Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rankine cycle system and method  

DOE Patents [OSTI]

A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

Ernst, Timothy C.; Nelson, Christopher R.

2014-09-09T23:59:59.000Z

2

Rankine cycle waste heat recovery system  

DOE Patents [OSTI]

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

Ernst, Timothy C.; Nelson, Christopher R.

2014-08-12T23:59:59.000Z

3

Set point optimization of controlled Organic Rankine Cycle systems  

Science Journals Connector (OSTI)

In this paper, an approach to optimize set points is proposed for controlled Organic Rankine Cycle (ORC) systems. Owing to both disturbances...

Jianhua Zhang; Mingming Lin; Fei Shi; Jia Meng; Jinliang Xu

2014-11-01T23:59:59.000Z

4

Working fluid design for organic rankine cycle systems (ORC):.  

E-Print Network [OSTI]

??The Organic Rankine Cycle is an energy conversion cycle similar to the conventional Rankine cycle which runs on a working fluid other than water. The… (more)

Hattiangadi, A.

2013-01-01T23:59:59.000Z

5

Working Fluid Design for Organic Rankine Cycle (ORC) Systems:.  

E-Print Network [OSTI]

??The Organic Rankine Cycle is an energy conversion cycle similar to the conventional Rankine cycle which runs on a working fluid other than water. The… (more)

Hattiangadi, A.

2013-01-01T23:59:59.000Z

6

Optimal Efficiency of a Solar Pond and a Rankine Cycle System  

Science Journals Connector (OSTI)

The optimal efficiency of a solar pond — Rankine cycle system is found analytically. The optimum for...

M. H. Cobble; A. R. Shouman

1987-01-01T23:59:59.000Z

7

The Organic Rankine Cycle  

Science Journals Connector (OSTI)

Chap. 3 is dedicated to Rankine cycles with organic fluids: the so-called organic Rankine cycles (ORC), which in recent years have ... of the use of...

Costante Mario Invernizzi

2013-01-01T23:59:59.000Z

8

Testing and Thermodynamic Analysis of Low-Grade Heat Power Generation System Using Organic Rankine Cycle  

Science Journals Connector (OSTI)

Low grade heat power generation system using Organic Rankine Cycle (ORC) was introduced in this work. ... system behaved better in thermodynamic efficiency than stream-Rankine cycle. Numerical thermodynamic model...

Wei Gu; Yiwu Weng; Guangyi Cao

2007-01-01T23:59:59.000Z

9

Multiple Rankine topping cycles  

SciTech Connect (OSTI)

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and rejection. However, no working fluid has been identified which will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids. This paper gives a history of Rankine topping cycles, presents an analysis for the calculation of the overall efficiency of a three-module multiple Rankine cycle, and presents results from a case study for a sodium-mercury-water cycle.

McWhirter, J.D. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.]|[Idaho State Univ., Pocatello, ID (United States). Coll. of Engineering

1995-07-01T23:59:59.000Z

10

Offshore Rankine Cycles.  

E-Print Network [OSTI]

?? The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles… (more)

Brandsar, Jo

2012-01-01T23:59:59.000Z

11

Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

12

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

13

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty  

E-Print Network [OSTI]

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from and efficiency of those systems. The system considered here is an Organic Rankine Cycle (ORC) for recovering internal combustion engines presented in [1]. The system considered here is an Organic Rankine Cycle (ORC

Paris-Sud XI, Université de

14

Structure and Parameters Optimization of Organic Rankine Cycle System for Natural Gas Compressor Exhaust Gas Energy Recovery  

Science Journals Connector (OSTI)

In the paper, the structure and working principle of free piston based organic rankine cycle (ORC) exhaust gas energy recovery system...

Yongqiang Han; Zhongchang Liu; Yun Xu…

2013-01-01T23:59:59.000Z

15

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

Combined Diesel-Organic Rankine Cycle Power Plant", in25OoC) closed simple organic Rankine cycle geothermal powerthe simple closed organic Rankine cycle for a given set of

Pope, William L.

2012-01-01T23:59:59.000Z

16

High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines  

Broader source: Energy.gov [DOE]

This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles.

17

Analysis and reduction of degradation of working fluid in the Sundstrand Organic Rankine-Cycle System  

SciTech Connect (OSTI)

Studies on understanding the location and construction levels of oxygen in the organic Rankine cycle (ORC) unit and establishing a rate of degradation with time for toluene in an operating ORC system are presented. Work on identifying the compounds in degraded toluene and contamination removal is discussed. (MHR)

Berger, R.

1983-07-01T23:59:59.000Z

18

Working fluid for Rankine cycle  

SciTech Connect (OSTI)

A Rankine cycle working fluid is disclosed containing a mixture of 2,2,3,3tetrafluoropropanol and water, which is low toxic, incombustible, nonexplosive, noncorrosive and stable, and also has a high critical temperature and forms azeotropic-like composition. It is suited for use in a rankine cycle using heat source of low temperature.

Aomi, H.; Enjo, N.

1980-11-11T23:59:59.000Z

19

Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems  

Science Journals Connector (OSTI)

This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several differe...

Joon Hee Lee; Tong Seop Kim

2006-09-01T23:59:59.000Z

20

Heat resources and organic Rankine cycle machines  

Science Journals Connector (OSTI)

Abstract Various Rankine cycle architectures for single fluids and other improved versions operating with ammonia/water mixture are presented in this paper. Untapped heat resources and their potential for driving organic Rankine cycles are outlined. The nature – state and temperature of the heat source significantly influences the choice of the type of organic Rankine cycle machine. The temperature appears as a critical parameter during the selection process. Modules differ from one another from technology, size and cost viewpoints. The investment cost of an ORC project includes machine, engineering, system integration, capital costs, etc. and is closely linked to the application.

Bertrand F. Tchanche; M. Pétrissans; G. Papadakis

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-Temperature Components for Rankine-Cycle-Based Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on...

22

Cascaded organic rankine cycles for waste heat utilization  

DOE Patents [OSTI]

A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

Radcliff, Thomas D. (Vernon, CT); Biederman, Bruce P. (West Hartford, CT); Brasz, Joost J. (Fayetteville, NY)

2011-05-17T23:59:59.000Z

23

Reduced gravity Rankine cycle system design and optimization study with passive vortex phase separation  

E-Print Network [OSTI]

REDUCED GRAVITY RANKINE CYCLE SYSTEM DESIGN AND OPTIMIZATION STUDY WITH PASSIVE VORTEX PHASE SEPARATION A Thesis by KEVIN ROBERT SUPAK Submitted to the Office of Graduate Studies of Texas A&M University... SEPARATION A Thesis by KEVIN ROBERT SUPAK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Frederick...

Supak, Kevin Robert

2008-10-10T23:59:59.000Z

24

Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs  

E-Print Network [OSTI]

Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

Rohrer, J. W.; Bronicki, L. Y.

1980-01-01T23:59:59.000Z

25

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network [OSTI]

machinery. and the solar-assisted approach at these higherevaluation of the solar-assisted Rankine cycle could beTURBOMACHINER Y IN SOLAR - ASSISTED RANKINE COOLING SYSTEMS

Leech, J.

2010-01-01T23:59:59.000Z

26

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

27

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

Process Program for Geothermal Power Plant Cycles,'*for a Rankine Cycle Geothermal Power Plant," Proceedings,Design and Optimize Geothermal Power Cycles," presented at

Pope, William L.

2012-01-01T23:59:59.000Z

28

Definition: Rankine cycle | Open Energy Information  

Open Energy Info (EERE)

Rankine cycle Rankine cycle Jump to: navigation, search Dictionary.png Rankine cycle Sometimes referred to as the steam cycle. Fuel is used to heat a liquid to produce a high pressure gas that expands and produces work, such as turning a turbine; when the turbine is connected to a generator, it produces electricity. Usually water is the liquid used in the Rankine cycle (to produce steam), but other liquids can also be used. The exhaust vapor expelled from the turbine condenses and the liquid is pumped back to the boiler to repeat the cycle.[1][2] View on Wikipedia Wikipedia Definition The Rankine cycle is a mathematical model that is used to predict the performance of steam engines. The Rankine cycle is an idealised thermodynamic cycle of a heat engine that converts heat into mechanical

29

Rankine and Brayton Cycle Cogeneration for Glass Melting  

E-Print Network [OSTI]

Rankine cycle, b) an organic Rankine cycle, c) an indirectly heated positive pressure Brayton cycle and d) a directly heated subatmospheric Brayton cycle. For the specified flue gas temperatures considered, the organic Rankine cycle produced the most...

Hnat, J. G.; Patten, J. S.; Sheth, P. R.

1981-01-01T23:59:59.000Z

30

Multiple Rankine topping cycles offer high efficiency  

SciTech Connect (OSTI)

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and heat rejection. However, no working fluid has been identified that will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids to span larger temperature ranges.

McWhirter, J.D. [Idaho State Univ., Pocatello, ID (United States)

1997-10-01T23:59:59.000Z

31

The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat  

E-Print Network [OSTI]

The conservation of energy by its recovery from low temperature waste heat is of increasing importance in today's world energy crisis. The Organic Rankine Cycle is a cost efficient and proven method of converting low temperature (200-400o F) waste...

Sawyer, R. H.; Ichikawa, S.

1980-01-01T23:59:59.000Z

32

Task report No. 3. Systems analysis of organic Rankine bottoming cycles. [Fuel cell power plant  

SciTech Connect (OSTI)

A model was developed that predicts the design performance and cost of a Fuel Cell/Rankine cycle powerplant. The Rankine cycle utilizes the rejected heat of an 11.3 MW phosphoric acid fuel cell powerplant. Improvements in the total plant heat rate and efficiency of up to 10% were attainalbe, using ammonia as the working fluid. The increase in total plant cost divided by the increase in total plant power ranged from $296/kW to $1069/kW for the cases run, and was a strong function of ambient temperature. The concept appears to be capable of producing substantial energy savings in large fuel cell powerplants, at reasonable costs. However, a much more detailed study that includes such factors as duty cycle, future cost of fuel and site meteorology needs to be done to prove the design for any potential site.

Bloomfield, D.; Fried, S.

1980-12-01T23:59:59.000Z

33

Solar-powered/fuel-assisted Rankine-cycle power and cooling system: Simulation method and seasonal performance  

SciTech Connect (OSTI)

The subject of this analysis is a solar cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100/sup 0/C, and it is then superheated to about 600/sup 0/C in a fossil-fuel-fired superheater. The addition of about 20-26 percent of fuel doubles the power cycle's efficiencyas compared to organic Rankine cycles operating at similar collector temperatures. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Transient simulation was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.). One of the conclusions is that the seasonal system COP is 0.82 for the design configuration and that the use of watercooled condensers and flat-plate collectors of higher efficiency increases this value to 1.35.

Lior, N.; Koai, K.

1984-05-01T23:59:59.000Z

34

Rankine cycle leak detection via continuous monitoring  

SciTech Connect (OSTI)

Rankine cycle power plants operate on a closed cycle in which heat is transferred from a high temperature reservoir to a low temperature sink while performing useful work. leaks in this cycle cause the loss of working fluid and/or corrosion of the power plant. Both of these constitute a loss of capital assets. A severe leak can reduce the efficiency of the cycle to the extent of creating an operating loss. PNL is undertaking the development of continuous monitoring techniques to protect rankine cycle plants from such losses. The location of these continuous monitors on an organic rankine cycle is described and shown schematically.

Kindle, Cecil H.

1982-10-08T23:59:59.000Z

35

Simulation of an Industrial Rankine Cycle Cogeneration Plant  

E-Print Network [OSTI]

and transient loads and the resulting interactions between system components may be assessed. A thermal energy system simulation code is utilized and expanded to predict the performance of an industrial Rankine cycle (steam turbine) cogeneration plant having...

Carattie, G.; Wepfer, W. J.

1984-01-01T23:59:59.000Z

36

Investigation of thermal stability of fluorinol-85 and 2-methylpyridine/water as Rankine Cycle Power Systems working fluids  

SciTech Connect (OSTI)

Results of the experimental investigation to date, indicate that Fluorinol-85 could be utilized in Organic Rankine Cycle Power Systems (ORCPS) to a maximum cycle temperature of 550/sup 0/F without any discernable decomposition over an extended period of time. However, at 575/sup 0/F, Fluorinol-85 could possibly decompose between 1 and 3% per year depending upon system design considerations. 2-methyl-pyridine/water could have possibly less than a 2% annual decomposition rate at 600/sup 0/F maximum cycle temperature.

Jain, M.L.; Demirgian, J.; Hillis, D.L.

1984-01-01T23:59:59.000Z

37

Rankine bottoming cycle safety analysis. Final report  

SciTech Connect (OSTI)

Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

Lewandowski, G.A.

1980-02-01T23:59:59.000Z

38

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network [OSTI]

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

39

Organic Rankine Cycle System Preliminary Design with Corn Cob Biomass Waste Burning as Heat Source  

Science Journals Connector (OSTI)

Abstract The renewable energy source potencies in Indonesia are needed to be utilized to fulfill the electricity requirement in rural or remote area that not yet get electricity. One of the potency is biomass waste. Therefore, this paper discusses about the electricity generation preliminary design of Organic Rankine Cycle (ORC) system with corn cob biomass waste burning as heat source, so it can be obtained the theoretic corn farm area requirement, electricity power, and thermal efficiency at heat source temperature and flow rate variations. Corn cob burning temperature can heat up the heating fluid that is heated by boiler with corn cob as the biomass fuel. Furthermore, that heating fluid is used as ORC electricity generation heat source. The independent variables in this study are the heating fluid temperature which varied between 110, 120, and 130oC, and the heating fluid flow rate that varied between 100, 150, and 200 liter/minute. \\{R141b\\} is selected to be the working fluid, palm oil is used for heating fluid and water as cooling fluid. The calculation results that the theoretic electricity power, thermal efficiency, and corn farm area requirement, respectively, are in the range of 3.5-8.5 kW, 9.2-10.3%, and 49.5-101.1 hectare/year. All of the highest range values are resulted at the highest temperature and flow rate, 130oC and 200 liter/minute. This result shows that corn cob burning heat is potential to be utilized as electricity generation heat source for rural society, particularly for some areas that have been studied.

Nur Rohmah; Ghalya Pikra; Agus Salim

2013-01-01T23:59:59.000Z

40

Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle  

Science Journals Connector (OSTI)

This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with ... a heat exchanger, to a carbon dioxide Rankine

Manuel Romero Gómez; Javier Romero Gómez; Ramón Ferreiro Garcia…

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dynamic modeling of steam power cycles: Part II – Simulation of a small simple Rankine cycle system  

Science Journals Connector (OSTI)

This paper presents the second part of the work concerning the dynamic simulation of small steam cycle plants for power generation. The work is part of the preliminary study for a 600 kWe biomass fired steam power plant for which the complete open-loop, lumped parameter dynamic model of the steam cycle has been developed using the SimECS software described in Part I of this work. For these low-power plants, a dynamic simulation tool is especially useful because these systems must be designed to operate in transient mode for most of the time. The plant model presented here consists of the following components: feedwater pump, economizer, evaporator, superheater, impulse turbine, electrical generator and condenser. The primary heat source is modeled as a flue gas flow and no combustion models are incorporated yet to model the furnace. A description of the various components forming the complete steam cycle is given to illustrate the capabilities and modularity of the developed modeling technique. The model is first validated quantitatively against steady-state values obtained using a well known, reliable steady-state process modeling software. Subsequently, the dynamic validation is presented. Results can only be discussed based on the qualitative assessment of the observed trends because measurements are not available, being the plant in the preliminary design phase. The qualitative validation is based on four dynamic simulations involving three small step disturbances of different magnitude imposed on the pump rotational speed and on the flue gas mass flow and a single large ramp disturbance on the flue gas mass flow.

H. van Putten; P. Colonna

2007-01-01T23:59:59.000Z

42

Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water  

SciTech Connect (OSTI)

A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

Cole, R.L.; Demirgian, J.C.; Allen, J.W.

1987-09-01T23:59:59.000Z

43

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network [OSTI]

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

44

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

45

Single stage rankine and cycle power plant  

SciTech Connect (OSTI)

The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

Closs, J.J.

1981-10-13T23:59:59.000Z

46

Emissions-critical charge cooling using an organic rankine cycle  

DOE Patents [OSTI]

The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

Ernst, Timothy C.; Nelson, Christopher R.

2014-07-15T23:59:59.000Z

47

Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a hybrid energy supply system, which is composed of two subsystems (gas engine-driven heat pump system (GEHP) and organic Rankine cycle system (ORC)) and three major thermodynamic cycles (the vapor compression refrigeration cycle, the internal combustion gas engine cycle and ORC). In order to convert the low-grade gas engine waste heat into high-grade electricity, the ORC system is built up using R245fa, \\{R152a\\} and R123 as working fluids, and the ORC thermal model is also developed. Meanwhile, experiments of \\{GHEPs\\} in cooling mode are conducted, and several factors which influence the cooling performance are also discussed. The results indicate that the cooling capacity, gas engine energy consumption, gas engine waste heat increase with increasing of gas engine speed and decrease with decreasing of evaporator water inlet temperature. The waste heat recovered from gas engine is more than 55% of gas engine energy consumption. F6urthermore, R123 in ORC system yields the highest thermal and exergy efficiency of 11.84% and 54.24%, respectively. Although, thermal and exergy efficiency of \\{R245fa\\} is 11.42% and 52.25% lower than that of R123, its environmental performance exhibits favorable utilization for ORC using gas engine waste heat as low-grade heat source.

Huanwei Liu; Qiushu Zhou; Haibo Zhao; Peifeng Wang

2015-01-01T23:59:59.000Z

48

Rankine/Rankine cycle gas-fired heat pump. Final report Mar 79-Mar 82  

SciTech Connect (OSTI)

A Rankine/Rankine cycle gas-fired heat pump was developed for residential application. The system consists of two rotating elements: a high-speed turbomachine core and a low-speed assembly, which includes a rotating vapor generator and heat exchangers. Inherent in the rotation of these components is the elimination of separate pumps, fans, reversing valves, and expansion valves. One Rankine cycle, the power cycle, drives the turbine and gives up its excess heat to the service air. The second Rankine cycle, the refrigerant cycle, is pressurized by a turbine-powered centrifugal compressor. The dual-cycle system uses two organic heat transfer fluids. The power cycle uses a developmental, moderate-temperature fluid (designated Fluid B), and the refrigeration cycle uses Freon R-113. These two fluids are compatible and missible in each other. Therefore, positive seals are not required. A laboratory prototype model was developed to the point of initiating proof-of-concept demonstration. A conceptual design study of an end-product model was conducted, and a product specification for a family of heat pump systems with various performance enhancement options was generated. The maximum realizable performance end-product heat pump system has a projected overall coefficient of performance (OCOP) of 0.79 at 37,500 Btu/hr cooling and an OCOP of 1.49 at 60,000 Btu/hr heating load. This end-product model has an estimated manufacturing cost of $1460 (in 1982 dollars) and could be available as a commercial product in the early 1990s.

Enbar, E.; Moriarty, R.

1982-06-30T23:59:59.000Z

49

Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water  

SciTech Connect (OSTI)

An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

Jain, M.L.; Demirgian, J.C.; Cole, R.L.

1986-09-01T23:59:59.000Z

50

Analysis of Organic Rankine Cycle for Low and Medium Grade Heat Source  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) is an effective technique to generate power from low and medium temperature heat source, including industrial waste heat, solar heat, geothermal and biomass etc. Advantages of ORC are high efficiency, simple system, environment ... Keywords: organic Rankine cycle, new energy, waste heat recovery

Zhonghe Han; Yida Yu

2012-07-01T23:59:59.000Z

51

Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%.

Songsong Song; Hongguang Zhang; Zongyong. Lou; Fubin Yang; Kai Yang; Hongjin Wang; Chen Bei; Ying Chang; Baofeng Yao

2014-01-01T23:59:59.000Z

52

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant .  

E-Print Network [OSTI]

??Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to… (more)

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

53

Implementation of an Organic Rankine cycle on a Stepping furnace.  

E-Print Network [OSTI]

?? In this master thesis an implementation of an Organic Rankine Cycle (ORC) on a stepping furnace in a steel mill is modeled and proposed.… (more)

Pižorn, Žiga

2014-01-01T23:59:59.000Z

54

Industrial waste heat recovery and cogeneration involving organic Rankine cycles  

Science Journals Connector (OSTI)

This paper proposes a systematic approach for energy integration involving waste heat recovery through an organic Rankine cycle (ORC). The proposed approach is based...

César Giovani Gutiérrez-Arriaga…

2014-08-01T23:59:59.000Z

55

Working fluids for rankine cycle  

SciTech Connect (OSTI)

This patent describes a method for converting thermal energy into mechanical energy through the utilization of a cycle consisting of: (1) vaporizing, with heating, a mixture selected from the group of (a) 60 to 95% by weight of chlorodifluoromethane and 5 to 40% by weight of difluoroethane; and (b) 3 to 40% by weight of chlorodifluoromethane and 60 to 97% by weight of dichlorotetrafluoroethane; (2) expanding the vapor in an expansion device to produce mechanical energy; and (3) compressing the vapor by a pump and cooling the vapor to condense the vapor.

Enjo, N.; Aomi, H.; Noguchi, M.; Ide, S.

1986-01-07T23:59:59.000Z

56

An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications  

Science Journals Connector (OSTI)

Abstract Performance calculations are presented for a small-scale combined solar heat and power (CSHP) system based on an Organic Rankine Cycle (ORC), in order to investigate the potential of this technology for the combined provision of heating and power for domestic use in the UK. The system consists of a solar collector array of total area equivalent to that available on the roof of a typical UK home, an ORC engine featuring a generalised positive-displacement expander and a water-cooled condenser, and a hot water storage cylinder. Preheated water from the condenser is sent to the domestic hot water cylinder, which can also receive an indirect heating contribution from the solar collector. Annual simulations of the system are performed. The electrical power output from concentrating parabolic-trough (PTC) and non-concentrating evacuated-tube (ETC) collectors of the same total array area are compared. A parametric analysis and a life-cycle cost analysis are also performed, and the annual performance of the system is evaluated according to the total electrical power output and cost per unit generating capacity. A best-case average electrical power output of 89 W (total of 776 kW h/year) plus a hot water provision capacity equivalent to ?80% of the total demand are demonstrated, for a whole system capital cost of £2700–£3900. Tracking \\{PTCs\\} are found to be very similar in performance to non-tracking \\{ETCs\\} with an average power output of 89 W (776 kW h/year) vs. 80 W (701 kW h/year).

James Freeman; Klaus Hellgardt; Christos N. Markides

2015-01-01T23:59:59.000Z

57

Method for processing LNG for rankine cycle  

SciTech Connect (OSTI)

A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

Aoki, I.; Matsumoto, O.

1983-06-14T23:59:59.000Z

58

Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications  

Science Journals Connector (OSTI)

Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications ... These mixtures are of interest as working fluids in organic Rankine power cycles. ...

Stephanie L. Outcalt; Eric W. Lemmon

2013-05-24T23:59:59.000Z

59

Integrated Rankine bottoming cycle for diesel truck engines  

SciTech Connect (OSTI)

This study assessed the feasibility of incorporating a Rankine bottoming cycle into a diesel truck engine. An organic Rankine bottoming cycle (ORBC) previously demonstrated by the US Department of Energy in a heavy-duty, long-haul truck reduced the truck's fuel consumption by about 12%. However, that system was considered too complex and costly to be commercialized. The integrated Rankine bottoming cycle (IRBC) described here is expected to be simpler and less costly than the ORBC. In the IRBC, one cylinder of a six-cylinder diesel truck engine will be used for power recovery, instead of the turbine and reduction gears of the ORBC; engine coolant will serve as the working fluid; and the engine radiator will also serve as the condenser. Toluene and steam were considered as working fluids in this assessment, and we concluded that steam (at 1000 psi, partially vaporized to about 33% saturation in the cylinder head, and superheated in an evaporator) would be the more practical of the two. Both heat exchangers are smaller than those of the ORBC system, but may pose a challenge in an under-the-hood installation. Overall, the concept appears feasible. 13 refs., 9 figs., 7 tabs.

Sekar, R.; Cole, R.L.

1987-09-01T23:59:59.000Z

60

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Investigation of Organic Rankine Cycle Performance with Variable Mixture Composition  

Science Journals Connector (OSTI)

The present study deals with a comprehensive thermodynamic modeling of a renewable energy-based organic Rankine cycle (ORC). In this regard, two ... investigate the effect of mixture composition on the cycle perf...

H. Barzegaravval; Ibrahim Dincer

2014-01-01T23:59:59.000Z

62

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Broader source: Energy.gov [DOE]

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

63

Diesel organic Rankine bottoming-cycle powerplant program: Volume III. Appendices. Final report. [Using Fluorinol-85 as working fluid  

SciTech Connect (OSTI)

The final report on organic Rankine cycle power systems used to recover energy either from the waste heat of power-generating diesel engines or from waste heat from industrial plants has the following appendices which are included in this volume: major component specifications; test plan for the power conversion subsystem of the Diesel-Organic Rankine-Cycle Power Plant; environmental assessment of Fluorinol-85 which is the working fluid in the Rankine Cycle System; and applicable regulations and codes. (LCL)

Not Available

1981-10-01T23:59:59.000Z

64

The Design of an Open Rankine-Cycle Industrial Heat Pump  

E-Print Network [OSTI]

An open Rankine-cycle heat pump is ideally suited for producing low-pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility...

Leibowitz, H. M.; Chaudoir, D. W.

1981-01-01T23:59:59.000Z

65

Investigations of supercritical CO2 Rankine cycles for geothermal power plants  

SciTech Connect (OSTI)

Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

66

Selection of Working Fluids for the Organic Rankine Cycle  

E-Print Network [OSTI]

SELECTION OF WORKING FLUIDS FOR THE ORGANIC RANKINE CYCLE H. H. West J. M. Patton Energy Analysts, Inc. Engineering Design Group Houston, Texas Tulsa, Oklahoma K. E. Starling The University of Oklahoma Norman, Oklahoma ABSTRACT...

West, H. H.; Patton, J. M.; Starling, K. E.

1979-01-01T23:59:59.000Z

67

Organic Rankine Cycles for the Petro-Chemical Industry  

E-Print Network [OSTI]

considered to the limits of economic feasibility. However, both economic and technical feasibility limit the use of waste heat flows with conventional approaches in the 250 F to 350 F range. A packaged organic Rankine power cycle can technically...

Rose, R. K.; Colosimo, D. D.

1979-01-01T23:59:59.000Z

68

Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source  

Science Journals Connector (OSTI)

A detailed thermodynamic and techno-economic comparison is presented for a CO2-based transcritical Rankine cycle and a subcritical organic Rankine cycle (ORC) using HFC245fa (1,1,1 ... a minimum investment. The e...

Tao Guo; HuaiXin Wang; ShengJun Zhang

2010-06-01T23:59:59.000Z

69

High-power multi-stage Rankine cycles  

SciTech Connect (OSTI)

This paper presents an analysis of the multi-stage Rankine cycle aiming at optimizing the power output from low-temperature heat sources such as geothermal or waste heat. A design methodology based on finite-time thermodynamics and the maximum power concept is used in which the shape and the power output of the maximum power cycle are identified and utilized to compare and evaluate different Rankine cycle configurations. The maximum power cycle provides the upper-limit power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger characteristics. It also provides a useful tool for studying power cycles and forms the basis for making design improvements.

Ibrahim, O.M. [Univ. of Rhode Island, Kingston, RI (United States). Mechanical Engineering Dept.; Klein, S.A. [Univ. of Wisconsin, Madison, WI (United States). Mechanical Engineering Dept.

1995-09-01T23:59:59.000Z

70

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant  

E-Print Network [OSTI]

Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

71

Thermodynamic analysis of organic Rankine cycle using dry working fluids  

SciTech Connect (OSTI)

Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

Wang, S.K.; Hung, T.C. [I-Shou Univ., Tashu (Taiwan, Province of China). Mechanical Engineering Dept.

1998-12-31T23:59:59.000Z

72

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle  

Broader source: Energy.gov [DOE]

The project objective is to develop the scroll expander for Organic Rankine cycle (ORC) systems to be used in medium-grade waste heat recovery applications, and to validate and quantify the benefits of the prototype system.

73

Current status of an organic Rankine cycle engine development program  

SciTech Connect (OSTI)

The steps taken to achieve improved bearing life in the organic Rankine cycle (ORC) engine being developed for use on solar parabolic dishes are presented. A summary of test results is given. Dynamic tests on the machine shaft and rotors of the ORC engine are also discussed.

Barber, R.E.

1984-03-01T23:59:59.000Z

74

Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid  

Science Journals Connector (OSTI)

Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid ... Because of the rather low molecular weight of water, the use of steam Rankine cycles for waste heat temperatures below 400 °C is inefficient and requires the use of expensive multistage expanders. ... Cyclopentane (C5H10) is a cyclic alkane that exhibits a “puckered” (i.e., one carbon atom tends to jut out above the others to relieve ring stress) ring system of carbon–hydrogen (C–H) bonds and carbon–carbon (C–C) single bonds. ...

Daniel M. Ginosar; Lucia M. Petkovic; Donna Post Guillen

2011-08-02T23:59:59.000Z

75

M. Bahrami ENSC 461 (S 11) Tutorial Rankine Cycle 1 ENSC 461 Tutorial, Week#10 -Rankine Cycle  

E-Print Network [OSTI]

on a simple ideal Rankine cycle with turbine inlet conditions of 5 MPa and 450C and a condenser pressure of 25, it is common to assume that the liquid at location 1 is saturated. Turbine inW 1 Pump 2 Qout Q Condenser Boiler the rate of work output (turbine 3 4), a control volume is constructed that encloses the steam

Bahrami, Majid

76

Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics; November 2000 -- May 2005  

SciTech Connect (OSTI)

Report regarding a Stage 1 Study to further develop the concept of the Solar Trough Organic Rankine Cycle Electricity Systems (STORES).

Prabhu, E.

2006-03-01T23:59:59.000Z

77

Experience with organic Rankine cycles in heat recovery power plants  

SciTech Connect (OSTI)

Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

Bronicki, L.Y.; Elovic, A.; Rettger, P.

1996-11-01T23:59:59.000Z

78

Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine  

Science Journals Connector (OSTI)

Abstract A single-screw expander with 155 mm diameter screw has been developed. A spiral-tube type evaporator and an aluminum multi-channel parallel type condenser have also been developed with weight of 147 kg and 78 kg, respectively. Based on the development of above components, an ORC (organic Rankine cycle) system prototype was assembled and tested for waste heat recovery from diesel engine exhaust. An experimental system was built for this ORC system, and experiments were conducted for different expander torque and diesel engine loads. Influences of expander torque and diesel engine loads on the performances of ORC system were studied. The results indicated that the maximum of the power output is 10.38 kW and the biggest ORC efficiency and overall system efficiency are respectively 6.48% and 43.8%, which are achieved at 250 kW of diesel engine output. Meanwhile the biggest improvement of overall system efficiency is 1.53%. The maximums of volume efficiency, adiabatic efficiency and total efficiency of single-screw expander are 90.73%, 73.25% and 57.88%, respectively.

Ye-Qiang Zhang; Yu-Ting Wu; Guo-Dong Xia; Chong-Fang Ma; Wei-Ning Ji; Shan-Wei Liu; Kai Yang; Fu-Bin Yang

2014-01-01T23:59:59.000Z

79

Quasi-dynamic model for an organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response.

Musbaudeen O. Bamgbopa; Eray Uzgoren

2013-01-01T23:59:59.000Z

80

Predicting toluene degradation in organic Rankine-cycle engines  

SciTech Connect (OSTI)

This paper describes the measurement of toluene degradation in dynamic loop tests that simulate operation of an organic Rankine-cycle engine. Major degradation products and degradation mechanisms are identified, and degradation is quantified. Results indicate that toluene is a stable fluid with benign degradation products, provided that oxygen is excluded from the engine. A means of predicting degradation in the engine is developed. 3 refs., 4 figs., 5 tabs.

Cole, R.L.; Demirgian, J.C.; Allen, J.W.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network [OSTI]

of Electricity from Geothermal Energy," Brown University,Simulation of Geothermal Energy Cycles), LBL publication-Manager), Economics "Geothermal Energy Conversion and Case

Pope, William L.

2012-01-01T23:59:59.000Z

82

Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures  

Science Journals Connector (OSTI)

Abstract In recent years, more and more attention has been paid to organic Rankine cycle (ORC), which is simply structured, highly reliable and easily maintainable. In order to improve the efficiency of ORC systems, zeotropic mixtures whose phase change process is variable temperature, are used as working fluids to match the temperature profiles of the heat source and heat sink. In this paper, a thermodynamic model which mainly includes Jacob number and the ratio of evaporation temperature and condensation temperature is proposed to forecast the thermal efficiency, output work and exergy efficiency of ORC system with zeotropic mixture. Furthermore, the proposed model programmed by Mablab 2010a is verified by the theoretical data. Then, for different heat source inlet temperature, using different zeotropic mixture pairs, output work that is objective function is maximized by optimizing the evaporation temperature. The results show that if the other working conditions are fixed, the heat source inlet temperature has a significant influence on the best composition of zeotropic mixtures at the optimal evaporation temperature. With the increase of heat source inlet temperature, there exists a heat source inlet temperature that pure working fluid has better system performance than zeotropic mixture. The extent of ORC system performance improvement has a positive correlation with zeotropic mixture’s temperature glide.

Li Zhao; Junjiang Bao

2014-01-01T23:59:59.000Z

83

A new Rankine cycle for hydrogen-fired power generation plants and its exergetic efficiency  

Science Journals Connector (OSTI)

A novel power generation cycle is proposed in this paper taking hydrogen as fuel and using steam generated by hydrogen firing as working fluid. The progress of the development work and side issues such as the application of hydrogen combustion turbines to environmentally clean fossil fuel power plants for early commercialisation of the system are reviewed. We propose the hydrogen-fired Rankine cycle as similar to (C) type developed earlier by Hisadome et al. and Sugishita et al. and then making a new design of it by increasing the performance characteristics and efficiencies with (reheating, regenerative and recuperation) of the working fluid of the bottoming cycle respectively, and in this case we present two types (C1 and C2). In the case of type C2 the cycle is called the ''New Rankine Cycle''. These cycles are also compared with the Rankine cycle of type (C) for hydrogen-fired to show the advantages of the performance characteristics of the new design at which the highest value of exergetic efficiency reaches 63.58% as HHV at 1700°C of the combustor discharge temperature. These cycles are analysed through thermodynamics, particularly by exergy analysis, and the performance characteristics of the cycles are also studied.

Mohammed Ghiyath Soufi; Terushige Fujii; Katsumi Sugimoto; Hitoshi Asano

2004-01-01T23:59:59.000Z

84

Operation and performance of a low temperature Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract The test and analysis of an Organic Rankine Cycle (ORC) with R123 as the working fluid were presented in this paper. A scroll expander was integrated in the system to generate work. The expander was connected with an AC dynamometer unit, which was used to control and measure the expander shaft torque and rotating speed. The conductive oil simulated the low grade heat source. Operation characteristics were compared between the heat source temperatures of 140°C and 160°C. The experiments were conducted by adjusting two independent parameters: the pumping frequency of the R123 pump and the shaft torque of the expander. The former parameter was directly related to the R123 mass flow rate and the later to the external load. The optimum system performance can be determined by these two parameters. The maximum measured shaft power and thermal efficiency were 2.35 kW and 6.39% at the heat source temperature of 140°C, but they were 3.25 kW and 5.12% at the heat source temperature of 160°C. This study identified that the measured shaft power was about 15-20% lower than the enthalpy determined values, and the pumping power of the organic fluid was 2-4 times higher than the enthalpy determined values. The enthalpy determined values were based on the local pressure and temperature sensor measurements.

Zheng Miao; Jinliang Xu; Xufei Yang; Jinhuang Zou

2014-01-01T23:59:59.000Z

85

Development of an Autonomous Free Piston Refrigerating Unit Driven by Rankine Cycle  

Science Journals Connector (OSTI)

It has been previously demonstrated that a single free piston machine can act as compressor and pump, for the purpose of achieving two (direct and inverse) Rankine cycle.

Y. Vandendael; D. Vokaer

1983-01-01T23:59:59.000Z

86

Industrial Waste Heat Recovery by Use of Organic Rankine Cycles (ORC)  

Science Journals Connector (OSTI)

The project is a combined analytical and experimental programme to investigate the feasibility of the Organic Rankine Cycle principle for waste heat recovery in industry....

Dipl.-Phys. G. Huppmann

1983-01-01T23:59:59.000Z

87

[en] THERMODYNAMIC COMPARISON BETWEEN A TRADITIONAL RANKINE CYCLE WITH AN INNOVATIVE RANKINE CYCLE USING RESIDUAL GASES FROM THE SIDERURGIC PROCESS.  

E-Print Network [OSTI]

??[pt] O presente trabalho realiza uma comparação entre o ciclo Rankine tradicional e uma nova proposta de ciclo Rankine para uma planta de cogeração na… (more)

CARLOS THOMAZ GUIMARAES LOPES JUNIOR

2008-01-01T23:59:59.000Z

88

GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES  

E-Print Network [OSTI]

GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON, and KARTIK cycles under the p-adic Abel­Jacobi map to the special values of certain p-adic Rankin L-called generalized Heegner cycles in the product of a Kuga­Sato variety with a power of a CM elliptic curve. Its main

Prasanna, Kartik

89

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES  

E-Print Network [OSTI]

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES BENJAMIN HOWARD Contents 1 #12;RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES 3 defined by x (iC()x, i. Introduction 1 2. Unitary Shimura varieties and their special cycles 2 2.1. Unitary Shimura varieties 2 2

Goren, Eyal Z.

90

Modeling and Experimental Validation of a Rankine Cycle Based Exhaust WHR System for Heavy Duty Applications; Modellering och experimentell validering av ett Rankinecykelbaserat Waste Heat Recovery-system.  

E-Print Network [OSTI]

?? To increase the efficiency of the engine is one of the biggest challenges for heavy vehicles. One possible method is the Rankine based Waste… (more)

Carlsson, Carin

2012-01-01T23:59:59.000Z

91

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect (OSTI)

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

92

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

for Open Organic Rankine Cycle (ORC)138 Evaporatorand Simulation of an Organic Rankine Cycle (ORC) System forControl of Organic Rankine Cycles in Waste Heat Uti- lizing

Luong, David

2013-01-01T23:59:59.000Z

93

Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a dynamic simulation model of a novel prototype of a 6 kWe solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the year, remaining always close to 10%. On the other hand, the efficiency of the solar collectors is very high in summer (>50%) and significantly lower during the coldest winter days (down to 20%). Pay-back periods are extremely attractive in case of feed-in tariffs (about 5 years), whereas the profitability of the system is scarce when no public funding is available. A sensitivity analysis was also performed, in order to determine the combination of system/design parameters able to maximize the thermo-economic performance of the system. It was found that the system may be economically feasible for the majority of locations in the Mediterranean area (pay-back periods around 10 years), whereas the profitability is unsatisfactory for Central-Europe sites.

Francesco Calise; Massimo Dentice d’Accadia; Maria Vicidomini; Marco Scarpellino

2015-01-01T23:59:59.000Z

94

Design and Exergy Analysis of Combined Rankine Cycle Using LNG Cold Energy  

Science Journals Connector (OSTI)

Abstract In this study, a 90 MWe combined Rankine cycle utilizing LNG cold exergy was proposed. Utilizing LNG cold exergy and waste heat from the conventional steam cycle, this process was able to generate additional power in the CO2 organic Rankine cycle (ORC). A conventional steam cycle generates only 42 MW electric power; this combined Rankine cycle produced more than twice as much power as the conventional steam cycle while consuming the same amount of fossil fuel. Through parameter sensitivity analysis and exergy analysis, the optimum design and operating conditions were also determined. Finally, reduction of the power plant de-rate by introducing a CO2 capture process was also analyzed.

Ung Lee; Chonghun Han

2014-01-01T23:59:59.000Z

95

Optimal Selection of Working Fluid for the Organic Rankine Cycle Driven by Low-Temperature Geothermal Heat  

Science Journals Connector (OSTI)

To select the optimal organic working fluid for organic Rankine cycles driven by low-temperature geothermal heat, the ... thermal performances of low-temperature geothermal heat powered organic Rankine cycles usi...

Wang Hui-tao; Wang Hua; Ge Zhong

2012-01-01T23:59:59.000Z

96

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES  

E-Print Network [OSTI]

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES BENJAMIN HOWARD Contents 1. Introduction 1 1.1. Acknowledgements 2 2. Unitary Shimura varieties and their special cycles 2 2.1. Unitary.2. Divisors associated with harmonic forms 18 3.3. Construction of Green functions 18 3.4. Rankin-Selberg L

Howard, Ben

97

A concept of power generator using wind turbine, hydrodynamic retarder, and organic Rankine cycle drive  

Science Journals Connector (OSTI)

This paper describes a concept of electric power generating system that uses a wind turbine to generate kinetic energy which converts heat through a hydrodynamic retarder. The heat so generated is utilized to drive an organic Rankine cycle that converts thermal energy into electricity power for continuous and undisrupted supply during the year. A hydrodynamic retarder converts kinetic energy into heat through hot fluid by directing the flow of the fluid into the hydrodynamic retarder in a manner that resists rotation of blades of the wind turbine. The hot fluid circulating in the hydrodynamic retarder is a thermal heat source for vapor regeneration of organic heat exchange fluid mixture(s) used in the Rankine cycle. The expansion of the organic heat exchange fluid gets converted into rotation of the generator rotor.

Samuel Sami

2013-01-01T23:59:59.000Z

98

Rapid Screening of Fluids for Chemical Stability in Organic Rankine Cycle Applications  

Science Journals Connector (OSTI)

Description of the SMR cycle, which combines fluid elements of steam and organic Rankine cycles ... isomerization of 1-pentyl radical to 2-pentyl radical, which proceeds via a five-membered, cyclic transition state. ...

Wendy C. Andersen; Thomas J. Bruno

2005-06-02T23:59:59.000Z

99

Application guide for waste heat recovery with organic Rankine cycle equipment. Final report May-Dec 82  

SciTech Connect (OSTI)

This report assesses the state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed; also included is a description of anticipated future trends in organic Rankine cycle RandD.

Moynihan, P.I.

1983-01-15T23:59:59.000Z

100

Rankine cycle power plant with improved organic working fluid  

SciTech Connect (OSTI)

In a Rankine cycle power plant having a boiler for vaporizing an organic working fluid which is applied to a turbine in which vaporized working fluid produced by the boiler expands and produces work, a condenser for condensing expanded vaporized working fluid exhausted by the turbine and producing condensate, and means for returning the condensate to the boiler, the improvement is described comprising: (a) operating the boiler so that the organic fluid vaporizes at substantially constant pressure and a temperature not exceeding 400/sup 0/C; (b) applying only vaporized working fluid to the turbine; and (c) using as the working fluid, a compound selected from the group consisting of bicyclic hydrocarbons, substituted bicyclic aromatic hydrocarbons, heterobicyclic aromatic hydrocarbons, substituted heterobicyclic aromatic hydrocarbons, bicyclic compounds where one ring is aromatic and the other condensed ring is nonaromatic, and their mixtures.

Yogev, A.; Mahlab, D.

1988-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

Luong, David

2013-01-01T23:59:59.000Z

102

Trends in Patent Applications Relating to Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This study presents a statistical analysis of patent data to explore the technological developments of the Organic Rankine Cycle (ORC). The ORC is considered as one of the most economic and efficient ways to convert low grade thermal energy to electricity. Patent data of this study are obtained from the commercial database, Thomson Innovation, which can be used to search the patent information from many countries and offices. With searching, screening, and patent family integrating by the International Patent Documentation Center (INPADOC), 304 patents are analyzed in the present study. The results show that the patent applications increase slowly before 2006, but increase significantly from 2009 to 2011 mainly due to the contributions from the applications in China and Republic of Korea. The year of 2009 can be regarded as a significant distinction year for the ORC development and patent application. The results also show that the assignee from United States is the most prominent. On the other hand, the number of patent applications in China is the largest, indicating that China might be one of the most potential markets of the ORC. The main International Patent Classification (IPC) of the patent data is F01K (i.e., Steam engine plants; Steam accumulators; Engine plants not otherwise provided for; Engines using special working fluids or cycles). Most importantly, the technology life cycle of the ORC, based on the patent data, is at a growth stage.

Ben-Ran Fu; Sung-Wei Hsu; Chih-His Liu

2014-01-01T23:59:59.000Z

103

Working fluid selection based on critical temperature and water temperature in organic Rankine cycle  

Science Journals Connector (OSTI)

This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle (ORC). The variation and t...

XinGuo Li; WenJing Zhao; DieDie Lin; Qiang Zhu

2014-11-01T23:59:59.000Z

104

Low-grade geothermal energy conversion by organic Rankine cycle turbine generator  

SciTech Connect (OSTI)

This paper reports results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49/sup 0/C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator. The geothermal source which supplied the water is located in a rural Alaskan village. The primary reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable; and the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. The important contribution made by this project is data provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.

Zarling, J.P.; Aspnes, J.D.

1983-08-01T23:59:59.000Z

105

Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (...

Jingtao Wang; Jin Zhang; Zhiyou Chen

2012-06-01T23:59:59.000Z

106

A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles  

Science Journals Connector (OSTI)

This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The con...

Mortaza Yari; S. M. S. Mahmoudi

2011-02-01T23:59:59.000Z

107

Slag-washing water of blast furnace power station with supercritical organic Rankine cycle  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) power plant operating with supercritical ... of a supercritical power plant. Two typical organic fluids with sufficiently low critical parameters were ... study the efficiency of the s...

Song Xiao ??; Shu-ying Wu ???; Dong-sheng Zheng ???

2013-03-01T23:59:59.000Z

108

Status of Rankine-cycle technology for space nuclear power applications  

SciTech Connect (OSTI)

A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

Holcomb, R.S.

1991-01-01T23:59:59.000Z

109

Optimized nuclear and solar dynamic organic Rankine cycles for Space Station applications  

E-Print Network [OSTI]

OPTIMIZED NUCLEAR AND SOLAR DYNAMIC ORGANIC RANKINE CYCLES FOR SPACE STATION A. PPLICATIONS A Thesis by DANA LEN EUBANKS Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1988 Major Subject: Nuclear Engineering OPTIMIZED NUCLEAR AND SOLAR DYNAMIC ORGANIC RANKINE CYCLES FOR SPACE STATION APPLICATIONS A Thesis by DANA LEN EUBANKS Approved as to style and content by: Frederick R...

Eubanks, Dana Len

2012-06-07T23:59:59.000Z

110

Thermodynamische Auslegung und transiente Simulation eines überkritischen Organic Rankine Cycles für einen leistungsoptimierten Betrieb (KIT Scientific Reports ; 7674).  

E-Print Network [OSTI]

??Niedertemperaturwärme im Bereich von 100 °C - 200 °C kann mittels Organic Rankine Cycles (ORC) zur Stromproduktion genutzt werden. Zur Untersuchung von Optimierungsmöglichkeiten bei ORC-Prozessen… (more)

Vetter, Christian

2014-01-01T23:59:59.000Z

111

Rankine cycle condenser pressure control using an energy conversion device bypass valve  

DOE Patents [OSTI]

The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

2014-04-01T23:59:59.000Z

112

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA1  

E-Print Network [OSTI]

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI cycles * * 15 2.1. Kuga-Sato varieties.3. Definition of the cycles * * 19 2.4. Relation

Darmon, Henri

113

Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery  

Science Journals Connector (OSTI)

Abstract This study proposes a new concept called the cascade Rankine cycle, which recovers LNG (liquefied natural gas) cold energy for power generation, optimizes the cycle by investigating the effects of key parameters on its performance, and compares its thermal efficiency, exergy efficiency and economic evaluation to those of the conventional alternatives. The cascade Rankine cycle consists of multiple stages of the organic Rankine cycle in a layered structure in which the first stage encompasses the second one that, in turn, encompasses the next. Due to its layered configuration, optimization of the cycle is straightforward and involves sequentially optimizing the individual stages. Optimization of the subsequent stages, however, required process simulation considering the equipment efficiency and the thermodynamic properties of the working fluid. Process simulation indicated that the indicators such as net power output, thermal efficiency, and exergy efficiency generally increase as the number of stages increases. These indicators were, however, significantly affected by the thermodynamic properties of the working fluids. The proposed cycles demonstrated significantly better performance in these indicators than the conventional cycles. The three-stage cascade Rankine cycle with propane as the working fluid exhibited the highest net power output, thermal efficiency and exergy efficiency within the set.

In-Hwan Choi; Sangick Lee; Yutaek Seo; Daejun Chang

2013-01-01T23:59:59.000Z

114

Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications  

SciTech Connect (OSTI)

Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

Stone, J.R.

1994-07-01T23:59:59.000Z

115

Methodology of Regenerator Calculation for Use in Subcritical and Transcritical Organic Rankine Cycle for Low-Temperature Heat Recovery  

Science Journals Connector (OSTI)

A comparative study of different Cases (A1, A2, B, C1, C2, D) of regenerator calculating methodology has been carried out for use in subcritical and transcritical organic Rankine cycles(ORCs) driven by low-temperature heat sources. The applicable ranges ... Keywords: organic Rankine cycle (ORC), subcritical, transcritical, regenerator, low-temperature heat source

Tao Guo; Huaixin Wang; Shengjun Zhang; Shihai Yin

2010-06-01T23:59:59.000Z

116

Minimum variance control of organic Rankine cycle based waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, an online self-tuning generalized minimum variance (GMV) controller is proposed for a 100 KW waste heat recovery system with organic Rankine cycle (ORC). The ORC process model is formulated by the controlled autoregressive moving average (CARMA) model whose parameters are identified using the recursive least squares (RLS) algorithm with forgetting factor. The generalized minimum variance algorithm is applied to regulate ORC based waste heat recovery system. The contributions of this work are twofold: (1) the proposed control strategy is formulated under the data-driven framework, which does not need the precise mathematic model; (2) this proposed method is applied to handle tracking set-point variations and process disturbances by improved minimum objective GMV function. The performance of GMV controller is compared with the PID controller. The simulation results show that the proposed strategy can achieve satisfactory set-point tracking and disturbance rejection performance.

Guolian Hou; Shanshan Bi; Mingming Lin; Jianhua Zhang; Jinliang Xu

2014-01-01T23:59:59.000Z

117

Comparison of subcritical and supercritical Rankine cycles for application to the geopressured geothermal resource  

SciTech Connect (OSTI)

There are several features unique to the geopressure geothermal resource which narrow the range of power cycle alternatives. The thermodynamic and operating restrictions which appear to favor the application of a supercritical Rankine power cycle utilizing propane for the recovery of thermal energy from the geopressure geothermal resource are described. This power cycle can be integrated into a natural gas recovery scheme that conserves reservoir pressure for brine disposal and produces gas at pipeline pressure.

Goldsberry, F.L.

1981-10-01T23:59:59.000Z

118

Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator  

SciTech Connect (OSTI)

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, Gerhard; Ruhland, Johannes

1996-01-24T23:59:59.000Z

119

Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle  

SciTech Connect (OSTI)

The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

Fuller, Robert L.

2005-04-20T23:59:59.000Z

120

Heat-Exchanger Network Synthesis Involving Organic Rankine Cycle for Waste Heat Recovery  

Science Journals Connector (OSTI)

This article aims to present a mathematical model for the synthesis of a heat-exchanger network (HEN) which can be integrated with an organic Rankine cycle (ORC) for the recovery of low-grade waste heat from the heat surplus zone of the background ...

Cheng-Liang Chen; Feng-Yi Chang; Tzu-Hsiang Chao; Hui-Chu Chen; Jui-Yuan Lee

2014-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Altheim geothermal plant for electricity production by organic Rankine cycle turbogenerator  

SciTech Connect (OSTI)

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, G. [Municipality of Altheim (Austria); Ruhland, J. [TERRAWAT GmbH, Schwaben (Germany)

1996-12-31T23:59:59.000Z

122

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

123

Method of optimizing performance of Rankine cycle power plants. [US DOE Patent  

DOE Patents [OSTI]

A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

1980-06-23T23:59:59.000Z

124

Organic Rankine power conversion subsystem development for the small community solar thermal power system  

SciTech Connect (OSTI)

The development and preliminary test results for an air-cooled, hermetically sealed 20 kW sub E organic Rankine cycle engine/alternator unit for use with point focussing distributed receiver solar thermal power system. A 750 F toluene is the working fluid and the system features a high speed, single-stage axial flow turbine direct-coupled to a permanent magnet alternator. Good performance was achieved with the unit in preliminary tests.

Barber, R.E.; Boda, F.P.

1982-07-01T23:59:59.000Z

125

A hybrid Rankine cycle (HyRC) with ambient pressure combustion (APC)  

Science Journals Connector (OSTI)

Abstract The main losses in thermal power generation include heat in exhaust flue gas, heat rejected through steam condensation of low-pressure turbine, and exergy destruction in heat exchange process etc. To the extent that the heat losses are significantly greater in temperature than either air or water coolant resources, these losses also represent exergy losses which might be exploited to improve plant capacity and efficiency. This paper presents a hybrid Rankine cycle (HyRC) with an ambient pressure combustion (APC) boiler to address the recovery potential of these losses within the steam Rankine cycle (SRC). The APC–HyRC concept employs an organic Rankine cycle (ORC) to supplement SRC and to reduce cycle energy losses to the atmosphere since organic fluids are capable of lowering cycle condensation temperature when a very low temperature heat sink is available. The case studies based on a 399 MW SRC unit show that the APC–HyRC configurations have better thermodynamic performance than its base case SRC at a cycle condensation temperature of 30 °C and below. The best APC–HyRC configuration generates up to 14% more power than the baseline steam cycle which is a 5.45% increase in overall gross efficiency with a cycle condensation temperature at 4 °C.

Lijun Wu; David Thimsen; Bruce Clements; Ligang Zheng; Richard Pomalis

2014-01-01T23:59:59.000Z

126

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect (OSTI)

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

127

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

organic Rankine cycle waste heat power conversion system. ”Cycle (ORC) System for Waste Heat Recovery. ” Journal ofRankine Cycles in Waste Heat Uti- lizing Processes. ”

Luong, David

2013-01-01T23:59:59.000Z

128

Method for recovering power according to a cascaded rankine cycle by gasifying liquefied natural gas and utilizing the cold potential  

SciTech Connect (OSTI)

The present invention discloses a method for recovering effective energy as power between liquefied natural gas and a high temperature source by cascading two kinds of Rankine cycles when the liquefied natural gas is re-gasified. The method is characterized in that a first medium performs a first Rankine cycle with the liquefied natural gas as a low temperature source, the first medium being mainly a mixture of hydrocarbons having 1-6 carbon atoms or a mixture of halogenated hydrocarbons of boiling points close to those of said hydrocarbons, the first medium having compositions according to which the vapor curve of gasifying the liquefied natural gas substantially corresponds to the low pressure cooling curve of the first medium, the power generated thereby is recovered by a first turbine during the first Rankine cycle, a second medium having a higher boiling point than said first medium performs a second Rankine cycle with part of said first Rankine cycle as the low temperature source, the second medium, being a single hydrocarbon component having 1-6 carbon atoms or a mixture thereof, a single halogenated hydrocarbon whose boiling point is close to that of this hydrocarbon or a mixture thereof, or ammonia, whose low pressure cooling curve substantially corresponds to the vapor curve of the high pressure first medium, said first and second Rankine cycles are cascaded, and a second turbine is disposed to recover power during the second Rankine cycle.

Matsumoto, O.; Aoki, I.

1984-04-24T23:59:59.000Z

129

Performance evaluation of an Organic Rankine Cycle (ORC) for power applications from low grade heat sources  

Science Journals Connector (OSTI)

Abstract In this paper the performance of an Organic Rankine Cycle (ORC) module, which was designed and built for a specific power application, is experimentally characterized. The ORC tested satisfies the main specifications for an efficient power system, highlighting a volumetric expander with large built-in volume ratio. For tests development, a monitored test bench has been used and adapted to the planned test procedure, which consisted of varying the thermal power input for different condensing conditions. Thereby, 10 steady state points are achieved and analyzed according to thermal power input, gross and net electrical powers, electrical cycle efficiencies and expander effectiveness. The results show that the ORC performances are improved for higher thermal oil temperatures, capturing more thermal power, producing more electricity and achieving better cycle efficiencies. The maximum gross electrical efficiency obtained is 12.32%, for a heat source temperature about 155 °C and a direct dissipation to the ambient. Moreover, the expander reaches an electrical isentropic effectiveness about 65% for an optimum pressure ratio around 7, being a suitable system for power applications from low grade heat sources.

Bernardo Peris; Joaquín Navarro-Esbrí; Francisco Molés; Roberto Collado; Adrián Mota-Babiloni

2014-01-01T23:59:59.000Z

130

Discussion of the internal heat exchanger's effect on the Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This paper explores the performances of IHE (Internal Heat Exchanger) in ORC (Organic Rankine Cycle) systems. Although previous studies hold multitudinous opinions, this study gives clear statements of IHE in both subcritical and supercritical ORC systems by setting a new model taking pressure drop in loops and acid dew point into consideration. Commonly used working fluids R123 and R600 are chosen for subcritical and supercritical cases separately. The temperature of the heat source applied is 200 °C and the mass flow rate of it is 1 kg/s. The analysis is accomplished by program Engineering Equation Solver. A modified method of calculating maximum heat exchange in IHE is given when modeling a supercritical cycle, because of the momentously changing specific heat near the critical point. Besides, a new approach is put forward to calculate the outlet temperature of the heat source and find the location of pinch point in supercritical cases. The results provide that IHE is beneficial to a subcritical case, but it improves system performance only in part of the low pressure stage in a supercritical case. Moreover, after the acid dew point Tad is taken into account, it is found that IHE is able to enlarge euphemistically the maximum system net output in a subcritical case. And in a supercritical case, the original evaporation pressure which does not conform to the rule Th,out > Tad is available now. It is revealed that the utilization of IHE will strengthen the applicability of the system.

Yadong Zhu; Zhe Hu; Yaodong Zhou; Liang Jiang; Lijun Yu

2014-01-01T23:59:59.000Z

131

Supercritical Rankine Cycle Coupled with Ground Cooling for Low Temperature Power Generation  

Science Journals Connector (OSTI)

Abstract This paper presents an application of an earth-air-heat-exchanger (EAHE) as condenser in low to medium temperature power generation plants. A supercritical Rankine cycle (SRC) utilizing organic refrigerants as working fluids was used as the power cycle for the plant. The heat source temperature was varied from 125-1750C. The condenser was coupled to an EAHE system buried at a depth of 2 m under the surface of the earth. Its effect on the power cycle efficiency over a period of six months has been studied. It was observed that the soil temperature 10 cm from the surface (horizontal direction) of the underground pipe increased by almost 20C during this time. This temperature change decreased with distance from the pipe. The soil temperature profile varied with time, distance from the pipe and location along the length of the pipe. The efficiency of the SRC increased by 1% and the daily fluctuations were reduced when EAHE was used.

Rachana Vidhi; D. Yogi Goswami; Elias Stefanakos

2014-01-01T23:59:59.000Z

132

Economic comparison of ORC (Organic Rankine cycle) processes at different scales  

Science Journals Connector (OSTI)

Abstract The utilization of low temperature heat sources, e.g. waste heat, for power generation in Organic Rankine Cycles has become more and more important in recent decades. In this work, exhaust gas as the heat transfer medium is considered. Five organic working fluids in three cycle designs at three different scales are investigated in Aspen Plus V7.3. Additionally, two different constraints have been applied to the exhaust gas temperature: A minimum of 180 °C in order to avoid the acid dew point and a minimal temperature approach, where the pinch point in the exhaust gas heat exchanger is fixed at 10 K. The investigated turbine-bleeding process with regenerative pre-heating benefits higher exhaust gas outlet temperatures for further combined heat and power applications in conjunction with enhanced system performances. Also noteworthy is the lower total heat exchanger area of the process compared to the reference designs. Economic analyses are carried out in order to outline the economic merits of the turbine-bleeding cycle.

Dominik Meinel; Christoph Wieland; Hartmut Spliethoff

2014-01-01T23:59:59.000Z

133

Étude de la faisabilité des cycles sous-critiques et supercritiques de Rankine pour la valorisation de rejets thermiques.  

E-Print Network [OSTI]

??Ce travail de thèse concerne l’étude de la faisabilité des cycles organiques sous-critiques et supercritiques de Rankine pour la valorisation de rejets thermiques industriels à… (more)

Le, Van Long

2014-01-01T23:59:59.000Z

134

Measurement of Thermophysical Pure Component Properties for a Few Siloxanes Used as Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

Measurement of Thermophysical Pure Component Properties for a Few Siloxanes Used as Working Fluids for Organic Rankine Cycles ... K and for two cyclic siloxanes (octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5)) in the temperature range of 288.15–443.15 ... Organic Rankine cycle (ORC) processes are gaining increasing interest(1-5) for the utilization of renewable energy such as geothermal heat, solar energy, biomass, and waste heat for the generation of electricity. ...

Rima Abbas; Andre Schedemann; Christian Ihmels; Sabine Enders; Ju?rgen Gmehling

2011-06-30T23:59:59.000Z

135

Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery  

Science Journals Connector (OSTI)

Abstract The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance.

You-Rong Li; Mei-Tang Du; Chun-Mei Wu; Shuang-Ying Wu; Chao Liu

2014-01-01T23:59:59.000Z

136

Applicability of entropy, entransy and exergy analyses to the optimization of the Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Based on the theories of entropy, entransy and exergy, the concepts of entropy generation rate, revised entropy generation number, exergy destruction rate, entransy loss rate, entransy dissipation rate and entransy efficiency are applied to the optimization of the Organic Rankine Cycle. Cycles operating on R123 and N-pentane have been compared in three common cases which are variable evaporation temperature, hot stream temperature and hot stream mass flow rate. The optimization goal is to produce maximum output power. Some numerical analyses and simulations are presented, and the results show that when both the hot and cold stream conditions are fixed, all the entropy principle, the exergy theory, the entransy loss rate and the entransy efficiency are applicable to the optimization of the ORC, while entransy dissipation is not. This conclusion is available no matter what kind of working fluid is used, nevertheless, the system performances and parameters may be much different. The results also indicate that when the hot stream condition (temperature or mass flow rate) varies, the entransy loss rate is the only parameter which always corresponds to the maximum power output.

Yadong Zhu; Zhe Hu; Yaodong Zhou; Liang Jiang; Lijun Yu

2014-01-01T23:59:59.000Z

137

Waste Heat Recovery by Organic Fluid Rankine Cycle  

E-Print Network [OSTI]

In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO... In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO...

Verneau, A.

1979-01-01T23:59:59.000Z

138

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to “standardize the technology”.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130 °C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100–130 °C range, while the return temperature of the brine is assumed to be between 70 and 100 °C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

139

New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles  

Science Journals Connector (OSTI)

Abstract Turbine efficiency plays a key role in the design optimization of \\{ORCs\\} (organic Rankine cycles) and should be properly evaluated for an accurate estimate of the real power production. Its value is in general assumed as given in the design optimization procedure, without a check that it can be really achieved in the resulting working conditions. The peculiar properties of high molecular weight fluids markedly influence turbine design and ask for turbine design criteria specifically tailored to ORCs. In this work a meanline design procedure for single stage axial flow turbines is developed to find optimum turbine geometry and efficiency in a wide range of operating conditions. Unlike previous literature, real fluid properties and very recent loss models are implemented. The variation of the predicted turbine efficiency with loading coefficient, flow coefficient, specific speed and specific diameter is shown through new general maps that explicitly take into account the strong influence of compressibility and turbine size through the volumetric expansion ratio and size parameter, respectively. All these maps can be included in a general design optimization procedure of the ORC system to help select the optimum design point, overcoming any arbitrary assumptions on turbine efficiency.

Luca Da Lio; Giovanni Manente; Andrea Lazzaretto

2014-01-01T23:59:59.000Z

140

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA1  

E-Print Network [OSTI]

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON & KARTIK multiplication 12 1.5. Values of modular forms at CM points 14 2. Generalised Heegner cycles 15 2.1. Kuga-Sato varieties 15 2.2. The variety Xr and its cohomology 18 2.3. Definition of the cycles 19 2.4. Relation

Darmon, Henri

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Statistical analysis of patent data relating to the organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This study analyzed patent data to explore the technological developments based on the organic Rankine cycle (ORC), which is one of the most economical and efficient methods for converting low-grade thermal energy into electricity. The patent data were obtained from the Thomson Innovation commercial database, which contains patent information from various countries and offices. After querying, filtering, and organizing the results into patent families in accordance with International Patent Documentation Center guidelines, this study analyzed data on 304 ORC-related patents. The results show that the number of patent applications increased gradually before 2006, and then rapidly from 2009 to 2011, primarily because of contributions from patent applications in China (CN) and the Republic of Korea (KR). The present findings indicate that 2009 is an important year regarding developments in ORC systems and the number of patent applications. Furthermore, the assignees from the United States (US) were the most prominent contributors. However, the most patent applications were filed in CN, indicating that the market for ORC systems in CN might offer the most potential for future development. This study also examined the top ten patent assignees, as well as the trends of the number of patent applications, size of patent families, and frequency of patent citations. The results show that all of the top ten assignees were from the US, CN, and KR. Moreover, most of them filed their patent applications in recent years, particularly after 2008. The results further indicate that the most active assignee is currently General Electric Company (US). In addition, the top five patent families and the five most frequently cited patents are briefly reviewed and discussed. The patent data analysis results indicate that the technology life cycle status of the ORC is currently in the growth stage.

Ben-Ran Fu; Sung-Wei Hsu; Chih-Hsi Liu; Yu-Ching Liu

2014-01-01T23:59:59.000Z

142

Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles  

Science Journals Connector (OSTI)

Organic Rankine Cycles (ORCs) are particularly suitable for recovering energy from low-grade heat sources. This paper describes the behavior of a small-scale ORC used to recover energy from a variable flow rate and temperature waste heat source. A traditional static model is unable to predict transient behavior in a cycle with a varying thermal source, whereas this capability is essential for simulating an appropriate cycle control strategy during part-load operation and start and stop procedures. A dynamic model of the ORC is therefore proposed focusing specifically on the time-varying performance of the heat exchangers, the dynamics of the other components being of minor importance. Three different control strategies are proposed and compared. The simulation results show that a model predictive control strategy based on the steady-state optimization of the cycle under various conditions is the one showing the best results.

Sylvain Quoilin; Richard Aumann; Andreas Grill; Andreas Schuster; Vincent Lemort; Hartmut Spliethoff

2011-01-01T23:59:59.000Z

143

Experimental Rankine cycle engine designed for utilization of low temperature, low pressure heat. Final report  

SciTech Connect (OSTI)

The development of a Rankine cycle engine using Freon 11 as working fluid, for the utilization of low temperature heat sources is described together with the results obtained. The experimental investigations showed that the engine performance is in good agreement with the calculated values; that the mechanical behavior of some components is not yet satisfactory; and that the working fluid (Freon 11) is not completely reliable in the higher temperatures range. An extension of the feasibility study dealing mainly with engine behavior and fluid suitability is envisaged, using either Freon 113 or a fluorine compound of the composition CmF(2m+2).

Cipolla, G.; Margary, R.

1981-01-01T23:59:59.000Z

144

Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine  

Science Journals Connector (OSTI)

Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

R Braun; K Kusterer; T Sugimoto; K Tanimura; D Bohn

2013-01-01T23:59:59.000Z

145

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network [OSTI]

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

146

Measurement of Transport Properties for Selected Siloxanes and Their Mixtures Used as Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

Measurement of Transport Properties for Selected Siloxanes and Their Mixtures Used as Working Fluids for Organic Rankine Cycles ... Thermal conductivities have been measured for three linear siloxanes [hexamethyl disiloxane (MM), octamethyltrisiloxane (MDM), decamethyltetrasiloxane (MD2M)], two cyclic siloxanes [octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5)], and a mixture of 50 mass % MDM + 50 mass % MD2M in the temperature range from 290 to 520 K and the pressure range from 500 to 10000 kPa using the transient hot wire method and correlated with a temperature–pressure–thermal conductivity relationship. ... To generate electricity from renewable energy, organic Rankine cycle (ORC) processes can be used. ...

Rima Abbas; E. Christian Ihmels; Sabine Enders; Ju?rgen Gmehling

2011-05-26T23:59:59.000Z

147

Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract The paper investigates the performance of high-temperature Organic Rankine cycle (ORC) with zeotropic mixtures as working fluid. A numerical model, which has been validated by comparing with the published data, is developed to predict the first law thermal efficiency of the cycle. The effects of mixture concentration, temperature gradient of the heat transfer fluid, pinch temperature difference, pressure ratio, and condensation pressure on the first law efficiency are presented firstly using a purposely designed program, and then the suitable conditions for the described ORC are suggested based on the results of the simulation. It is demonstrated that the use of zeotropic mixtures leads to an efficiency increase compared to pure fluids.

Bensi Dong; Guoqiang Xu; Yi Cai; Haiwang Li

2014-01-01T23:59:59.000Z

148

Optimization of power generation from a set of low-temperature abandoned gas wells, using organic Rankine cycle  

Science Journals Connector (OSTI)

This research article deals with the employment of organic Rankine cycle (ORC) to generate electricity from a set of low-temperature abandoned gas wells in Iran. At first a thermodynamic analysis was performed to select an appropriate power cycle; consequently organic Rankine cycle was chosen. Then a comprehensive investigation was carried out to find a typical low-temperature abandoned gas reservoir so an abandoned gas reservoir in the central part of Iran was considered. The next step was selecting the working fluid; in this regard a vast range of common organic fluids were studied and R125 was chosen. Finally the gas well and the power plant were simulated and then a parametric optimization of the ORC plant was performed in order to achieve optimum power generation and also to compute generated power at different operational parameters of gas wells and power cycle.

Mahyar Ebrahimi; Seyed Ebrahim Moussavi Torshizi

2012-01-01T23:59:59.000Z

149

[en] SIMULATION OF AN ORGANIC RANKINE CYCLE POWERED BY SOLAR ENERGY.  

E-Print Network [OSTI]

??[pt] Esta simulação considera um ciclo Rankine que utiliza um fluido de trabalho orgânico, com a particularidade que a fonte de energia de entrada ao… (more)

ERNESTO JAVIER RUANO HERRERIA

2013-01-01T23:59:59.000Z

150

Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract In this paper, a regenerative transcritical dual-loop organic Rankine cycle is proposed to recover the waste heat of the exhaust, engine coolant and all the residual heat of the HT loop. Double regenerators are adopted in this system. Transcritical cycles are used in both loops. Hexamethyldisiloxane (MM), octamethyl cyclotetrasiloxane (D4), octamethyltrisiloxane (MDM), cyclohexane, toluene and n-decane are chosen as the candidate working fluids of the HT loop and \\{R143a\\} is chosen as the working fluid of the LT loop. Influences of inlet temperature of turbine THT (T3) on mass flow rates (mf,HT and mf,LT), net output power (Wnet), energy conversion efficiency (?ec), volumetric expansion ratio (VER), ratio of power consumed to power output (COR) and component irreversibility are analyzed and performance comparison of these working fluids is also evaluated. Results show that toluene possesses the maximum Wnet (42.46 kW), highest ?e (51.92%) and ?ec (12.77%). The increase of T3 worsens system performance, decreasing Wnet, ?e and ?ec. Condenser CLT and turbine TLT possess the least system irreversibility. In addition, turbines and exhaust evaporators are optimized components.

Hua Tian; Lina Liu; Gequn Shu; Haiqiao Wei; Xingyu Liang

2014-01-01T23:59:59.000Z

151

Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles  

Science Journals Connector (OSTI)

Abstract The thermodynamic performance of non-superheated subcritical Organic Rankine Cycles (ORCs) with zeotropic mixtures as working fluids is examined based on a second law analysis. In a previous study, a mixture selection method based on a first law analysis was proposed. However, to assess the performance potential of zeotropic mixtures as working fluids the irreversibility distributions under different mixtures compositions are calculated. The zeotropic mixtures under study are: R245fa–pentane, R245fa–R365mfc, isopentane–isohexane, isopentane–cyclohexane, isopentane–isohexane, isobutane–isopentane and pentane–hexane. The second law efficiency, defined as the ratio of shaft power output and input heat carrier exergy, is used as optimization criterion. The results show that the evaporator accounts for the highest exergy loss. Still, the best performance is achieved when the condenser heat profiles are matched. An increase in second law efficiency in the range of 7.1% and 14.2% is obtained compared to pure working fluids. For a heat source of 150 °C, the second law efficiency of the pure fluids is in the range of 26.7% and 29.1%. The second law efficiency in function of the heat carrier temperature between 120 °C and 160 °C shows an almost linear behavior for all investigated mixtures. Furthermore, between optimized \\{ORCs\\} with zeotropic mixtures as working fluid the difference in second law efficiency varies less than 3 percentage points.

S. Lecompte; B. Ameel; D. Ziviani; M. van den Broek; M. De Paepe

2014-01-01T23:59:59.000Z

152

Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid  

SciTech Connect (OSTI)

Laboratory experiments were performed to aid in determining the maximum operating temperature for cyclopentane as an Organic Rankine Cycle working fluid. The thermochemical decomposition of cyclopentane was measured in a recirculation loop at 240 C, 300 C and 350 C at 43 bar in a glass-lined heated tube. It was determined that in the absence of air at the lower two temperatures, decomposition was minor after more than twelve days of continuous operation. At 240 C, the total cyclopentane decomposition products were approximately 65 parts per million (ppm) and at 300 C, total decomposition products were on the order of 270 ppm at the end of the experiment. At 350 C, decomposition products were significantly higher and reached 1,500 ppm. When the feed was contacted with air, the decomposition rate increased dramatically. Residues found in the reactor after the decomposition experiments were examined by a number of different techniques. The mass of the residues increased with experimental temperature, but was lower at the same temperature when the feed was contacted with air. Analysis of the residues suggested that the residues were primarily heavy saturated hydrocarbons.

Daniel M. Ginosar; Lucia M. Petkovic; Donna Post Guillen

2011-08-01T23:59:59.000Z

153

Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander  

Science Journals Connector (OSTI)

Small-scale solar thermal cogeneration shows promise as an effective way to get increased benefit out of a given solar availability, since it does not waste potential during summer after the water capacity is heated. In this paper a scroll expander is tested in a small organic Rankine cycle (ORC) and used to calibrate a static expander model. Validation of the scroll expander model shows agreement generally within 10% for the shaft power, 5% for the rotational speed and 6 K for the exhaust temperature, with some outliers at very low pressure ratios. This calibrated model is then incorporated into a larger dynamic model of a solar thermal cogeneration system, designed for some larger dwelling unit or small commercial establishment that requires a larger volume of hot water. An annual simulation is conducted using a collector area of 50 m2, and the scroll expander shows a maximum isentropic efficiency of 59% while the ORC efficiency is 3.47%. The total energy produced is 1710 kWh and the hot water available is on average 2540 L/day. The maximum instantaneous power that can be produced by the system is 676 W, and it is possible to shift the time period that the system is producing power to match the peak demand period by adjusting the solar store volume.

B. Twomey; P.A. Jacobs; H. Gurgenci

2013-01-01T23:59:59.000Z

154

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

SK Wang, "A review of Organic Rankine Cycles (ORCs) for thePerformances of Organic Rankine Cycles under part-load andChemistry: the Organic Rankine Cycle. ” d Nark Mirolli. “The

Ho, Tony

2012-01-01T23:59:59.000Z

155

Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust deer11singh.pdf More...

156

Modeling and Performance Prediction of a Solar Powered Rankin Cycle/Gas Turbine Cycle  

Science Journals Connector (OSTI)

The present study is dealing with the development and implementation of an integrated solar combined cycle power plant in which heat ... its energy from the waste heat of a gas turbine unit in additional to solar

Mohammed A. Elhaj; Kassim K. Matrawy…

2007-01-01T23:59:59.000Z

157

Experimental study and CFD approach for scroll type expander used in low-temperature organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This study focuses on experimental test of scroll type expanders in low-temperature organic Rankine cycle (ORC) system. In this circuit, lubricant has been mixed with \\{R245fa\\} as working fluid. In this experiment, two scroll expanders with different built-in volume ratio have been experimentally tested. Main test parameters considered are the pressure difference and the rotational speed of the expanders. It is found that the expander performance could be significantly improved when bigger built-in volume ratio is used. However the internal leakage and friction loss are vital factors to influence expander performance. The maximum shaft power output by expander of 1.77 kW and deliver electricity by generator of 1.375 kW. A Computational Fluid Dynamics approach (CFD) has been employed for preliminary investigation on the thermal-hydraulic behavior of the scroll type expanders. The simulation result shows that unbalance pressure distribution were occurred in the expander by means of top scroll wrap has been modified.

Jen-Chieh Chang; Chao-Wei Chang; Tzu-Chen Hung; Jaw-Ren Lin; Kuo-Chen Huang

2014-01-01T23:59:59.000Z

158

Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40 kW diesel generator using two ‘off-the-shelf’ heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15 bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15 bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in bsfc. At 40% part load, the additional power developed was 3.4% which resulted in 3.3% reduction in bsfc.

Shekh Nisar Hossain; Saiful Bari

2013-01-01T23:59:59.000Z

159

Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles  

Science Journals Connector (OSTI)

Abstract A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17% more electricity using the same energy resources. Exergy analysis shows that with a solar exergy fraction of more than 66% the exergetic efficiency of the hybrid plant is about 27–34% for the supercritical hybrid plant and 23–32% for the subcritical hybrid plant. The figure of merit analysis indicates that the hybrid plant produces a maximum of 15% (using a subcritical ORC) and 19% (using a supercritical ORC) more annual electricity than the two stand-alone plants. Economically, the hybrid plant using the supercritical ORC has a solar-to-electricity cost of approximately 1.5–3.3% less than those of the subcritical scenario.

Cheng Zhou

2014-01-01T23:59:59.000Z

160

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect (OSTI)

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine  

Science Journals Connector (OSTI)

Abstract Optimisation of organic Rankine cycles (ORCs) for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. This paper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, the refrigerant \\{R143a\\} is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate \\{R143a\\} radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state. The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.

Emilie Sauret; Yuantong Gu

2014-01-01T23:59:59.000Z

162

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network [OSTI]

F. , jr. S. B. , S. M. Steam Turbines. Second Edition, Tenththe solar-assisted cycle. Steam turbines have been used forin Figure 5. Steam entering the turbine expends a portion of

Leech, J.

2010-01-01T23:59:59.000Z

163

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network [OSTI]

COP vapor cycle Turbo-expander efficiency With these valuesMULTI~STAGE AA1AL FLOW TURBO-EXPANDER CONCEPTS AXIAL FLOW 4.SUMMARY A variety of turbo-expanders were considered for use

Leech, J.

2010-01-01T23:59:59.000Z

164

Performance analysis of regenerative organic Rankine cycle (RORC) using the pure working fluid and the zeotropic mixture over the whole operating range of a diesel engine  

Science Journals Connector (OSTI)

Abstract A regenerative organic Rankine cycle (RORC) system is designed to recover the exhaust heat of a diesel engine, and the influence of the intermediate pressure (the pressures at which the steam is extracted from the expander) on performance parameters such as net power output, thermal efficiency and mass flow rate of the working fluid are analyzed. The organic working fluids under investigation are \\{R245fa\\} and the zeotropic mixture isopentane/R245fa (in a 0.7/0.3 mol fraction). Based on initial calculations of RORC system performance, the intermediate pressure is set to 1.15 MPa for the RORC system when using isopentane/R245fa (in a 0.7/0.3 mol fraction) as the working fluid, and 1.2 MPa when using \\{R245fa\\} as the working fluid. A performance analysis of the RORC system using the two different working fluids is then conducted over the whole operating range of a diesel engine. The results show that the zeotropic mixture isopentane/R245fa (in a 0.7/0.3 mol fraction) performs better. Finally, a combined diesel engine and RORC system is defined to evaluate the performance improvement of such a combined system over the whole operating range. Results show that, for the combined system, a 10.54% improvement in power output and a 9.55% improvement in fuel economy can be achieved at the engine’s rated condition.

Jian Zhang; Hongguang Zhang; Kai Yang; Fubin Yang; Zhen Wang; Guangyao Zhao; Hao Liu; Enhua Wang; Baofeng Yao

2014-01-01T23:59:59.000Z

165

Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications  

Science Journals Connector (OSTI)

Abstract Domestic CHP (combined heat and power) generation is one new application of the ORC (organic Rankine cycle). An environment temperature fluctuation of 40 °C through the year is common in many areas, where the consumer's demand on heat follows a seasonal cycle. In no demand periods the ORC shall work under lower condensation temperature for more efficient power generation. Off-design operation will be executed, accompanied with a degraded performance of the ORC components especially the expander. The design of the condensation temperature herein becomes crucial. It influences the ORC efficiency in both the CHP and SPG (solo power generation) modes. If the condensation temperature is designed simply based on the CHP mode, the power conversion in the SPG mode will suffer from low expander efficiency. An optimum design of the condensation temperature involves a compromise between the power outputs in the two modes. This paper aims to determine the optimum design condensation temperature for the ORC-CHP system. A new concept, namely the threshold condensation temperature, is introduced and found to be important to the design and operation strategies of the system. The results indicate that via a careful design of the condensation temperature, the annual power output can be increased by 50%.

Jing Li; Gang Pei; Jie Ji; Xiaoman Bai; Pengcheng Li; Lijun Xia

2014-01-01T23:59:59.000Z

166

Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture  

Science Journals Connector (OSTI)

Abstract A novel system integrating solar Organic Rankine Cycle (ORC) into a power plant with amine-based chemical absorption for CO2 capture is proposed. The condensation heat of ORC provides the required heat for solvent regeneration, which avoids the energy penalty caused by the steam extraction traditionally. The cascade utilization of solar energy is realized through a combined supply of power generation and condensation heat. From the aspects of technology and economics, a performance analysis is presented to compare the proposed system and three other systems based on a 300 MWe power plant. The proposed system shows better performance than that of reference systems in the power generation and emission reductions. Economic evaluation was conducted in terms of levelized costs of electricity (LCOE) and cost of CO2 removed (COR). In order to achieve lower LCOE and COR compared to the power plant integrated with solar assisted post-combustion CO2 capture (PCC), the price of ORC has to be lower than 1284.46 USD/kW under the conditions that the price of the solar field is 120 USD/m2. It is believed that the proposed system has a satisfied potential to meet the thermal demand for the solvent regeneration in the power plant with PCC.

Li Zhao; Ruikai Zhao; Shuai Deng; Yuting Tan; Yinan Liu

2014-01-01T23:59:59.000Z

167

Thermal stability of working fluids for organic Rankine cycles: An improved survey method and experimental results for cyclopentane, isopentane and n-butane  

Science Journals Connector (OSTI)

Abstract In this work we present an improved survey method for the evaluation of the thermal stability of working fluids for organic Rankine cycles. The method presented here represents an improvement of a test methodology already used in literature, based on the analysis of temperature and pressure measurements of a fluid subjected to increasing thermal stress temperatures. Compared to the already known methodology, the survey technique presented in this work offers a different evaluation of the measured vapor pressure deviations and a different estimation method of the decomposition rates. After the description of the experimental apparatus and of the test methodology, we present and discuss some experimental results of the thermal stability of three fluids of interest for organic Rankine cycle applications, namely Cyclopentane, Isopentane and n-Butane, in the temperature range between 220 °C and 350 °C.

Marco Pasetti; Costante M. Invernizzi; Paolo Iora

2014-01-01T23:59:59.000Z

168

Improving the efficiency and availability analysis of a modified reheat regenerative Rankine cycle  

SciTech Connect (OSTI)

Reheating in a reheat regenerative steam power cycle increases efficiency by increasing the average temperature of heat reception, but also increases the irreversibility of feed water heaters by raising the temperature of the superheated steam used for the regenerative process. This paper introduces some modifications to the regular reheat regenerative steam power cycle that reduce the irreversibility of the regenerative process. An availability analysis of the modified cycle and the regular reheat regenerative cycle as well as a comparison study between both cycles is done. The results indicate that a gain in energy efficiency of up to 2.5% as the steam generator pressure varies is obtained when applying such modifications at the same conditions of pressure, temperature's number of reheating stages, and feed water heaters. The availability analysis showed that such increase in efficiency is due to the reduction of the irreversibility of the regeneration process of the modified cycle.

Bassily, A.M.

1999-07-01T23:59:59.000Z

169

Combined gas turbine-Rankine turbine power plant  

SciTech Connect (OSTI)

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

170

Evaluation of hybrid solar/fossil Rankine-cooling concept  

SciTech Connect (OSTI)

The hybrid solar/fossil Rankine cycle is analyzed thermodynamically to determine fuel use and efficiency. The hybrid system is briefly compared with solar organic Rankine systems with a fossil fuel auxiliary mode, and with geothermal resources. The economic evaluation compares the present value of the superheater fuel cost over the system lifetime with the first cost reduction obtained by substituting a hybrid solar/fossil Rankine engine for an organic Rankine engine. The economics analysis indicates that even if the hybrid solar/fossil Rankine cooling system were developed to the point of being a commercial product with an economic advantage over an otherwise equivalent solar organic Rankine cooling system, it would gradually lose that advantage with rising fuel costs and decreasing collector costs. From the standpoint of national fossil fuel conservation, the hybrid concept would be preferable only in applications where the operating duration in the solar/fossil mode would be substantially greater than in the fossil fuel-only auxiliary mode. (LEW)

Curran, H M

1980-11-01T23:59:59.000Z

171

A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles  

Science Journals Connector (OSTI)

Abstract Positive-displacement expanders, which are widely used in small-scale \\{ORCs\\} (Organic Rankine Cycles), need reliable LOS (Lubricant Oil Supply) to get well lubrication and sealing. In the present paper, the characteristics of two traditional LOS schemes are examined. Moreover, a modified one is proposed. Analyses of those elements that lead to work loss of lubricant oil supply have been carried out for all the three LOS schemes. The work loss of lubricant oil supply, which is caused by the employment of lubricant oil pumps, pressure drop in lubricant oil separator and other components contributing to work loss, is evaluated by a definition of WLLS (Work Loss Factor of Lubrication Oil Supply). Based on the thermodynamic model of ORC established, the calculation methods of WLLS are presented. Through analyses of LOS schemes and calculation of WLLS in two typical ORCs, it was found that the traditional LOS schemes either can not work reliably, or might cause up to 11.5% and 9.5% power decrease. The values can be reduced by half in the proposed LOS scheme, which can also work reliably. Accompanied with the advantages, the defects of the new scheme were also investigated.

Biao Lei; Yu-Ting Wu; Wei Wang; Jing-Fu Wang; Chong-Fang Ma

2014-01-01T23:59:59.000Z

172

Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid  

Science Journals Connector (OSTI)

Abstract This paper carried out the thermodynamic and economic optimizations of a subcritical ORC (Organic Rankine Cycle) using a pure or a zeotropic mixture working fluid. Two pure organic compounds, i.e. n-pentane and R245fa, and their mixtures with various concentrations were used as ORC working fluid for this study. Two optimizations, i.e. exergy efficiency maximization and LCOE (Levelized Cost of Electricity) minimization, were performed to find out the optimum operating conditions of the system and to determine the best working fluid from the studied media. Hot water at temperature of 150 °C and pressure of 5 bars was used to simulate the heat source medium. Whereas, cooling water at temperature of 20 °C was considered to be the heat sink medium. The mass flow rate of heat source is fixed at 50 kg/s for the optimizations. According to the results, the n-pentane-based ORC showed the highest maximized exergy efficiency (53.2%) and the lowest minimized LCOE (0.0863 $/kWh). Regarding \\{ORCs\\} using zeotropic working fluids, 0.05 and 0.1 \\{R245fa\\} mass fraction mixtures present the comparable economic features and thermodynamic performances to the system using n-pentane at minimum LCOE. The ORC using \\{R245fa\\} represents the least profitable system.

Van Long Le; Abdelhamid Kheiri; Michel Feidt; Sandrine Pelloux-Prayer

2014-01-01T23:59:59.000Z

173

A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation  

Science Journals Connector (OSTI)

This paper presents an overview of the technical and economic aspects, as well as the market evolution of the Organic Rankine Cycle (ORC). This is an unconventional but very promising technology for the conversion of thermal energy, at low and medium temperatures, into electrical and/or mechanical energy on a small scale. As it makes a greater and/or more intensive use of its energy source, this technology could facilitate an electricity supply to unconnected areas, the self-production of energy, the desalination of seawater for human consumption, or even to increase the energy efficiency in the industrial sector respecting the environment. A look at the scientific publications on this topic shows an open research line, namely the selection of a suitable working fluid for these systems, since there is as yet none that provides all aspects that must be taken into account in ORCs. Furthermore, a description and an analysis of the applications of the proposed technology is carried out, specifying the main providers, which at the present time is limited mainly to the range 0.2–2 MWe with a cost of around 1 and 4 × 103 €/kWe. Lower powers are in pre-commercial status.

Fredy Vélez; José J. Segovia; M. Carmen Martín; Gregorio Antolín; Farid Chejne; Ana Quijano

2012-01-01T23:59:59.000Z

174

Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

SciTech Connect (OSTI)

This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

Donna Post Guillen; Jalal Zia

2013-09-01T23:59:59.000Z

175

Development and evaluation of a biomass-fired micro-scale CHP with organic rankine cycle.  

E-Print Network [OSTI]

??Combined Heat and Power Generation (CHP) or cogeneration has been considered worldwide as the major alternative to traditional energy systems in terms of signi ticant… (more)

Shao, Yingjuan

2011-01-01T23:59:59.000Z

176

Review of alkali metal and refractory alloy compatibility for Rankine cycle applications  

Science Journals Connector (OSTI)

The principal corrosion mechanisms in refractory metal-alkali systems are dissolution, mass transfer, and impurity reactions. In general, niobium, tantalum, molybdenum, and tungsten have low solubilities in th...

James R. DiStefano

1989-12-01T23:59:59.000Z

177

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

178

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

into Power Using Organic Rankine Cycles – A Review ofCriteria for an Organic Rankine Cycle Using Low-Temperatureconverted to work in organic Rankine cycle power plants. [

Coso, Dusan

2013-01-01T23:59:59.000Z

179

A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy  

Science Journals Connector (OSTI)

Abstract The organic Rankine cycle is widely used to obtain electric power from renewable energy sources, such as solar energy, geothermal energy, and waste thermal energy. In a typical ORC, a turbo-expander or volumetric expander is applied to convert the thermal energy to mechanical energy. The turbo-expander is widely used for large-scale output power because it has merits when used with large mass flowrates; the scroll expander is used for small-scale output power. In \\{ORCs\\} that produce small-scale output power, the available thermal energy as a renewable heat source usually cannot be supplied continuously. For fluctuating levels of available thermal energy, positive displacement machine has difficulty in adjusting the mass flowrate. In order to regulate the mass flowrate for varying thermal energies, a small-scale radial-type turbine and supersonic nozzles were designed specifically for this study. \\{R245fa\\} was used as the working fluid, and the thermodynamic properties of the working fluid in the cycle were predicted on the basis of the designed turbine blade and nozzle shape even though the mass flowrates were varied. The output powers at the off-design operations were predicted for the full range of 30 kW according to the number of nozzles used.

Soo-Yong Cho; Chong-Hyun Cho; Kook-Young Ahn; Young Duk Lee

2014-01-01T23:59:59.000Z

180

Kalina combined cycle performance and operability  

SciTech Connect (OSTI)

Gas turbine combined cycles using Rankine bottoming cycles have gained broad market acceptance. The favorable plant economics derive from their high efficiency, short construction cycles and excellent environmental performance. The responsive operating characteristics of combined cycles is another key advantage for customers. Duty cycles cover the spectrum from daily start stop (DSS) to base load. Performance and economics of combined cycles have progressed with advances in gas turbine technology as well as the introduction of increasingly efficient multi-pressure Rankine bottoming cycles. Further advances in gas turbine technology and Rankine bottoming cycle performance are becoming incrementally more difficult and costly to achieve. The availability of the Kalina cycle presents a clear path toward improved combined-cycle system performance and reduced cost of electricity. This paper presents detailed performance and operating characteristics of a STAG 207FA combined cycle employing the Kalina bottoming cycle. These characteristics are compared to a conventional three-pressure reheat Rankine bottoming cycle. The Kalina cycle is shown to have performance and operability advantages throughout the range of site conditions and operating regimes, such as base load, load following, DSS duty, wet and dry cooling tower applications and unattended operation. These advantages derive from a single-pressure once-through heat recovery system, above atmospheric working fluid pressure throughout the system, above atmospheric working fluid pressure throughout the system, very high thermal efficiency ({approximately}2.0 to 2.5 percentage points better than the best Rankine), and compatibility with sub-freezing ambient conditions.

Smith, R.W.; Ranasinghe, J.; Stats, D.; Dykas, S.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

182

Potassium-Rankine power conversion subsystem modeling for nuclear electric propulsion  

SciTech Connect (OSTI)

A potassium-Rankine power conversion system model was developed under Contract No. NAS3-25808 for the NASA-LeRC. This model predicts potassium-Rankine performance for turbine inlet temperatures (TIT) from 1200 - 1600 K, TIT to condenser temperature ratios from 1.25-1.6, power levels from 100 to 10,000 kWe, and lifetimes from 2-10 years. The model is for a Rankine cycle with reheat for turbine stage moisture control. The model assumes heat is supplied from a lithium heat transport loop. The model does not include a heat source or a condenser/heat rejection system model. These must be supplied by the user.

Johnson, G.A.

1993-09-01T23:59:59.000Z

183

An introduction to the Kalina cycle  

SciTech Connect (OSTI)

This paper is intended as a primer on the Kalina cycle--a novel, efficient power cycle that uses an ammonia-water mixture as the working fluid. The reader needs no more than a basic understanding of conventional water based Rankine cycle power plants to comprehend the basic thermodynamics, principles and arrangements of Kalina cycle power plants presented in this paper. The Kalina cycle is principally a modified Rankine cycle. The transformation starts with an important process change to the Rankine cycle--changing the working fluid in the cycle from a pure component (typically water) to a mixture of ammonia and water. The modifications that complete the transformation of the cycle from Rankine to Kalina consist of proprietary system designs that specifically exploit the virtues of the ammonia-water working fluid. These special designs, either applied individually or integrated together in a number of different combinations, comprise a family of unique Kalina cycle systems. This is somewhat analogous to the Rankine cycle which, in fact, has many design options such as reheat, regenerative heating, supercritical pressure, dual pressure, etc. all of which can be applied in a number of different combinations in a particular plant.

Micak, H.A.

1996-12-31T23:59:59.000Z

184

C-CAMP, A closed cycle alkali metal power system  

SciTech Connect (OSTI)

A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

Wichner, R.P.; Hoffman, H.W.

1988-01-01T23:59:59.000Z

185

Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry  

SciTech Connect (OSTI)

The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

1980-01-31T23:59:59.000Z

186

Performance prediction of micro-CHP systems using simple virtual operating cycles  

Science Journals Connector (OSTI)

Abstract This paper presents a general methodology to roughly estimate in advance the actual performance of ?-CHP (micro Combined Heat and Power) systems in one year of operation, by means of limited information on the CHP prime mover efficiency and emission factors in selected set points and by means of a simplified prediction model of the operating cycle. The carried out analysis has been applied to several market-available and under development ?-CHP units of different technologies (Internal Combustion Engines, Micro Gas Turbines, Organic Rankine Cycles, Stirling, Thermo Photo Voltaic, Fuel Cell), operated under a hypothetical virtual operating cycle. The virtual cycle is obtained in this paper on the basis of the year thermal demand of a domestic user, assuming thermal load following of the CHP system. The methodology can be generalized to different applications and different management logics of the CHP system.

M. Bianchi; A. De Pascale; F. Melino; A. Peretto

2014-01-01T23:59:59.000Z

187

Comparative study of power and water cogeneration systems  

Science Journals Connector (OSTI)

The performance of three combined systems using reverse osmosis to produce drinkable water and a Rankine cycle which produces mechanical power have been analyzed and compared. The RO subsystem incorporates a power recovery unit (a hydraulic turbine in the first two cases and a pressure exchange unit in the third case). The coupling between the RO and Rankine subsystems is only mechanical in the first case (the Rankine cycle provides mechanical power to the pumps of the RO subsystem), while in the two other cases the coupling is both mechanical and thermal (the heat rejected by the condenser of the Rankine cycle is transferred to the seawater). The minimum values of the Rankine cycle mass ratio for the three systems and the maximum operating temperature for the two last systems have been established. Energy and exergy efficiencies are also compared for identical entering parameters.

N. Bouzayani; N. Galanis; J. Orfi

2007-01-01T23:59:59.000Z

188

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network [OSTI]

. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW...

Meacher, J. S.

1981-01-01T23:59:59.000Z

189

A novel 2kWe biomass-organic rankine cycle micro cogeneration system.  

E-Print Network [OSTI]

??Energy is potentially at the hub of modern civilization and right from Industrial Revolution, technology has refined and redefined the way we use energy; but… (more)

Daminabo, Ferdinand Frank Oko

2009-01-01T23:59:59.000Z

190

Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

191

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network [OSTI]

ed version is the organic rankine cycle (ORC). In this caseUsing High-Speed Organic Rankine Cycle (ORC). International

2012-01-01T23:59:59.000Z

192

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama…

2007-01-01T23:59:59.000Z

193

Optimization of Fog Inlet Air Cooling System for Combined Cycle Power Plants using Genetic Algorithm  

Science Journals Connector (OSTI)

Abstract In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year.

Mehdi A. Ehyaei; Mojtaba Tahani; Pouria Ahmadi; M. Esfandiari

2014-01-01T23:59:59.000Z

194

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect (OSTI)

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

195

Design and evaluation of a nuclear-electric hybrid power/propulsion system  

E-Print Network [OSTI]

INTRODUCTION Page Motivation Literature Search Contributions. . . . . . . Organization of the Thesis II SYSTEM DESCRIPTION AND MODELING Conventional Cycles Hybrid Cycle Cycle Components System Integration 6 10 10 29 III TRAJECTORY MODEL . 33 IV... investigating and comparing various closed and open cycles. El ? Genk et al. ' have investiga, ted three different cycles: A potassium Rankine cycle, a. closed and an open Brayton cycle. These systems v'ere optimized for a power level of 160 MWe and compared...

Keil, Ralph

2012-06-07T23:59:59.000Z

196

Value analysis of advanced heat rejection systems for geothermal power plants  

SciTech Connect (OSTI)

A computer model is developed to evaluate the performance of the binary geothermal power plants (Organic Rankine Cycles) with various heat rejection systems and their impact on the levelized cost of electricity. The computer model developed in this work is capable of simulating the operation of a geothermal power plant which consists mainly of an Organic Rankine Cycle (binary plants) with different types of working fluids such as pure hydrocarbons and some binary mixtures of the most promising combinations of hydrocarbons.

Bliem, C. [CJB Consulting, Longmont, CO (United States); Zangrando, F.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1996-04-10T23:59:59.000Z

197

Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles  

Science Journals Connector (OSTI)

Abstract In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range.

Giovanni Manente; Andrea Lazzaretto

2014-01-01T23:59:59.000Z

198

Nuclear Fuel Cycle Integrated System Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

199

Variable pressure power cycle and control system  

DOE Patents [OSTI]

A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

Goldsberry, Fred L. (Spring, TX)

1984-11-27T23:59:59.000Z

200

Full Fuel-Cycle Comparison of Forklift Propulsion Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Full Fuel-Cycle Comparison of Forklift Propulsion Systems Full Fuel-Cycle Comparison of Forklift Propulsion Systems This report examines forklift propulsion systems and addresses...

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801  

SciTech Connect (OSTI)

S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W. [Chinese Academy of Science, Beijing (China)

2008-09-15T23:59:59.000Z

202

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

203

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

Lim, Hyuck

2011-01-01T23:59:59.000Z

204

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

205

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

206

Performance of a 5 kWe Solar-only Organic Rankine Unit Coupled to a Reverse Osmosis Plant  

Science Journals Connector (OSTI)

Abstract Organic Rankine Cycle (ORC) systems are one of the most promising energy conversion technologies available for remote areas and low temperature energy sources. An ORC system works like a conventional Rankine cycle but it uses an organic compound as working fluid, instead of water. A small ORC unit coupled with a solar thermal energy system could be used to convert solar thermal energy into electricity in remote areas, offering an alternative to Photovoltaic (PV) systems to provide the energy required by desalination applications like reverse osmosis (RO). In this work an analysis of the performance of a specific solar desalination ORC system at part load operation is presented, in order to understand its behavior from a thermodynamic perspective and be able to predict the total water production with changing operation conditions. The results showed that water production is around 1.2 m3/h, and it is stable during day and night thanks to the thermal storage and only under bad irradiance circumstances the production would stop.

M. Ibarra; A. Rovira; D.C. Alarcón-Padilla; G. Zaragoza; J. Blanco

2014-01-01T23:59:59.000Z

207

Evaluation of Brayton and Rankine alternatives for diesel waste heat exploitation  

SciTech Connect (OSTI)

A diesel engine may produce exhaust-gas thermal energy in excess of that needed for turbocharging. Alternatives for exploitation of the energy by producing work may be direct expansion through a gas turbine (completing a Brayton cycle that begins with the engine's compression and combustion), or transfer of heat into a Rankine cycle. It is demonstrated that either alternative may have a domain in which it is superior in work done, or in exhaust volume per unit mass of diesel exhaust. Computation models are developed and demonstrated for finding the boundaries along which the Rankine and Brayton alternatives have equal merit in either work or exhaust volume.

Woodward, J.B. (Univ. of Michigan, Ann Arbor, MI (United States). Naval Architecture and Marine Engineering)

1994-01-01T23:59:59.000Z

208

Enhancement of combined cycle performance using transpiration cooling of gas turbine blades with steam  

Science Journals Connector (OSTI)

Gas/steam combined cycle is synergetic combination of Brayton cycle based topping cycle and Rankine cycle based bottoming cycle, which have capability of operating independently too. Combined cycle performance de...

Sanjay Kumar; Onkar Singh

2014-06-01T23:59:59.000Z

209

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

210

SOFC combined cycle systems for distributed generation  

SciTech Connect (OSTI)

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

211

Studies on Integrated Management and Technology System of Cycling Logistics  

Science Journals Connector (OSTI)

The frame on integrated management system of cycling logistics is constructed. The content, function, structure, realization process, operation model of the business and technical systems that consist of cycling logistics integrated management are preliminarily ... Keywords: Cycling Logistics, integrated management, technology System, Service System

Huan Zhang; Zhong Cheng; Yi Lu

2008-10-01T23:59:59.000Z

212

Asymptotic Stability of Heteroclinic Cycles in Systems with Symmetry, II  

E-Print Network [OSTI]

Asymptotic Stability of Heteroclinic Cycles in Systems with Symmetry, II Martin Krupa #3; Ian heteroclinic cycles that persist under perturbations that respect the symmetry. In previous work, we began a system- atic investigation into the asymptotic stability of such cycles. In particular, we found a su

213

High power density propulsion/power system for underwater applications  

SciTech Connect (OSTI)

This patent describes a drive system for an underwater vehicle utilizing open Rankine thermodynamic cycle system having water as working fluid; steam generation means for receiving the working fluid and converting the working fluid to steam; an energy converter adapted to receive the steam and drive a propulsion means; a mixing condenser adapted to receive the steam exits the energy converter and condense the steam to a liquid; means for introducing water into the mixing condensers from a source external to the Rankine cycle, the water mixing with the working fluid to form mixed work fluid.

Blau, A.

1992-06-02T23:59:59.000Z

214

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems  

Science Journals Connector (OSTI)

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems ... The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. ... The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. ...

H. Christopher Frey; Yunhua Zhu

2006-02-02T23:59:59.000Z

215

Code Snippets Justin A. Roman, Tanisha Rankin,  

E-Print Network [OSTI]

Code Snippets Justin A. Roman, Tanisha Rankin, Grae Cullen, and Paul Wolfgang Fall Semester 2008 coding techniques. Professors will be allowed to assign pre-defined problems which will be listed will save, compile, run, and check the method. Pre-defined test cases will determine the validity

Wolfgang, Paul

216

A novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi, Christopher S. Lynch, and Laurent Pilona)  

E-Print Network [OSTI]

organic Rankine cycles,3 and thermoelectric devices.4,5 Stirling engines and organic Rankine cyclesA novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi) This paper demonstrates a new power cycle for direct conversion of mechanical energy into electrical energy

Pilon, Laurent

217

Supercritical Water Reactor Cycle for Medium Power Applications  

SciTech Connect (OSTI)

Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

BD Middleton; J Buongiorno

2007-04-25T23:59:59.000Z

218

Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC  

Science Journals Connector (OSTI)

This paper presents thermodynamic investigation and environmental consideration of combined Stirling-organic Rankine cycle (ORC) power cycle. Combined cycle can be assisted by solar energy and ... side heat rejec...

Mohammad Bahrami; Ali A Hamidi…

2013-02-01T23:59:59.000Z

219

Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems  

Science Journals Connector (OSTI)

Abstract In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ?20% 235U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ?6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles.

S.F. Ashley; B.A. Lindley; G.T. Parks; W.J. Nuttall; R. Gregg; K.W. Hesketh; U. Kannan; P.D. Krishnani; B. Singh; A. Thakur; M. Cowper; A. Talamo

2014-01-01T23:59:59.000Z

220

Life-Cycle Assessment of Electric Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life-Cycle Assessment of Electric Power Systems Life-Cycle Assessment of Electric Power Systems Title Life-Cycle Assessment of Electric Power Systems Publication Type Journal Article Year of Publication 2013 Authors Masanet, Eric R., Yuan Chang, Anand R. Gopal, Peter H. Larsen, William R. Morrow, Roger Sathre, Arman Shehabi, and Pei Zhai Journal Annual Review of Environment and Resources Volume 38 Date Published 2013 Keywords electricity, energy policy, environmental analysis, life-cycle impact, life-cycle inventory Abstract The application of life-cycle assessment (LCA) to electric power (EP) technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts. While LCA is an evolving methodology with a number of barriers and challenges to its effective use, LCA studies to date have clearly improved our understanding of the life-cycle energy, GHG emissions, air pollutant emissions, and water use implications of EP technologies. With continued progress, LCA offers promise for assessing and comparing EP technologies in an analytically-thorough and environmentally-holistic manner for more robust deployment decisions. This article summarizes: (1) major challenges in applying LCA to EP technologies thus far, (2) LCA results to date on the various impacts of EP technologies, and (3) opportunities for improving LCAs as applied to EP technologies moving forward.

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of...  

Office of Environmental Management (EM)

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive...

222

Models for multimegawatt space power systems  

SciTech Connect (OSTI)

This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

Edenburn, M.W.

1990-06-01T23:59:59.000Z

223

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

224

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

225

title Life Cycle Assessment of Electric Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems journal Annual Review of Environment and Resources volume year month abstract p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy GHG emissions air pollutant emissions and water use implications of EP technologies With continued progress LCA offers promise for assessing and comparing EP technologies in an analytically thorough and environmentally holistic manner for more robust deployment

226

Advanced Open-Cycle Desiccant Cooling System  

E-Print Network [OSTI]

The concept of staged regeneration as means of improving the desiccant cooling system performance is the subject of investigation in this study. In the staged regeneration, the regeneration section of desiccant dehumidifier is divided into two parts...

Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

1989-01-01T23:59:59.000Z

227

Life-Cycle Cost Analysis for Condensate Receiving System  

SciTech Connect (OSTI)

The purpose of this analysis is to determine the life-cycle costs of several options relevant to the Condensate Removal System serving the Compressed Air System (CAS) at the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facility (ESF). The best option (least present value) will be selected as the preferred configuration to construct.

C Mellen

1995-01-18T23:59:59.000Z

228

A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam  

SciTech Connect (OSTI)

This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

Jaffe, L.D.

1988-11-01T23:59:59.000Z

229

Organic Rankine Cycle Turbine for Exhaust Energy Recovery in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increase Efficiency in Gasoline Powertrains Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Achieving High Efficiency at 2010 Emissions...

230

Implementation of an organic rankine cycle in a biorefinery concept:.  

E-Print Network [OSTI]

??A bio-refinery concept was defined with the Aspen software. This bio-refinery concept turns water hyacinth into furfural and syngas. Biomass undergoes a hydrolysis at 180ºC… (more)

Chognot, E.

2013-01-01T23:59:59.000Z

231

Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle.  

E-Print Network [OSTI]

?? A turbine was investigated by various methods of calculating its efficiency. The project was based on an existing impulse turbine, a one-stage turbine set… (more)

Dahlqvist, Johan

2012-01-01T23:59:59.000Z

232

Working Fluids for Organic Rankine Cycles Comparative Studies  

Science Journals Connector (OSTI)

The paper presents a comparison between working fluids selection using energy and exergy analysis to recover waste heat from Diesel engine (DE). This study involves the use of a 40 kW Diesel engine with basic con...

Mahdi Hatf Kadhum Aboaltabooq; Horatiu Pop…

2014-01-01T23:59:59.000Z

233

Life Cycle Assessment for Sustainable Metropolitan Water Systems Planning  

Science Journals Connector (OSTI)

Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. ... Water systems supply additional functions includ ing the following:? (1) nutrient recovery ? the treatment and land application of biosolids brings back the nutrients to the natural cycle in agriculture, horticulture, and forest systems, which can prevent the need for chemical fertilizers and thus avoid their production; (2) energy recovery ? which can include the generation of electricity or the cogeneration of thermal energy and electricity from biogas at sewage treat ment plants (STPs) or biosolids combustion off-site [This generation activity replaces the production of electrical and thermal energy from other energy sources.]; ...

Sven Lundie; Gregory M. Peters; Paul C. Beavis

2004-05-21T23:59:59.000Z

234

Rankin, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rankin, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.412569°, -79.879216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.412569,"lon":-79.879216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

High-speed thermal cycling system and method of use  

DOE Patents [OSTI]

A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

Hansen, A.D.A.; Jaklevic, J.M.

1996-04-16T23:59:59.000Z

236

High-speed thermal cycling system and method of use  

DOE Patents [OSTI]

A thermal cycling system and method of use are described. The thermal cycling system is based on the-circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate microtiter plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 .mu.l of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded.

Hansen, Anthony D. A. (Berkely, CA); Jaklevic, Joseph M. (Lafayette, CA)

1996-01-01T23:59:59.000Z

237

Fuel Cell Power SystemFuel Cell Power System May 21, 2003  

E-Print Network [OSTI]

/ Commercial / Industrial Transportation Fleet Vehicles Automotive Fuel Cell Microturbine Organic Rankine Cycle · Technical Goals and Objectives · Organization and Team Structure · Background and Program Overview

238

Process Systems Engineering Optimal Synthesis of Refrigeration Cycles  

E-Print Network [OSTI]

Process Systems Engineering Optimal Synthesis of Refrigeration Cycles and Selection of Refrigerants, University Park, PA 16802 The optimal synthesis of the refrigeration configuration and the selection of the best refrigerants that satisfy a set of process cooling duties at different temperatures is ad- dressed

Maranas, Costas

239

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

240

Sundstrand waste heat recovery system  

SciTech Connect (OSTI)

The two programs discussed in this report deal with the use of organic Rankine cycle systems as a means of producing electrical or mechanical power from energy in industrial processes' exhaust. Both programs deal with the design, development, demonstration, and economic evaluation of a 600kWe organic Rankine cycle system designed to recover energy from the exhaust of industrial processes with exhaust gas temperatures of 600/sup 0/F or above. The work done has, through the successful operation of the units installed, demonstrated the technical feasibility of utilizing an organic Rankine cycle bottoming system as a means of conserving energy through waste heat utilization. Continued operation at several sites has also demonstrated the soundness of the design, overall system reliability, and low operating cost. In addition, the basis under which this technology is economically viable in industrial applications was established. As a result of market studies and experience gained from the application of the units addressed in this report, it is concluded that there is a significant market for the equipment at the installed cost level of $1200/kWe to $1500/kWe and that this goal is achievable in the proper manufacturing environment. 54 figs., 2 tabs.

Not Available

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Full Fuel-Cycle Comparison of Forklift Propulsion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full Fuel-Cycle Comparison Full Fuel-Cycle Comparison of Forklift Propulsion Systems ANL/ESD/08-3 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 reports@adonis.osti.gov Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

242

Life Cycle Assessment of Amonix 7700 HCPV Systems  

SciTech Connect (OSTI)

We estimated the energy payback time (EPBT) and greenhouse gas emissions (GHGs) in the life cycle of the Amonix high-concentration photovoltaic (HCPV) system with III-V solar cells. For a location in the southwest United States, the Amonix 7700 has an EPBT of only 0.86 yrs and GHG emissions of 24g CO{sub 2}-eq./kWh we expect further decreases in both by 2011.

Fthenakis, V.; Kim, H.

2010-04-07T23:59:59.000Z

243

Equitable specialized block-colourings for 4-cycle systems - II  

Science Journals Connector (OSTI)

A block-colouring of a 4-cycle system (X,B) of order v=1+8k is a mapping @f:B->@D, where @D is a set of colours. A partition of degree r into s parts defines a colouring of type s in which the blocks containing a vertex x are coloured exactly with s ... Keywords: Block-colorings, G-decomposition, Graph

Mario Gionfriddo, Giorgio Ragusa

2010-07-01T23:59:59.000Z

244

Dynamic response of Earth's magnetosphere to By reversals K. Kabin, R. Rankin, and R. Marchand  

E-Print Network [OSTI]

Dynamic response of Earth's magnetosphere to By reversals K. Kabin, R. Rankin, and R. Marchand Citation: Kabin, K., R. Rankin, R. Marchand, T. I. Gombosi, C. R. Clauer, A. J. Ridley, V. O. Papitashvili

Michigan, University of

245

Life Cycle Analysis of wind–fuel cell integrated system  

Science Journals Connector (OSTI)

After ratification of the Kyoto Protocol, Canada’s Kyoto greenhouse gas (GHG) emission target is 571 Mt of CO2 equivalent emitted per year by 2010; however, if current emission trends continue, a figure of 809 Mt is projected by 2010 (Cote C. Basic of clean development mechanism—joint implementation and overview of CDM project cycle, 2003 regional workshop on CDM-JI, February 2003, Halifax). This underscores the need for additional reduction of 240 Mt. The Federal Government Action Plan 2000 aims to reduce this gap from 240 to 65 Mt (Cote C. Basic of clean development mechanism—joint implementation and overview of CDM project cycle, 2003 regional workshop on CDM-JI, February 2003, Halifax). In order to accomplish this goal, renewable energy use in all sectors will be required, and this type of energy is particularly applicable in power generation. Traditional power generation is a major source of greenhouse gas (GHG) emissions after industrial and transportation sectors (Environment Canada. Canada’s Greenhouse Gas Inventory 1990–1998. Final submission to the UNFCCC Secretariat, 2002 [Available from: http://www.ec.gc.ca/climate/resources_reportes-e.html]. Although wind energy, solar power and other forms of renewable energy are non-GHG emitting in their operation, there are GHG emissions in their different stages of life cycle (i.e. material extraction, manufacturing, construction and transportation, etc.). These emissions must be accounted for in order to assess accurately their capacity to reduce GHG emission and meet Kyoto targets. The current trend in electricity generation is towards integrated energy systems. One such proposed system is the wind–fuel cell integrated system for remote communities. This paper presents a detailed Life Cycle Analysis of the wind–fuel cell integrated system for application in Newfoundland and Labrador. The study confirms that wind–fuel integrated system is a zero emission system while in operation. There are significant emissions of \\{GHGs\\} during the production of the various components (wind turbine, fuel cell and electrolyzer). However, the global warming potential (GWP) of wind-integrated system is far lower (at least by two orders of magnitude) than the conventional diesel system, presently used in remote communities.

Faisal I. Khan; Kelly Hawboldt; M.T. Iqbal

2005-01-01T23:59:59.000Z

246

Life-Cycle Assessment of Electric Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life-Cycle Life-Cycle Assessment of Electric Power Systems Eric Masanet, 1 Yuan Chang, 1 Anand R. Gopal, 2 Peter Larsen, 2,3 William R. Morrow III, 2 Roger Sathre, 2 Arman Shehabi, 2 and Pei Zhai 2 1 McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208; email: eric.masanet@northwestern.edu, yuan.chang@northwestern.edu 2 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; email: argopal@lbl.gov, wrmorrow@lbl.gov, rsathre@lbl.gov, ashehabi@lbl.gov, pzhai@lbl.gov 3 Management Science and Engineering Department, Stanford University, Stanford, California 94305; email: phlarsen@lbl.gov Annu. Rev. Environ. Resour. 2013. 38:107-36 First published online as a Review in Advance on August 7, 2013 The Annual Review of Environment and Resources is online at http://environ.annualreviews.org

247

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

248

Electrical energy storage systems: A comparative life cycle cost analysis  

Science Journals Connector (OSTI)

Abstract Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. lead–acid, NaS, Li-ion, and Ni–Cd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

Behnam Zakeri; Sanna Syri

2015-01-01T23:59:59.000Z

249

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

250

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine.  

E-Print Network [OSTI]

??This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study… (more)

Duong, Tai Anh

2011-01-01T23:59:59.000Z

251

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect (OSTI)

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

252

Brayton-Cycle Baseload Power Tower CSP System  

SciTech Connect (OSTI)

The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

Anderson, Bruce

2013-12-31T23:59:59.000Z

253

Life Cycle Assessment of Wastewater Systems:? Influence of System Boundaries and Scale on Calculated Environmental Loads  

Science Journals Connector (OSTI)

Life cycle assessment (LCA) methodology was used to compare the environmental loads from wastewater systems with different technical solutions. ... The separation systems outperformed the conventional systems by showing lower emissions to water and more efficient recycling of nutrients to agriculture, especially of nitrogen but also of phosphorus. ...

Margareta Lundin; Magnus Bengtsson; Sverker Molander

1999-12-02T23:59:59.000Z

254

ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles  

Broader source: Energy.gov [DOE]

System-level models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles.

255

Full Fuel-Cycle Comparison of Forklift Propulsion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401

256

Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using  

E-Print Network [OSTI]

1 Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle-based Integrated Gasification Combined Cycle (IGCC) system using ASPEN. ASPEN is a steady-state chemical process-flow Integrated Gasification Combined Cycle (IGCC) system. This study aims at developing a base case analysis

Frey, H. Christopher

257

Overview of international R and D programs on ORC systems  

SciTech Connect (OSTI)

The use of organic fluids in Rankine cycles has the potential for economically generating electric power from waste heat sources at lower temperatures than would be practical using steam systems. This paper reviews the current status of organic Rankine cycle (ORC) research and development in the United States, Europe, and Japan. Some of the problems being addressed are optimal working fluid selection, design of the nozzle/turbine assembly, and design of the vaporizer. Commercially available ORC engines range in size from 300 kW to 1,500 kW, while demonstration units start in the 30-40 kW range. Most applications to date have utilized the waste heat available in the exhaust gas of diesel engines and oil refinery furnaces. Although the focus of R and D work to date has been the technological aspects of ORCs, the economics must also be proven attractive if the systems are to penetrate the market.

Streicher, A.; Kapner, M.

1982-08-01T23:59:59.000Z

258

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005  

SciTech Connect (OSTI)

The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model. (5) Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

Kelly, B.

2006-07-01T23:59:59.000Z

259

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

260

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike…

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy  

Science Journals Connector (OSTI)

Abstract Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction.

Kyoung Hoon Kim; Kyung Chun Kim

2014-01-01T23:59:59.000Z

262

Knowledge-information autopoietic cycle: towards the wisdom systems  

Science Journals Connector (OSTI)

Decision-making processes are characterised by purposeful coordination of interrelated activities of pre-decision, decision and post-decision stages. In this sense, human decision-making processes require explicit knowledge generation, enhancement and renewal. So far, the areas of decision-making have remained mostly free of knowledge and knowledge management, process orientation and autopoiesis and self-producing cycles in general. Yet, in this paper, we move further ahead. The transition from information to knowledge is still going on and much remains to be accomplished, but the next transition â?? from knowledge to wisdom â?? is already taking shape. We formulate clear, unambiguous and pragmatic definitions and distinctions of knowledge and information, establish simple and natural measures of the value of knowledge and describe the knowledge-information autopoietic cycle A-C-I-S and its circulatory nature in managing knowledge of the enterprise. Then we elaborate on the future evolution of knowledge management by discussing the outlines of wisdom, wisdom systems and the contours of the Wise Enterprise.

Milan Zeleny

2006-01-01T23:59:59.000Z

263

Fuel cycle analysis of once-through nuclear systems.  

SciTech Connect (OSTI)

Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

2010-08-10T23:59:59.000Z

264

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network [OSTI]

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system,… (more)

Chen, S

2011-01-01T23:59:59.000Z

265

Technoeconomic Analysis and Life Cycle Assessment of an Integrated Biomass Gasification Combined Cycle System  

Science Journals Connector (OSTI)

A biomass gasification combined-cycle power plant, consisting of a low pressure...®...Economic analyses were then performed to determine the levelized cost of electricity. The economic viability and efficiency of...

M. K. Mann; P. L. Spath

1997-01-01T23:59:59.000Z

266

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

267

Integration of coal utilization and environmental control in integrated gasification combined cycle systems  

Science Journals Connector (OSTI)

Integration of coal utilization and environmental control in integrated gasification combined cycle systems ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ...

H. Christopher Frey; Edward S. Rubin

1992-10-01T23:59:59.000Z

268

Life Cycle Exergy Analysis of Wind Energy Systems.  

E-Print Network [OSTI]

?? Wind power capacity is currently growing fast around the world. At the same time different forms of life cycle analysis are becoming common for… (more)

Davidsson, Simon

2011-01-01T23:59:59.000Z

269

Magnesium energy cycle system for the power product  

Science Journals Connector (OSTI)

The energy storage of solar radiation with magnesium as an energy reservoir is proposed for renewable energy cycle. Magnesium reaction with water generating hydrogen and residual...

Sakurai, Yasutaka; Yabe, Takashi; Ikuta, Kazunari; Ishioka, Manabu; Ogata, Yoichi; Sato, Yuji

2007-01-01T23:59:59.000Z

270

Rankin County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rankin County, Mississippi: Energy Resources Rankin County, Mississippi: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2653668°, -89.9253233° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2653668,"lon":-89.9253233,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

A thermodynamics based analysis of exergy destruction in vapor compression cycle systems.  

E-Print Network [OSTI]

??In the last few decades, vapor-compression cycle systems (VCSs) have undergone many advances in actuation, allowing for variable aperture valves, variable speed compressors, and variable… (more)

Kania, Megan

2013-01-01T23:59:59.000Z

272

E-Print Network 3.0 - advanced-cycle systems final Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

instruction; eventqueue.advance(cyclesconsumed); eventqueue.advance(cycles... goal of simulation is to enable rapid exploration and validation of system designs before...

273

E-Print Network 3.0 - annual cycle energy system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Summary A new type of microelectromechanical system (MEMS ) high efficiency heat energy converter... the energy generation cycle with minimal power loss, leading to...

274

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Systems for Industrial Waste Heat Recovery. c DanielCycle for Cement Kiln Waste Heat Recovery Power Plants. ”and high temperature waste heat reclamation and solar

Ho, Tony

2012-01-01T23:59:59.000Z

275

System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)  

SciTech Connect (OSTI)

This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuel” cycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

2010-09-01T23:59:59.000Z

276

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

277

E-Print Network 3.0 - advanced potassium rankine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steam directly to the turbine; for this example, the pressure chosen matches the subcritical Rankine Source: Australian National University, Department of Engineering,...

278

Life Cycle environmental Assessment (LCA) of sanitation systems including sewerage: Case of vertical  

E-Print Network [OSTI]

Life Cycle environmental Assessment (LCA) of sanitation systems including sewerage: Case The article presents the application of Life Cycle Assessment (LCA) to a complete sanitation system including the sewer network. It first describes the LCA hypothesis which concerns two types of waste water

Paris-Sud XI, Université de

279

Description of Transmutation Library for Fuel Cycle System Analyses  

SciTech Connect (OSTI)

This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo-Ru-Rh-Pd-other, four other specific TM isotopes, and TM-other. Mo-Ru-Rh-Pd are separated because their content constrains the loading of waste in glass, so we have to know the mass of those elements independent of others. • Rules for collapsing long lists of isotopes (~1000) to the 81 items in the library. For each tracked isotope, we define which short-lived isotopes’ mass (at t=0) is included with the mass of the tracked isotope at t=0, which short-lived radioactive progeny must be accounted for when the tracked isotope decays, and to which of the other 80 items the mass of the tracked isotope goes when it decays. • Explanation of where raw data files can be found on the fuel cycle data portal. • Explanation of generic cross section sets • Explanation of isotope-specific parameters such as heat and dose conversion factors • Explanation of the LWR UOX burnup and FR TRU CR correlations.

Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

2010-08-01T23:59:59.000Z

280

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Broader source: Energy.gov (indexed) [DOE]

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

cycle impacts and costs of photovoltaic systems: currentcosts: 2004early 2005 status. Progress in Photovoltaicphotovoltaic systems often do not consider panel installation, even though it is a major component of their financial cost.

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

282

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

283

Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle  

E-Print Network [OSTI]

TOTAL QUALITY COMMISSIONING FOR HVAC SYSTEMS TO ASSURE HIGH PERFORMANCE THROUGHOUT THE WHOLE LIFE CYCLE By: Grahame E. Maisey, P.E., and Beverly Milestone, LEED AP Building Services Consultants INTRODUCTION Current HVAC systems... are not coming close to approaching life cycle performance expectations for energy, operation and maintenance, occupant comfort and productivity and longevity. HVAC systems in buildings claiming to be sustainable, with integrated, energy conscious design...

Maisey, G.; Milestone, B.

2005-01-01T23:59:59.000Z

284

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect (OSTI)

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

285

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

286

Simplified thermoeconomic approach to cost allocation in acombined cycle cogeneration and district energy system  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE May 1997 Major Subject: Mechanical Engineering SIMPLIFIED THERMOECONOMIC APPROACH TO COST ALLOCATION IN A COMBINED CYCLE COGENERATION AND DISTRICT ENERGY SYSTEM A Thesis By JASON GRAHAM FLEMING... (Member) Jerald Caton (Head of Department) May 1997 lviajor Sui&ject: lviechanical Engineering ABSTRACT Simplified Thermoeconomic Approach to Cost Allocation in a Combined Cycle Cogeneration and District Energy System. (May 1997) Jason Graham...

Fleming, Jason Graham

1997-01-01T23:59:59.000Z

287

Author's personal copy Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle  

E-Print Network [OSTI]

into electricity by means of an electrical generator or dynamo. Alternatively, organic Rankine cycles use organicAuthor's personal copy Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle heat harvesting Ferroelectric Olsen cycle a b s t r a c t This study was concerned with designing

Pilon, Laurent

288

Selective Exhaust Gas Recycle with Membranes for CO2 Capture from Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

The combination of the combustion turbine (Brayton cycle) and steam turbine (Rankine cycle) yields a combined cycle power plant with efficiencies as high as 50%–55% (compared to 35%–40% in a typical subcritical pulverized coal power plant). ... Of course, it is also possible to combine these designs so that both parallel and series membranes are used. ...

Timothy C. Merkel; Xiaotong Wei; Zhenjie He; Lloyd S. White; J. G. Wijmans; Richard W. Baker

2012-11-27T23:59:59.000Z

289

Optimization of Air Conditioning Cycling  

E-Print Network [OSTI]

Benchmark – Long Cycle .............................................................................................. 95 5.46 System Pressures and Temperatures – Valve Part Cycle Vs Benchmark – Long Cycle...

Seshadri, Swarooph

2012-10-19T23:59:59.000Z

290

Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped Robot  

E-Print Network [OSTI]

Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped Robot Ian A. Hiskens are illustrated using a com- pass gait biped robot example. 1 Introduction Hybrid systems are characterized a diverse range of application areas. Examples include power systems [1], robotics [2, 3], manufacturing [4

Hiskens, Ian A.

291

THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor  

E-Print Network [OSTI]

to protect information and information systems is to integrate security into every step of the system process that starts with the initiation, analysis, design, and implementation, and continues through general guide that helps organizations plan for and implement security throughout the SDLC. The revised

292

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

293

Production system improvement : floor area reduction and cycle time analysis  

E-Print Network [OSTI]

A medical device company challenged a research team to reduce the manufacturing floor space required for an occlusion system product by one third. The team first cataloged equipment location and size, detailed the processes ...

Peterson, Jennifer J. (Jennifer Jeanne)

2012-01-01T23:59:59.000Z

294

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

SciTech Connect (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

295

Stochastic Life-cycle Analysis of Deteriorating Infrastructure Systems and an Application to Reinforced Concrete Bridges  

E-Print Network [OSTI]

proposes RTLCA, a renewal theory based LCA model, to predict the life-cycle performance of deteriorating systems taking into account not only the life-time reliability but also the costs associated with operating a system. In addition, this research...

Ramesh Kumar, 1982-

2012-11-30T23:59:59.000Z

296

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

DL Chase and PT Kehoe, "GE Combined-Cycle Product Line andand W Stenze, "Combined Cycle Heat Recovery Optimization,"bottoming cycle FOR combined cycle power plants," Applied

Ho, Tony

2012-01-01T23:59:59.000Z

297

Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report  

SciTech Connect (OSTI)

The turbine tests and results for the Brayton cycle subatmospheric system (SAS) are summarized. A scaled model turbine was operated in the same environment as that which a full-scale SAS machine would experience from the hot effluent flue gas from a glass container furnace. The objective of the testing was to evaluate the effects of a simulated furnace flue gas stream on the turbine nozzles and blades. The following specific areas were evaluated: erosion of the turbine nozzles and blades from the dust in the flue gas, hot corrosion from alkali metal salts in the dust and acid vapor (sulfur trioxide and hydrogen chloride) in the flue gas, and fouling and flow blockage due to deposition and/or condensation from the flue gas constituents.

Burgmeier, L.; Leung, S.

1981-07-31T23:59:59.000Z

298

Open-Cycle Vapor Compression Heat Pump System  

E-Print Network [OSTI]

to the desired pressure level for process use. The compressor is driven by a gas turbine or gas engine prime mover. To enhance the system performance, the prime mover exhaust and/or cooling jacket heat is recovered to generate additional process steam or hot...

Pasquinelli, D. M.; Becker, F. E.

1983-01-01T23:59:59.000Z

299

Reducing Life Cycle Cost By Energy Saving in Pump Systems  

E-Print Network [OSTI]

Pumps consume about 15% of all electricity generated world wide. In the USA alone this accounts for over 130TWh per annum. A saving of only 1% would amount to $80 million in electricity cost. The importance of energy saving, in pump systems...

Bower, J. R.

300

Not All Salmon Are Created Equal: Life Cycle Assessment (LCA) of Global Salmon Farming Systems  

Science Journals Connector (OSTI)

Not All Salmon Are Created Equal: Life Cycle Assessment (LCA) of Global Salmon Farming Systems ... Life cycle assessment (LCA) is an ISO-standardized biophysical accounting framework used to (1) compile an inventory of material and energy inputs and outputs characteristic of each stage of a product life cycle and (2) quantify its contributions to a specified suite of resource use and emissions-related environmental impact categories (8, 9). ... System boundaries for a cradle-to-farm-gate LCA of live-weight salmon production in Norway, the UK, Canada, and Chile (gray font denotes background system data derived from the EcoInvent database, modified as appropriate to conform to regional conditions). ...

Nathan Pelletier; Peter Tyedmers; Ulf Sonesson; Astrid Scholz; Friederike Ziegler; Anna Flysjo; Sarah Kruse; Beatriz Cancino; Howard Silverman

2009-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network [OSTI]

and capacities for the centrifugal compressor in the aira double inlet to the centrifugal compressor or axial flowgreater than 70%) centrifugal compressors can be utilized

Leech, J.

2010-01-01T23:59:59.000Z

302

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network [OSTI]

Using these values of turbine efficiency. the values of pumpstudy. Values of turbine efficiency (.82) and COPvc (4.0)Below this capa- city, turbine efficiency falls off because

Leech, J.

2010-01-01T23:59:59.000Z

303

An integrated solar thermal power system using intercooled gas turbine and Kalina cycle  

Science Journals Connector (OSTI)

A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m2. Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area.

Shuo Peng; Hui Hong; Hongguang Jin; Zhifeng Wang

2012-01-01T23:59:59.000Z

304

Solar's combined-cycle system utilizes novel steam-generator concept  

SciTech Connect (OSTI)

As escalating fuel costs force equipment users to seek more efficient prime movers, the combined-cycle system will become increasingly attractive because it retains the advantages of simple-cycle gas turbines - low installation costs, high availability, low maintenance, and low emission levels - while adding 40% power output from the steam-based system operated on the turbine exhaust. Solar Turbines International has sought to develop an automated, remote-control combined-cycle system that can be easily retrofitted to existing simple-cycle power stations. The key component giving the system its advantages over the hazardous, complex steam-drum-type boiler systems is a once-through dual-pressure steam-generator device that eliminates the need for drums and elaborate control mechanisms. Forty identical parallel tube circuits suspended from a single frame are connected to common inlet and discharge manifolds; the individual circuits are made of dual high- and low-pressure bundles, with each bundle having economizer, vaporizer, and superheating sections. The 40 circuits comprise one complete steam-generator module core matrix. By injecting the superheated low-pressure steam into the latter stages of the steam turbine, the dual-pressure feature improves the heat recovery by more than 12% over conventional devices. The only water treatment that the corrosion-resistant tube material requires is the removal of dissolved solids.

Not Available

1980-06-01T23:59:59.000Z

305

Development of alternate extractant systems for fast reactor fuel cycle  

SciTech Connect (OSTI)

Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

2007-07-01T23:59:59.000Z

306

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network [OSTI]

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined… (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

307

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network [OSTI]

was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

308

Assessment of dynamic energy conversion systems for radioisotope heat sources  

SciTech Connect (OSTI)

The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

Thayer, G.R.; Mangeng, C.A.

1985-06-01T23:59:59.000Z

309

Effective hydrogen generation and resource circulation based on sulfur cycle system  

SciTech Connect (OSTI)

For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

2013-12-10T23:59:59.000Z

310

Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners  

E-Print Network [OSTI]

EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies... COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Dooley, Jeffrey Brandon

2005-02-17T23:59:59.000Z

311

Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China  

Science Journals Connector (OSTI)

Abstract This study performs a life-cycle assessment for a photovoltaic (PV) system with multi-crystalline silicon (multi-Si) modules in China. It considers the primary energy demand, energy payback time (EPBT), and environmental impacts, such as global warming potential and eutrophication, over the entire life cycle of the PV system, including the upstream process, ranging from silica extraction to the multi-Si purification, the midstream process, involving crystalline silicon ingot growth and wafering; and the downstream process, consisting of cell and module fabrication. The data were collected with recommendations provided by the ISO norms and acquired from typical PV companies in China. The results show that the most critical phase of life cycle of Chinese PV system was the transformation of metallic silicon into solar silicon, which was characterized by high electricity consumption, representing most of the environmental impact. The other electricity generation systems were compared to PV. Considering that Chinese electricity is mainly produced by coal-fired power plants, the installation of multi-Si PV systems is recommended over exporting them from China. Furthermore, being higher solar radiation areas, areas in western China, such as the Tibet Autonomous Region, northeastern Qinghai, and the western borders of Gansu, are best suited for the installation of the PV systems even if the long distance of transportation. Finally, recommendations were provided with respect to the sustainable development of the Chinese PV industry and environmental protection.

Yinyin Fu; Xin Liu; Zengwei Yuan

2014-01-01T23:59:59.000Z

312

9 - Hybrid fuel cell gas turbine (FC/GT) combined cycle systems  

Science Journals Connector (OSTI)

Abstract: Hybrid fuel cell gas turbine systems consisting of high-temperature fuel cells (HTFCs) integrated into cycles with gas turbines can significantly increase fuel-to-electricity conversion efficiency and lower emissions of greenhouse gases and criteria pollutants from the electric power sector. In addition, the separated anode and cathode compartments of the fuel cell can enable CO2 separation and sequestration for some cycle configurations. Hybrid fuel cell gas turbine technology has the potential to operate on natural gas, digester gas, landfill gas, and coal and biomass syngas. HTFC technologies are emerging with high reliability and durability, which should enable them to be integrated with gas turbine technology to produce modern hybrid power systems. Advanced thermodynamic and dynamic simulation capabilities have been developed and demonstrated to enable future system integration and control.

J. Brouwer

2012-01-01T23:59:59.000Z

313

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems  

Broader source: Energy.gov [DOE]

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

314

Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs  

SciTech Connect (OSTI)

The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

Haihua Zhao; Hongbin Zhang; Samuel E. Bays

2009-05-01T23:59:59.000Z

315

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network [OSTI]

the organic rankine cycle (ORC). In this case an organic ?temperature applications the ORC has more bene?ts than the117] demonstrated that the ORC-process can use the exhaust

2012-01-01T23:59:59.000Z

316

Packaging and deployment of a 5. 5 MWe potassium---Rankine nuclear electric propulsion spacecraft  

SciTech Connect (OSTI)

A design study was performed to investigate packaging and deployment options for the potassium---Rankine, nuclear electric propulsion (NEP) spacecraft described by Rovang (1992). The subject spacecraft is the cargo portion of a split-sprint (cargo/piloted) Mars mission, carrying 144 mt of cargo. Two parallel SP-100 type reactors, potassium---Rankine power conversion assemblies, and argon ion thrusters are utilized in the selected architecture. A spacecraft design and deployment approach which uses two heavy lift launch vehicles (HLLV) to insert the entire spacecraft into low Earth orbit is presented.

Rovang, R.D.; Marko, M. (Rockwell International, Rocketdyne Division, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-20T23:59:59.000Z

317

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cycle Analysis of Hydrogen-Powered Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million through FY08 * Funding received in FY07: $450k * Funding for FY08: $840k Budget * H2A team * PSAT team * NREL * Industry stakeholders Partners Timeline Barriers to Address 3 Objectives * Expand and update the GREET model for hydrogen production pathways and for applications of FCVs and other FC systems

318

TY JOUR T1 Life Cycle Assessment of Electric Power Systems JF Annual Review of Environment and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems JF Annual Review of Environment and Resources A1 Eric R Masanet A1 Yuan Chang A1 Anand R Gopal A1 Peter H Larsen A1 William R Morrow A1 Roger Sathre A1 Arman Shehabi A1 Pei Zhai KW electricity KW energy policy KW environmental analysis KW life cycle impact KW life cycle inventory AB p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy

319

Exergy Analysis of Scroll-Based Rankine Cycles with Various Working Fluids  

Science Journals Connector (OSTI)

In this study the possibility of converting scroll compressor into expander is investigated. Refrigeration equipment manufacturers produce scroll compressors massively for refrigeration and air conditioning appli...

E. Oralli; Ibrahim Dincer

2014-01-01T23:59:59.000Z

320

E-Print Network 3.0 - advanced rankine cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

two-tank molten... C. Figure 6. Temperature-entropy diagram for a reheat-regenerative subcritical ... Source: Australian National University, Department of Engineering, Solar...

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reduced gravity rankine cycle design and optimization with passive vortex phase separation  

E-Print Network [OSTI]

. Potential drawbacks to the technology in a reduced gravity environment include two-phase fluid management processes such as liquid-vapor phase separation. The most critical location for phase separation is at the boiler exit where only vapor must be sent...

Supak, Kevin Robert

2009-05-15T23:59:59.000Z

322

Some Alkali Metal Corrosion Effects in a Rankine Cycle Test Loop  

Science Journals Connector (OSTI)

A two-loop lithium-boiling potassium facility was constructed and tested at the Jet Propulsion Laboratory to simulate the major elements and working fluids of a two-loop, nuclear, turbo-plant concept of intere...

Wayne M. Phillips

1970-01-01T23:59:59.000Z

323

Optimisation criteria of a Rankine steam cycle powered by thorium HTR / Steven Cronier van Niekerk.  

E-Print Network [OSTI]

??HOLCIM has various cement production plants across India. These plants struggle to produce the projected amount of cement due to electricity shortages. Although coal is… (more)

Van Niekerk, Steven Cronier

2014-01-01T23:59:59.000Z

324

Influence of temperature difference calculation method on the evaluation of Rankine cycle performance  

Science Journals Connector (OSTI)

In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion (LTEC) is refocused as one of the renewable ...

Takafumi. Morisaki; Yasuyuki. Ikegami

2014-02-01T23:59:59.000Z

325

Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

326

The Conversion of Low-Grade Heat into Power Using Supercritical Rankine Cycles.  

E-Print Network [OSTI]

??Low-grade heat sources, here defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However,… (more)

Chen, Huijuan

2010-01-01T23:59:59.000Z

327

Optimal Organic Rankine Cycle Installation Planning for Factory Waste Heat Recovery  

Science Journals Connector (OSTI)

As Taiwan’s industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in...

Yu-Lin Chen; Chun-Wei Lin

2013-01-01T23:59:59.000Z

328

Optimisation of a Multi-Vane Expander as the Prime Mover in an Organic Rankine Cycle  

Science Journals Connector (OSTI)

This paper describes the research and development activities conducted by the Low-Grade Energy Group at Cranfield Institute of Technology in conjunction with Denco Air Ltd., Hereford, regarding the performance of...

P. W. O’Callaghan; Mohey Hussein…

1983-01-01T23:59:59.000Z

329

Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle  

Science Journals Connector (OSTI)

During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this stud...

Naser Shokati; Farzad Mohammadkhani; Navid Farrokhi…

2014-12-01T23:59:59.000Z

330

An investigation into the performance of a Rankine-heat pump combined cycle / Stephanus Phillipus Oelofse.  

E-Print Network [OSTI]

??The global growth in electricity consumption and the shortcomings of renewable electricity generation technologies are some of the reasons why it is still relevant to… (more)

Oelofse, Stephanus Phillipus

2012-01-01T23:59:59.000Z

331

Life cycle assessment of a community hydroelectric power system in rural Thailand  

Science Journals Connector (OSTI)

Rural electrification and the provision of low cost, low emission technology in developing countries require decision makers to be well informed on the costs, appropriateness and environmental credentials of all available options. While cost and appropriateness are often shaped by observable local considerations, environmental considerations are increasingly influenced by global concerns which are more difficult to identify and convey to all stakeholders. Life cycle assessment is an iterative process used to analyse a product or system. This study iteratively applies life cycle assessment (LCA) to a 3 kW community hydroelectric system located in Huai Kra Thing (HKT) village in rural Thailand. The cradle to grave analysis models the hydropower scheme’s construction, operation and end of life phases over a period of twenty years and includes all relevant equipment, materials and transportation. The study results in the enumeration of the environmental credentials of the HKT hydropower system and highlights the need to place environmental performance, and LCA itself, in a proper context. In the broadest sense, LCA results for the HKT hydropower system are found to reflect a common trend reported in hydropower LCA literature, namely that smaller hydropower systems have a greater environmentally impact per kWh – perform less well environmentally - than larger systems. Placed within a rural electrification context, however, the HKT hydropower system yields better environmental and financial outcomes than diesel generator and grid connection alternatives.

Andrew Pascale; Tania Urmee; Andrew Moore

2011-01-01T23:59:59.000Z

332

Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles  

Science Journals Connector (OSTI)

Selecting the best design options for turbo-expanders to be used in Organic Rankine Power Cycle applications is a difficult task, with special reference to the low-temperature applications (T turbo-expander efficiency. Referring to a radial-type turbo-expander, a comparison of different working fluids is presented and discussed.

Daniele Fiaschi; Giampaolo Manfrida; Francesco Maraschiello

2012-01-01T23:59:59.000Z

333

Electricity generation from coal with CO2 capture by means of a novel power cycle  

SciTech Connect (OSTI)

Climate modelers have estimated that anthropogenic emissions of CO2 must be reduced substantially from the present rate to stabilize atmospheric concentration. To achieve this, electricity generation from fossil fuels with CO2 capture and direct sequestration may play an important role. If so, it will be worthwhile to consider power cycles that are designed to minimize atmospheric CO2 emissions and deliver CO2 ready for pipeline transport in addition to providing other desirable attributes of environmental performance and efficiency. One such novel approach, named the Matiant cycle, employs self generated CO2 as the working fluid with both Bryton and Rankine cycle turbines. Process modeling studies are being conducted at the NETL to investigate the promise of this cycle. In the work to be reported, synthesis gas is provided to the Matiant cycle by oxygen-blown dry coal entrained gasification. Oxygen for both the gasifier and the Matiant cycle is provided by use of an Ion Transport Membrane (ITM). ITM is a revolutionary approach for producing high purity oxygen from a high temperature pressurized air stream. ASPEC Plus is used as the simulation tool to compute energy balances and system performance. Two flowsheets are analyzed, the difference being the treatment of the low oxygen content raffinate stream from the ITM. Computed thermal efficiencies of the ITM/Matiant cycle are comparable to those of conventional IGCC without carbon capture. Specific carbon emissions per net MWh are many times lower for the new cycle than for other approaches being developed for power generation with CO2 capture, however. As much as 99.5% of the carbon in synthesis gas fed to the Matiant cycle could be recovered and removed in a pipeline as a high pressure liquid. Such high capture efficiencies at large central generating stations could allow use of fossil fuels without capture at smaller installations or by mobile sources, yielding a modest overall rate of CO2 emissions.

Ruether, J.; Le, P.; White, C.

2000-07-01T23:59:59.000Z

334

Energy and Society (ER100/PP184/ER200/PP284) Fall 2013 Topics: Thermodynamics of energy systems; Power Loss; Peak Oil; Energy economics. Problem Set #3  

E-Print Network [OSTI]

newly built generators (940 Mwe total) are combined cycle (Brayton and Rankine cycles), whereas the difference between the Brayton Cycle and Combined Cycle and label all components. In thermodynamic terms the combined cycle generators. Assume that the performance of the gas turbines in these generators is the same

Kammen, Daniel M.

335

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

336

Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options  

SciTech Connect (OSTI)

In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

2013-01-01T23:59:59.000Z

337

Mobile DNA can drive lineage extinction in prokaryotic populations D. J. RANKIN* , M. BICHSEL* & A. WAGNER*  

E-Print Network [OSTI]

Mobile DNA can drive lineage extinction in prokaryotic populations D. J. RANKIN* , M. BICHSEL* & A of Bioinformatics, Quartier Sorge Ba^timent Ge´nopode, Lausanne, Switzerland Introduction Mobile genetic elements the individual or the population. Mobile genetic elements illustrate this principle well, because they can self

Rankin, Daniel

338

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

339

Development status of coal-fired gas heaters for Brayton-cycle cogeneration systems  

SciTech Connect (OSTI)

Under contract from the Department of Energy, Rocketdyne is developing the technology of coal-fired gas heaters for utilization in Brayton-cycle cogeneration systems. The program encompasses both atmospheric fluidized bed and pulverized coal combustion systems; and it is directed toward the development of gas heater systems capable of delivering high pressure air or helium at 1550 F, when employing metallic heat exchangers, and 1750 F, when employing ceramic heat exchangers. This paper reports on the development status of the program, with discussions of the completed ''screening'' corrosion/erosion tests of candidate heat exchanger materials, a description and summary of the operating experience with the 6- by 6-foot AFB test facility and a projection of the potential for relatively near term commercialization of such heater systems.

Gunn, S.V.; McCarthy, J.R.

1983-01-01T23:59:59.000Z

340

Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles  

E-Print Network [OSTI]

Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems.  

E-Print Network [OSTI]

??The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable… (more)

Ho, Tony

2012-01-01T23:59:59.000Z

342

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

FOR A COMBINED POWER AND COOLING CYCLE," University ofcycle for combined power and cooling using low and midS Lu, "Novel combined power and cooling thermodynamic cycle

Ho, Tony

2012-01-01T23:59:59.000Z

343

A building life-cycle information system for tracking building performance metrics  

SciTech Connect (OSTI)

Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1999-04-01T23:59:59.000Z

344

Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC)  

Science Journals Connector (OSTI)

Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is ...

Keith Lindsay; Gordon B. Bonan; Scott C. Doney; Forrest M. Hoffman; David M. Lawrence; Matthew C. Long; Natalie M. Mahowald; J. Keith Moore; James T. Randerson; Peter E. Thornton

2014-12-01T23:59:59.000Z

345

Economic analysis of community solar heating systems that use annual cycle thermal energy storage  

SciTech Connect (OSTI)

The economics of community-scale solar systems that incorporate a centralized annual cycle thermal energy storage (ACTES) coupled to a distribution system is examined. Systems were sized for three housing configurations: single-unit dwellings, 10-unit, and 200-unit apartment complexes in 50-, 200-, 400-, and 1000-unit communities in 10 geographic locations in the United States. Thermal energy is stored in large, constructed, underground tanks. Costs were assigned to each component of every system in order to allow calculation of total costs. Results are presented as normalized system costs per unit of heat delivered per building unit. These methods allow: (1) identification of the relative importance of each system component in the overall cost; and (2) identification of the key variables that determine the optimum sizing of a district solar heating system. In more northerly locations, collectors are a larger component of cost. In southern locations, distribution networks are a larger proportion of total cost. Larger, more compact buildings are, in general, less expensive to heat. For the two smaller-scale building configurations, a broad minima in total costs versus system size is often observed.

Baylin, F.; Monte, R.; Sillman, S.; Hooper, F.C.; McClenahan, J.D.

1981-02-01T23:59:59.000Z

346

Life cycle assessment of base-load heat sources for district heating system options  

SciTech Connect (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

347

System-of-systems iso-performance search to inform multi-actor policymaking to reduce aviation life cycle carbon emissions  

Science Journals Connector (OSTI)

This paper presents a system-of-systems formalism for modeling and analyzing multi-actor policymaking to achieve a global system objective. In contrast to a single optimal solution that aggregates objectives of actors, the concept of iso-performance ... Keywords: aviation life cycle emissions, iso-performance, multi-actor policymaking, system-of-systems

Datu B. Agusdinata; Daniel A. DeLaurentis

2009-10-01T23:59:59.000Z

348

A review of "Secrets and Knowledge in Medicine and Science, 1500-1800" edited by Elaine Leong and Alisha Rankin  

E-Print Network [OSTI]

of the view of musicians in the seventeenth and eighteenth centuries that do not necessarily re#24; ect a historical development. Elaine Leong and Alisha Rankin, eds. Secrets and Knowledge in Medicine and Science, 1500-1800. Farnham, England and Burlington... of the view of musicians in the seventeenth and eighteenth centuries that do not necessarily re#24; ect a historical development. Elaine Leong and Alisha Rankin, eds. Secrets and Knowledge in Medicine and Science, 1500-1800. Farnham, England and Burlington...

Kelter, Irving A.

2012-01-01T23:59:59.000Z

349

Model Development Development of a system emulating the global carbon cycle in Earth system models  

E-Print Network [OSTI]

developed a loosely coupled model (LCM) which can represent the outputs of a GCMbased Earth system model

K. Tachiiri; J. C. Hargreaves; J. D. Annan; A. Oka; A. Abe-ouchi; M. Kawamiya

2010-01-01T23:59:59.000Z

350

Thermodynamic analysis of a closed-cycle, solar gas-turbine plant  

Science Journals Connector (OSTI)

Thermodynamic analysis of a closed-cycle, Brayton gas-turbine plant with a heat exchanger powered by the sun has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage in places where water is scarce and expensive. A simple expression is derived for calculating the efficiency of the cycle in terms of the compression pressure ratio, the pressure loss coefficient and the ratio of the lower to higher temperature in the cycle with the efficiency of various components. The maximum permissible pressure loss coefficient has also been calculated.

P. Gandhidasan

1993-01-01T23:59:59.000Z

351

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents [OSTI]

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

352

Model predictive control system and method for integrated gasification combined cycle power generation  

SciTech Connect (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

353

Filter system cost comparison for integrated gasification combined cycle and pressurized fluidized-bed combustion power systems  

SciTech Connect (OSTI)

To assess the relative cost of components and sub-systems for a hot gas particulate cleanup system a cost comparison between the filter systems for two advanced coal-based power plants was conducted. Assessing component and sub-system costs permits the most beneficial areas for product improvement to be identified. The results from this study are presented. The filter system is based on a Westinghouse Advanced Particulate Filter Concept which is designed to operate with ceramic candle filters. The Foster Wheeler second Generation 453 MWe (net) Pressurized Fluidized-Bed Combustor (PFBC) and the KRW 458 MWe (net) Integrated Gasification Combined Cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost and the effect on the cost of electricity for the two filter systems. The most beneficial areas for product improvement are identified.

Dennis, R.A.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; Buchanan, T.; Chen, H.; Harbaugh, L.B.; Klett, M.; Zaharchuk, R. [Gilbert/Commonwealth, Reading, PA (United States)

1995-12-31T23:59:59.000Z

354

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell  

Science Journals Connector (OSTI)

Abstract This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Liqiang Duan; Jingnan Zhu; Long Yue; Yongping Yang

2014-01-01T23:59:59.000Z

355

Performance improvement options for the supercritical carbon dioxide brayton cycle.  

SciTech Connect (OSTI)

The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

2008-07-17T23:59:59.000Z

356

A Life Cycle Analysis System to Support D and D, Pollution Prevention, and Asset Recovery  

SciTech Connect (OSTI)

This paper describes a life cycle analysis system (LCAS) developed to support US Department of Energy (DOE) decision-making regarding deactivation and decommissioning (D and D), pollution prevention (P2), and asset recovery, and its deployment to analyze the disposition of facilities and capital assets. Originally developed for use at the Oak Ridge East Tennessee Technology Park, this approach has been refined through application at Ohio Operations Office sites and is now being deployed at a number of DOE sites. Programs such as National Metals Recycle, the D and D Focus Area, P2, and Asset Utilization are successfully using the system to make better decisions resulting in lower cost to the taxpayer and improved environmental quality. The LCAS consists of a user-friendly, cost-effective, and analytically-sound decision-aiding process and a complementary suite of automated tools to handle data administration and multiple criteria life cycle analysis (LCA). LCA is a systematic and comprehensive process for identifying, assessing, and comparing alternatives for D and D, P2, and asset recovery at government sites, and for selecting and documenting a preferred alternative. An LCA includes all of the impacts (benefits and costs) that result from a course of action over the entire period of time affected by the action. The system also includes visualizations that aid communication and help make decision-making transparent. The LCAS has three major components related to data collection, decision alternative assessment, and making the decisions. Each component is discussed in-depth using the example of deployment of the LCAS to support asset recovery.

Bishop, L.; Tonn, B.E.; Yuracko, K.L.

1999-02-28T23:59:59.000Z

357

Modular symbols for reductive groups and p-adic Rankin-Selberg convolutions over number fields  

E-Print Network [OSTI]

We give a construction of a wide class of modular symbols attached to reductive groups. As an application we construct a p-adic distribution interpolating the special values of the twisted Rankin-Selberg L-function attached to cuspidal automorphic representations of GL(n) and GL(n-1) over number fields. If the representations are ordinary at p, our distribution is bounded and gives rise to a p-adic L-function.

Januszewski, Fabian

2009-01-01T23:59:59.000Z

358

Connecting Atlantic temperature variability and biological cycling in two earth system models  

Science Journals Connector (OSTI)

Abstract Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.

Anand Gnanadesikan; John P. Dunne; Rym Msadek

2014-01-01T23:59:59.000Z

359

Waste heat recovery system for recapturing energy after engine aftertreatment systems  

SciTech Connect (OSTI)

The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

Ernst, Timothy C.; Nelson, Christopher R.

2014-06-17T23:59:59.000Z

360

DOE`s high performance power systems program: Development of advanced coal-fired combined-cycle systems  

SciTech Connect (OSTI)

Coal currently provides more than one third of the world`s electricity and more than one half of the US`s electricity. However, for coal to be the fuel of choice in the future, highly efficient, environmentally acceptable, and economically competitive, coal-fired power plants are needed. The US Department of Energy, Federal Energy Technology Center, under its High Performance Power Systems (HIPPS) Program, has two contracts in place, one with Foster Wheeler Development Corporation and one with United Technologies Research Center, to develop advanced power generation systems. Based on an indirectly fired cycle, HIPPS uses a combined cycle for power generation at efficiencies of 47--50% (HHV) with superior environmental performance (1/10 of New Source Performance Standards) and a lower cost-of-electricity (10% reduction relative to current coal-fired plants). HIPPS, scheduled to be ready for commercialization by the year 2005, could provide a solution to the anticipated worldwide demand for clean, efficient electricity generation. In this paper, the two HIPPS designs are reviewed and on-going research is discussed.

Ruth, L.; Plasynski, S.; Shaffer, F. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology  

Science Journals Connector (OSTI)

Abstract The huge amount of solar energy available on Earth?s surface has heightened awareness in Concentrating Solar Power, and more particularly in hybrid concepts. The integrated solar combined cycle system (ISCCS) is one of the more promising hybrid configurations for converting solar energy into electricity and it might become the technology of choice in the near future. This article reviews the R&D activities and published studies since the introduction of such a concept in the 1990s. The review includes the current status and describes different hybridizations of solar energy with natural gas, coal and other renewable energy sources. Furthermore, it provides in-depth analysis of real and expected R&D finding.

Omar Behar; Abdallah Khellaf; Kamal Mohammedi; Sabrina Ait-Kaci

2014-01-01T23:59:59.000Z

362

Thermodynamic modelling of three-stage combined cycle power systems utilising ammonia-water mixture as a working fluid in bottoming cycle  

Science Journals Connector (OSTI)

In this study, two three-stage combined power cycles with ammonia-water mixture in bottoming cycle are introduced; one with variable ammonia fraction and the other with constant ammonia fraction. Energy and exergy analyses are carried out and optimal parameters of the proposed cycles are compared with the conventional power cycles. The second law efficiency of three-stage cycles with variable and constant ammonia fraction are 4.71% and 5.15% higher than steam-gas combined power cycle, respectively. Exergy flow diagram for each cycle is presented and exergy destruction of all components is investigated. Results quantitatively highlight the thermodynamic advantages of the proposed cycles in comparison with the conventional cycles. Three-stage cycle with constant ammonia fraction has the best performance in comparison with the others.

Amin Momeni; Hossein Shokouhmand

2014-01-01T23:59:59.000Z

363

The Mass Tracking System for the Integral Fast Reactor fuel cycle  

SciTech Connect (OSTI)

As part of the Fuel Cycle Facility (FCF) of Argonne National Laboratory`s Integral Fast Reactor (IFR) demonstration, a computer-based Mass-Tracking (MTG) System has been developed. The MTG System collects, stores, retrieves and processes data on all operations which directly affect the flow of process material through FCF and supports such activities as process modeling, compliance with operating limits (e.g., criticality safety), material control and accountability and operational information services. Its architecture is client/server, with input and output connections to operator`s equipment-control stations on the floor of FCF as well as to terminal sessions. Its heterogeneous database includes a relational-database manager as well as both binary and ASCII data files. The design of the database, and the software that supports it, is based on a model of discrete accountable items distributed in space and time and constitutes a complete historical record of the material processed in FCF. Although still under development, much of the MTG System has been qualified and is in production use.

Adams, C.H.; Beitel, J.C.; Birgersson, G.; Bucher, R.G.; Carrico, C.B.; Daly, T.A. [Argonne National Lab., IL (United States); Keyes, R.W. [Argonne National Lab., Idaho Falls, ID (United States)

1994-07-01T23:59:59.000Z

364

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

365

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6  

SciTech Connect (OSTI)

The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

None

1980-01-01T23:59:59.000Z

366

Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems  

SciTech Connect (OSTI)

Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

1981-05-01T23:59:59.000Z

367

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

to Gas Turbines & Applications (Solar Turbines)," in EPAOptimization of gas-turbine combined cycles for solar energythree typical gas turbines. Reprinted from Solar Turbines

Ho, Tony

2012-01-01T23:59:59.000Z

368

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility… (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

369

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

370

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect (OSTI)

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

371

Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models  

Science Journals Connector (OSTI)

The authors assess the ability of 18 Earth system models to simulate the land and ocean carbon cycle for the present climate. These models will be used in the next Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for ...

A. Anav; P. Friedlingstein; M. Kidston; L. Bopp; P. Ciais; P. Cox; C. Jones; M. Jung; R. Myneni; Z. Zhu

2013-09-01T23:59:59.000Z

372

Parametric study for the penetration of combined cycle technologies into Cyprus power system  

Science Journals Connector (OSTI)

In this work, a parametric study concerning the use of combined cycle technologies for power generation, by independent power producers in Cyprus, is carried out. The cost–benefit analysis is carried out using the Independent Power Producers optimization algorithm in which the electricity unit cost is calculated. Various conventional generation options are examined, such as, steam turbines and open cycle gas turbines, and compared with a parametric study (variations in fuel type, capital cost and efficiency) for combined cycle technologies. The results indicate that the future use of combined cycle technology with natural gas as fuel is recommended. Furthermore, it is estimated that by the use of natural gas combined cycle, the CO2 emissions environmental indicator of Cyprus power industry would be significantly reduced.

Andreas Poullikkas

2004-01-01T23:59:59.000Z

373

Comparative Fuel Cycle Analysis of Critical and Subcritical Fast Reactor Transmutation Systems  

SciTech Connect (OSTI)

Fuel cycle analyses are performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level waste repositories, and on the proliferation resistance of the high-level waste. Storage intact of light water reactor (LWR) spent nuclear fuel, a single recycle in a LWR of the plutonium as mixed-oxide fuel, and the repeated recycle of the transuranics in critical and subcritical fast reactors are compared with the focus on the waste management performance of these systems. Other considerations such as cost and technological challenges were beyond the scope of this study. The overall conclusion of the studies is that repeated recycling of the transuranics from spent nuclear fuel would significantly increase the capacity of high-level waste repositories per unit of nuclear energy produced, significantly increase the nuclear energy production per unit mass of uranium ore mined, significantly reduce the radiotoxicity of the waste streams per unit of nuclear energy produced, and significantly enhance the proliferation resistance of the material stored in high-level waste repositories.

Hoffman, Edward A.; Stacey, Weston M. [Georgia Institute of Technology (United States)

2003-10-15T23:59:59.000Z

374

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Organic Rankine Cycle achieved by using Organic Rankine Cycle or Sterling Engines.technologies such as Organic Rankine Cycle (ORC) mahines,

Lim, Hyuck

2011-01-01T23:59:59.000Z

375

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

Organic Rankine Cycle.Heat Using High-Speed Organic Rankine Cycle (ORC), Int. J.Power recovery Organic Rankine Cycle Flare Gas Recovery

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

376

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network [OSTI]

heat recovery, an organic rankine cycle turbine can be usedfor power generation. Organic rankine cycle generators arefiring) ? With an organic rankine cycle turbine, 7.5-percent

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

377

Sustainable Management of Biogeochemical Cycles in Soils Amended with Bio-Resources from Livestock, Bioenergy, and Urban Systems  

E-Print Network [OSTI]

iii SUSTAINABLE MANAGEMENT OF BIOGEOCHEMICAL CYCLES IN SOILS AMENDED WITH BIO-RESOURCES FROM LIVESTOCK, BIOENERGY, AND URBAN SYSTEMS A Dissertation by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies of Texas A...-RESOURCES FROM LIVESTOCK, BIOENERGY, AND URBAN SYSTEMS A Dissertation by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Schnell, Ronnie Wayne

2011-10-21T23:59:59.000Z

378

Simple uniaxial pressure device for ac-susceptibility measurements suitable for closed cycle refrigerator system  

SciTech Connect (OSTI)

A simple design of the uniaxial pressure device for the measurement of ac-susceptibility at low temperatures using closed cycle refrigerator system is presented for the first time. This device consists of disc micrometer, spring holder attachment, uniaxial pressure cell, and the ac-susceptibility coil wound on stycast bobbin. It can work under pressure till 0.5 GPa and at the temperature range of 30-300 K. The performance of the system at ambient pressure is tested and calibrated with standard paramagnetic salts [Gd{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, and Fe(NH{sub 4}SO{sub 4}){sub 2}6H{sub 2}O], Fe{sub 3}O{sub 4}, Gd metal, Dy metal, superconductor (YBa{sub 2}Cu{sub 3}O{sub 7}), manganite (La{sub 1.85}Ba{sub 0.15}MnO{sub 3}), and spin glass material (Pr{sub 0.8}Sr{sub 0.2}MnO{sub 3}). The performance of the uniaxial pressure device is demonstrated by investigating the uniaxial pressure dependence of La{sub 1.85}Ba{sub 0.15}MnO{sub 3} single crystal with P parallel c axis. The Curie temperature (T{sub c}) decreases as a function of pressure with P parallel c axis (dT{sub c}/dP{sub parallelcaxis}=-11.65 K/GPa) up to 46 MPa. The design is simple, is user friendly, and does not require pressure calibration. Measurement can even be made on thin and small size oriented crystals. The failure of the coil is remote under uniaxial pressure. The present setup can be used as a multipurpose uniaxial pressure device for the measurement of Hall effect and thermoelectric power with a small modification in the pressure cell.

Arumugam, S.; Manivannan, N.; Murugeswari, A. [High Pressure Low Temperature Lab, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India)

2007-06-15T23:59:59.000Z

379

A FMEA-Aided Equipment Life-Cycle-Cost Measurement System  

Science Journals Connector (OSTI)

This research tries to establish an optimum life cycle cost (LCC) based strategy model of equipments’ purchasing and maintenance. The study integrates the technique of failure modes and effect analysis (FMEA) and...

Chee-cheng Chen; Hong Zhang

2013-01-01T23:59:59.000Z

380

Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models  

Science Journals Connector (OSTI)

Carbon cycle feedbacks are usually categorized into carbon–concentration and carbon–climate feedbacks, which arise owing to increasing atmospheric CO2 concentration and changing physical climate. Both feedbacks are often assumed to operate ...

Jörg Schwinger; Jerry F. Tjiputra; Christoph Heinze; Laurent Bopp; James R. Christian; Marion Gehlen; Tatiana Ilyina; Chris D. Jones; David Salas-Mélia; Joachim Segschneider; Roland Séférian; Ian Totterdell

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Closed- Brayton-Cycle Solar Power Towers," ASME Journal ofNaF-NaBF4) cooled solar power tower plant is presented;high temperature solar power tower designs to date.

Ho, Tony

2012-01-01T23:59:59.000Z

382

Life cycle assessment of UK pig production systems: the impact of dietary protein source   

E-Print Network [OSTI]

A Life Cycle Assessment (LCA) was developed to evaluate the environmental impacts of producing 1 kg pig live weight. A comparison was made between dietary protein sources, i.e. imported soybean meal with the UK protein ...

Stephen, Katie Louise

2012-06-22T23:59:59.000Z

383

Methodological approach towards sustainability by integration of environmental impact in production system models through life cycle analysis: Application to the Rioja wine sector  

Science Journals Connector (OSTI)

This paper proposes the integration of life cycle analysis within the production system models as a tool for decision making (whether at the strategic, tactical or operational levels) attending not only economic and technical criteria but also the environmental ... Keywords: decision making, environmental impact, life cycle assessment, modeling and simulation, production systems, sustainability

Emilio Jiménez; Eduardo Martínez; Julio Blanco; Mercedes Pérez; Charmery Graciano

2014-02-01T23:59:59.000Z

384

Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System  

SciTech Connect (OSTI)

Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

385

Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis  

SciTech Connect (OSTI)

Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

Paul Turinsky; Ross Hays

2011-09-02T23:59:59.000Z

386

The impacts of duct design on life cycle costs of central residential heating and air-conditioning systems  

Science Journals Connector (OSTI)

Abstract Many central residential HVAC systems in the U.S. operate at high external static pressures due to a combination of system restrictions. Undersized and constricted ductwork are thought to be key culprits that lead to excess external static pressures in many systems, although the magnitude of energy impacts associated with restrictive ductwork and the costs or benefits associated with addressing the problem are not well known. Therefore, this work uses annual energy simulations of two typical new single-family homes in two separate climates in the United States (Austin, TX and Chicago, IL) to predict the impacts of various external static pressure ductwork designs from independent HVAC contractors (using both flexible and rigid sheet metal ductwork materials) on annual space conditioning energy use. Results from the simulations are combined with estimates of the initial installation costs of each duct design made by each contractor to evaluate the total life cycle costs or savings of using lower pressure duct designs in the two homes over a 15-year life cycle. Lower pressure ductwork systems generally yielded life cycle cost savings, particularly in homes with PSC blowers and particularly when making comparisons with constant ductwork materials (i.e., comparing flex only or rigid only).

Brent Stephens

2014-01-01T23:59:59.000Z

387

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Solar Rankine thermodynamics matches Californiaconsidered, using average California solar insolation dataelectricity. Solar Rankine thermodynamics matches California

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

388

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect (OSTI)

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

389

Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems  

Science Journals Connector (OSTI)

Abstract Building-Integrated (BI) solar thermal are systems which are integrated into the building, are a new tendency in the building sector and they provide multiple advantages in comparison with the Building-Added (BA) solar thermal configurations. The present investigation is a critical review about Life Cycle Analysis (LCA) studies of solar systems. Emphasis is given on the BI solar thermal installations. Studies about BA configurations and systems which produce electrical (or electrical/thermal) energy are also presented in order to provide a more complete overview of the literature. The influence of the BI solar thermal systems on building environmental profile is also examined. Critical issues such as ongoing standardization and environmental indicators are discussed. The results reveal that there is a gap in the field of LCA about real BI solar thermal (and solar thermal/electrical) installations. Thus, there is a need for more LCA studies which examine the BI solar thermal system itself and/or in conjunction with the building. Active systems which could provide energy for the building would be interesting to be studied. Investigations about the influence of the BI solar thermal systems on building life-cycle performance could also provide useful information in the frame of a more sustainable built environment.

Chr. Lamnatou; D. Chemisana; R. Mateus; M.G. Almeida; S.M. Silva

2015-01-01T23:59:59.000Z

390

Closed Brayton cycle power system with a high temperature pellet bed reactor heat source for NEP applications  

Science Journals Connector (OSTI)

Capitalizing on past and future development of high temperature gas reactor (HTGR) technology a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture comprising the reactor/power system/space radiator subsystems is presented in conceptual form sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

Albert J. Juhasz; Mohamed S. El?Genk; William Harper

1993-01-01T23:59:59.000Z

391

Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles  

Science Journals Connector (OSTI)

Abstract Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste.

Ch. Poinssot; S. Bourg; N. Ouvrier; N. Combernoux; C. Rostaing; M. Vargas-Gonzalez; J. Bruno

2014-01-01T23:59:59.000Z

392

The stellar wind cycles and planetary radio emission of the Tau Boo system  

E-Print Network [OSTI]

Tau Boo is an intriguing planet-host star that is believed to undergo magnetic cycles similar to the Sun, but with a duration that is about one order of magnitude smaller than that of the solar cycle. With the use of observationally derived surface magnetic field maps, we simulate the magnetic stellar wind of Tau Boo by means of three-dimensional MHD numerical simulations. As the properties of the stellar wind depend on the particular characteristics of the stellar magnetic field, we show that the wind varies during the observed epochs of the cycle. Although the mass loss-rates we find (~2.7e-12 Msun/yr) vary less than 3 per cent during the observed epochs of the cycle, our derived angular momentum loss-rates vary from 1.1 to 2.2e32erg. The spin-down times associated to magnetic braking range between 39 and 78Gyr. We also compute the emission measure from the (quiescent) closed corona and show that it remains approximately constant through these epochs at a value of ~10^{50.6} cm^{-3}. This suggests that a ma...

Vidotto, A A; Jardine, M; Donati, J F; Opher, M; Moutou, C; Catala, C; Gombosi, T I

2012-01-01T23:59:59.000Z

393

Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time-dependent measures of performance including uranium usage, TRU inventory, and radiotoxicity to evaluate the complex impacts of transition from the current uranium-fueled LWR system, and other more realistic impacts that may not be intuited from the time-independent steady-state conditions of the end-state fuel cycle. These analyses were performed using the Verifiable Fuel Cycle Simulation Model VISION. Compared with static calculations, dynamic results paint a different picture of option space and the urgency of starting a FR fleet. For example, in a static analysis, there is a sharp increase in uranium utilization as CR exceeds 1.0 (burner versus breeder). However, in dynamic analyses that examine uranium use over the next 1 to 2 centuries, behavior as CR crosses the 1.0 threshold is smooth, and other parameters such as the time required outside of reactors to recycle fuel become important. Overall, we find that there is no unambiguously superior value of TRU CR; preferences depend on the relative importance of different fuel cycle system objectives.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

2013-03-01T23:59:59.000Z

394

The global geochemical cycles of iron and calcium: using novel isotope systems to understand weathering, global mass budgets, natural reaction rates, and paleoclimate  

E-Print Network [OSTI]

. Traditional geochemical proxies utilize variations in the oxygen, carbon, and boron isotopic compositionThe global geochemical cycles of iron and calcium: using novel isotope systems to understand of California, Berkeley Spring 2005 #12;The global geochemical cycles of iron and calcium: using novel isotope

Fantle, Matthew

395

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

396

An analysis of the regenerative expansion cycle in multi-component hydrocarbon separation systems  

E-Print Network [OSTI]

of information on this type of process was found in the literature. It was, therefore, necessary to work out a suitable cycle, make a prototype design, and field test the completed unit. The prototype verified the predicted theory. However, its performance... with water vapor and contains significant quantities of hydrocarbon fractions heavier than ethane, These heavier ends are valuable as liquid products. They also increase the heating value of the gas to a level not needed in most reciprocating engines...

Horton, John Leroy

1966-01-01T23:59:59.000Z

397

Long-term soil warming and Carbon Cycle Feedbacks to the Climate System  

SciTech Connect (OSTI)

The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

Melillo, Jerry M.

2014-04-30T23:59:59.000Z

398

Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process  

SciTech Connect (OSTI)

The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

E. R. Johnson; R. E. Best

2009-12-28T23:59:59.000Z

399

Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector  

Science Journals Connector (OSTI)

Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.03–0.53 MJeq/MJ emitting 0.7–27.3 g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.

Alexandre Lucas; Rui Costa Neto; Carla Alexandra Silva

2012-01-01T23:59:59.000Z

400

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

ect of working ?uids on organic Rankine cycle for waste heatof such devices. Organic Rankine cycles and Stirling engines

Lee, Felix

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

W. , “Optimizing an Organic Rankine Cycle,” CEP, v.35, 2012,used in industrial organic Rankine cycles, and is already

Luc, Wesley Wai

402

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

403

STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL ELECTRIC POWER SYSTEMS, FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

POWER SYSTEMS, FOR AN ADVANCE WAIVER POWER SYSTEMS, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-03NT41841; W(A)-03-050, CH-1171 The Petitioner, General Electric Power Systems (GEPS), was awarded this cooperative agreement for the performance of work entitled, "High Efficiency Steam Turbines with Ultra Long Buckets". The purpose of the cooperative agreement is to develop, demonstrate, and risk mitigate technology for full-speed, ultra-long steam turbine buckets that will set new industry standards in terms of bucket length, section efficiency, cost effectiveness, and turbine output that will result in improvement on LP Turbine Last Stage Bucket efficiency by as much as 2% to 3%, and Rankine cycle efficiency improvements of up to 0.5%. According to the Statement of Project Objectives,

404

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

405

Techno-Economic Design Tools Used in Selecting Industrial Energy Recovery Systems  

E-Print Network [OSTI]

cost. output (245 kW) by the high-efficiency turb' ne. Assuming a $2.3-million installed cost differ The 38% rate of return after 5 years (47% aft 10 ential between the organic Rankine cycle/compressor years) is quite acceptable for companies looki.... These tools are the industrial heat pump program (IHOP) and the Rankine cycle power program (RANKCYCLE). IHOP is used if industrial process steam is the de sired energy form and if available heat sources consist either of hot water at 130-200 o F...

Hanus, N.

1982-01-01T23:59:59.000Z

406

A combined power and ejector refrigeration cycle for low temperature heat sources  

SciTech Connect (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

407

Life cycle assessment of energy crop production with special attention to the establishment of regional biomass utilisation systems  

Science Journals Connector (OSTI)

We conducted a life cycle assessment of energy crop production for bioethanol to clarify the potentialities of biomass utilisation systems in Japan, focusing on cumulative fossil energy demand and global warming potential. Their reductions were evaluated under two scenarios; one was improving cultivation technologies and breeding of new crop varieties, and the other was setting up of regional biomass utilisation systems, in which biomass resources from various industries were utilised mutually and effectively. It was proved that the improvement in cultivation technologies and the establishment of regional biomass utilisation systems have large potential for saving fossil fuel resources and reducing greenhouse gas emissions. Although these results largely depend on scenarios including the lifetime and coverage area of agricultural machinery, and types of biomass utilisation, it was concluded that substitution of petrol by bioethanol converted from these energy crops has considerable potential for rendering our society more sustainable.

Susumu Uchida; Kiyotada Hayashi; Mitsuru Gau; Tsutomu Kajiyama; Shigekiyo Shirasawa; Hiroyuki Takahashi; Yoshifumi Terajima; Makoto Matsuoka; Masaru Yoshinaga

2012-01-01T23:59:59.000Z

408

Multiple reheat helium Brayton cycles for sodium fast reactors  

SciTech Connect (OSTI)

Sodium fast reactors (SFR) traditionally adopt the steam Rankine cycle for power conversion. The resulting potential for water-sodium reaction remains a continuing concern which at least partly delays the SFR technology commercialization and is a contributor to higher capital cost. Supercritical CO2 provides an alternative, but is also capable of sustaining energetic chemical reactions with sodium. Recent development on advanced inert-gas Brayton cycles could potentially solve this compatibility issue, increase thermal efficiency, and bring down the capital cost close to light water reactors. In this paper, helium Brayton cycles with multiple reheat and intercooling states are presented for SFRs with reactor outlet temperatures in the range of 510°C to 650°C. The resulting thermal efficiencies range from 39% and 47%, which is comparable with supercritical recompression CO2 cycles (SCO2 cycle). A systematic comparison between multiple reheat helium Brayton cycle and the SCO2 cycle is given, considering compatibility issues, plant site cooling temperature effect on plant efficiency, full plant cost optimization, and other important factors. The study indicates that the multiple reheat helium cycle is the preferred choice over SCO2 cycle for sodium fast reactors.

Haihua Zhao; Per F. Peterson

2008-07-01T23:59:59.000Z

409

Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems- Executive Summary  

Broader source: Energy.gov [DOE]

This brochure is a management tool that can help companies minimize waste and maximize energy efficiency for pumping systems.

410

Advanced binary cycles: Optimum working fluids  

SciTech Connect (OSTI)

A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265 F to 375 F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265 F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375 F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

Gawlik, K.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-31T23:59:59.000Z

411

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect (OSTI)

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

412

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade...

413

The potential effect of sprinkle irrigation systems in ricelands on the occurrence and abundance of mosquito eggs  

E-Print Network [OSTI]

THE POTENTIAL EFFECT OF SPRINELE IRRIGATION SYSTEMS IN RICELANDS ON THE OCCURRENCE AND ABUNDANCE OF MOSQUITO EGGS A Thesis STEVEN EARL RANKIN Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1984 Major Subject: Entcmology THE POTENTIAL EFFECT OF SPRINKLE IRRIGATION SYSTEMS IN' RICELANDS ON THE OCCURRENCE AND ABUNDANCE OF MOSQUITO EGGS A Thesis by STEVEN EARL RANKIN Approved as to style...

Rankin, Steven Earl

2012-06-07T23:59:59.000Z

414

Small solar (thermal) water-pumping system  

SciTech Connect (OSTI)

A small solar (thermal) water pump phototype was tested. The pump works on an organic Rankine cycle using refrigerant R113. The design of the pump is described. Detailed temperature and pressure measurements of the working fluid for different operating conditions are performed. The behaviour of the cycle is analysed to get a clear picture of the thermodynamic process. Power-characteristic curves are obtained by a systematic variation of water temperature, pumping head and heat input. 10 refs., 13 figs., 2 tabs.

Spindler, K.; Hahne, E. [Universitaet Stuttgart (Germany)] [Universitaet Stuttgart (Germany); Chandwalker, K. [Stiletto Engineers, Hyderabad (India)] [Stiletto Engineers, Hyderabad (India)

1996-07-01T23:59:59.000Z

415

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

Broader source: Energy.gov [DOE]

This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

416

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

1997. [15] R DiPippo, Geothermal Power Plants: Principles,Kalina, "New Binary Geothermal Power System," in ProceedingsConference on Geothermal Power Engineering, Sochi, Russia,

Ho, Tony

2012-01-01T23:59:59.000Z

417

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

21st European Photovoltaic Solar Energy Conference, Dresden,21st European Photovoltaic Solar Energy Conference, Dresden,International Energy Agency Photovoltaic Power System

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

418

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

system functional life, and energy mix consumed duringlocation influences the energy mix consumed duringlocation influences the energy mix offset by the output of

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

419

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

420

Cyclus fuel cycle simulation capabilities with the CYDER disposal system model  

SciTech Connect (OSTI)

An algorithm and supporting database for rapid thermal repository loading calculation was implemented in CYDER. This algorithm employs a Specific Temperature Change (STC) method and has resulted from combining detailed spent nuclear fuel composition data with a detailed thermal repository performance analysis tool from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and the Used Fuel Disposition (UFD) campaign. By abstraction of and benchmarking against these detailed thermal models, CYDER captures the dominant physics of thermal phenomena affecting repository capacity in various geologic media and as a function of spent fuel composition. Abstraction based on detailed computational thermal repository performance calculations with the LLNL semi-analytic model has resulted in implementation of the STC estimation algorithm and a supporting reference dataset. This method is capable of rapid estimation of temperature increase near emplacement tunnels as a function of waste composition, limiting radius, waste package spacing, near field thermal conductivity and near field thermal diffusivity. The sensitivity analyses and validation efforts conducted in this work demonstrate the capability of the CYDER tool to provide repository capacity and performance metrics in the context of dynamic fuel cycle.

Huff, K.D. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Space reactor/Stirling cycle systems for high power Lunar applications  

SciTech Connect (OSTI)

NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

Schmitz, P.D. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Mason, L.S. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

422

Fuel cycle facility control system for the Integral Fast Reactor Program  

SciTech Connect (OSTI)

As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations.

Benedict, R.W.; Tate, D.A.

1993-09-01T23:59:59.000Z

423

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

424

Waste Heat-to-Power Using Scroll Expander for Organic Rankine...  

Office of Environmental Management (EM)

Cycle Bottoming Cycle DE DE - - EE0005767 EE0005767 Green Mountain Coffee (field test site) Green Mountain Coffee (field test site) July 1, 2013 July 1, 2013 - - June 30,...

425

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

at operational TF-Si PV plants. Hot UPW (T ¿ 85 C) is notPlants: Annual and Cumulative In- stalled Power Output Capacity. PVPV system may be much higher than for the coal-fired power plant.

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

426

Web-based feedback system: the life cycle management as continuous maintenance of apartment facility information  

E-Print Network [OSTI]

This research investigates the feasibility of web technology as a means of delivering facility information for better support of facility operations and maintenance. This study proposes a web-based feedback system as a pragmatic solution...

Jeong, Jin Su

2006-10-30T23:59:59.000Z

427

Biological and environmental efficiency of high producing dairy systems through application of life cycle analysis   

E-Print Network [OSTI]

Dairy production systems are an important global contributor to anthropogenic greenhouse gas (GHG) emissions including methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Due to the role GHG play in climate ...

Ross, Stephen Alexander

2014-11-27T23:59:59.000Z

428

Maximum Profit of a Cogeneration System Based on Stirling Thermodynamic Cycle  

Science Journals Connector (OSTI)

Stirling engine technologies have been applied to cogeneration systems mainly for residential applications. The performance of Stirling engines has been evaluated considering different operational conditions, which include the electrical and thermal ... Keywords: Numerical Optimisation, Thermo-economic Analysis, Stirling Engine

Ana Cristina Ferreira, Manuel Nunes, Luís Martins, Senhorinha Teixeira

2014-06-01T23:59:59.000Z

429

A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles  

Broader source: Energy.gov (indexed) [DOE]

- a global thermal management: * a thermal insulation * a catalytic combustion of hydrocarbons The DPF System is applicable to Smoke nbr. <2 m -1 : EURO 1-3 vehicles and...

430

Terrestrial Carbon Cycle: Climate Relations in Eight CMIP5 Earth System Models  

Science Journals Connector (OSTI)

Eight Earth System Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated, focusing on both the net carbon dioxide flux and its components and their relation with climatic variables (temperature, precipitation, and ...

Pu Shao; Xubin Zeng; Koichi Sakaguchi; Russell K. Monson; Xiaodong Zeng

2013-11-01T23:59:59.000Z

431

Cybertectonic Earth and Gaia's weak hand: sedimentary geology, sediment cycling and the Earth system  

Science Journals Connector (OSTI)

...sink, and therefore between solid and surface Earth. It is sedimentary geology's ability to test the reality of Earth system models in the context of tectonic recycling and reorganization that is explored in this review. Exploration is made of...

Mike Leeder

432

IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles  

SciTech Connect (OSTI)

Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy.

Not Available

1991-01-01T23:59:59.000Z

433

Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe  

SciTech Connect (OSTI)

Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

1980-11-01T23:59:59.000Z

434

Exergy Analysis of Stirling Cycle Cryogenerator  

Science Journals Connector (OSTI)

Exergy or the available work energy function is ... various systems. This paper attempts to present exergy analysis for Stirling cycle cryogenerator. The cycle...

K. G. Narayankhedkar

1998-01-01T23:59:59.000Z

435

The Use of Tracers to Investigate Phosphate Cycling in SoilPlant Systems  

E-Print Network [OSTI]

of available P, excessive P inputs in other agro-ecosystems result in the pollution of surface waters (Frossard), making up virtually 100% of the total P on earth, and seven radioactive isotopes. Only two radioactive are introduced at extremely low rates in natural systems from the atmosphere (Benitez-Nelson and Buesseler 1999

Gilli, Adrian

436

OPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE  

E-Print Network [OSTI]

of both the installed PV power and storage capacity (lead-acid battery technology for purposes). Keywords: Battery storage and control, Lifetime simulation, PV system. 1. INTRODUCTION Given the sizable-averaged renewable output. The battery state of charge (SOC), which determines the efficiency during charging

Paris-Sud XI, Université de

437

Life Cycle Assessment of Chinese Shrimp Farming Systems Targeted for Export and Domestic Sales  

Science Journals Connector (OSTI)

(14) The objectives of this study are to (1) identify key stages and hotspots with highest contribution to overall impacts and assess the most significant environmental impacts, (2) compare how these two market-oriented production systems (intensive and semi-intensive) differ in their environmental performance, (3) evaluate the contribution to overall environmental performance of transporting frozen shrimp products to export markets, and (4) use the LCA results as basis to formulate strategies to minimize environmental impacts and promote more sustainable shrimp production. ... (15) The main system boundary of our study was from cradle to farm-gate, including feed production, production of larvae at hatcheries, and production of marketable-size shrimp at the farm level (Figure 1). ... diesel (L) ...

Ling Cao; James S. Diana; Gregory A. Keoleian; Qiuming Lai

2011-06-14T23:59:59.000Z

438

Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale  

Science Journals Connector (OSTI)

Abstract This study is concerned with the results of a Life Cycle Assessment comparison between photovoltaic – silicon based modules and thin film modules – and solar thermal systems, as technologies which are usually installed for partially covering household energy demand. Several studies focused on energy and environmental performances of photovoltaic and solar thermal collectors, however they have been always analysed separately. This study proposes the comparison of different systems to exploit the solar energy, producing different energy types. The comparison was done referring to one square meter of roof surface occupied by the equipment. The environmental burdens were calculated according to the indicators proposed by Eco-indicator'95 method. The results showed that the system based on thermal solar collector obtained the major number of more favourable indicators: eight out of ten, in the case of no-recycling of materials after dismantling phase, and six out of ten in the case of recycling of materials after dismantling phase. The thin film modules and solar thermal collector showed the lowest values of energy payback time and \\{CO2eq\\} payback time. Results clearly show that photovoltaic and solar thermal collector can effectively provide comparable environmental and energy benefits as regard to domestic scale installation.

E. Carnevale; L. Lombardi; L. Zanchi

2014-01-01T23:59:59.000Z

439

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

440

Life cycle assessment of bioenergy systems: State of the art and future challenges  

Science Journals Connector (OSTI)

The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most \\{LCAs\\} found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy.

Francesco Cherubini; Anders Hammer Strømman

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis  

Science Journals Connector (OSTI)

The main aim of the specific research is the comparison of the energy pay-back period of optimum renewable energy sources (RES)-based configurations, meaning wind-battery and photovoltaic-battery stand-alone installations that may ensure the energy autonomy of a typical remote consumer under the condition of minimum life cycle (LC) energy content. In this context, energy autonomy is first ensured on the basis of an appropriate sizing methodology, while accordingly, by developing a calculation algorithm for the estimation of the LC energy content of such energy autonomous systems, minimum LC embodied energy configurations are eventually obtained. On top of that, three representative areas are examined so as to investigate the influence of the local wind and solar potential. According to the results, the sustainable character of both RES-based solutions is designated, especially when comparison with the conventional diesel-engine solution is carried out. On the other hand, the situation is inversed when comparing stand-alone and grid-connected RES systems of the same size, with significant contribution of the battery storage component being reflected.

J.K. Kaldellis; D. Zafirakis; V. Stavropoulou; El. Kaldelli

2012-01-01T23:59:59.000Z

442

Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa  

Science Journals Connector (OSTI)

Abstract A thermocline-based rock bed thermal energy storage system potentially offers a cheap and simple way of achieving dispatchability in an air-cooled central receiver CSP plant. In order to efficiently match heliostat field size, storage dimensions, back-up fuel consumption and turbine sizes for non-stop power generation and economic feasibility, year-long power plant simulations have to be run. This paper focuses on the storage as the center of in- and outgoing thermal energy. The derived storage model has one spatial dimension which is justified by the high tube-to-particle diameter ratio and because yearly aggregated – and not momentary – values are of interest. A validation of the correlations with data from the literature shows acceptable agreement. Sensitivity analyses indicate that, due to low costs of the storage system, above certain minimum storage dimensions, the influence on energetic and monetary performance indicators is marginal. The calculated LCOE is in the range of 0.11–0.18 EUR/kW h and in agreement with other studies on combined cycle CSP plants.

Lukas Heller; Paul Gauché

2013-01-01T23:59:59.000Z

443

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

444

Life cycle cost study for coated conductor manufacture by electron beam and pulsed laser deposition systems  

SciTech Connect (OSTI)

The results of this study establish a framework for evaluation of the cost impact of many performance parameters in coated conductor manufacturing systems. Since the cost and concepts are based on early developmental results and engineering judgment, the study should be updated periodically based on latest data to enhance its usefulness. The study should be expanded to include other promising processes under consideration or development for manufacture of coated conductors. Review of this study by as wide a group of experts from industry, national laboratories and universities as possible is desirable to facilitate improving accuracy of the estimates and communication on the issues involved. The results for the case of achieving the $10/kA-m goal at a J{sub c} of 10{sup 5} a/cm{sup 2} applicable to applications requiring a magnetic field perpendicular to the direction of current flow may be viewed as somewhat discouraging. However, there is ample margin for improvement due to continued development and engineering that could enable meeting the goal of $10/kA-m.

Chapman, J.N.

1999-04-14T23:59:59.000Z

445

Lunar electric power systems utilizing the SP?100 reactor coupled to dynamic conversion systems  

Science Journals Connector (OSTI)

An integration study was performed by Rocketdyne coupling an SP?100 reactor to either a Brayton Stirling or K?Rankine power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the National Aeronautics and Space Administration (NASA) Space Exploration Initiative 90?day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one standby unit. Integration design studies indicated that either of the three power conversion systems could be integrated with the SP?100 reactor. From a performance consideration the Brayton and Stirling mass was approximately 45% higher than the K?Rankine. The K?Rankine radiator area was 45% of the Stirling which in turn was about 40% of the Brayton.

Richard B. Harty; Gregory A. Johnson

1992-01-01T23:59:59.000Z

446

State of Art of Small Scale Solar Powered ORC Systems: A Review of the Different Typologies and Technology Perspectives  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric, even for small sizes, is continuing to garner more attention, by virtue of maturation of small size organic Rankine cycle generators, and of small size absorption chiller even if cost and reliability are still not optimal. Indeed, solar thermal power technology improvement would consent to stimulate an ambit already present in Europe and Italy with a well-known tradition and established leadership and efforts focused on a single solar technology would bring to positive effects concerning controllable electric and thermal energy uses. In this context, the present work tries to summarize the possible cycles and fluids that can be applied in a small solar thermal power plant. Despite a plethora of simulated and experimental cycles and fluids, the simplest cycle using near isentropic fluids seems to be the best choice for a small ORC-based CHP system, even if particular attention has to be done to all the sizing parameters (electricity, heating and cooling demand; area and type of solar collector; flow and temperature of the thermal carrier; flow, temperature and pressure of the working fluid; storage volumes; etc.). Indeed, efficiency and reliability of the reported systems are very different, but, it seems that global efficiency of even more than 10% and global cost of even less than 10,000 €/kW can be obtained even at size of few kW if adequate systems are constructed and managed.

M. Villarini; E. Bocci; M. Moneti; A. Di Carlo; A. Micangeli

2014-01-01T23:59:59.000Z

447

Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR  

SciTech Connect (OSTI)

For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

2012-07-01T23:59:59.000Z

448

Minimize Boiler Short Cycling Losses  

Broader source: Energy.gov [DOE]

This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

449

Technology verification phase. Dynamic isotope power system. Final report  

SciTech Connect (OSTI)

The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

Halsey, D.G.

1982-03-10T23:59:59.000Z

450

Mitigation of Hydrogen Capacity Losses during Pressure Cycling of the Li3N–H System by the Addition of Nitrogen  

Science Journals Connector (OSTI)

Mitigation of Hydrogen Capacity Losses during Pressure Cycling of the Li3N–H System by the Addition of Nitrogen ... We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (?Go = ?98.7 kJ/mol) is more negative than that of LiH (?Go = ?50.3 ... This triggered intensive research on hydrogen as a renewable fuel because the exhaust gases in hydrogen-powered vehicles mainly contain water vapor. ...

Joshua Lamb; Dhanesh Chandra; Wen-Ming Chien; Delphine Phanon; Nicolas Penin; Radovan C?erny?; Klaus Yvon

2011-06-13T23:59:59.000Z

451

Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993  

SciTech Connect (OSTI)

This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

Nimmo, B.G.; Thornbloom, M.D.

1995-04-01T23:59:59.000Z

452

Multi-Megawatt Power System Trade Study  

SciTech Connect (OSTI)

A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics systems capable of operating at high temperatures. The gas-Brayton systems showed an apparent specific mass advantage (3.53 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used, but reconciling differences in conservatism in the design algorithms used would make results much more comparable. Brayton systems eliminate the need to deal with two-phase working fluid flows in the microgravity environment of space.

Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

2002-02-01T23:59:59.000Z

453

Modeling and optimization of a combined cycle Stirling-ORC system and design of an integrated microchannel Stirling heat rejector.  

E-Print Network [OSTI]

??The performance of a combined Stirling-ORC power cycle is evaluated, and an integrated microchannel heat exchanger is designed as an annular cold-side heat rejector for… (more)

Ingram-Goble, Robbie

2010-01-01T23:59:59.000Z

454

A novel power block for CSP systems  

SciTech Connect (OSTI)

Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

2010-10-15T23:59:59.000Z

455

Cycle cover with short cycles Nicole Immorlica  

E-Print Network [OSTI]

Introduction Given a graph and a subset of marked elements (nodes, edges, or some combination thereof), a cycleCycle cover with short cycles Nicole Immorlica£ Mohammad Mahdian£ Vahab S. Mirrokni£ Abstract Cycle for variants of cycle covering problems which bound the size and/or length of the covering cycles

Immorlica, Nicole

456

How Minds Work The IDA Cognitive Cycle  

E-Print Network [OSTI]

1 How Minds Work The IDA Cognitive Cycle Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis #12;HMW: The IDA Cognitive Cycle 2 Memory Systems #12;HMW: The IDA Cognitive Cycle 3 Global Workspace Theory I · The nervous system is a distributed parallel

Memphis, University of

457

Quantifying the Environmental Impact of an Integrated Human/Industrial-Natural System Using Life Cycle Assessment; A Case Study on a Forest and Wood Processing Chain  

Science Journals Connector (OSTI)

Quantifying the Environmental Impact of an Integrated Human/Industrial-Natural System Using Life Cycle Assessment; A Case Study on a Forest and Wood Processing Chain ... For example a forest provides wood but can also emit quantities of NO, CO2, and other compounds, requires solar energy, and occupies a piece of land. ... The net electricity generated is a product of the wood disposal through burning. ...

Thomas Schaubroeck; Rodrigo A. F. Alvarenga; Kris Verheyen; Bart Muys; Jo Dewulf

2013-11-06T23:59:59.000Z

458

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

459

Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

460

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane  

SciTech Connect (OSTI)

1,2-dichloro-1,1-difluoroethane is useful as a power fluid with particular suitability for moderate scale Rankine cycle applications based on systems with moderate temperature heat sources. The fluid is utilized in a Rankine cycle application by vaporizing the fluid by passing the same in heat exchange relationship with a heat source and utilizing the kinetic energy of the resulting expanding vapors to perform work. In this manner heat energy is converted to mechanical energy. The fluid is particularly advantageous in a dual cycle system consisting of a Rankine power cycle combined with a vapor compression cooling or heating cycle.

Li, C.C.; Stiel, L.I.

1980-09-30T23:59:59.000Z

462

Carbon Cycle 2.0  

Broader source: Energy.gov (indexed) [DOE]

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

463

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING  

E-Print Network [OSTI]

and Refrigeration Cycles 02 31 Aug Rankine Cycle 11.1-11.4 11.13, 11.21, 11.27, 11.30 03 02 Sept Rankine Cycle 11 and Refrigeration Cycles and Systems #12;2. Gas Mixtures 3. Non-Ideal Gas Behavior 4. Chemical Reactions including.1-11.4 WEEK 2 05 Sept Holiday 04 07 Sept Regenerative Cycle 11.5 11.33, 11.36, 11.38 05 09 Sept Regenerative

Dyer, Bill

464

Concentrating Solar Power Commercial Application Study  

E-Print Network [OSTI]

Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

Laughlin, Robert B.

465

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

466

Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor  

SciTech Connect (OSTI)

The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

2006-10-01T23:59:59.000Z

467

Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application  

Science Journals Connector (OSTI)

The aim of this paper is the evaluation of the profitability of micro-CHP systems for residential application. An integrated CHP system composed of a prime mover, an Electric Energy Storage system, a thermal storage system and an auxiliary boiler has been considered. The study has been carried out taking into account a particular electrochemical storage system which requires also thermal energy, during its operation, for a better exploitation of the residual heat discharged by the prime mover. The prime mover could be a conventional Internal Combustion Engine or also an innovative system, such as fuel cell or organic Rankine cycle. An investigation of this integrated CHP system has been carried out, by means of an in-house developed calculation code, performing a thermo-economic analysis. This paper provides useful results, in order to define the optimum sizing of components of the integrated CHP system under investigation; the developed code allows also to evaluate the profitability and the primary energy saving with respect to the separate production of electricity and heat.

M. Bianchi; A. De Pascale; F. Melino

2013-01-01T23:59:59.000Z

468

Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems  

SciTech Connect (OSTI)

The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

Bimal Kad

2011-12-31T23:59:59.000Z

469

Minimize Boiler Short Cycling Losses  

SciTech Connect (OSTI)

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

470

Frequency modulated few-cycle optical pulse trains induced controllable ultrafast coherent population oscillations in three-level atomic systems  

E-Print Network [OSTI]

We report a study on the ultrafast coherent population oscillations (UCPO) in two level atoms induced by the frequency modulated few-cycle optical pulse train. The phenomenon of UCPO is investigated by numerically solving the optical Bloch equations beyond the rotating wave approximation. We demonstrate that the quantum state of the atoms and the frequency of UCPO may be controlled by controlling the number of pulses in the pulse trains and the pulse repetition time respectively. Moreover, the robustness of the population inversion against the variation of the laser pulse parameters is also investigated. The proposed scheme may be useful for the creation of atoms in selected quantum state for desired time duration and may have potential applications in ultrafast optical switching.

Parvendra Kumar; Amarendra K. Sarma

2012-11-16T23:59:59.000Z