity offers one of the simplest possibilities to describe a massive graviton while having self-accelerating cosmological solutions without a cosmological constant. However, it has been shown recently that bigravity is affected by early-time fast growing modes on the tensor sector. Here we argue that we can only trust the linear analysis up to when perturbations are in the linear regime and use a cut-off to stop the growing of the metric perturbations. This analysis, although more consistent, still leads to growing tensor modes that are unacceptably large for the theory to be compatible with measurements of the cosmic microwave background (CMB), both in temperature and polarization spectra. In order to suppress the growing modes and make the model compatible with CMB spectra, we find it necessary to either fine-tune the initial conditions, modify the theory or set the cut-off for the tensor perturbations of the second metric much lower than unity. Initial conditions such that the growing mod...

  1. Semiquantum secret sharing using entangled states

    SciTech Connect (OSTI)

    Li Qin [College of Information Engineering, Xiangtan University, Xiangtan 411105 (China); Department of Computer Science, Sun Yat-sen University, Guangzhou 510006 (China); Department of Mathematics, Hong Kong Baptist University, Kowloon (Hong Kong); Chan, W. H. [Department of Mathematics, Hong Kong Baptist University, Kowloon (Hong Kong); Long Dongyang [Department of Computer Science, Sun Yat-sen University, Guangzhou 510006 (China)

    2010-08-15T23:59:59.000Z

    Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret sharing can be achieved when all the members are quantum. So what happens if not all the members are quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented protocols are also shown to be secure against eavesdropping.

  2. Performing an allreduce operation using shared memory

    SciTech Connect (OSTI)

    Archer, Charles J. (Rochester, MN); Dozsa, Gabor (Ardsley, NY); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2012-04-17T23:59:59.000Z

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  3. Performing an allreduce operation using shared memory

    SciTech Connect (OSTI)

    Archer, Charles J; Dozsa, Gabor; Ratterman, Joseph D; Smith, Brian E

    2014-06-10T23:59:59.000Z

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  4. Growing threats posed by patho-gens--whether in intentional

    E-Print Network [OSTI]

    Reuter, Martin

    on produce and meat have demonstrated that CANARY can rapidly detect small amounts of pathogens such as E by the low-temperature freeze-out expe- rienced by liquid-based collection systems, and (3) the dry impaction

  5. Shared address collectives using counter mechanisms

    DOE Patents [OSTI]

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18T23:59:59.000Z

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  6. WilderShares LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitmanLinkButton11759°,WilderShares LLC

  7. Shared and Dynamic Libraries on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'JuanSubmitting aShared

  8. Shared Value in Utility and Efficiency Partnerships

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergy RightsAnnouncementSemiannualDOE FormerOfficeEnergy SharedJuly

  9. Dynamic security for medical record sharing

    E-Print Network [OSTI]

    Cody, Patrick M. (Patrick Michael), 1980-

    2003-01-01T23:59:59.000Z

    Information routinely collected by health care organizations is used by researchers to analyze the causes of illness and evaluate the effectiveness of potential cures. Medical information sharing systems are built to ...

  10. Partisan Sharing: Facebook Evidence and Societal Consequences

    E-Print Network [OSTI]

    An, Jisun; Crowcroft, Jon

    2014-01-01T23:59:59.000Z

    The hypothesis of selective exposure assumes that people seek out information that supports their views and eschew information that conflicts with their beliefs, and that has negative consequences on our society. Few researchers have recently found counter evidence of selective exposure in social media: users are exposed to politically diverse articles. No work has looked at what happens after exposure, particularly how individuals react to such exposure, though. Users might well be exposed to diverse articles but share only the partisan ones. To test this, we study partisan sharing on Facebook: the tendency for users to predominantly share like-minded news articles and avoid conflicting ones. We verified four main hypotheses. That is, whether partisan sharing: 1) exists at all; 2) changes across individuals (e.g., depending on their interest in politics); 3) changes over time (e.g., around elections); and 4) changes depending on perceived importance of topics. We indeed find strong evidence for partisan shar...

  11. DISC-UK DataShare 

    E-Print Network [OSTI]

    Rice, Robin

    DISC-UK DataShare (http://www.disc-uk.org/datashare.html) is a JISC-funded collaborative project led by EDINA and Edinburgh University Data Library, with the Universities of Oxford and Southampton as partners, and the ...

  12. ACOHERENT SHARED MEMORY Derek R. Hower

    E-Print Network [OSTI]

    Hill, Mark D.

    ACOHERENT SHARED MEMORY by Derek R. Hower A dissertation submitted in partial fulfillment. Hower 2012 All Rights Reserved #12;i Abstract The computer industry has entered an era where energy

  13. A .net based resource sharing framework

    E-Print Network [OSTI]

    Lin, Xiaohan

    2006-01-01T23:59:59.000Z

    This thesis presents an Internet resource sharing architecture. It allows users to access and utilize unused computer resources, such as CPU cycles and storage, without an expert's knowledge. It achieves this by providing ...

  14. Increasing Global Renewable Energy Market Share

    E-Print Network [OSTI]

    Peinke, Joachim

    Increasing Global Renewable Energy Market Share: Recent Trends and Perspectives Final Report Prepared for: Beijing International Renewable Energy Conference 2005 Prepared by: The Expert Group .............................................................. ix Message to the Beijing International Renewable Energy Conference from the Secretary General

  15. Riding to Sustainability: Bike Sharing Takes Off

    Broader source: Energy.gov [DOE]

    Thousands of Americans are switching to pedal power for their transportation needs as large-scale bicycle sharing programs sprout up throughout the country, making cities greener and residents healthier.

  16. How to Share a Quantum Secret

    SciTech Connect (OSTI)

    Cleve, R. [Department of Computer Science, University of Calgary, Calgary, Alberta, T2N 1N4 (CANADA)] [Department of Computer Science, University of Calgary, Calgary, Alberta, T2N 1N4 (CANADA); Gottesman, D. [T-6 Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [T-6 Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lo, H. [Hewlett-Packard Labs, Bristol BS34 8QZ (United Kingdom)] [Hewlett-Packard Labs, Bristol BS34 8QZ (United Kingdom)

    1999-07-01T23:59:59.000Z

    We investigate the concept of quantum secret sharing. In a (k,thinspn) threshold scheme, a secret quantum state is divided into n shares such that any k of those shares can be used to reconstruct the secret, but any set of k{minus}1 or fewer shares contains absolutely no information about the secret. We show that the only constraint on the existence of threshold schemes comes from the quantum {open_quotes}no-cloning theorem,{close_quotes} which requires that n{lt}2k , and we give efficient constructions of all threshold schemes. We also show that, for k{le}n{lt}2k{minus}1 , then any (k,thinspn) threshold scheme {ital must} distribute information that is globally in a mixed state. {copyright} {ital 1999} {ital The American Physical Society }

  17. Shared performance monitor in a multiprocessor system

    DOE Patents [OSTI]

    Chiu, George; Gara, Alan G; Salapura, Valentina

    2014-12-02T23:59:59.000Z

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  18. Glass Needs for a Growing Photovoltaics Industry Keith Burrows1

    E-Print Network [OSTI]

    1 Glass Needs for a Growing Photovoltaics Industry Keith Burrows1 and Vasilis Fthenakis1,2* 1 Center for Life Cycle Analysis, Columbia University, New York, NY 2 Photovoltaics Environmental Research Center, Brookhaven National Lab, Upton, NY Abstract With the projected growth in photovoltaics

  19. Ris Energy Report 2 Three growing concerns sustainability (particularly in

    E-Print Network [OSTI]

    1 Risø Energy Report 2 Three growing concerns ­ sustainability (particularly in the transport sector), security of energy supply and cli- mate change ­ have combined to increase interest in bioenergy and significant changes in energy markets. We even have a new term, "modern bioenergy", to cover those areas

  20. Communication China's growing methanol economy and its implications for energy

    E-Print Network [OSTI]

    Jackson, Robert B.

    but scarce oil and natural gas. Adapting to such limitations, it has developed a chemical industry, with the rest coming from natural gas (Peng, 2011). Methanol is commonly used to produce formaldehyde, methylCommunication China's growing methanol economy and its implications for energy and the environment

  1. ROTATIONAL LEADERSHIP PROGRAM Grow strong leadership skillsin a

    E-Print Network [OSTI]

    Kaminsky, Werner

    ROTATIONAL LEADERSHIP PROGRAM #12;Grow strong leadership skillsin a one-of-a-kindFortune500. As an Evergreen, you'll be part of an 18-month leadership rotation at our Tacoma and Federal Way, Washington and mentor them to become a valuable part of our leadership succession plan. " Jim Hilger Chief Accounting

  2. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S. [Industrial Info Resources (United States)

    2008-01-15T23:59:59.000Z

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  3. Composting Successes and Failures Extending the Growing Season Workshop

    E-Print Network [OSTI]

    Amin, S. Massoud

    3/18/2014 1 Composting Successes and Failures Extending the Growing Season Workshop LaMoine Nickel University of MN SWROC March 12, 2014 Beginning of compost process 9/6/2013 Finished compost product 11/19/2013 What is Composting Composting is a biological process in which microorganisms convert organic

  4. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  5. Diabetes A Growing Epidemic Michael McKee, MD, MPH

    E-Print Network [OSTI]

    Goldman, Steven A.

    Diabetes ­ A Growing Epidemic Michael McKee, MD, MPH March 28, 2013 #12;Goals Diabetes Introduction Types of Diabetes Testing Prevention Treatments #12;In Memory of Benno Houver Bernd "Benno" Houver (1973-2013) #12;Diabetes Info 25.8 million people in the USA (8.3%) have diabetes ~25% of people with diabetes do

  6. Diabetes is an epidemic worldwide, growing in parallel to obesity

    E-Print Network [OSTI]

    Toledo, University of

    Diabetes is an epidemic worldwide, growing in parallel to obesity 1 out of 10 American adults have diabetes. By 2034, the incidence is expected to triple. More then one million Ohioans have diabe reported a more than 10.1% incidence of diabetes among adults in Lucas County. Ohio is among the leading

  7. FlexiShare: Channel Sharing for an Energy-Efficient Nanophotonic Crossbar Yan Pan, John Kim

    E-Print Network [OSTI]

    Memik, Gokhan

    FlexiShare: Channel Sharing for an Energy-Efficient Nanophotonic Crossbar Yan Pan, John Kim. The flexibility of FlexiShare introduces additional router complexity and electrical power consumption. However, with the reduced number of optical channels, the overall power con- sumption is reduced without loss in performance

  8. Optimal Management of Renewable Resources with Growing Demand and Stock Externalities

    E-Print Network [OSTI]

    Berck, Peter

    1979-01-01T23:59:59.000Z

    MAi\\IAGEMEJ. 'n' OF RENEWABLE RESOURCES WIlli GROWING DEMANDthe problem of a renewable resource is: -f" (x*) P*] (~p). ~MA. ? \\IAGEMENl' OF RENEWABLE RESOURCES WIlli GROWING

  9. Final Report: Multi-State Sharing Initiative

    SciTech Connect (OSTI)

    Begoli, Edmon [ORNL; Boehmann, Brant [ORNL; DeNap, Frank A [ORNL

    2012-04-01T23:59:59.000Z

    In 2003 a joint effort between the U.S. Department of Homeland Security (DHS) and the U.S. Department of Justice created state and metropolitan intelligence fusion centers. These fusion centers were an effort to share law enforcement, disaster, and terrorism related information and intelligence between state and local jurisdictions and to share terrorism related intelligence between state and local law enforcement agencies and various federal entities. In 2006, DHS commissioned the Oak Ridge National Laboratory to establish and manage a groundbreaking program to assist local, state, and tribal leaders in developing the tools and methods required to anticipate and forestall terrorist events and to enhance disaster response. This program, called the Southeast Region Research Initiative (SERRI), combines science and technology with validated operational approaches to address regionally unique requirements and suggest regional solutions with the potential for national application. In 2009, SERRI sponsored the Multistate Sharing Initiative (MSSI) to assist state and metropolitan intelligence fusion centers with sharing information related to a wider variety of state interests than just terrorism. While these fusion centers have been effective at sharing data across organizations within their respective jurisdictions, their organizational structure makes bilateral communication with federal entities convenient and also allows information to be further disbursed to other local entities when appropriate. The MSSI-developed Suspicious Activity Report (SAR) sharing system allows state-to-state sharing of non-terrorism-related law enforcement and disaster information. Currently, the MSSI SAR system is deployed in Alabama, Kentucky, Tennessee, and South Carolina. About 1 year after implementation, cognizant fusion center personnel from each state were contacted to ascertain the status of their MSSI SAR systems. The overwhelming response from these individuals was that the MSSI SAR system was an outstanding success and contributed greatly to the security and resiliency of their states. At least one state commented that SERRI's implementation of the MSSI SAR actually 'jump started' and accelerated deployment and acceptance of the Nationwide Suspicious Activity Reporting Initiative (NSI). While all states were enthusiastic about their systems, South Carolina and Tennessee appeared to be the heaviest users of their respective systems. With NSI taking the load of sharing SARs with other states, Tennessee has redeployed the MSSI SAR system within Tennessee to allow SAR sharing between state and local organizations including Tennessee's three Homeland Security Regions, eleven Homeland Security Districts, and more than 500 police and sheriff offices, as well as with other states. In one success story from South Carolina, the Economy SAR System was used to compile similar SARs from throughout the state which were then forwarded to field liaison officers, emergency management personnel, and law enforcement officers for action.

  10. antibodies sharing specificities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stage, where there is a formal cost sharing commitment (manda Goddard III, William A. 58 Car Sharing Scheme Car Share Scheme Computer Technologies and Information Sciences...

  11. Direct access inter-process shared memory

    DOE Patents [OSTI]

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22T23:59:59.000Z

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  12. Chapter V: Improving Shared Transport Infrastructures

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & ProductionChapter 6 --30 QERQER

  13. Community and Shared Solar | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-JuneOfficeFresno U.S.ofCommunity and

  14. Shared and Dynamic Libraries on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'JuanSubmitting

  15. Free Share R D | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarm HoldingsFree Energy Alliance

  16. Earth Share Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: Energy

  17. ARM - Data Sharing and Distribution Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQuality Program DQ Resources

  18. BPA shares new collection of historical films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicleAuthorAwards R&DResearch

  19. Euclid, NERSC's Sunfire Shared Memory Analytics System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements Archive EmailKnownTimelineStatus

  20. Rapidity-Dependent Jet Vetoes

    E-Print Network [OSTI]

    Shireen Gangal; Maximilian Stahlhofen; Frank J. Tackmann

    2014-12-15T23:59:59.000Z

    Jet vetoes are a prominent part of the signal selection in various analyses at the LHC. We discuss jet vetoes for which the transverse momentum of a jet is weighted by a smooth function of the jet rapidity. With a suitable choice of the rapidity-weighting function, such jet-veto variables can be factorized and resummed allowing for precise theory predictions. They thus provide a complementary way to divide phase space into exclusive jet bins. In particular, they provide a natural and theoretically clean way to implement a tight veto on central jets with the veto constraint getting looser for jets at increasingly forward rapidities. We mainly focus our discussion on the 0-jet case in color-singlet processes, using Higgs production through gluon fusion as a concrete example. For one of our jet-veto variables we compare the resummed theory prediction at NLL'+NLO with the recent differential cross section measurement by the ATLAS experiment in the $H\\to\\gamma\\gamma$ channel, finding good agreement. We also propose that these jet-veto variables can be measured and tested against theory predictions in other SM processes, such as Drell-Yan, diphoton, and weak diboson production.

  1. Realistic Financial Planning and Rapid

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuringDepartment of EnergyU.N.Realistic Financial

  2. Idaho_BellRapidsIrrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power -Mtn. Bell

  3. Rapid Freeform Sheet Metal Forming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut2 of 3)theDieselFreeform Sheet Metal

  4. A Handbook of Peanut Growing in the Southwest.

    E-Print Network [OSTI]

    1950-01-01T23:59:59.000Z

    production, by counties, in Oklahoma and Texas for the year 1947. county, Comanche, produced more than 25 million pounds. Good cover crops include adapted vetch and winter peas. These legumes can be grown alone, or vetch can be used in a mixture...Bulletin 727 Texas Agricul turd Experiment Station November, 1950 Bulletin B-361 Oklahoma Agricultural Experiment Station A Handbook of In the Southwest PEANUT GROW TEXAS AGRICULTURAL EXPERIMENT STATION The Texas Agricultural...

  5. Logistical Networking Sharing More than the Wires

    E-Print Network [OSTI]

    Plank, Jim

    Network as approaches to flexible implementation of advanced network protocols. We describe the Internet. The goal of computer networking is typically taken to be communication, i.e. the transmission of data1 Logistical Networking Sharing More than the Wires Micah Beck, Terry Moore, Jim Plank, Martin

  6. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  7. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NET SYSTEM POWER: A SMALL SHARE OF CALIFORNIA'S POWER MIX IN 2005 the California Energy Commission's annual calculation of net system power as required by state law (Public Utilities Code, § 398.1 - 398.5). The report also defines net system power and explains how

  8. Generalized Semi-Quantum Secret Sharing Schemes

    E-Print Network [OSTI]

    Gheorghiu, Vlad

    2012-01-01T23:59:59.000Z

    We investigate quantum secret sharing schemes constructed from $[n,k,delta]_D$ non-binary stabilizer quantum error correcting codes with carrier qudits of prime dimension $D$. We provide a systematic way of determining the access structure, which completely determines the forbidden and intermediate structures. We then show that the information available to the intermediate structure can be fully described and quantified by what we call the \\emph{information group}, a subgroup of the Pauli group of $k$ qudits, and employ this group structure to construct a method for hiding the information from the intermediate structure via twirling of the information group and sharing of classical bits between the dealer and the players. Our scheme allows the transformation of a ramp (intermediate) quantum secret sharing scheme into a semi-quantum perfect secret sharing scheme with the same access structure as the ramp one but without any intermediate subsets, and is optimal in the amount of classical bits the dealer has to ...

  9. Exploiting Social Networks for Sensor Data Sharing with SenseShare

    E-Print Network [OSTI]

    Schmid, Thomas; Srivastava, Mani B

    2007-01-01T23:59:59.000Z

    Sensing Exploiting Social Networks for Sensor Data Sharinghttp://nesl.ee.ucla.edu Introduction: Social Networks andData Sharing Social Networks Social networks create groups

  10. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar (Louisville, KY); Vaddiraju, Sreeram (Mountain View, CA); Mozetic, Miran (Ljubljan, SI); Cvelbar, Uros (Idrija, SI)

    2009-09-22T23:59:59.000Z

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  11. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05T23:59:59.000Z

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  12. Editor's Choice Series on Sharing Data and Materials Sharing Publication-Related Data and Materials

    E-Print Network [OSTI]

    Eddy, Sean

    Editor's Choice Series on Sharing Data and Materials Sharing Publication-Related Data and Materials, Independent Publishing Con- sultant, Princeton, New Jersey Project Staff Robin A. Schoen, Study Director Bridget K. B. Avila, Senior Project Assistant Elia Ben-Ari, Science Writer Norman Grossblatt, Editor

  13. Notices 20 Miles Northwest of Rapid City SD Rapid City SD 57702

    Broader source: Energy.gov (indexed) [DOE]

    Notices 20 Miles Northwest of Rapid City SD Rapid City SD 57702 Landholding Agency: Agriculture Property Number: 15201410016 Status: Excess Comments: off-site removal only; 55 sq....

  14. Absolute Maximal Entanglement and Quantum Secret Sharing

    E-Print Network [OSTI]

    Helwig, Wolfram; Riera, Arnau; Latorre, José I; Lo, Hoi-Kwong

    2012-01-01T23:59:59.000Z

    We study the existence of absolutely maximally entangled (AME) states in quantum mechanics and its applications to quantum information. AME states are characterized by being maximally entangled for all bipartitions of the system and exhibit genuine multipartite entanglement. With such states, we present a novel parallel teleportation protocol which teleports multiple quantum states between groups of senders and receivers. The notable features of this protocol are that (i) the partition into senders and receivers can be chosen after the state has been distributed, and (ii) one group has to perform joint quantum operations while the parties of the other group only have to act locally on their system. We also prove the equivalence between pure state quantum secret sharing schemes and AME states with an even number of parties. This equivalence implies the existence of AME states for an arbitrary number of parties based on known results about the existence of quantum secret sharing schemes.

  15. Growing Cutting-edge X-ray Optics

    ScienceCinema (OSTI)

    Ray Conley

    2013-07-17T23:59:59.000Z

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015

  16. Process for growing epitaxial gallium nitride and composite wafers

    DOE Patents [OSTI]

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13T23:59:59.000Z

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  17. Shared performance monitor in a multiprocessor system

    DOE Patents [OSTI]

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24T23:59:59.000Z

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  18. Scalable Mechanisms for Rational Secret Sharing

    E-Print Network [OSTI]

    Dani, Varsha; Saia, Jared

    2012-01-01T23:59:59.000Z

    We consider the classical secret sharing problem in the case where all agents are selfish but rational. In recent work, Kol and Naor show that, when there are two players, in the non-simultaneous communication model, i.e. when rushing is possible, there is no Nash equilibrium that ensures both players learn the secret. However, they describe a mechanism for this problem, for any number of players, that is an epsilon-Nash equilibrium, in that no player can gain more than epsilon utility by deviating from it. Unfortunately, the Kol and Naor mechanism, and, to the best of our knowledge, all previous mechanisms for this problem require each agent to send O(n) messages in expectation, where n is the number of agents. This may be problematic for some applications of rational secret sharing such as secure multi-party computation and simulation of a mediator. We address this issue by describing mechanisms for rational secret sharing that are designed for large n. Both of our results hold for n > 2, and are Nash equil...

  19. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01T23:59:59.000Z

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  20. EM's Use of Cost-Effective Passive Groundwater Sampling Grows |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM Recovery ActSeriesofDepartment of

  1. Financing the Growing American Auto Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIADepartmentJuly 16,Department ofPeter

  2. Biomass Fueling America's Growing Clean Energy Economy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS THIS6, 2015

  3. Xi an Crystal Growing Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenerga Jump to: navigation, searchCrystal

  4. Growing America's Energy Future: Bioenergy Technologies Office Successes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber2008 |of 2014 | Department

  5. Hanford Grows Young Minds Through Site Tours | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopmentHEADQUARTERSOutreachAprilJohn Britton, with

  6. Clean energy growing part of Oak Ridge's reindustrialization efforts |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean Energyof EnergyCleanDepartment

  7. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT: OAS-L-03-03About the

  8. Survey Says: Workplace Charging is Growing in Popularity and Impact |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document detailsEnergyIn theDepartment of

  9. Hanford Grows Young Minds Through Site Tours | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResource GuideandCerti cateHanford

  10. Engaging and Growing Small Contractor Businesses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 atDepartment ofLLC ||EfficiencyEngaging

  11. Better Buildings Challenge Continues to Grow | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda AgendaDepartment ofBen DotsonBBSC Logo

  12. The Growing Web of Open Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance April 7,U.Future5An article describing

  13. About the Bioenergy Technologies Office: Growing America's Energy Future by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM Loan ProgramUs About Us The missionUsUsReplacing

  14. Crystal Growing Systems GmbH CGS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage Edit

  15. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Ground Breaking of BlythePOET-DSM's Project

  16. A volunteer opportunity that'll grow on you

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2,generationPhysicsA Volunteer Opportunity

  17. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green Bus rolledofEnergydocument outlines the

  18. Idaho Cleanup Project grows its workforce to complete ARRA work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | National NuclearIWTUBoF: IXPUGIdahoIdaho

  19. Growing Energy - How Biofuels Can Help End America's Oil Dependence |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the CarryingPeer Review2008Department

  20. COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic Replacements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute for AdvancedDiscoverywith

  1. Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now

    E-Print Network [OSTI]

    Bertini, Robert L.

    analyzes the impacts of utilization (mileage per year per vehicle) and gasoline prices on vehicle gasoline prices or high utilization, (b) current European carbon dioxide cap-and-trade emissions price (miles per year), and market conditions (fuel prices) on the competitiveness of EVs. This paper

  2. Developing a shared energy savings contract

    SciTech Connect (OSTI)

    Aldridge, D.R. Jr. [Army Corps of Engineers, Huntsville, AL (United States). Huntsville Division

    1995-09-01T23:59:59.000Z

    The government uses shared energy savings (SES) contracting as a vehicle for procurement. Under an SES contracting agreement, the energy service company (ESCO) involved in the contract is compensated by receiving a competitively bid percentage of the energy dollars saved and the maintenance dollars available. SES contract period vary in length. This article traces the development of an SES contract from feasibility study through development of the request for proposal (RFP) to contract award and implementation. Technical aspects of the project are set forth, and various benefits inherent in SES contracting are indicated.

  3. Quantum secret sharing using product states

    SciTech Connect (OSTI)

    Hsu, L.-Y.; Li, C.-M. [Department of Physics, Chung Yuan Christian University, Chung-Li, 32023, Taiwan (China); Institute and Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)

    2005-02-01T23:59:59.000Z

    This study proposes quantum secret sharing protocols using product states. The first two protocols adopt the quantum key distribution protocol using product states [Guo et al.Phys. Rev. A 64, 042301 (2001)]. In these two protocols, the sender does not reveal any information about the qutrits until confirming that each receiver has received a qutrit. This study also considers the security and some possible eavesdropping strategies. In the third proposed protocol, three-level Bell states are exploited for qutrit preparation via nonlocality swapping.

  4. An Ontological Schema for Sharing Conceptual Engineering Knowledge

    E-Print Network [OSTI]

    Mizoguchi, Riichiro

    An Ontological Schema for Sharing Conceptual Engineering Knowledge Yoshinobu Kitamura and Riichiro have been suffering the difficulty in sharing conceptual engineering knowledge about functionality. Introduction In the engineering design community, the importance of knowledge sharing among designers has been

  5. Resource Overbooking and Application Profiling in Shared Hosting Platforms *

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    Resource Overbooking and Application Profiling in Shared Hosting Platforms * Bhuvan Urgaonkar for provisioning CPU and network resources in shared hosting platforms running potentially antagonistic third of overbooking resources in shared platforms, to maximize the platform yield: the revenue generated

  6. Sender sharing groups in real-time communication

    E-Print Network [OSTI]

    Narayanan, Vidya

    1998-01-01T23:59:59.000Z

    . Reservation Protocol (RSVP) B. Tenet . C. Resource Sharing III OVERVIEW OF NETEX . A. QoS in NetEx B. Components of NetEx 1. Host Traffic Manager 2. Network Traflic Manager 3. User Library IV SENDER SHARING GROUPS A. QoS Modeling in Sender Sharing... AND IMPLEMENTATION A. Components of NetEx with Sender Sharing Groups B. Signaling Protocol . 1. Creation of Sender Sharing Groups . 2. Shared Connection Establishment a. CoreCAC for Sharing Groups 3. Shared Connection Termination C. Policer Design...

  7. University of California Shared Image Collections: Convergence and Expansion

    E-Print Network [OSTI]

    Zentall, Lena; Burns, Maureen

    2008-01-01T23:59:59.000Z

    sharing ARTstor hosted collections. For more information onProject and the digital collections they support, seeof California Shared Image Collections: Convergence and

  8. antigen share binding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nity. The approach to controlled link-sharing described 482 Application for Rockfish Quota Share Page 1 of 9 Environmental Sciences and Ecology Websites Summary: Application for...

  9. arginase shares functional: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nity. The approach to controlled link-sharing described 435 Application for Rockfish Quota Share Page 1 of 9 Environmental Sciences and Ecology Websites Summary: Application for...

  10. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Energy Savers [EERE]

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer...

  11. agreement production sharing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    any information concerning such persons that is legally required Portman, Douglas 76 Car Sharing Scheme Car Share Scheme Computer Technologies and Information Sciences...

  12. achieving benefit sharing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behaviour of deterministic rate adaption proc... L. Massouli; J. Roberts 1999-01-01 53 Car Sharing Scheme Car Share Scheme Computer Technologies and Information Sciences...

  13. Shared Value in Utility and Efficiency Partnerships - Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shared Value in Utility and Efficiency Partnerships - Lessons in Perseverance, Flexibility and Mutual Respect Shared Value in Utility and Efficiency Partnerships - Lessons in...

  14. Trucking Industry Demand for Urban Shared Use Freight Terminals

    E-Print Network [OSTI]

    Regan, Amelia C.; Golob, Thomas F.

    2003-01-01T23:59:59.000Z

    for Urban Shared Use Terminals Taniguchi, E. , M. Noritake,of public logistics terminals. Transportation Research –Demand for Urban Shared Use Terminals References Aitchison,

  15. Rapid prototyping applications for manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  16. Neuropsychologia xxx (2005) xxxxxx Rapid publication

    E-Print Network [OSTI]

    Gabrieli, John

    2005-01-01T23:59:59.000Z

    Neuropsychologia xxx (2005) xxx­xxx Rapid publication Making sense of another mind: The role. Wexler / Neuropsychologia xxx (2005) xxx­xxx LaBar, Crupain, V

  17. Nesting biology of the fungus-growing ant Cyphomyrmex longiscapus Weber (Attini, Formicidae)

    E-Print Network [OSTI]

    Bermingham, Eldredge

    Nesting biology of the fungus-growing ant Cyphomyrmex longiscapus Weber (Attini, Formicidae) U, nesting biology, ant- fungus symbiosis. Summary The fungus-growing ant Cyphomymrex longiscapus Weber-growing ant Cyphomyrmex longiscapus Weber (Attini, Formicidae) is known from only five collections from

  18. Fast-growing willow shrub named `Fish Creek`

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08T23:59:59.000Z

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  19. Fast-growing willow shrub named `Fish Creek`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08T23:59:59.000Z

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  20. Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B E R 2ofResourses Management

  1. Optimal information rate of secret sharing schemes on trees

    E-Print Network [OSTI]

    Tardos, Gábor

    The information rate for an access structure is the reciprocal of the load of the optimal secret sharing scheme method. AMS classification numbers. 05B40, 05C85, 94A60, 94A62, 94A17 1 Introduction Secret sharing sharing scheme for the access structure based on a graph G a secret sharing scheme on G. The load

  2. On Identification Secret Sharing Schemes Departmant of Information Engineering

    E-Print Network [OSTI]

    Bielefeld, University of

    1 On Identification Secret Sharing Schemes Ning Cai Departmant of Information Engineering. #12; 2 Running head: Identification Secret Sharing Corresponding Author: Ning Cai Departmant be a set of participants sharing a secret from a set of secrets. A secret sharing scheme is a protocol

  3. Weakly-Private Secret Sharing Schemes Amos Beimel1

    E-Print Network [OSTI]

    Beimel, Amos

    Weakly-Private Secret Sharing Schemes Amos Beimel1 and Matthew Franklin2 1 Department of Computer. Abstract. Secret-sharing schemes are an important tool in cryptogra- phy that is used in the construction of many secure protocols. However, the shares' size in the best known secret-sharing schemes realizing gen

  4. Interest grows in African oil and gas opportunities

    SciTech Connect (OSTI)

    Knott, D.

    1997-05-12T23:59:59.000Z

    As African countries continue a slow drift towards democratic government and market economics, the continent is increasingly attractive to international oil and gas companies. Though Africa remains politically diverse, and its volatile politics remains a major barrier to petroleum companies, a number of recent developments reflect its growing significance for the industry. Among recent projects and events reflecting changes in Africa: oil and gas exporter Algeria has invited foreign oil companies to help develop major gas discoveries, with a view to boosting exports to Europe; oil and gas producer Egypt invited foreign companies to explore in the Nile Delta region, and the result appears to be a flowering world scale gas play; west African offshore exploration has entered deep water and new areas, and a number of major projects are expected in years to come; Nigeria`s reputation as a difficult place to operate has been justified by recent political and civil events, but a long-planned liquefied natural gas (LNG) export plant is being built there; South Africa, which has returned to the international scene after years of trade isolation because of apartheid, is emerging as a potential driver for energy industry schemes throughout the continent. Activities are discussed.

  5. Soviet Union oil sector outlook grows bleaker still

    SciTech Connect (OSTI)

    Not Available

    1991-08-12T23:59:59.000Z

    This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

  6. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOE Patents [OSTI]

    Phomsakha, Vongvilay (St. Petersburg, FL); Chang, Robert S. F. (Tampa, FL); Djeu, Nicholas I. (Tampa, FL)

    1997-03-04T23:59:59.000Z

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  7. The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions

    E-Print Network [OSTI]

    Schlenker, Wolfram; Hanemann, W. Michael; Fisher, Anthony C.

    2004-01-01T23:59:59.000Z

    U.S. Agriculture: An Econometric Analysis of Optimal GrowingU.S. Agriculture: An Econometric Analysis of Optimal GrowingU.S. Agriculture: An Econometric Analysis of Optimal Growing

  8. Savannah River Site Workers Share Knowledge with Students in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Workers Share Knowledge with Students in Engineering Teach-Ins Savannah River Site Workers Share Knowledge with Students in Engineering Teach-Ins March 30, 2015 - 12:00pm...

  9. association shared endophenotypes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QUOTA SHARE (QS) U.S. Dept. of Commerce NOAA National are applying: Rockfish Quota Share in the CatcherProcessor Sector: must hold an LLP license 443 A Unified Approach...

  10. Shared State for Distributed Interactive Data Mining Applications

    E-Print Network [OSTI]

    Dwarkadas, Sandhya

    Shared State for Distributed Interactive Data Mining Applications #3; Srinivasan Parthasarathy, 2001 Abstract Distributed data mining applications involving user interaction are now fea- sible due and eval- uates a system for sharing state among such interactive distributed data mining applications

  11. Strategies for Sharing Bottleneck Capacity among Buses and Cars

    E-Print Network [OSTI]

    Guler, Sukran Ilgin

    2012-01-01T23:59:59.000Z

    at first, since bus-car sharing strategies for facilities ofsharing the middle link’s median lane between cars andfor Sharing Bottleneck Capacity among Buses and Cars by

  12. Charged particle rapidity distributions at relativistic energies 

    E-Print Network [OSTI]

    Lin, ZW; Pal, S.; Ko, Che Ming; Li, Ba; Zhang, B.

    2001-01-01T23:59:59.000Z

    Using a multiphase transport model (AMPT), which includes both initial partonic and final hadronic interactions, we study the rapidity distributions of charged particles such as protons, antiprotons, pions, and kaons in heavy ion collisions at RHIC...

  13. WVU Personal Rapid Transit Benefit Cost Analysis

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    WVU Personal Rapid Transit Benefit Cost Analysis Morgantown, West Virginia Prepared For: West.......................................................................................... 15 Travel Time Value - Understanding Travel Time Costs................................................. 15 Travel Time Value - Understanding Travel Time Costs

  14. COST SHARING ON SPONSORED PROJECTS California Institute of Technology

    E-Print Network [OSTI]

    Goddard III, William A.

    COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7 Institute of Technology (Caltech) that committed cost sharing is proposed, approved, administered;COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 2 of 4 7

  15. Randomization in Traffic Information Sharing Systems Masaaki Tanizaki

    E-Print Network [OSTI]

    Wolfson, Ouri E.

    , we consider a traffic information sharing system based on Floating Car Data (FCD). FCD is oneRandomization in Traffic Information Sharing Systems Masaaki Tanizaki Intelligent Media Systems to the server. The traffic information sharing system broadcasts speed information updated by such transmission

  16. Secret sharing on the d-dimensional Laszlo Csirmaz

    E-Print Network [OSTI]

    Csirmaz, László

    Secret sharing on the d-dimensional cube L´aszl´o Csirmaz Central European University Abstract We prove that for d > 1 the best information ratio of the perfect secret sharing scheme based on the edge that the information ratio of the infinite d-dimensional lattice is d. Key words: Secret sharing scheme, polymatroid

  17. Perfect Secret Sharing Schemes from Room GhulamRasool Chaudhry

    E-Print Network [OSTI]

    Seberry, Jennifer

    Perfect Secret Sharing Schemes from Room Squares Ghulam­Rasool Chaudhry Hossein Ghodosi Jennifer retirement Abstract Secret sharing schemes are one of the most important primitives in distributed systems. In perfect secret sharing schemes, collabo­ ration between unauthorised participants cannot reduce

  18. Weighted modulated secret image sharing method Chien-Chang Chen

    E-Print Network [OSTI]

    Chen, Chaur-Chin

    Weighted modulated secret image sharing method Chien-Chang Chen Hsuan Chuang University Department-layered structure for grouping participants with different weights in a secret image sharing problem. Conventional secret im- age sharing methods suffer from truncation distortion, which is the difference between a pixel

  19. Multipartite Secret Sharing by Bivariate Interpolation # Tamir Tassa + Nira Dyn #

    E-Print Network [OSTI]

    Tassa, Tamir

    Multipartite Secret Sharing by Bivariate Interpolation # Tamir Tassa + Nira Dyn # Abstract Given that we present herein. We design ideal perfect secret sharing schemes for these types of access structures that are based on bivariate interpolation. The secret sharing schemes for the two types

  20. Perfect Secret Sharing Schemes from Room Ghulam-Rasool Chaudhry

    E-Print Network [OSTI]

    Seberry, Jennifer

    Perfect Secret Sharing Schemes from Room Squares Ghulam-Rasool Chaudhry Hossein Ghodosi Jennifer retirement Abstract Secret sharing schemes are one of the most important primitives in distributed systems. In perfect secret sharing schemes, collabo- ration between unauthorised participants cannot reduce

  1. A Novel Visual Secret Sharing Scheme without Image Size Expansion

    E-Print Network [OSTI]

    Heys, Howard

    A Novel Visual Secret Sharing Scheme without Image Size Expansion Nazanin Askari, Cecilia Moloney. Visual cryptography is a secure secret sharing scheme that divides secret images into shares which on their own reveal no information of the original secret image. Recovery of the secret image can be performed

  2. The dealer's random bits in perfect secret sharing schemes

    E-Print Network [OSTI]

    Csirmaz, László

    The dealer's random bits in perfect secret sharing schemes L#19;aszl#19;o Csirmaz #3; Mathematical A secret sharing scheme permits a secret to be shared among partici- pants of an n-element group in such a way that only quali#12;ed subsets of participants can recover the secret. If any non-quali#12;ed

  3. Secret sharing on trees: problem solved Laszlo Csirmaz

    E-Print Network [OSTI]

    Csirmaz, László

    Secret sharing on trees: problem solved L´aszl´o Csirmaz G´abor Tardos Abstract We determine the worst case information rate for all secret sharing schemes based on trees. It is the inverse of 2 - 1/c ) algorithm which finds an optimal cover on any tree, and thus a perfect secret sharing scheme with optimal

  4. Quantum secret sharing schemes and reversibility of quantum operations

    SciTech Connect (OSTI)

    Ogawa, Tomohiro [Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Sasaki, Akira [Sumitomo Mitsui Banking Corporation, 1-3-2, Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Iwamoto, Mitsugu [Graduate School of Information Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585 (Japan); Yamamoto, Hirosuke [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8561 (Japan)

    2005-09-15T23:59:59.000Z

    Quantum secret sharing schemes encrypting a quantum state into a multipartite entangled state are treated. The lower bound on the dimension of each share given by Gottesman [Phys. Rev. A 61, 042311 (2000)] is revisited based on a relation between the reversibility of quantum operations and the Holevo information. We also propose a threshold ramp quantum secret sharing scheme and evaluate its coding efficiency.

  5. Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups

    E-Print Network [OSTI]

    Fehr, Serge

    Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups Ronald Cramer and Serge Fehr BRICS-box secret sharing scheme for the threshold access structure Tt,n is one which works over any finite Abelian group G. Briefly, such a scheme differs from an ordinary linear secret sharing scheme (over, say

  6. Compartmented Secret Sharing Based on the Chinese Remainder Theorem

    E-Print Network [OSTI]

    Compartmented Secret Sharing Based on the Chinese Remainder Theorem Sorin Iftene Faculty of Computer Science "Al. I. Cuza" University Ia¸si, Romania siftene@infoiasi.ro Abstract A secret sharing scheme starts with a secret and then derives from it certain shares (or shadows) which are distributed

  7. Ideal Social Secret Sharing Using Birkhoff Interpolation Method

    E-Print Network [OSTI]

    Ideal Social Secret Sharing Using Birkhoff Interpolation Method Nasrollah Pakniat a , Ziba Eslami a Illinois University, Carbondale, Illinois, USA Abstract The concept of social secret sharing (SSS-cooperative parties. As our contribution, we propose an ideal social secret sharing (Ideal-SSS) in which the size

  8. Secret-Sharing Schemes: A Survey Amos Beimel

    E-Print Network [OSTI]

    Beimel, Amos

    Secret-Sharing Schemes: A Survey Amos Beimel Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel. Abstract. A secret-sharing scheme is a method by which a dealer dis- tributes shares to parties such that only authorized subsets of parties can reconstruct the secret. Secret

  9. Ideal Secret Sharing Schemes: Yet Another Combinatorial Characterization, Certain Access

    E-Print Network [OSTI]

    Fuji-Hara, Ryoh

    Ideal Secret Sharing Schemes: Yet Another Combinatorial Characterization, Certain Access Structures secret sharing scheme is a method of sharing a secret key in some key space among a finite set of participants in such a way that only the authorized subsets of participants can reconstruct the secret key from

  10. Rational Secret Sharing and Multiparty Computation: Extended Abstract

    E-Print Network [OSTI]

    Fiat, Amos

    Rational Secret Sharing and Multiparty Computation: Extended Abstract Joseph Halpern Department the problems of secret sharing and multiparty computation, assuming that agents prefer to get the secret (resp get it. We show that, under these assumptions, neither secret sharing nor multiparty function

  11. Anonymous Secret Sharing Schemes Dipartimento di Informatica ed Applicazioni

    E-Print Network [OSTI]

    Stinson, Douglas

    Anonymous Secret Sharing Schemes C. Blundo Dipartimento di Informatica ed Applicazioni Universit January 29, 1996 Abstract In this paper we study anonymous secret sharing schemes. Informally, in an anony­ mous secret sharing scheme the secret can be reconstructed without knowledge of which participants hold

  12. How to Share a Secret p.1/25

    E-Print Network [OSTI]

    Roughan, Matthew

    % % !% & )10 2 3 $ 40 2 0 ! 5 $ " $ 6 " 87 $ 9 2A@ % &' ( $!0 ( $ How to Share a Secret ­ p.1/25 #12# ¡ ¥ © ¥ ¥ )¦ # '@ A ¡ £ 0 A ¡ £87 A ¡ £ 4 # ! ( £ ¥ © ¥ ¦ ¦ ! ¦ # ¥¡ © ! © ¥ ¥ ' © (B How to Share a Secret ­ p.2 ¤¦ ' ¥ ¥ ¡ ©¡ # '@ ¥ ¥ ¡ ¦ F F F How to Share a Secret ­ p.3/25 #12;¦ ! A ¡ ¥ ¥ ¥ ¡ ! ¥§¦ !# '@ ¡ 0 © ! ' © ( 4

  13. Optimal BlackBox Secret Sharing over Arbitrary Abelian Groups

    E-Print Network [OSTI]

    Fehr, Serge

    Optimal Black­Box Secret Sharing over Arbitrary Abelian Groups Ronald Cramer and Serge Fehr BRICS­box secret sharing scheme for the threshold access structure Tt,n is one which works over any finite Abelian group G. Briefly, such a scheme di#ers from an ordinary linear secret sharing scheme (over, say, a given

  14. Job Scheduling Scheme for Pure Space Sharing among Rigid Jobs

    E-Print Network [OSTI]

    Feitelson, Dror

    Job Scheduling Scheme for Pure Space Sharing among Rigid Jobs Kento Aida1, Hironori Kasahara2. This paper evaluates the performance of job scheduling sche- mes for pure space sharing among rigid jobs. Conventional job scheduling schemes for the pure space sharing among rigid jobs have been achieved by First

  15. Partnering with Utilities and Other Program Administrators to Sustain-Grow Your Energy Efficiency Initiatives

    Broader source: Energy.gov [DOE]

    This document contains the transcript for the Partnering with Utilities and Other Program Administrators to Sustain and Grow Your Energy Efficiency Initiatives webinar held on May 8, 2013.

  16. Growing Up in Scotland: Sweep 2 - Experiences of Pre-School Education 

    E-Print Network [OSTI]

    Government, Scottish

    2008-02-18T23:59:59.000Z

    Research findings (of four) accompanying the full research report on Sweep 2 findings of the Growing Up in Scotland study Year 2....

  17. Growing Up in Scotland: The Impact of Children's Early Activities on Cognitive Development - Summary Report 

    E-Print Network [OSTI]

    Government, Scottish

    2009-03-18T23:59:59.000Z

    This report uses data from the first three waves of the Growing Up in Scotland study (GUS) to explore differences in children’s cognitive ability....

  18. Growing Up in Scotland: Multiple Childcare Provision and its Effects on Child Outcomes - Summary Report 

    E-Print Network [OSTI]

    Government, Scottish

    2009-03-18T23:59:59.000Z

    It presents key findings from the Growing Up in Scotland study (GUS) report Multiple Childcare Provision and its Effects on Child Outcomes....

  19. Growing Up in Scotland: Sweep 2 - Summary of Findings from Year 2 

    E-Print Network [OSTI]

    Government, Scottish

    2008-02-01T23:59:59.000Z

    Research findings (of four) accompanying the full research report on Sweep 2 findings of the Growing Up in Scotland Study Year 2...

  20. Growing Up in Scotland: Sweep 2 - Parenting Styles and Parental Support 

    E-Print Network [OSTI]

    Government, Scottish

    2008-02-18T23:59:59.000Z

    Research findings (of four) accompanying the full research report on Sweep 2 findings of the Growing Up in Scotland study Year 2...

  1. Extending the Growing Season Workshop Registration Form. Preregister by Wednesday, March 5, 2014.

    E-Print Network [OSTI]

    Amin, S. Massoud

    the Growing Season Workshop Wednesday, March 12, 2014 from 9:00 to 2:30 ChuckDahn 1804Broadway Emmetsburg

  2. DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2

    E-Print Network [OSTI]

    Kockelman, Kara M.

    DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2 3 4 and for publication in Transportation21 22 23 ABSTRACT24 25 Shared autonomous (fully-automated) vehicles (SAVs, destinations and departure times in the same vehicle), optimizing fleet sizing, and32 anticipating

  3. File:RAPID OpenEI Tutorial.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Original Rule from OARProof2.pdf JumpRAPID OpenEI

  4. File:RAPID OpenEI Tutorial.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Original Rule from OARProof2.pdf JumpRAPID

  5. South Africa-GTZ Bus Rapid Transit Johannesburg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkar SolarSomontDevelopingGTZ Bus Rapid

  6. Rapidly reconfigurable all-optical universal logic gate

    DOE Patents [OSTI]

    Goddard, Lynford L. (Hayward, CA); Bond, Tiziana C. (Livermore, CA); Kallman, Jeffrey S. (Pleasanton, CA)

    2010-09-07T23:59:59.000Z

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  7. Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly

    E-Print Network [OSTI]

    Gu, Tingyue

    (especially petroleum) reserves. Bioethanol has seen a tremendous growth in the last few years. However

  8. rapidly growing problem. It is garnering the same level of attention in re-search and the media that tobacco once received. Obesity is different be-

    E-Print Network [OSTI]

    Holsinger, Kent

    that tobacco once received. Obesity is different be- cause it is a disease covered by the Americans with Disabilities Act. There is a greater risk that injuries suffered by obese workers will create permanent to recommend the EAP to According to the Centers for Disease Control and Prevention, obesity is a January 2011

  9. Brine fluxes from growing sea ice A. J. Wells,1,2

    E-Print Network [OSTI]

    Wettlaufer, John S.

    Brine fluxes from growing sea ice A. J. Wells,1,2 J. S. Wettlaufer,1,2,3 and S. A. Orszag2] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine

  10. QAre there public policy options that reward linking the growing bioeconomy to environmental stewardship?

    E-Print Network [OSTI]

    Debinski, Diane M.

    QAre there public policy options that reward linking the growing bioeconomy to environmental stewardship? AThree public policy options that show promise for linking the bioeconomy with environmental examined six public policy options that reward linking the growing bioeconomy to environmental stewardship

  11. Utilization of horse beans by growing finishing pigs after tryptophan supplementation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Utilization of horse beans by growing finishing pigs after tryptophan supplementation Y. HENRY D., i83511 Jouy en Josas Utilization of whole horse-beans in growing-finishing pig diets was studied in presence of niacine or not, in the case of partial or almost total replacement of soya- bean meal bv horse-beans

  12. Bubbling Reactor Technology for Rapid Synthesis of Uniform, Small...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbling Reactor Technology for Rapid Synthesis of Uniform, Small MFI-Type Zeolite Crystals . Bubbling Reactor Technology for Rapid Synthesis of Uniform, Small MFI-Type Zeolite...

  13. Sandia Energy - Sandia Labs to Share Expertise with Navajo Nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeterWave-Energyto Share Expertise

  14. RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2005; 19: 32483252

    E-Print Network [OSTI]

    Kim, Myung Soo

    to be that photofragment ions generated at this wavelength are similar to those from low- and high-energy CAD, and are thusRAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2005; 19: 3248 of singly protonated peptides at 193 nm investigated with tandem time-of-flight mass spectrometry Jeong Hee

  15. RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2005; 19: 24812487

    E-Print Network [OSTI]

    Kim, Myung Soo

    chromophore dissociated efficiently when a suf- ficiently high laser pulse energy was used. Also, the pulseRAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2005; 19: 2481 time-of- flight (TOF) mass spectrometry of ions generated by matrix-assisted laser desorption

  16. RAPID COMMUNICATION / COMMUNICATION RAPIDE Validation of Sr isotopes in otoliths by laser

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    RAPID COMMUNICATION / COMMUNICATION RAPIDE Validation of Sr isotopes in otoliths by laser ablation à plasma inductif avec multicollecteur après ablation au laser (LA-MC-ICPMS) et par spectrométrie de ratios using laser abla- tion multicollector inductively coupled plasma mass spectrometry (LA

  17. Resource sharing platform architecture for an information product factory

    E-Print Network [OSTI]

    Sanchez, Abel, 1967-

    2003-01-01T23:59:59.000Z

    Efforts to share resources in collaborative pursuits are hindered by differing data representations, redundant applications, and software incompatibilities. Members of a collaborative effort often span different computational ...

  18. Disability & Dyslexia Support Service (DDSS) Consent to Share Information Form

    E-Print Network [OSTI]

    Li, Yi

    Disability & Dyslexia Support Service (DDSS) Consent to Share Information Form Please print By registering with the Disability and Dyslexia Support Service (DDSS) I understand that I am subscribed

  19. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  20. EECBG Success Story: Bike Sharing in Texas: San Antonio Rolls...

    Broader source: Energy.gov (indexed) [DOE]

    and Public Health Riding to Sustainability: Bike Sharing Takes Off The new photovoltaic system at the San Antonio International Airport. EECBG Success Story: New San Antonio...

  1. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01T23:59:59.000Z

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  2. Kansas City Plant submits productivity savings under share-in...

    National Nuclear Security Administration (NNSA)

    submits productivity savings under share-in-savings program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  3. Information-Sharing Protocol for the Transportation of Radioactive...

    Broader source: Energy.gov (indexed) [DOE]

    and generally non-sensitive, and also include reference to examples of information sharing activities, some of which may require protection, depending on the level of detail...

  4. High Efficiency Microturbine Leads to Increased Market Share...

    Energy Savers [EERE]

    to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a...

  5. Informal Risk Sharing in an Infinite-horizon Experiment

    E-Print Network [OSTI]

    Charness, Gary B; Genicot, Garance

    2008-01-01T23:59:59.000Z

    Genicot, G. (forthcoming). “Risk Pooling, Commitment, and1981). “Attitudes Towards Risk: Theoretical Implications ofJ. (2004). “A Simple Risk-Sharing Experiment,” Journal of

  6. Share this with The number of employees accessing enterprise

    E-Print Network [OSTI]

    Fisher, Kathleen

    devices continues to grow. Employees want access to corporate information from their personal devices when separate personal and corporate workspaces on the same device to provide visibility and control for IT their own devices as they normally would when away from work, sending personal texts and emails or keeping

  7. Raexplore: Enabling Rapid, Automated Architecture Exploration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations:RadiologicalRadorrletry P. G.

  8. The rapid tooling testbed: a distributed

    E-Print Network [OSTI]

    Chen, Yong

    the manufacturing activity, and that little additional communication between these activities is necessary. UnderThe rapid tooling testbed: a distributed design-for- manufacturing system David W. Rosen Yong Chen Engineer at 3D Systems, Valencia, California, USA. Shiva Sambu is a Manufacturing Engineer at Align

  9. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02T23:59:59.000Z

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  10. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20T23:59:59.000Z

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  11. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08T23:59:59.000Z

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  12. RAPID COMMUNICATION Navigational Skills Correlate With Hippocampal

    E-Print Network [OSTI]

    Iaria, Giuseppe

    ; topographical orientation; virtual environment; cognitive map INTRODUCTION Evidence from human and non-humanRAPID COMMUNICATION Navigational Skills Correlate With Hippocampal Fractional Anisotropy in Humans animals (O'Keefe and Nadel, 1978; Mellet et al., 2000) has shown that successful orientation within

  13. Dynamic Collaborations for Information Sharing Within and Across Virtual Teams

    E-Print Network [OSTI]

    Dustdar, Schahram

    for users, their teams and enterprises. We propose a dynamic sharing and privacy-aware model that supports used Role- Based Access Control (RBAC) model with team and task entities in addition to sharing and privacy data elements. In this model, using context constraints and hybrid access control policy, a user

  14. Applying Semantic Web Technologies to Knowledge Sharing in Aerospace Engineering

    E-Print Network [OSTI]

    Ciravegna, Fabio

    Applying Semantic Web Technologies to Knowledge Sharing in Aerospace Engineering A.-S. Dadzie , R. This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use of Knowledge from legacy documents via automated means, or directly in systems interfacing with Knowledge

  15. Truffles --Secure File Sharing With Minimal System Administrator Intervention

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Truffles -- Secure File Sharing With Minimal System Administrator Intervention Peter Reiher Thomas sharing between arbitrary users at arbitrary sites connected by a network. Truffles is an interesting the potential of greatly increasing the workload of system administrators, if the services are not designed

  16. Community Shared Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This brochure explores the ways in which the shared solar business model interacts with existing policy and regulations, including net metering, tax credits, and securities regulation. It presents some of the barriers that shared solar projects may face, and provides options for creating a supportive policy environment.

  17. Building Roadmaps: A Knowledge Sharing Perspective Antony Tang

    E-Print Network [OSTI]

    van Vliet, Hans

    Building Roadmaps: A Knowledge Sharing Perspective Antony Tang VU University Amsterdam Department Amsterdam, the Netherlands hans@cs.vu.nl ABSTRACT Roadmapping is a process that involves many stakeholders these people. We report a number of knowledge sharing scenarios in the roadmapping process. In order to address

  18. GSpace: Tailorable Data Distribution in Shared Data Space Systems

    E-Print Network [OSTI]

    Mousavi, Mohammad

    GSpace: Tailorable Data Distribution in Shared Data Space Systems Giovanni Russello1, Michel. The shared data space model has proven to be an effective paradigm for building distributed applications. However, building an efficient distributed implementation remains a challenge. A plethora of different

  19. Exploiting Differentiated Tuple Distribution in Shared Data Spaces

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Exploiting Differentiated Tuple Distribution in Shared Data Spaces Giovanni Russello1, Michel. The shared data space model has proven to be an effective paradigm for building distributed applications. However, building an efficient distributed implementation remains a challenge. A plethora of different

  20. Profile synchronization guide for Microsoft SharePoint Server 2010

    E-Print Network [OSTI]

    Hunt, Galen

    Profile synchronization guide for Microsoft SharePoint Server 2010 Microsoft Corporation Published describes how to plan and configure profile synchronization in Microsoft SharePoint Server 2010. Also included is technical reference information about profile properties, data types, and permissions