Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Working fluid design for organic rankine cycle systems (ORC):.  

E-Print Network (OSTI)

??The Organic Rankine Cycle is an energy conversion cycle similar to the conventional Rankine cycle which runs on a working fluid other than water. The… (more)

Hattiangadi, A.

2013-01-01T23:59:59.000Z

2

Working Fluid Design for Organic Rankine Cycle (ORC) Systems:.  

E-Print Network (OSTI)

??The Organic Rankine Cycle is an energy conversion cycle similar to the conventional Rankine cycle which runs on a working fluid other than water. The… (more)

Hattiangadi, A.

2013-01-01T23:59:59.000Z

3

The Organic Rankine Cycle  

Science Journals Connector (OSTI)

Chap. 3 is dedicated to Rankine cycles with organic fluids: the so-called organic Rankine cycles (ORC), which in recent years have ... of the use of...

Costante Mario Invernizzi

2013-01-01T23:59:59.000Z

4

Performance evaluation of an Organic Rankine Cycle (ORC) for power applications from low grade heat sources  

Science Journals Connector (OSTI)

Abstract In this paper the performance of an Organic Rankine Cycle (ORC) module, which was designed and built for a specific power application, is experimentally characterized. The ORC tested satisfies the main specifications for an efficient power system, highlighting a volumetric expander with large built-in volume ratio. For tests development, a monitored test bench has been used and adapted to the planned test procedure, which consisted of varying the thermal power input for different condensing conditions. Thereby, 10 steady state points are achieved and analyzed according to thermal power input, gross and net electrical powers, electrical cycle efficiencies and expander effectiveness. The results show that the ORC performances are improved for higher thermal oil temperatures, capturing more thermal power, producing more electricity and achieving better cycle efficiencies. The maximum gross electrical efficiency obtained is 12.32%, for a heat source temperature about 155 °C and a direct dissipation to the ambient. Moreover, the expander reaches an electrical isentropic effectiveness about 65% for an optimum pressure ratio around 7, being a suitable system for power applications from low grade heat sources.

Bernardo Peris; Joaquín Navarro-Esbrí; Francisco Molés; Roberto Collado; Adrián Mota-Babiloni

2014-01-01T23:59:59.000Z

5

Industrial Waste Heat Recovery by Use of Organic Rankine Cycles (ORC)  

Science Journals Connector (OSTI)

The project is a combined analytical and experimental programme to investigate the feasibility of the Organic Rankine Cycle principle for waste heat recovery in industry....

Dipl.-Phys. G. Huppmann

1983-01-01T23:59:59.000Z

6

Economic comparison of ORC (Organic Rankine cycle) processes at different scales  

Science Journals Connector (OSTI)

Abstract The utilization of low temperature heat sources, e.g. waste heat, for power generation in Organic Rankine Cycles has become more and more important in recent decades. In this work, exhaust gas as the heat transfer medium is considered. Five organic working fluids in three cycle designs at three different scales are investigated in Aspen Plus V7.3. Additionally, two different constraints have been applied to the exhaust gas temperature: A minimum of 180 °C in order to avoid the acid dew point and a minimal temperature approach, where the pinch point in the exhaust gas heat exchanger is fixed at 10 K. The investigated turbine-bleeding process with regenerative pre-heating benefits higher exhaust gas outlet temperatures for further combined heat and power applications in conjunction with enhanced system performances. Also noteworthy is the lower total heat exchanger area of the process compared to the reference designs. Economic analyses are carried out in order to outline the economic merits of the turbine-bleeding cycle.

Dominik Meinel; Christoph Wieland; Hartmut Spliethoff

2014-01-01T23:59:59.000Z

7

Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications  

Science Journals Connector (OSTI)

Abstract Domestic CHP (combined heat and power) generation is one new application of the ORC (organic Rankine cycle). An environment temperature fluctuation of 40 °C through the year is common in many areas, where the consumer's demand on heat follows a seasonal cycle. In no demand periods the ORC shall work under lower condensation temperature for more efficient power generation. Off-design operation will be executed, accompanied with a degraded performance of the ORC components especially the expander. The design of the condensation temperature herein becomes crucial. It influences the ORC efficiency in both the CHP and SPG (solo power generation) modes. If the condensation temperature is designed simply based on the CHP mode, the power conversion in the SPG mode will suffer from low expander efficiency. An optimum design of the condensation temperature involves a compromise between the power outputs in the two modes. This paper aims to determine the optimum design condensation temperature for the ORC-CHP system. A new concept, namely the threshold condensation temperature, is introduced and found to be important to the design and operation strategies of the system. The results indicate that via a careful design of the condensation temperature, the annual power output can be increased by 50%.

Jing Li; Gang Pei; Jie Ji; Xiaoman Bai; Pengcheng Li; Lijun Xia

2014-01-01T23:59:59.000Z

8

Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid  

Science Journals Connector (OSTI)

Abstract This paper carried out the thermodynamic and economic optimizations of a subcritical ORC (Organic Rankine Cycle) using a pure or a zeotropic mixture working fluid. Two pure organic compounds, i.e. n-pentane and R245fa, and their mixtures with various concentrations were used as ORC working fluid for this study. Two optimizations, i.e. exergy efficiency maximization and LCOE (Levelized Cost of Electricity) minimization, were performed to find out the optimum operating conditions of the system and to determine the best working fluid from the studied media. Hot water at temperature of 150 °C and pressure of 5 bars was used to simulate the heat source medium. Whereas, cooling water at temperature of 20 °C was considered to be the heat sink medium. The mass flow rate of heat source is fixed at 50 kg/s for the optimizations. According to the results, the n-pentane-based ORC showed the highest maximized exergy efficiency (53.2%) and the lowest minimized LCOE (0.0863 $/kWh). Regarding \\{ORCs\\} using zeotropic working fluids, 0.05 and 0.1 \\{R245fa\\} mass fraction mixtures present the comparable economic features and thermodynamic performances to the system using n-pentane at minimum LCOE. The ORC using \\{R245fa\\} represents the least profitable system.

Van Long Le; Abdelhamid Kheiri; Michel Feidt; Sandrine Pelloux-Prayer

2014-01-01T23:59:59.000Z

9

Implementation of an Organic Rankine cycle on a Stepping furnace.  

E-Print Network (OSTI)

?? In this master thesis an implementation of an Organic Rankine Cycle (ORC) on a stepping furnace in a steel mill is modeled and proposed.… (more)

Pižorn, Žiga

2014-01-01T23:59:59.000Z

10

Set point optimization of controlled Organic Rankine Cycle systems  

Science Journals Connector (OSTI)

In this paper, an approach to optimize set points is proposed for controlled Organic Rankine Cycle (ORC) systems. Owing to both disturbances...

Jianhua Zhang; Mingming Lin; Fei Shi; Jia Meng; Jinliang Xu

2014-11-01T23:59:59.000Z

11

Industrial waste heat recovery and cogeneration involving organic Rankine cycles  

Science Journals Connector (OSTI)

This paper proposes a systematic approach for energy integration involving waste heat recovery through an organic Rankine cycle (ORC). The proposed approach is based...

César Giovani Gutiérrez-Arriaga…

2014-08-01T23:59:59.000Z

12

Thermodynamische Auslegung und transiente Simulation eines überkritischen Organic Rankine Cycles für einen leistungsoptimierten Betrieb (KIT Scientific Reports ; 7674).  

E-Print Network (OSTI)

??Niedertemperaturwärme im Bereich von 100 °C - 200 °C kann mittels Organic Rankine Cycles (ORC) zur Stromproduktion genutzt werden. Zur Untersuchung von Optimierungsmöglichkeiten bei ORC-Prozessen… (more)

Vetter, Christian

2014-01-01T23:59:59.000Z

13

Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source  

Science Journals Connector (OSTI)

A detailed thermodynamic and techno-economic comparison is presented for a CO2-based transcritical Rankine cycle and a subcritical organic Rankine cycle (ORC) using HFC245fa (1,1,1 ... a minimum investment. The e...

Tao Guo; HuaiXin Wang; ShengJun Zhang

2010-06-01T23:59:59.000Z

14

Multiple Rankine topping cycles  

SciTech Connect

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and rejection. However, no working fluid has been identified which will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids. This paper gives a history of Rankine topping cycles, presents an analysis for the calculation of the overall efficiency of a three-module multiple Rankine cycle, and presents results from a case study for a sodium-mercury-water cycle.

McWhirter, J.D. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.]|[Idaho State Univ., Pocatello, ID (United States). Coll. of Engineering

1995-07-01T23:59:59.000Z

15

Investigation of Organic Rankine Cycle Performance with Variable Mixture Composition  

Science Journals Connector (OSTI)

The present study deals with a comprehensive thermodynamic modeling of a renewable energy-based organic Rankine cycle (ORC). In this regard, two ... investigate the effect of mixture composition on the cycle perf...

H. Barzegaravval; Ibrahim Dincer

2014-01-01T23:59:59.000Z

16

Offshore Rankine Cycles.  

E-Print Network (OSTI)

?? The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles… (more)

Brandsar, Jo

2012-01-01T23:59:59.000Z

17

Heat resources and organic Rankine cycle machines  

Science Journals Connector (OSTI)

Abstract Various Rankine cycle architectures for single fluids and other improved versions operating with ammonia/water mixture are presented in this paper. Untapped heat resources and their potential for driving organic Rankine cycles are outlined. The nature – state and temperature of the heat source significantly influences the choice of the type of organic Rankine cycle machine. The temperature appears as a critical parameter during the selection process. Modules differ from one another from technology, size and cost viewpoints. The investment cost of an ORC project includes machine, engineering, system integration, capital costs, etc. and is closely linked to the application.

Bertrand F. Tchanche; M. Pétrissans; G. Papadakis

2014-01-01T23:59:59.000Z

18

Testing and Thermodynamic Analysis of Low-Grade Heat Power Generation System Using Organic Rankine Cycle  

Science Journals Connector (OSTI)

Low grade heat power generation system using Organic Rankine Cycle (ORC) was introduced in this work. ... system behaved better in thermodynamic efficiency than stream-Rankine cycle. Numerical thermodynamic model...

Wei Gu; Yiwu Weng; Guangyi Cao

2007-01-01T23:59:59.000Z

19

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty  

E-Print Network (OSTI)

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from and efficiency of those systems. The system considered here is an Organic Rankine Cycle (ORC) for recovering internal combustion engines presented in [1]. The system considered here is an Organic Rankine Cycle (ORC

Paris-Sud XI, Université de

20

Current status of an organic Rankine cycle engine development program  

SciTech Connect

The steps taken to achieve improved bearing life in the organic Rankine cycle (ORC) engine being developed for use on solar parabolic dishes are presented. A summary of test results is given. Dynamic tests on the machine shaft and rotors of the ORC engine are also discussed.

Barber, R.E.

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis of Organic Rankine Cycle for Low and Medium Grade Heat Source  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) is an effective technique to generate power from low and medium temperature heat source, including industrial waste heat, solar heat, geothermal and biomass etc. Advantages of ORC are high efficiency, simple system, environment ... Keywords: organic Rankine cycle, new energy, waste heat recovery

Zhonghe Han; Yida Yu

2012-07-01T23:59:59.000Z

22

Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC  

Science Journals Connector (OSTI)

This paper presents thermodynamic investigation and environmental consideration of combined Stirling-organic Rankine cycle (ORC) power cycle. Combined cycle can be assisted by solar energy and ... side heat rejec...

Mohammad Bahrami; Ali A Hamidi…

2013-02-01T23:59:59.000Z

23

Structure and Parameters Optimization of Organic Rankine Cycle System for Natural Gas Compressor Exhaust Gas Energy Recovery  

Science Journals Connector (OSTI)

In the paper, the structure and working principle of free piston based organic rankine cycle (ORC) exhaust gas energy recovery system...

Yongqiang Han; Zhongchang Liu; Yun Xu…

2013-01-01T23:59:59.000Z

24

Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs  

E-Print Network (OSTI)

Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

Rohrer, J. W.; Bronicki, L. Y.

1980-01-01T23:59:59.000Z

25

Methodology of Regenerator Calculation for Use in Subcritical and Transcritical Organic Rankine Cycle for Low-Temperature Heat Recovery  

Science Journals Connector (OSTI)

A comparative study of different Cases (A1, A2, B, C1, C2, D) of regenerator calculating methodology has been carried out for use in subcritical and transcritical organic Rankine cycles(ORCs) driven by low-temperature heat sources. The applicable ranges ... Keywords: organic Rankine cycle (ORC), subcritical, transcritical, regenerator, low-temperature heat source

Tao Guo; Huaixin Wang; Shengjun Zhang; Shihai Yin

2010-06-01T23:59:59.000Z

26

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

27

Working fluid selection based on critical temperature and water temperature in organic Rankine cycle  

Science Journals Connector (OSTI)

This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle (ORC). The variation and t...

XinGuo Li; WenJing Zhao; DieDie Lin; Qiang Zhu

2014-11-01T23:59:59.000Z

28

A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles  

Science Journals Connector (OSTI)

This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The con...

Mortaza Yari; S. M. S. Mahmoudi

2011-02-01T23:59:59.000Z

29

Slag-washing water of blast furnace power station with supercritical organic Rankine cycle  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) power plant operating with supercritical ... of a supercritical power plant. Two typical organic fluids with sufficiently low critical parameters were ... study the efficiency of the s...

Song Xiao ??; Shu-ying Wu ???; Dong-sheng Zheng ???

2013-03-01T23:59:59.000Z

30

Experience with organic Rankine cycles in heat recovery power plants  

SciTech Connect

Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

Bronicki, L.Y.; Elovic, A.; Rettger, P.

1996-11-01T23:59:59.000Z

31

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network (OSTI)

Combined Diesel-Organic Rankine Cycle Power Plant", in25OoC) closed simple organic Rankine cycle geothermal powerthe simple closed organic Rankine cycle for a given set of

Pope, William L.

2012-01-01T23:59:59.000Z

32

Working fluid for Rankine cycle  

SciTech Connect

A Rankine cycle working fluid is disclosed containing a mixture of 2,2,3,3tetrafluoropropanol and water, which is low toxic, incombustible, nonexplosive, noncorrosive and stable, and also has a high critical temperature and forms azeotropic-like composition. It is suited for use in a rankine cycle using heat source of low temperature.

Aomi, H.; Enjo, N.

1980-11-11T23:59:59.000Z

33

Analysis and reduction of degradation of working fluid in the Sundstrand Organic Rankine-Cycle System  

SciTech Connect

Studies on understanding the location and construction levels of oxygen in the organic Rankine cycle (ORC) unit and establishing a rate of degradation with time for toluene in an operating ORC system are presented. Work on identifying the compounds in degraded toluene and contamination removal is discussed. (MHR)

Berger, R.

1983-07-01T23:59:59.000Z

34

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

35

Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems  

Science Journals Connector (OSTI)

This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several differe...

Joon Hee Lee; Tong Seop Kim

2006-09-01T23:59:59.000Z

36

Application guide for waste heat recovery with organic Rankine cycle equipment. Final report May-Dec 82  

SciTech Connect

This report assesses the state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed; also included is a description of anticipated future trends in organic Rankine cycle RandD.

Moynihan, P.I.

1983-01-15T23:59:59.000Z

37

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle  

Energy.gov (U.S. Department of Energy (DOE))

The project objective is to develop the scroll expander for Organic Rankine cycle (ORC) systems to be used in medium-grade waste heat recovery applications, and to validate and quantify the benefits of the prototype system.

38

Thermodynamic analysis of organic Rankine cycle using dry working fluids  

SciTech Connect

Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

Wang, S.K.; Hung, T.C. [I-Shou Univ., Tashu (Taiwan, Province of China). Mechanical Engineering Dept.

1998-12-31T23:59:59.000Z

39

Design and Exergy Analysis of Combined Rankine Cycle Using LNG Cold Energy  

Science Journals Connector (OSTI)

Abstract In this study, a 90 MWe combined Rankine cycle utilizing LNG cold exergy was proposed. Utilizing LNG cold exergy and waste heat from the conventional steam cycle, this process was able to generate additional power in the CO2 organic Rankine cycle (ORC). A conventional steam cycle generates only 42 MW electric power; this combined Rankine cycle produced more than twice as much power as the conventional steam cycle while consuming the same amount of fossil fuel. Through parameter sensitivity analysis and exergy analysis, the optimum design and operating conditions were also determined. Finally, reduction of the power plant de-rate by introducing a CO2 capture process was also analyzed.

Ung Lee; Chonghun Han

2014-01-01T23:59:59.000Z

40

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network (OSTI)

Process Program for Geothermal Power Plant Cycles,'*for a Rankine Cycle Geothermal Power Plant," Proceedings,Design and Optimize Geothermal Power Cycles," presented at

Pope, William L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Trends in Patent Applications Relating to Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This study presents a statistical analysis of patent data to explore the technological developments of the Organic Rankine Cycle (ORC). The ORC is considered as one of the most economic and efficient ways to convert low grade thermal energy to electricity. Patent data of this study are obtained from the commercial database, Thomson Innovation, which can be used to search the patent information from many countries and offices. With searching, screening, and patent family integrating by the International Patent Documentation Center (INPADOC), 304 patents are analyzed in the present study. The results show that the patent applications increase slowly before 2006, but increase significantly from 2009 to 2011 mainly due to the contributions from the applications in China and Republic of Korea. The year of 2009 can be regarded as a significant distinction year for the ORC development and patent application. The results also show that the assignee from United States is the most prominent. On the other hand, the number of patent applications in China is the largest, indicating that China might be one of the most potential markets of the ORC. The main International Patent Classification (IPC) of the patent data is F01K (i.e., Steam engine plants; Steam accumulators; Engine plants not otherwise provided for; Engines using special working fluids or cycles). Most importantly, the technology life cycle of the ORC, based on the patent data, is at a growth stage.

Ben-Ran Fu; Sung-Wei Hsu; Chih-His Liu

2014-01-01T23:59:59.000Z

42

Definition: Rankine cycle | Open Energy Information  

Open Energy Info (EERE)

Rankine cycle Rankine cycle Jump to: navigation, search Dictionary.png Rankine cycle Sometimes referred to as the steam cycle. Fuel is used to heat a liquid to produce a high pressure gas that expands and produces work, such as turning a turbine; when the turbine is connected to a generator, it produces electricity. Usually water is the liquid used in the Rankine cycle (to produce steam), but other liquids can also be used. The exhaust vapor expelled from the turbine condenses and the liquid is pumped back to the boiler to repeat the cycle.[1][2] View on Wikipedia Wikipedia Definition The Rankine cycle is a mathematical model that is used to predict the performance of steam engines. The Rankine cycle is an idealised thermodynamic cycle of a heat engine that converts heat into mechanical

43

Rankine and Brayton Cycle Cogeneration for Glass Melting  

E-Print Network (OSTI)

Rankine cycle, b) an organic Rankine cycle, c) an indirectly heated positive pressure Brayton cycle and d) a directly heated subatmospheric Brayton cycle. For the specified flue gas temperatures considered, the organic Rankine cycle produced the most...

Hnat, J. G.; Patten, J. S.; Sheth, P. R.

1981-01-01T23:59:59.000Z

44

Multiple Rankine topping cycles offer high efficiency  

SciTech Connect

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and heat rejection. However, no working fluid has been identified that will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids to span larger temperature ranges.

McWhirter, J.D. [Idaho State Univ., Pocatello, ID (United States)

1997-10-01T23:59:59.000Z

45

Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle  

SciTech Connect

The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

Fuller, Robert L.

2005-04-20T23:59:59.000Z

46

Heat-Exchanger Network Synthesis Involving Organic Rankine Cycle for Waste Heat Recovery  

Science Journals Connector (OSTI)

This article aims to present a mathematical model for the synthesis of a heat-exchanger network (HEN) which can be integrated with an organic Rankine cycle (ORC) for the recovery of low-grade waste heat from the heat surplus zone of the background ...

Cheng-Liang Chen; Feng-Yi Chang; Tzu-Hsiang Chao; Hui-Chu Chen; Jui-Yuan Lee

2014-04-23T23:59:59.000Z

47

Rankine cycle system and method  

DOE Patents (OSTI)

A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

Ernst, Timothy C.; Nelson, Christopher R.

2014-09-09T23:59:59.000Z

48

Quasi-dynamic model for an organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response.

Musbaudeen O. Bamgbopa; Eray Uzgoren

2013-01-01T23:59:59.000Z

49

Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures  

Science Journals Connector (OSTI)

Abstract In recent years, more and more attention has been paid to organic Rankine cycle (ORC), which is simply structured, highly reliable and easily maintainable. In order to improve the efficiency of ORC systems, zeotropic mixtures whose phase change process is variable temperature, are used as working fluids to match the temperature profiles of the heat source and heat sink. In this paper, a thermodynamic model which mainly includes Jacob number and the ratio of evaporation temperature and condensation temperature is proposed to forecast the thermal efficiency, output work and exergy efficiency of ORC system with zeotropic mixture. Furthermore, the proposed model programmed by Mablab 2010a is verified by the theoretical data. Then, for different heat source inlet temperature, using different zeotropic mixture pairs, output work that is objective function is maximized by optimizing the evaporation temperature. The results show that if the other working conditions are fixed, the heat source inlet temperature has a significant influence on the best composition of zeotropic mixtures at the optimal evaporation temperature. With the increase of heat source inlet temperature, there exists a heat source inlet temperature that pure working fluid has better system performance than zeotropic mixture. The extent of ORC system performance improvement has a positive correlation with zeotropic mixture’s temperature glide.

Li Zhao; Junjiang Bao

2014-01-01T23:59:59.000Z

50

Rankine cycle leak detection via continuous monitoring  

SciTech Connect

Rankine cycle power plants operate on a closed cycle in which heat is transferred from a high temperature reservoir to a low temperature sink while performing useful work. leaks in this cycle cause the loss of working fluid and/or corrosion of the power plant. Both of these constitute a loss of capital assets. A severe leak can reduce the efficiency of the cycle to the extent of creating an operating loss. PNL is undertaking the development of continuous monitoring techniques to protect rankine cycle plants from such losses. The location of these continuous monitors on an organic rankine cycle is described and shown schematically.

Kindle, Cecil H.

1982-10-08T23:59:59.000Z

51

Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery  

Science Journals Connector (OSTI)

Abstract The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance.

You-Rong Li; Mei-Tang Du; Chun-Mei Wu; Shuang-Ying Wu; Chao Liu

2014-01-01T23:59:59.000Z

52

Measurement of Thermophysical Pure Component Properties for a Few Siloxanes Used as Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

Measurement of Thermophysical Pure Component Properties for a Few Siloxanes Used as Working Fluids for Organic Rankine Cycles ... K and for two cyclic siloxanes (octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5)) in the temperature range of 288.15–443.15 ... Organic Rankine cycle (ORC) processes are gaining increasing interest(1-5) for the utilization of renewable energy such as geothermal heat, solar energy, biomass, and waste heat for the generation of electricity. ...

Rima Abbas; Andre Schedemann; Christian Ihmels; Sabine Enders; Ju?rgen Gmehling

2011-06-30T23:59:59.000Z

53

Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles  

Science Journals Connector (OSTI)

Organic Rankine Cycles (ORCs) are particularly suitable for recovering energy from low-grade heat sources. This paper describes the behavior of a small-scale ORC used to recover energy from a variable flow rate and temperature waste heat source. A traditional static model is unable to predict transient behavior in a cycle with a varying thermal source, whereas this capability is essential for simulating an appropriate cycle control strategy during part-load operation and start and stop procedures. A dynamic model of the ORC is therefore proposed focusing specifically on the time-varying performance of the heat exchangers, the dynamics of the other components being of minor importance. Three different control strategies are proposed and compared. The simulation results show that a model predictive control strategy based on the steady-state optimization of the cycle under various conditions is the one showing the best results.

Sylvain Quoilin; Richard Aumann; Andreas Grill; Andreas Schuster; Vincent Lemort; Hartmut Spliethoff

2011-01-01T23:59:59.000Z

54

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network (OSTI)

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

55

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

SK Wang, "A review of Organic Rankine Cycles (ORCs) for thePerformances of Organic Rankine Cycles under part-load andChemistry: the Organic Rankine Cycle. ” d Nark Mirolli. “The

Ho, Tony

2012-01-01T23:59:59.000Z

56

Single stage rankine and cycle power plant  

SciTech Connect

The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

Closs, J.J.

1981-10-13T23:59:59.000Z

57

Minimum variance control of organic Rankine cycle based waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, an online self-tuning generalized minimum variance (GMV) controller is proposed for a 100 KW waste heat recovery system with organic Rankine cycle (ORC). The ORC process model is formulated by the controlled autoregressive moving average (CARMA) model whose parameters are identified using the recursive least squares (RLS) algorithm with forgetting factor. The generalized minimum variance algorithm is applied to regulate ORC based waste heat recovery system. The contributions of this work are twofold: (1) the proposed control strategy is formulated under the data-driven framework, which does not need the precise mathematic model; (2) this proposed method is applied to handle tracking set-point variations and process disturbances by improved minimum objective GMV function. The performance of GMV controller is compared with the PID controller. The simulation results show that the proposed strategy can achieve satisfactory set-point tracking and disturbance rejection performance.

Guolian Hou; Shanshan Bi; Mingming Lin; Jianhua Zhang; Jinliang Xu

2014-01-01T23:59:59.000Z

58

Rankine cycle waste heat recovery system  

DOE Patents (OSTI)

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

Ernst, Timothy C.; Nelson, Christopher R.

2014-08-12T23:59:59.000Z

59

Cascaded organic rankine cycles for waste heat utilization  

DOE Patents (OSTI)

A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

Radcliff, Thomas D. (Vernon, CT); Biederman, Bruce P. (West Hartford, CT); Brasz, Joost J. (Fayetteville, NY)

2011-05-17T23:59:59.000Z

60

Optimization of power generation from a set of low-temperature abandoned gas wells, using organic Rankine cycle  

Science Journals Connector (OSTI)

This research article deals with the employment of organic Rankine cycle (ORC) to generate electricity from a set of low-temperature abandoned gas wells in Iran. At first a thermodynamic analysis was performed to select an appropriate power cycle; consequently organic Rankine cycle was chosen. Then a comprehensive investigation was carried out to find a typical low-temperature abandoned gas reservoir so an abandoned gas reservoir in the central part of Iran was considered. The next step was selecting the working fluid; in this regard a vast range of common organic fluids were studied and R125 was chosen. Finally the gas well and the power plant were simulated and then a parametric optimization of the ORC plant was performed in order to achieve optimum power generation and also to compute generated power at different operational parameters of gas wells and power cycle.

Mahyar Ebrahimi; Seyed Ebrahim Moussavi Torshizi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Measurement of Transport Properties for Selected Siloxanes and Their Mixtures Used as Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

Measurement of Transport Properties for Selected Siloxanes and Their Mixtures Used as Working Fluids for Organic Rankine Cycles ... Thermal conductivities have been measured for three linear siloxanes [hexamethyl disiloxane (MM), octamethyltrisiloxane (MDM), decamethyltetrasiloxane (MD2M)], two cyclic siloxanes [octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5)], and a mixture of 50 mass % MDM + 50 mass % MD2M in the temperature range from 290 to 520 K and the pressure range from 500 to 10000 kPa using the transient hot wire method and correlated with a temperature–pressure–thermal conductivity relationship. ... To generate electricity from renewable energy, organic Rankine cycle (ORC) processes can be used. ...

Rima Abbas; E. Christian Ihmels; Sabine Enders; Ju?rgen Gmehling

2011-05-26T23:59:59.000Z

62

Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a hybrid energy supply system, which is composed of two subsystems (gas engine-driven heat pump system (GEHP) and organic Rankine cycle system (ORC)) and three major thermodynamic cycles (the vapor compression refrigeration cycle, the internal combustion gas engine cycle and ORC). In order to convert the low-grade gas engine waste heat into high-grade electricity, the ORC system is built up using R245fa, \\{R152a\\} and R123 as working fluids, and the ORC thermal model is also developed. Meanwhile, experiments of \\{GHEPs\\} in cooling mode are conducted, and several factors which influence the cooling performance are also discussed. The results indicate that the cooling capacity, gas engine energy consumption, gas engine waste heat increase with increasing of gas engine speed and decrease with decreasing of evaporator water inlet temperature. The waste heat recovered from gas engine is more than 55% of gas engine energy consumption. F6urthermore, R123 in ORC system yields the highest thermal and exergy efficiency of 11.84% and 54.24%, respectively. Although, thermal and exergy efficiency of \\{R245fa\\} is 11.42% and 52.25% lower than that of R123, its environmental performance exhibits favorable utilization for ORC using gas engine waste heat as low-grade heat source.

Huanwei Liu; Qiushu Zhou; Haibo Zhao; Peifeng Wang

2015-01-01T23:59:59.000Z

63

Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles  

Science Journals Connector (OSTI)

Abstract A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17% more electricity using the same energy resources. Exergy analysis shows that with a solar exergy fraction of more than 66% the exergetic efficiency of the hybrid plant is about 27–34% for the supercritical hybrid plant and 23–32% for the subcritical hybrid plant. The figure of merit analysis indicates that the hybrid plant produces a maximum of 15% (using a subcritical ORC) and 19% (using a supercritical ORC) more annual electricity than the two stand-alone plants. Economically, the hybrid plant using the supercritical ORC has a solar-to-electricity cost of approximately 1.5–3.3% less than those of the subcritical scenario.

Cheng Zhou

2014-01-01T23:59:59.000Z

64

Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract The paper investigates the performance of high-temperature Organic Rankine cycle (ORC) with zeotropic mixtures as working fluid. A numerical model, which has been validated by comparing with the published data, is developed to predict the first law thermal efficiency of the cycle. The effects of mixture concentration, temperature gradient of the heat transfer fluid, pinch temperature difference, pressure ratio, and condensation pressure on the first law efficiency are presented firstly using a purposely designed program, and then the suitable conditions for the described ORC are suggested based on the results of the simulation. It is demonstrated that the use of zeotropic mixtures leads to an efficiency increase compared to pure fluids.

Bensi Dong; Guoqiang Xu; Yi Cai; Haiwang Li

2014-01-01T23:59:59.000Z

65

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant .  

E-Print Network (OSTI)

??Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to… (more)

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

66

Working fluids for rankine cycle  

SciTech Connect

This patent describes a method for converting thermal energy into mechanical energy through the utilization of a cycle consisting of: (1) vaporizing, with heating, a mixture selected from the group of (a) 60 to 95% by weight of chlorodifluoromethane and 5 to 40% by weight of difluoroethane; and (b) 3 to 40% by weight of chlorodifluoromethane and 60 to 97% by weight of dichlorotetrafluoroethane; (2) expanding the vapor in an expansion device to produce mechanical energy; and (3) compressing the vapor by a pump and cooling the vapor to condense the vapor.

Enjo, N.; Aomi, H.; Noguchi, M.; Ide, S.

1986-01-07T23:59:59.000Z

67

A hybrid Rankine cycle (HyRC) with ambient pressure combustion (APC)  

Science Journals Connector (OSTI)

Abstract The main losses in thermal power generation include heat in exhaust flue gas, heat rejected through steam condensation of low-pressure turbine, and exergy destruction in heat exchange process etc. To the extent that the heat losses are significantly greater in temperature than either air or water coolant resources, these losses also represent exergy losses which might be exploited to improve plant capacity and efficiency. This paper presents a hybrid Rankine cycle (HyRC) with an ambient pressure combustion (APC) boiler to address the recovery potential of these losses within the steam Rankine cycle (SRC). The APC–HyRC concept employs an organic Rankine cycle (ORC) to supplement SRC and to reduce cycle energy losses to the atmosphere since organic fluids are capable of lowering cycle condensation temperature when a very low temperature heat sink is available. The case studies based on a 399 MW SRC unit show that the APC–HyRC configurations have better thermodynamic performance than its base case SRC at a cycle condensation temperature of 30 °C and below. The best APC–HyRC configuration generates up to 14% more power than the baseline steam cycle which is a 5.45% increase in overall gross efficiency with a cycle condensation temperature at 4 °C.

Lijun Wu; David Thimsen; Bruce Clements; Ligang Zheng; Richard Pomalis

2014-01-01T23:59:59.000Z

68

Rankine bottoming cycle safety analysis. Final report  

SciTech Connect

Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

Lewandowski, G.A.

1980-02-01T23:59:59.000Z

69

Operation and performance of a low temperature Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract The test and analysis of an Organic Rankine Cycle (ORC) with R123 as the working fluid were presented in this paper. A scroll expander was integrated in the system to generate work. The expander was connected with an AC dynamometer unit, which was used to control and measure the expander shaft torque and rotating speed. The conductive oil simulated the low grade heat source. Operation characteristics were compared between the heat source temperatures of 140°C and 160°C. The experiments were conducted by adjusting two independent parameters: the pumping frequency of the R123 pump and the shaft torque of the expander. The former parameter was directly related to the R123 mass flow rate and the later to the external load. The optimum system performance can be determined by these two parameters. The maximum measured shaft power and thermal efficiency were 2.35 kW and 6.39% at the heat source temperature of 140°C, but they were 3.25 kW and 5.12% at the heat source temperature of 160°C. This study identified that the measured shaft power was about 15-20% lower than the enthalpy determined values, and the pumping power of the organic fluid was 2-4 times higher than the enthalpy determined values. The enthalpy determined values were based on the local pressure and temperature sensor measurements.

Zheng Miao; Jinliang Xu; Xufei Yang; Jinhuang Zou

2014-01-01T23:59:59.000Z

70

Method for processing LNG for rankine cycle  

SciTech Connect

A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

Aoki, I.; Matsumoto, O.

1983-06-14T23:59:59.000Z

71

High-Temperature Components for Rankine-Cycle-Based Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on...

72

Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications  

Science Journals Connector (OSTI)

Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications ... These mixtures are of interest as working fluids in organic Rankine power cycles. ...

Stephanie L. Outcalt; Eric W. Lemmon

2013-05-24T23:59:59.000Z

73

Statistical analysis of patent data relating to the organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This study analyzed patent data to explore the technological developments based on the organic Rankine cycle (ORC), which is one of the most economical and efficient methods for converting low-grade thermal energy into electricity. The patent data were obtained from the Thomson Innovation commercial database, which contains patent information from various countries and offices. After querying, filtering, and organizing the results into patent families in accordance with International Patent Documentation Center guidelines, this study analyzed data on 304 ORC-related patents. The results show that the number of patent applications increased gradually before 2006, and then rapidly from 2009 to 2011, primarily because of contributions from patent applications in China (CN) and the Republic of Korea (KR). The present findings indicate that 2009 is an important year regarding developments in ORC systems and the number of patent applications. Furthermore, the assignees from the United States (US) were the most prominent contributors. However, the most patent applications were filed in CN, indicating that the market for ORC systems in CN might offer the most potential for future development. This study also examined the top ten patent assignees, as well as the trends of the number of patent applications, size of patent families, and frequency of patent citations. The results show that all of the top ten assignees were from the US, CN, and KR. Moreover, most of them filed their patent applications in recent years, particularly after 2008. The results further indicate that the most active assignee is currently General Electric Company (US). In addition, the top five patent families and the five most frequently cited patents are briefly reviewed and discussed. The patent data analysis results indicate that the technology life cycle status of the ORC is currently in the growth stage.

Ben-Ran Fu; Sung-Wei Hsu; Chih-Hsi Liu; Yu-Ching Liu

2014-01-01T23:59:59.000Z

74

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

75

Optimal Efficiency of a Solar Pond and a Rankine Cycle System  

Science Journals Connector (OSTI)

The optimal efficiency of a solar pond — Rankine cycle system is found analytically. The optimum for...

M. H. Cobble; A. R. Shouman

1987-01-01T23:59:59.000Z

76

Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine  

Science Journals Connector (OSTI)

Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

R Braun; K Kusterer; T Sugimoto; K Tanimura; D Bohn

2013-01-01T23:59:59.000Z

77

Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine  

Science Journals Connector (OSTI)

Abstract Optimisation of organic Rankine cycles (ORCs) for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. This paper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, the refrigerant \\{R143a\\} is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate \\{R143a\\} radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state. The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.

Emilie Sauret; Yuantong Gu

2014-01-01T23:59:59.000Z

78

New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles  

Science Journals Connector (OSTI)

Abstract Turbine efficiency plays a key role in the design optimization of \\{ORCs\\} (organic Rankine cycles) and should be properly evaluated for an accurate estimate of the real power production. Its value is in general assumed as given in the design optimization procedure, without a check that it can be really achieved in the resulting working conditions. The peculiar properties of high molecular weight fluids markedly influence turbine design and ask for turbine design criteria specifically tailored to ORCs. In this work a meanline design procedure for single stage axial flow turbines is developed to find optimum turbine geometry and efficiency in a wide range of operating conditions. Unlike previous literature, real fluid properties and very recent loss models are implemented. The variation of the predicted turbine efficiency with loading coefficient, flow coefficient, specific speed and specific diameter is shown through new general maps that explicitly take into account the strong influence of compressibility and turbine size through the volumetric expansion ratio and size parameter, respectively. All these maps can be included in a general design optimization procedure of the ORC system to help select the optimum design point, overcoming any arbitrary assumptions on turbine efficiency.

Luca Da Lio; Giovanni Manente; Andrea Lazzaretto

2014-01-01T23:59:59.000Z

79

Selection of Working Fluids for the Organic Rankine Cycle  

E-Print Network (OSTI)

SELECTION OF WORKING FLUIDS FOR THE ORGANIC RANKINE CYCLE H. H. West J. M. Patton Energy Analysts, Inc. Engineering Design Group Houston, Texas Tulsa, Oklahoma K. E. Starling The University of Oklahoma Norman, Oklahoma ABSTRACT...

West, H. H.; Patton, J. M.; Starling, K. E.

1979-01-01T23:59:59.000Z

80

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network (OSTI)

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Simulation of an Industrial Rankine Cycle Cogeneration Plant  

E-Print Network (OSTI)

and transient loads and the resulting interactions between system components may be assessed. A thermal energy system simulation code is utilized and expanded to predict the performance of an industrial Rankine cycle (steam turbine) cogeneration plant having...

Carattie, G.; Wepfer, W. J.

1984-01-01T23:59:59.000Z

82

Organic Rankine Cycles for the Petro-Chemical Industry  

E-Print Network (OSTI)

considered to the limits of economic feasibility. However, both economic and technical feasibility limit the use of waste heat flows with conventional approaches in the 250 F to 350 F range. A packaged organic Rankine power cycle can technically...

Rose, R. K.; Colosimo, D. D.

1979-01-01T23:59:59.000Z

83

High-power multi-stage Rankine cycles  

SciTech Connect

This paper presents an analysis of the multi-stage Rankine cycle aiming at optimizing the power output from low-temperature heat sources such as geothermal or waste heat. A design methodology based on finite-time thermodynamics and the maximum power concept is used in which the shape and the power output of the maximum power cycle are identified and utilized to compare and evaluate different Rankine cycle configurations. The maximum power cycle provides the upper-limit power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger characteristics. It also provides a useful tool for studying power cycles and forms the basis for making design improvements.

Ibrahim, O.M. [Univ. of Rhode Island, Kingston, RI (United States). Mechanical Engineering Dept.; Klein, S.A. [Univ. of Wisconsin, Madison, WI (United States). Mechanical Engineering Dept.

1995-09-01T23:59:59.000Z

84

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant  

E-Print Network (OSTI)

Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

85

Discussion of the internal heat exchanger's effect on the Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This paper explores the performances of IHE (Internal Heat Exchanger) in ORC (Organic Rankine Cycle) systems. Although previous studies hold multitudinous opinions, this study gives clear statements of IHE in both subcritical and supercritical ORC systems by setting a new model taking pressure drop in loops and acid dew point into consideration. Commonly used working fluids R123 and R600 are chosen for subcritical and supercritical cases separately. The temperature of the heat source applied is 200 °C and the mass flow rate of it is 1 kg/s. The analysis is accomplished by program Engineering Equation Solver. A modified method of calculating maximum heat exchange in IHE is given when modeling a supercritical cycle, because of the momentously changing specific heat near the critical point. Besides, a new approach is put forward to calculate the outlet temperature of the heat source and find the location of pinch point in supercritical cases. The results provide that IHE is beneficial to a subcritical case, but it improves system performance only in part of the low pressure stage in a supercritical case. Moreover, after the acid dew point Tad is taken into account, it is found that IHE is able to enlarge euphemistically the maximum system net output in a subcritical case. And in a supercritical case, the original evaporation pressure which does not conform to the rule Th,out > Tad is available now. It is revealed that the utilization of IHE will strengthen the applicability of the system.

Yadong Zhu; Zhe Hu; Yaodong Zhou; Liang Jiang; Lijun Yu

2014-01-01T23:59:59.000Z

86

Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

SciTech Connect

This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

Donna Post Guillen; Jalal Zia

2013-09-01T23:59:59.000Z

87

Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%.

Songsong Song; Hongguang Zhang; Zongyong. Lou; Fubin Yang; Kai Yang; Hongjin Wang; Chen Bei; Ying Chang; Baofeng Yao

2014-01-01T23:59:59.000Z

88

Rankine/Rankine cycle gas-fired heat pump. Final report Mar 79-Mar 82  

SciTech Connect

A Rankine/Rankine cycle gas-fired heat pump was developed for residential application. The system consists of two rotating elements: a high-speed turbomachine core and a low-speed assembly, which includes a rotating vapor generator and heat exchangers. Inherent in the rotation of these components is the elimination of separate pumps, fans, reversing valves, and expansion valves. One Rankine cycle, the power cycle, drives the turbine and gives up its excess heat to the service air. The second Rankine cycle, the refrigerant cycle, is pressurized by a turbine-powered centrifugal compressor. The dual-cycle system uses two organic heat transfer fluids. The power cycle uses a developmental, moderate-temperature fluid (designated Fluid B), and the refrigeration cycle uses Freon R-113. These two fluids are compatible and missible in each other. Therefore, positive seals are not required. A laboratory prototype model was developed to the point of initiating proof-of-concept demonstration. A conceptual design study of an end-product model was conducted, and a product specification for a family of heat pump systems with various performance enhancement options was generated. The maximum realizable performance end-product heat pump system has a projected overall coefficient of performance (OCOP) of 0.79 at 37,500 Btu/hr cooling and an OCOP of 1.49 at 60,000 Btu/hr heating load. This end-product model has an estimated manufacturing cost of $1460 (in 1982 dollars) and could be available as a commercial product in the early 1990s.

Enbar, E.; Moriarty, R.

1982-06-30T23:59:59.000Z

89

Emissions-critical charge cooling using an organic rankine cycle  

DOE Patents (OSTI)

The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

Ernst, Timothy C.; Nelson, Christopher R.

2014-07-15T23:59:59.000Z

90

Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles  

Science Journals Connector (OSTI)

Abstract The thermodynamic performance of non-superheated subcritical Organic Rankine Cycles (ORCs) with zeotropic mixtures as working fluids is examined based on a second law analysis. In a previous study, a mixture selection method based on a first law analysis was proposed. However, to assess the performance potential of zeotropic mixtures as working fluids the irreversibility distributions under different mixtures compositions are calculated. The zeotropic mixtures under study are: R245fa–pentane, R245fa–R365mfc, isopentane–isohexane, isopentane–cyclohexane, isopentane–isohexane, isobutane–isopentane and pentane–hexane. The second law efficiency, defined as the ratio of shaft power output and input heat carrier exergy, is used as optimization criterion. The results show that the evaporator accounts for the highest exergy loss. Still, the best performance is achieved when the condenser heat profiles are matched. An increase in second law efficiency in the range of 7.1% and 14.2% is obtained compared to pure working fluids. For a heat source of 150 °C, the second law efficiency of the pure fluids is in the range of 26.7% and 29.1%. The second law efficiency in function of the heat carrier temperature between 120 °C and 160 °C shows an almost linear behavior for all investigated mixtures. Furthermore, between optimized \\{ORCs\\} with zeotropic mixtures as working fluid the difference in second law efficiency varies less than 3 percentage points.

S. Lecompte; B. Ameel; D. Ziviani; M. van den Broek; M. De Paepe

2014-01-01T23:59:59.000Z

91

Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water  

SciTech Connect

An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

Jain, M.L.; Demirgian, J.C.; Cole, R.L.

1986-09-01T23:59:59.000Z

92

M. Bahrami ENSC 461 (S 11) Tutorial Rankine Cycle 1 ENSC 461 Tutorial, Week#10 -Rankine Cycle  

E-Print Network (OSTI)

on a simple ideal Rankine cycle with turbine inlet conditions of 5 MPa and 450C and a condenser pressure of 25, it is common to assume that the liquid at location 1 is saturated. Turbine inW 1 Pump 2 Qout Q Condenser Boiler the rate of work output (turbine 3 4), a control volume is constructed that encloses the steam

Bahrami, Majid

93

Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle  

Science Journals Connector (OSTI)

This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with ... a heat exchanger, to a carbon dioxide Rankine

Manuel Romero Gómez; Javier Romero Gómez; Ramón Ferreiro Garcia…

2014-08-01T23:59:59.000Z

94

High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles.

95

Overview of international R and D programs on ORC systems  

SciTech Connect

The use of organic fluids in Rankine cycles has the potential for economically generating electric power from waste heat sources at lower temperatures than would be practical using steam systems. This paper reviews the current status of organic Rankine cycle (ORC) research and development in the United States, Europe, and Japan. Some of the problems being addressed are optimal working fluid selection, design of the nozzle/turbine assembly, and design of the vaporizer. Commercially available ORC engines range in size from 300 kW to 1,500 kW, while demonstration units start in the 30-40 kW range. Most applications to date have utilized the waste heat available in the exhaust gas of diesel engines and oil refinery furnaces. Although the focus of R and D work to date has been the technological aspects of ORCs, the economics must also be proven attractive if the systems are to penetrate the market.

Streicher, A.; Kapner, M.

1982-08-01T23:59:59.000Z

96

A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles  

Science Journals Connector (OSTI)

Abstract Positive-displacement expanders, which are widely used in small-scale \\{ORCs\\} (Organic Rankine Cycles), need reliable LOS (Lubricant Oil Supply) to get well lubrication and sealing. In the present paper, the characteristics of two traditional LOS schemes are examined. Moreover, a modified one is proposed. Analyses of those elements that lead to work loss of lubricant oil supply have been carried out for all the three LOS schemes. The work loss of lubricant oil supply, which is caused by the employment of lubricant oil pumps, pressure drop in lubricant oil separator and other components contributing to work loss, is evaluated by a definition of WLLS (Work Loss Factor of Lubrication Oil Supply). Based on the thermodynamic model of ORC established, the calculation methods of WLLS are presented. Through analyses of LOS schemes and calculation of WLLS in two typical ORCs, it was found that the traditional LOS schemes either can not work reliably, or might cause up to 11.5% and 9.5% power decrease. The values can be reduced by half in the proposed LOS scheme, which can also work reliably. Accompanied with the advantages, the defects of the new scheme were also investigated.

Biao Lei; Yu-Ting Wu; Wei Wang; Jing-Fu Wang; Chong-Fang Ma

2014-01-01T23:59:59.000Z

97

Modeling and optimization of a combined cycle Stirling-ORC system and design of an integrated microchannel Stirling heat rejector.  

E-Print Network (OSTI)

??The performance of a combined Stirling-ORC power cycle is evaluated, and an integrated microchannel heat exchanger is designed as an annular cold-side heat rejector for… (more)

Ingram-Goble, Robbie

2010-01-01T23:59:59.000Z

98

Predicting toluene degradation in organic Rankine-cycle engines  

SciTech Connect

This paper describes the measurement of toluene degradation in dynamic loop tests that simulate operation of an organic Rankine-cycle engine. Major degradation products and degradation mechanisms are identified, and degradation is quantified. Results indicate that toluene is a stable fluid with benign degradation products, provided that oxygen is excluded from the engine. A means of predicting degradation in the engine is developed. 3 refs., 4 figs., 5 tabs.

Cole, R.L.; Demirgian, J.C.; Allen, J.W.

1987-01-01T23:59:59.000Z

99

THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE  

E-Print Network (OSTI)

of Electricity from Geothermal Energy," Brown University,Simulation of Geothermal Energy Cycles), LBL publication-Manager), Economics "Geothermal Energy Conversion and Case

Pope, William L.

2012-01-01T23:59:59.000Z

100

Integrated Rankine bottoming cycle for diesel truck engines  

SciTech Connect

This study assessed the feasibility of incorporating a Rankine bottoming cycle into a diesel truck engine. An organic Rankine bottoming cycle (ORBC) previously demonstrated by the US Department of Energy in a heavy-duty, long-haul truck reduced the truck's fuel consumption by about 12%. However, that system was considered too complex and costly to be commercialized. The integrated Rankine bottoming cycle (IRBC) described here is expected to be simpler and less costly than the ORBC. In the IRBC, one cylinder of a six-cylinder diesel truck engine will be used for power recovery, instead of the turbine and reduction gears of the ORBC; engine coolant will serve as the working fluid; and the engine radiator will also serve as the condenser. Toluene and steam were considered as working fluids in this assessment, and we concluded that steam (at 1000 psi, partially vaporized to about 33% saturation in the cylinder head, and superheated in an evaporator) would be the more practical of the two. Both heat exchangers are smaller than those of the ORBC system, but may pose a challenge in an under-the-hood installation. Overall, the concept appears feasible. 13 refs., 9 figs., 7 tabs.

Sekar, R.; Cole, R.L.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power  

SciTech Connect

The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

102

Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles  

Science Journals Connector (OSTI)

Selecting the best design options for turbo-expanders to be used in Organic Rankine Power Cycle applications is a difficult task, with special reference to the low-temperature applications (T turbo-expander efficiency. Referring to a radial-type turbo-expander, a comparison of different working fluids is presented and discussed.

Daniele Fiaschi; Giampaolo Manfrida; Francesco Maraschiello

2012-01-01T23:59:59.000Z

103

Organic Rankine Cycle System Preliminary Design with Corn Cob Biomass Waste Burning as Heat Source  

Science Journals Connector (OSTI)

Abstract The renewable energy source potencies in Indonesia are needed to be utilized to fulfill the electricity requirement in rural or remote area that not yet get electricity. One of the potency is biomass waste. Therefore, this paper discusses about the electricity generation preliminary design of Organic Rankine Cycle (ORC) system with corn cob biomass waste burning as heat source, so it can be obtained the theoretic corn farm area requirement, electricity power, and thermal efficiency at heat source temperature and flow rate variations. Corn cob burning temperature can heat up the heating fluid that is heated by boiler with corn cob as the biomass fuel. Furthermore, that heating fluid is used as ORC electricity generation heat source. The independent variables in this study are the heating fluid temperature which varied between 110, 120, and 130oC, and the heating fluid flow rate that varied between 100, 150, and 200 liter/minute. \\{R141b\\} is selected to be the working fluid, palm oil is used for heating fluid and water as cooling fluid. The calculation results that the theoretic electricity power, thermal efficiency, and corn farm area requirement, respectively, are in the range of 3.5-8.5 kW, 9.2-10.3%, and 49.5-101.1 hectare/year. All of the highest range values are resulted at the highest temperature and flow rate, 130oC and 200 liter/minute. This result shows that corn cob burning heat is potential to be utilized as electricity generation heat source for rural society, particularly for some areas that have been studied.

Nur Rohmah; Ghalya Pikra; Agus Salim

2013-01-01T23:59:59.000Z

104

Applicability of entropy, entransy and exergy analyses to the optimization of the Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Based on the theories of entropy, entransy and exergy, the concepts of entropy generation rate, revised entropy generation number, exergy destruction rate, entransy loss rate, entransy dissipation rate and entransy efficiency are applied to the optimization of the Organic Rankine Cycle. Cycles operating on R123 and N-pentane have been compared in three common cases which are variable evaporation temperature, hot stream temperature and hot stream mass flow rate. The optimization goal is to produce maximum output power. Some numerical analyses and simulations are presented, and the results show that when both the hot and cold stream conditions are fixed, all the entropy principle, the exergy theory, the entransy loss rate and the entransy efficiency are applicable to the optimization of the ORC, while entransy dissipation is not. This conclusion is available no matter what kind of working fluid is used, nevertheless, the system performances and parameters may be much different. The results also indicate that when the hot stream condition (temperature or mass flow rate) varies, the entransy loss rate is the only parameter which always corresponds to the maximum power output.

Yadong Zhu; Zhe Hu; Yaodong Zhou; Liang Jiang; Lijun Yu

2014-01-01T23:59:59.000Z

105

Development of an Autonomous Free Piston Refrigerating Unit Driven by Rankine Cycle  

Science Journals Connector (OSTI)

It has been previously demonstrated that a single free piston machine can act as compressor and pump, for the purpose of achieving two (direct and inverse) Rankine cycle.

Y. Vandendael; D. Vokaer

1983-01-01T23:59:59.000Z

106

[en] THERMODYNAMIC COMPARISON BETWEEN A TRADITIONAL RANKINE CYCLE WITH AN INNOVATIVE RANKINE CYCLE USING RESIDUAL GASES FROM THE SIDERURGIC PROCESS.  

E-Print Network (OSTI)

??[pt] O presente trabalho realiza uma comparaçăo entre o ciclo Rankine tradicional e uma nova proposta de ciclo Rankine para uma planta de cogeraçăo na… (more)

CARLOS THOMAZ GUIMARAES LOPES JUNIOR

2008-01-01T23:59:59.000Z

107

GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES  

E-Print Network (OSTI)

GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON, and KARTIK cycles under the p-adic Abel­Jacobi map to the special values of certain p-adic Rankin L-called generalized Heegner cycles in the product of a Kuga­Sato variety with a power of a CM elliptic curve. Its main

Prasanna, Kartik

108

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES  

E-Print Network (OSTI)

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES BENJAMIN HOWARD Contents 1 #12;RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES 3 defined by x (iC()x, i. Introduction 1 2. Unitary Shimura varieties and their special cycles 2 2.1. Unitary Shimura varieties 2 2

Goren, Eyal Z.

109

Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine  

Science Journals Connector (OSTI)

Abstract A single-screw expander with 155 mm diameter screw has been developed. A spiral-tube type evaporator and an aluminum multi-channel parallel type condenser have also been developed with weight of 147 kg and 78 kg, respectively. Based on the development of above components, an ORC (organic Rankine cycle) system prototype was assembled and tested for waste heat recovery from diesel engine exhaust. An experimental system was built for this ORC system, and experiments were conducted for different expander torque and diesel engine loads. Influences of expander torque and diesel engine loads on the performances of ORC system were studied. The results indicated that the maximum of the power output is 10.38 kW and the biggest ORC efficiency and overall system efficiency are respectively 6.48% and 43.8%, which are achieved at 250 kW of diesel engine output. Meanwhile the biggest improvement of overall system efficiency is 1.53%. The maximums of volume efficiency, adiabatic efficiency and total efficiency of single-screw expander are 90.73%, 73.25% and 57.88%, respectively.

Ye-Qiang Zhang; Yu-Ting Wu; Guo-Dong Xia; Chong-Fang Ma; Wei-Ning Ji; Shan-Wei Liu; Kai Yang; Fu-Bin Yang

2014-01-01T23:59:59.000Z

110

Optimal Selection of Working Fluid for the Organic Rankine Cycle Driven by Low-Temperature Geothermal Heat  

Science Journals Connector (OSTI)

To select the optimal organic working fluid for organic Rankine cycles driven by low-temperature geothermal heat, the ... thermal performances of low-temperature geothermal heat powered organic Rankine cycles usi...

Wang Hui-tao; Wang Hua; Ge Zhong

2012-01-01T23:59:59.000Z

111

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES  

E-Print Network (OSTI)

RANKIN-SELBERG L-FUNCTIONS AND CYCLES ON UNITARY SHIMURA VARIETIES BENJAMIN HOWARD Contents 1. Introduction 1 1.1. Acknowledgements 2 2. Unitary Shimura varieties and their special cycles 2 2.1. Unitary.2. Divisors associated with harmonic forms 18 3.3. Construction of Green functions 18 3.4. Rankin-Selberg L

Howard, Ben

112

Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander  

Science Journals Connector (OSTI)

Small-scale solar thermal cogeneration shows promise as an effective way to get increased benefit out of a given solar availability, since it does not waste potential during summer after the water capacity is heated. In this paper a scroll expander is tested in a small organic Rankine cycle (ORC) and used to calibrate a static expander model. Validation of the scroll expander model shows agreement generally within 10% for the shaft power, 5% for the rotational speed and 6 K for the exhaust temperature, with some outliers at very low pressure ratios. This calibrated model is then incorporated into a larger dynamic model of a solar thermal cogeneration system, designed for some larger dwelling unit or small commercial establishment that requires a larger volume of hot water. An annual simulation is conducted using a collector area of 50 m2, and the scroll expander shows a maximum isentropic efficiency of 59% while the ORC efficiency is 3.47%. The total energy produced is 1710 kWh and the hot water available is on average 2540 L/day. The maximum instantaneous power that can be produced by the system is 676 W, and it is possible to shift the time period that the system is producing power to match the peak demand period by adjusting the solar store volume.

B. Twomey; P.A. Jacobs; H. Gurgenci

2013-01-01T23:59:59.000Z

113

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to “standardize the technology”.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130 °C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100–130 °C range, while the return temperature of the brine is assumed to be between 70 and 100 °C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

114

Rapid Screening of Fluids for Chemical Stability in Organic Rankine Cycle Applications  

Science Journals Connector (OSTI)

Description of the SMR cycle, which combines fluid elements of steam and organic Rankine cycles ... isomerization of 1-pentyl radical to 2-pentyl radical, which proceeds via a five-membered, cyclic transition state. ...

Wendy C. Andersen; Thomas J. Bruno

2005-06-02T23:59:59.000Z

115

Rankine cycle power plant with improved organic working fluid  

SciTech Connect

In a Rankine cycle power plant having a boiler for vaporizing an organic working fluid which is applied to a turbine in which vaporized working fluid produced by the boiler expands and produces work, a condenser for condensing expanded vaporized working fluid exhausted by the turbine and producing condensate, and means for returning the condensate to the boiler, the improvement is described comprising: (a) operating the boiler so that the organic fluid vaporizes at substantially constant pressure and a temperature not exceeding 400/sup 0/C; (b) applying only vaporized working fluid to the turbine; and (c) using as the working fluid, a compound selected from the group consisting of bicyclic hydrocarbons, substituted bicyclic aromatic hydrocarbons, heterobicyclic aromatic hydrocarbons, substituted heterobicyclic aromatic hydrocarbons, bicyclic compounds where one ring is aromatic and the other condensed ring is nonaromatic, and their mixtures.

Yogev, A.; Mahlab, D.

1988-08-02T23:59:59.000Z

116

Investigations of supercritical CO2 Rankine cycles for geothermal power plants  

SciTech Connect

Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

117

Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture  

Science Journals Connector (OSTI)

Abstract A novel system integrating solar Organic Rankine Cycle (ORC) into a power plant with amine-based chemical absorption for CO2 capture is proposed. The condensation heat of ORC provides the required heat for solvent regeneration, which avoids the energy penalty caused by the steam extraction traditionally. The cascade utilization of solar energy is realized through a combined supply of power generation and condensation heat. From the aspects of technology and economics, a performance analysis is presented to compare the proposed system and three other systems based on a 300 MWe power plant. The proposed system shows better performance than that of reference systems in the power generation and emission reductions. Economic evaluation was conducted in terms of levelized costs of electricity (LCOE) and cost of CO2 removed (COR). In order to achieve lower LCOE and COR compared to the power plant integrated with solar assisted post-combustion CO2 capture (PCC), the price of ORC has to be lower than 1284.46 USD/kW under the conditions that the price of the solar field is 120 USD/m2. It is believed that the proposed system has a satisfied potential to meet the thermal demand for the solvent regeneration in the power plant with PCC.

Li Zhao; Ruikai Zhao; Shuai Deng; Yuting Tan; Yinan Liu

2014-01-01T23:59:59.000Z

118

The Design of an Open Rankine-Cycle Industrial Heat Pump  

E-Print Network (OSTI)

An open Rankine-cycle heat pump is ideally suited for producing low-pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility...

Leibowitz, H. M.; Chaudoir, D. W.

1981-01-01T23:59:59.000Z

119

Low-grade geothermal energy conversion by organic Rankine cycle turbine generator  

SciTech Connect

This paper reports results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49/sup 0/C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator. The geothermal source which supplied the water is located in a rural Alaskan village. The primary reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable; and the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. The important contribution made by this project is data provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.

Zarling, J.P.; Aspnes, J.D.

1983-08-01T23:59:59.000Z

120

Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (...

Jingtao Wang; Jin Zhang; Zhiyou Chen

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimized nuclear and solar dynamic organic Rankine cycles for Space Station applications  

E-Print Network (OSTI)

OPTIMIZED NUCLEAR AND SOLAR DYNAMIC ORGANIC RANKINE CYCLES FOR SPACE STATION A. PPLICATIONS A Thesis by DANA LEN EUBANKS Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1988 Major Subject: Nuclear Engineering OPTIMIZED NUCLEAR AND SOLAR DYNAMIC ORGANIC RANKINE CYCLES FOR SPACE STATION APPLICATIONS A Thesis by DANA LEN EUBANKS Approved as to style and content by: Frederick R...

Eubanks, Dana Len

2012-06-07T23:59:59.000Z

122

An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications  

Science Journals Connector (OSTI)

Abstract Performance calculations are presented for a small-scale combined solar heat and power (CSHP) system based on an Organic Rankine Cycle (ORC), in order to investigate the potential of this technology for the combined provision of heating and power for domestic use in the UK. The system consists of a solar collector array of total area equivalent to that available on the roof of a typical UK home, an ORC engine featuring a generalised positive-displacement expander and a water-cooled condenser, and a hot water storage cylinder. Preheated water from the condenser is sent to the domestic hot water cylinder, which can also receive an indirect heating contribution from the solar collector. Annual simulations of the system are performed. The electrical power output from concentrating parabolic-trough (PTC) and non-concentrating evacuated-tube (ETC) collectors of the same total array area are compared. A parametric analysis and a life-cycle cost analysis are also performed, and the annual performance of the system is evaluated according to the total electrical power output and cost per unit generating capacity. A best-case average electrical power output of 89 W (total of 776 kW h/year) plus a hot water provision capacity equivalent to ?80% of the total demand are demonstrated, for a whole system capital cost of Ł2700–Ł3900. Tracking \\{PTCs\\} are found to be very similar in performance to non-tracking \\{ETCs\\} with an average power output of 89 W (776 kW h/year) vs. 80 W (701 kW h/year).

James Freeman; Klaus Hellgardt; Christos N. Markides

2015-01-01T23:59:59.000Z

123

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

Luong, David

2013-01-01T23:59:59.000Z

124

Diesel organic Rankine bottoming-cycle powerplant program: Volume III. Appendices. Final report. [Using Fluorinol-85 as working fluid  

SciTech Connect

The final report on organic Rankine cycle power systems used to recover energy either from the waste heat of power-generating diesel engines or from waste heat from industrial plants has the following appendices which are included in this volume: major component specifications; test plan for the power conversion subsystem of the Diesel-Organic Rankine-Cycle Power Plant; environmental assessment of Fluorinol-85 which is the working fluid in the Rankine Cycle System; and applicable regulations and codes. (LCL)

Not Available

1981-10-01T23:59:59.000Z

125

Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a dynamic simulation model of a novel prototype of a 6 kWe solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the year, remaining always close to 10%. On the other hand, the efficiency of the solar collectors is very high in summer (>50%) and significantly lower during the coldest winter days (down to 20%). Pay-back periods are extremely attractive in case of feed-in tariffs (about 5 years), whereas the profitability of the system is scarce when no public funding is available. A sensitivity analysis was also performed, in order to determine the combination of system/design parameters able to maximize the thermo-economic performance of the system. It was found that the system may be economically feasible for the majority of locations in the Mediterranean area (pay-back periods around 10 years), whereas the profitability is unsatisfactory for Central-Europe sites.

Francesco Calise; Massimo Dentice d’Accadia; Maria Vicidomini; Marco Scarpellino

2015-01-01T23:59:59.000Z

126

A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy  

Science Journals Connector (OSTI)

Abstract The organic Rankine cycle is widely used to obtain electric power from renewable energy sources, such as solar energy, geothermal energy, and waste thermal energy. In a typical ORC, a turbo-expander or volumetric expander is applied to convert the thermal energy to mechanical energy. The turbo-expander is widely used for large-scale output power because it has merits when used with large mass flowrates; the scroll expander is used for small-scale output power. In \\{ORCs\\} that produce small-scale output power, the available thermal energy as a renewable heat source usually cannot be supplied continuously. For fluctuating levels of available thermal energy, positive displacement machine has difficulty in adjusting the mass flowrate. In order to regulate the mass flowrate for varying thermal energies, a small-scale radial-type turbine and supersonic nozzles were designed specifically for this study. \\{R245fa\\} was used as the working fluid, and the thermodynamic properties of the working fluid in the cycle were predicted on the basis of the designed turbine blade and nozzle shape even though the mass flowrates were varied. The output powers at the off-design operations were predicted for the full range of 30 kW according to the number of nozzles used.

Soo-Yong Cho; Chong-Hyun Cho; Kook-Young Ahn; Young Duk Lee

2014-01-01T23:59:59.000Z

127

Experimental study and CFD approach for scroll type expander used in low-temperature organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This study focuses on experimental test of scroll type expanders in low-temperature organic Rankine cycle (ORC) system. In this circuit, lubricant has been mixed with \\{R245fa\\} as working fluid. In this experiment, two scroll expanders with different built-in volume ratio have been experimentally tested. Main test parameters considered are the pressure difference and the rotational speed of the expanders. It is found that the expander performance could be significantly improved when bigger built-in volume ratio is used. However the internal leakage and friction loss are vital factors to influence expander performance. The maximum shaft power output by expander of 1.77 kW and deliver electricity by generator of 1.375 kW. A Computational Fluid Dynamics approach (CFD) has been employed for preliminary investigation on the thermal-hydraulic behavior of the scroll type expanders. The simulation result shows that unbalance pressure distribution were occurred in the expander by means of top scroll wrap has been modified.

Jen-Chieh Chang; Chao-Wei Chang; Tzu-Chen Hung; Jaw-Ren Lin; Kuo-Chen Huang

2014-01-01T23:59:59.000Z

128

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA1  

E-Print Network (OSTI)

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI cycles * * 15 2.1. Kuga-Sato varieties.3. Definition of the cycles * * 19 2.4. Relation

Darmon, Henri

129

Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery  

Science Journals Connector (OSTI)

Abstract This study proposes a new concept called the cascade Rankine cycle, which recovers LNG (liquefied natural gas) cold energy for power generation, optimizes the cycle by investigating the effects of key parameters on its performance, and compares its thermal efficiency, exergy efficiency and economic evaluation to those of the conventional alternatives. The cascade Rankine cycle consists of multiple stages of the organic Rankine cycle in a layered structure in which the first stage encompasses the second one that, in turn, encompasses the next. Due to its layered configuration, optimization of the cycle is straightforward and involves sequentially optimizing the individual stages. Optimization of the subsequent stages, however, required process simulation considering the equipment efficiency and the thermodynamic properties of the working fluid. Process simulation indicated that the indicators such as net power output, thermal efficiency, and exergy efficiency generally increase as the number of stages increases. These indicators were, however, significantly affected by the thermodynamic properties of the working fluids. The proposed cycles demonstrated significantly better performance in these indicators than the conventional cycles. The three-stage cascade Rankine cycle with propane as the working fluid exhibited the highest net power output, thermal efficiency and exergy efficiency within the set.

In-Hwan Choi; Sangick Lee; Yutaek Seo; Daejun Chang

2013-01-01T23:59:59.000Z

130

Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid  

Science Journals Connector (OSTI)

Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid ... Because of the rather low molecular weight of water, the use of steam Rankine cycles for waste heat temperatures below 400 °C is inefficient and requires the use of expensive multistage expanders. ... Cyclopentane (C5H10) is a cyclic alkane that exhibits a “puckered” (i.e., one carbon atom tends to jut out above the others to relieve ring stress) ring system of carbon–hydrogen (C–H) bonds and carbon–carbon (C–C) single bonds. ...

Daniel M. Ginosar; Lucia M. Petkovic; Donna Post Guillen

2011-08-02T23:59:59.000Z

131

A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation  

Science Journals Connector (OSTI)

This paper presents an overview of the technical and economic aspects, as well as the market evolution of the Organic Rankine Cycle (ORC). This is an unconventional but very promising technology for the conversion of thermal energy, at low and medium temperatures, into electrical and/or mechanical energy on a small scale. As it makes a greater and/or more intensive use of its energy source, this technology could facilitate an electricity supply to unconnected areas, the self-production of energy, the desalination of seawater for human consumption, or even to increase the energy efficiency in the industrial sector respecting the environment. A look at the scientific publications on this topic shows an open research line, namely the selection of a suitable working fluid for these systems, since there is as yet none that provides all aspects that must be taken into account in ORCs. Furthermore, a description and an analysis of the applications of the proposed technology is carried out, specifying the main providers, which at the present time is limited mainly to the range 0.2–2 MWe with a cost of around 1 and 4 × 103 €/kWe. Lower powers are in pre-commercial status.

Fredy Vélez; José J. Segovia; M. Carmen Martín; Gregorio Antolín; Farid Chejne; Ana Quijano

2012-01-01T23:59:59.000Z

132

Comparison of subcritical and supercritical Rankine cycles for application to the geopressured geothermal resource  

SciTech Connect

There are several features unique to the geopressure geothermal resource which narrow the range of power cycle alternatives. The thermodynamic and operating restrictions which appear to favor the application of a supercritical Rankine power cycle utilizing propane for the recovery of thermal energy from the geopressure geothermal resource are described. This power cycle can be integrated into a natural gas recovery scheme that conserves reservoir pressure for brine disposal and produces gas at pipeline pressure.

Goldsberry, F.L.

1981-10-01T23:59:59.000Z

133

A new Rankine cycle for hydrogen-fired power generation plants and its exergetic efficiency  

Science Journals Connector (OSTI)

A novel power generation cycle is proposed in this paper taking hydrogen as fuel and using steam generated by hydrogen firing as working fluid. The progress of the development work and side issues such as the application of hydrogen combustion turbines to environmentally clean fossil fuel power plants for early commercialisation of the system are reviewed. We propose the hydrogen-fired Rankine cycle as similar to (C) type developed earlier by Hisadome et al. and Sugishita et al. and then making a new design of it by increasing the performance characteristics and efficiencies with (reheating, regenerative and recuperation) of the working fluid of the bottoming cycle respectively, and in this case we present two types (C1 and C2). In the case of type C2 the cycle is called the ''New Rankine Cycle''. These cycles are also compared with the Rankine cycle of type (C) for hydrogen-fired to show the advantages of the performance characteristics of the new design at which the highest value of exergetic efficiency reaches 63.58% as HHV at 1700°C of the combustor discharge temperature. These cycles are analysed through thermodynamics, particularly by exergy analysis, and the performance characteristics of the cycles are also studied.

Mohammed Ghiyath Soufi; Terushige Fujii; Katsumi Sugimoto; Hitoshi Asano

2004-01-01T23:59:59.000Z

134

Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator  

SciTech Connect

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, Gerhard; Ruhland, Johannes

1996-01-24T23:59:59.000Z

135

Altheim geothermal plant for electricity production by organic Rankine cycle turbogenerator  

SciTech Connect

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, G. [Municipality of Altheim (Austria); Ruhland, J. [TERRAWAT GmbH, Schwaben (Germany)

1996-12-31T23:59:59.000Z

136

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

137

Method of optimizing performance of Rankine cycle power plants. [US DOE Patent  

DOE Patents (OSTI)

A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

1980-06-23T23:59:59.000Z

138

The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat  

E-Print Network (OSTI)

The conservation of energy by its recovery from low temperature waste heat is of increasing importance in today's world energy crisis. The Organic Rankine Cycle is a cost efficient and proven method of converting low temperature (200-400o F) waste...

Sawyer, R. H.; Ichikawa, S.

1980-01-01T23:59:59.000Z

139

Method for recovering power according to a cascaded rankine cycle by gasifying liquefied natural gas and utilizing the cold potential  

SciTech Connect

The present invention discloses a method for recovering effective energy as power between liquefied natural gas and a high temperature source by cascading two kinds of Rankine cycles when the liquefied natural gas is re-gasified. The method is characterized in that a first medium performs a first Rankine cycle with the liquefied natural gas as a low temperature source, the first medium being mainly a mixture of hydrocarbons having 1-6 carbon atoms or a mixture of halogenated hydrocarbons of boiling points close to those of said hydrocarbons, the first medium having compositions according to which the vapor curve of gasifying the liquefied natural gas substantially corresponds to the low pressure cooling curve of the first medium, the power generated thereby is recovered by a first turbine during the first Rankine cycle, a second medium having a higher boiling point than said first medium performs a second Rankine cycle with part of said first Rankine cycle as the low temperature source, the second medium, being a single hydrocarbon component having 1-6 carbon atoms or a mixture thereof, a single halogenated hydrocarbon whose boiling point is close to that of this hydrocarbon or a mixture thereof, or ammonia, whose low pressure cooling curve substantially corresponds to the vapor curve of the high pressure first medium, said first and second Rankine cycles are cascaded, and a second turbine is disposed to recover power during the second Rankine cycle.

Matsumoto, O.; Aoki, I.

1984-04-24T23:59:59.000Z

140

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

Lim, Hyuck

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Task report No. 3. Systems analysis of organic Rankine bottoming cycles. [Fuel cell power plant  

SciTech Connect

A model was developed that predicts the design performance and cost of a Fuel Cell/Rankine cycle powerplant. The Rankine cycle utilizes the rejected heat of an 11.3 MW phosphoric acid fuel cell powerplant. Improvements in the total plant heat rate and efficiency of up to 10% were attainalbe, using ammonia as the working fluid. The increase in total plant cost divided by the increase in total plant power ranged from $296/kW to $1069/kW for the cases run, and was a strong function of ambient temperature. The concept appears to be capable of producing substantial energy savings in large fuel cell powerplants, at reasonable costs. However, a much more detailed study that includes such factors as duty cycle, future cost of fuel and site meteorology needs to be done to prove the design for any potential site.

Bloomfield, D.; Fried, S.

1980-12-01T23:59:59.000Z

142

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

143

Étude de la faisabilité des cycles sous-critiques et supercritiques de Rankine pour la valorisation de rejets thermiques.  

E-Print Network (OSTI)

??Ce travail de thčse concerne l’étude de la faisabilité des cycles organiques sous-critiques et supercritiques de Rankine pour la valorisation de rejets thermiques industriels ŕ… (more)

Le, Van Long

2014-01-01T23:59:59.000Z

144

A concept of power generator using wind turbine, hydrodynamic retarder, and organic Rankine cycle drive  

Science Journals Connector (OSTI)

This paper describes a concept of electric power generating system that uses a wind turbine to generate kinetic energy which converts heat through a hydrodynamic retarder. The heat so generated is utilized to drive an organic Rankine cycle that converts thermal energy into electricity power for continuous and undisrupted supply during the year. A hydrodynamic retarder converts kinetic energy into heat through hot fluid by directing the flow of the fluid into the hydrodynamic retarder in a manner that resists rotation of blades of the wind turbine. The hot fluid circulating in the hydrodynamic retarder is a thermal heat source for vapor regeneration of organic heat exchange fluid mixture(s) used in the Rankine cycle. The expansion of the organic heat exchange fluid gets converted into rotation of the generator rotor.

Samuel Sami

2013-01-01T23:59:59.000Z

145

Reduced gravity Rankine cycle system design and optimization study with passive vortex phase separation  

E-Print Network (OSTI)

REDUCED GRAVITY RANKINE CYCLE SYSTEM DESIGN AND OPTIMIZATION STUDY WITH PASSIVE VORTEX PHASE SEPARATION A Thesis by KEVIN ROBERT SUPAK Submitted to the Office of Graduate Studies of Texas A&M University... SEPARATION A Thesis by KEVIN ROBERT SUPAK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Frederick...

Supak, Kevin Robert

2008-10-10T23:59:59.000Z

146

Waste Heat Recovery by Organic Fluid Rankine Cycle  

E-Print Network (OSTI)

In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO... In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO...

Verneau, A.

1979-01-01T23:59:59.000Z

147

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON & KARTIK PRASANNA1  

E-Print Network (OSTI)

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES MASSIMO BERTOLINI, HENRI DARMON & KARTIK multiplication 12 1.5. Values of modular forms at CM points 14 2. Generalised Heegner cycles 15 2.1. Kuga-Sato varieties 15 2.2. The variety Xr and its cohomology 18 2.3. Definition of the cycles 19 2.4. Relation

Darmon, Henri

148

Orc Notation Compilation  

E-Print Network (OSTI)

Overview Orc Notation Compilation Status of Research Structuring the Cloud with Orc First Mysore http://orc.csres.utexas.edu #12;Overview Orc Notation Compilation Status of Research Questions How do Engineering How do we connect applications in the cloud? All of the above #12;Overview Orc Notation

Rajamani, Sriram K.

149

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

150

Experimental Rankine cycle engine designed for utilization of low temperature, low pressure heat. Final report  

SciTech Connect

The development of a Rankine cycle engine using Freon 11 as working fluid, for the utilization of low temperature heat sources is described together with the results obtained. The experimental investigations showed that the engine performance is in good agreement with the calculated values; that the mechanical behavior of some components is not yet satisfactory; and that the working fluid (Freon 11) is not completely reliable in the higher temperatures range. An extension of the feasibility study dealing mainly with engine behavior and fluid suitability is envisaged, using either Freon 113 or a fluorine compound of the composition CmF(2m+2).

Cipolla, G.; Margary, R.

1981-01-01T23:59:59.000Z

151

Status of Rankine-cycle technology for space nuclear power applications  

SciTech Connect

A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

Holcomb, R.S.

1991-01-01T23:59:59.000Z

152

ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles  

Energy.gov (U.S. Department of Energy (DOE))

System-level models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles.

153

Orc Verification Jayadev Misra  

E-Print Network (OSTI)

Orc Verification Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu WG 2.3, St. Petersburg June 5, 2013 #12;Orc Verification has been a disaster · Concurrency everywhere events but temporal ordering · Basic orc has no mutable variables, but sites do · Full functional

Misra, Jayadev

154

Rankine cycle condenser pressure control using an energy conversion device bypass valve  

DOE Patents (OSTI)

The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

2014-04-01T23:59:59.000Z

155

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

for Open Organic Rankine Cycle (ORC)138 Evaporatorand Simulation of an Organic Rankine Cycle (ORC) System forControl of Organic Rankine Cycles in Waste Heat Uti- lizing

Luong, David

2013-01-01T23:59:59.000Z

156

[en] SIMULATION OF AN ORGANIC RANKINE CYCLE POWERED BY SOLAR ENERGY.  

E-Print Network (OSTI)

??[pt] Esta simulaçăo considera um ciclo Rankine que utiliza um fluido de trabalho orgânico, com a particularidade que a fonte de energia de entrada ao… (more)

ERNESTO JAVIER RUANO HERRERIA

2013-01-01T23:59:59.000Z

157

Supercritical Rankine Cycle Coupled with Ground Cooling for Low Temperature Power Generation  

Science Journals Connector (OSTI)

Abstract This paper presents an application of an earth-air-heat-exchanger (EAHE) as condenser in low to medium temperature power generation plants. A supercritical Rankine cycle (SRC) utilizing organic refrigerants as working fluids was used as the power cycle for the plant. The heat source temperature was varied from 125-1750C. The condenser was coupled to an EAHE system buried at a depth of 2 m under the surface of the earth. Its effect on the power cycle efficiency over a period of six months has been studied. It was observed that the soil temperature 10 cm from the surface (horizontal direction) of the underground pipe increased by almost 20C during this time. This temperature change decreased with distance from the pipe. The soil temperature profile varied with time, distance from the pipe and location along the length of the pipe. The efficiency of the SRC increased by 1% and the daily fluctuations were reduced when EAHE was used.

Rachana Vidhi; D. Yogi Goswami; Elias Stefanakos

2014-01-01T23:59:59.000Z

158

Solar-powered/fuel-assisted Rankine-cycle power and cooling system: Simulation method and seasonal performance  

SciTech Connect

The subject of this analysis is a solar cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100/sup 0/C, and it is then superheated to about 600/sup 0/C in a fossil-fuel-fired superheater. The addition of about 20-26 percent of fuel doubles the power cycle's efficiencyas compared to organic Rankine cycles operating at similar collector temperatures. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Transient simulation was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.). One of the conclusions is that the seasonal system COP is 0.82 for the design configuration and that the use of watercooled condensers and flat-plate collectors of higher efficiency increases this value to 1.35.

Lior, N.; Koai, K.

1984-05-01T23:59:59.000Z

159

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

160

Performance of a 5 kWe Solar-only Organic Rankine Unit Coupled to a Reverse Osmosis Plant  

Science Journals Connector (OSTI)

Abstract Organic Rankine Cycle (ORC) systems are one of the most promising energy conversion technologies available for remote areas and low temperature energy sources. An ORC system works like a conventional Rankine cycle but it uses an organic compound as working fluid, instead of water. A small ORC unit coupled with a solar thermal energy system could be used to convert solar thermal energy into electricity in remote areas, offering an alternative to Photovoltaic (PV) systems to provide the energy required by desalination applications like reverse osmosis (RO). In this work an analysis of the performance of a specific solar desalination ORC system at part load operation is presented, in order to understand its behavior from a thermodynamic perspective and be able to predict the total water production with changing operation conditions. The results showed that water production is around 1.2 m3/h, and it is stable during day and night thanks to the thermal storage and only under bad irradiance circumstances the production would stop.

M. Ibarra; A. Rovira; D.C. Alarcón-Padilla; G. Zaragoza; J. Blanco

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ORC Closed Loop Control Systems for Transient and Steady State...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

waste heat recovery system running automatically over various drive cycles. p-26wright.pdf More Documents & Publications Development of an ORC system to improve HD truck...

162

Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications  

SciTech Connect

Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

Stone, J.R.

1994-07-01T23:59:59.000Z

163

Investigation of thermal stability of fluorinol-85 and 2-methylpyridine/water as Rankine Cycle Power Systems working fluids  

SciTech Connect

Results of the experimental investigation to date, indicate that Fluorinol-85 could be utilized in Organic Rankine Cycle Power Systems (ORCPS) to a maximum cycle temperature of 550/sup 0/F without any discernable decomposition over an extended period of time. However, at 575/sup 0/F, Fluorinol-85 could possibly decompose between 1 and 3% per year depending upon system design considerations. 2-methyl-pyridine/water could have possibly less than a 2% annual decomposition rate at 600/sup 0/F maximum cycle temperature.

Jain, M.L.; Demirgian, J.; Hillis, D.L.

1984-01-01T23:59:59.000Z

164

Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid  

SciTech Connect

Laboratory experiments were performed to aid in determining the maximum operating temperature for cyclopentane as an Organic Rankine Cycle working fluid. The thermochemical decomposition of cyclopentane was measured in a recirculation loop at 240 C, 300 C and 350 C at 43 bar in a glass-lined heated tube. It was determined that in the absence of air at the lower two temperatures, decomposition was minor after more than twelve days of continuous operation. At 240 C, the total cyclopentane decomposition products were approximately 65 parts per million (ppm) and at 300 C, total decomposition products were on the order of 270 ppm at the end of the experiment. At 350 C, decomposition products were significantly higher and reached 1,500 ppm. When the feed was contacted with air, the decomposition rate increased dramatically. Residues found in the reactor after the decomposition experiments were examined by a number of different techniques. The mass of the residues increased with experimental temperature, but was lower at the same temperature when the feed was contacted with air. Analysis of the residues suggested that the residues were primarily heavy saturated hydrocarbons.

Daniel M. Ginosar; Lucia M. Petkovic; Donna Post Guillen

2011-08-01T23:59:59.000Z

165

Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust deer11singh.pdf More...

166

Modeling and Performance Prediction of a Solar Powered Rankin Cycle/Gas Turbine Cycle  

Science Journals Connector (OSTI)

The present study is dealing with the development and implementation of an integrated solar combined cycle power plant in which heat ... its energy from the waste heat of a gas turbine unit in additional to solar

Mohammed A. Elhaj; Kassim K. Matrawy…

2007-01-01T23:59:59.000Z

167

Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40 kW diesel generator using two ‘off-the-shelf’ heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15 bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15 bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in bsfc. At 40% part load, the additional power developed was 3.4% which resulted in 3.3% reduction in bsfc.

Shekh Nisar Hossain; Saiful Bari

2013-01-01T23:59:59.000Z

168

Dynamic modeling of steam power cycles: Part II – Simulation of a small simple Rankine cycle system  

Science Journals Connector (OSTI)

This paper presents the second part of the work concerning the dynamic simulation of small steam cycle plants for power generation. The work is part of the preliminary study for a 600 kWe biomass fired steam power plant for which the complete open-loop, lumped parameter dynamic model of the steam cycle has been developed using the SimECS software described in Part I of this work. For these low-power plants, a dynamic simulation tool is especially useful because these systems must be designed to operate in transient mode for most of the time. The plant model presented here consists of the following components: feedwater pump, economizer, evaporator, superheater, impulse turbine, electrical generator and condenser. The primary heat source is modeled as a flue gas flow and no combustion models are incorporated yet to model the furnace. A description of the various components forming the complete steam cycle is given to illustrate the capabilities and modularity of the developed modeling technique. The model is first validated quantitatively against steady-state values obtained using a well known, reliable steady-state process modeling software. Subsequently, the dynamic validation is presented. Results can only be discussed based on the qualitative assessment of the observed trends because measurements are not available, being the plant in the preliminary design phase. The qualitative validation is based on four dynamic simulations involving three small step disturbances of different magnitude imposed on the pump rotational speed and on the flue gas mass flow and a single large ramp disturbance on the flue gas mass flow.

H. van Putten; P. Colonna

2007-01-01T23:59:59.000Z

169

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network (OSTI)

machinery. and the solar-assisted approach at these higherevaluation of the solar-assisted Rankine cycle could beTURBOMACHINER Y IN SOLAR - ASSISTED RANKINE COOLING SYSTEMS

Leech, J.

2010-01-01T23:59:59.000Z

170

Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water  

SciTech Connect

A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

Cole, R.L.; Demirgian, J.C.; Allen, J.W.

1987-09-01T23:59:59.000Z

171

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network (OSTI)

ed version is the organic rankine cycle (ORC). In this caseUsing High-Speed Organic Rankine Cycle (ORC). International

2012-01-01T23:59:59.000Z

172

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network (OSTI)

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

173

Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract In this paper, a regenerative transcritical dual-loop organic Rankine cycle is proposed to recover the waste heat of the exhaust, engine coolant and all the residual heat of the HT loop. Double regenerators are adopted in this system. Transcritical cycles are used in both loops. Hexamethyldisiloxane (MM), octamethyl cyclotetrasiloxane (D4), octamethyltrisiloxane (MDM), cyclohexane, toluene and n-decane are chosen as the candidate working fluids of the HT loop and \\{R143a\\} is chosen as the working fluid of the LT loop. Influences of inlet temperature of turbine THT (T3) on mass flow rates (mf,HT and mf,LT), net output power (Wnet), energy conversion efficiency (?ec), volumetric expansion ratio (VER), ratio of power consumed to power output (COR) and component irreversibility are analyzed and performance comparison of these working fluids is also evaluated. Results show that toluene possesses the maximum Wnet (42.46 kW), highest ?e (51.92%) and ?ec (12.77%). The increase of T3 worsens system performance, decreasing Wnet, ?e and ?ec. Condenser CLT and turbine TLT possess the least system irreversibility. In addition, turbines and exhaust evaporators are optimized components.

Hua Tian; Lina Liu; Gequn Shu; Haiqiao Wei; Xingyu Liang

2014-01-01T23:59:59.000Z

174

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Organic Rankine Cycle achieved by using Organic Rankine Cycle or Sterling Engines.technologies such as Organic Rankine Cycle (ORC) mahines,

Lim, Hyuck

2011-01-01T23:59:59.000Z

175

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

Organic Rankine Cycle.Heat Using High-Speed Organic Rankine Cycle (ORC), Int. J.Power recovery Organic Rankine Cycle Flare Gas Recovery

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

176

Thermal stability of working fluids for organic Rankine cycles: An improved survey method and experimental results for cyclopentane, isopentane and n-butane  

Science Journals Connector (OSTI)

Abstract In this work we present an improved survey method for the evaluation of the thermal stability of working fluids for organic Rankine cycles. The method presented here represents an improvement of a test methodology already used in literature, based on the analysis of temperature and pressure measurements of a fluid subjected to increasing thermal stress temperatures. Compared to the already known methodology, the survey technique presented in this work offers a different evaluation of the measured vapor pressure deviations and a different estimation method of the decomposition rates. After the description of the experimental apparatus and of the test methodology, we present and discuss some experimental results of the thermal stability of three fluids of interest for organic Rankine cycle applications, namely Cyclopentane, Isopentane and n-Butane, in the temperature range between 220 °C and 350 °C.

Marco Pasetti; Costante M. Invernizzi; Paolo Iora

2014-01-01T23:59:59.000Z

177

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network (OSTI)

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

178

Improving the efficiency and availability analysis of a modified reheat regenerative Rankine cycle  

SciTech Connect

Reheating in a reheat regenerative steam power cycle increases efficiency by increasing the average temperature of heat reception, but also increases the irreversibility of feed water heaters by raising the temperature of the superheated steam used for the regenerative process. This paper introduces some modifications to the regular reheat regenerative steam power cycle that reduce the irreversibility of the regenerative process. An availability analysis of the modified cycle and the regular reheat regenerative cycle as well as a comparison study between both cycles is done. The results indicate that a gain in energy efficiency of up to 2.5% as the steam generator pressure varies is obtained when applying such modifications at the same conditions of pressure, temperature's number of reheating stages, and feed water heaters. The availability analysis showed that such increase in efficiency is due to the reduction of the irreversibility of the regeneration process of the modified cycle.

Bassily, A.M.

1999-07-01T23:59:59.000Z

179

Combined gas turbine-Rankine turbine power plant  

SciTech Connect

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

180

Orc Notation Structured Wide-Area Programming  

E-Print Network (OSTI)

Orc Notation Structured Wide-Area Programming Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu April 12, 2010 Rennes, France #12;Orc Notation hierarchical structure. #12;Orc Notation Orc · Goal: Internet scripting language. · Next: Component integration

Misra, Jayadev

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermodynamic analysis of an SOFC–GT–ORC integrated power system with liquefied natural gas as heat sink  

Science Journals Connector (OSTI)

To recover the waste heat from solid oxide fuel cell (SOFC) and improve the overall electrical efficiency, a new integrated power system driven by SOFC is proposed to achieve the cascade energy utilization. This system integrates an SOFC–GT system with an organic Rankine cycle (ORC) using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. Based on the mathematical model, a parametric analysis is conducted to examine the effects of some key thermodynamic parameters on the system performance. The results indicate that the overall electrical efficiency of 67% can be easily achieved for the current system, which can be further improved with parametric optimization. An increase in fuel flow rate of SOFC can raise the net power output, but it has a negative effect on SOFC and overall electrical efficiency. The compressor pressure ratio contributes to an increase in SOFC and overall electrical efficiency, which are contrary to the effects of air flow rate and steam-to-carbon ratio. Under the given conditions, compared with the Kalina sub-system, the ORC sub-system produces 12.6% more power output by utilizing the cryogenic energy of LNG with simple configuration.

Zhequan Yan; Pan Zhao; Jiangfeng Wang; Yiping Dai

2013-01-01T23:59:59.000Z

182

between ORC binding and nucleosome turnover, suggesting that turnover facilitates ORC binding.  

E-Print Network (OSTI)

between ORC binding and nucleosome turnover, suggesting that turnover facilitates ORC binding little if any de- pendence on ORC abundance (Fig. 3, H to P). Our findings support the hypothesis- titative correspondence of ORC to CATCH-IT data than to other chromatin measurements implies that the ORC

Pauly, Daniel

183

DEPARTMENT OF COMPUTER SCIENCES Implementation of Orc  

E-Print Network (OSTI)

DEPARTMENT OF COMPUTER SCIENCES Implementation of Orc William Cook and Jayadev Misra Department coded in Java. ¯ An Orc program can call Java programs as sites. ¯ A Java program can call an Orc #12;DEPARTMENT OF COMPUTER SCIENCES Java Calling Orc Include in the main (Java) program � ¾ ´�µ where

Misra, Jayadev

184

A Few Small Orc Programs Jayadev Misra  

E-Print Network (OSTI)

A Few Small Orc Programs Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu ETH, Zurich March 7, 2014 #12;A Orc program · An experiment tosses two dice(n, 0) Note: 2n parallel calls to toss(). 3 #12;Orc Calculus · External sites: · A site is called like

Misra, Jayadev

185

Microsoft Word - INL_EXT-13-30173 simulation of air-cooled ORC...  

Office of Scientific and Technical Information (OSTI)

Organic Rankine Cycle Geothermal Power Plant Performance 1. Introduction Geothermal energy is a renewable energy source that provides reliable base load power generation....

186

ORC Seminar Series Presents: "Nonlinear laser lithography  

E-Print Network (OSTI)

ORC Seminar Series Presents: "Nonlinear laser lithography: formation of self-authored 50 journal and more than 150 conference papers and he has given more than 100 invited talks. http://www.orc

Anderson, Jim

187

DEPARTMENT OF COMPUTER SCIENCES Semantics of Orc  

E-Print Network (OSTI)

DEPARTMENT OF COMPUTER SCIENCES Semantics of Orc William Cook and Jayadev Misra Department call with handle Ă? Ă? Response Ăť publish silent transition Response is outside the control of Orc

Misra, Jayadev

188

State of Art of Small Scale Solar Powered ORC Systems: A Review of the Different Typologies and Technology Perspectives  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric, even for small sizes, is continuing to garner more attention, by virtue of maturation of small size organic Rankine cycle generators, and of small size absorption chiller even if cost and reliability are still not optimal. Indeed, solar thermal power technology improvement would consent to stimulate an ambit already present in Europe and Italy with a well-known tradition and established leadership and efforts focused on a single solar technology would bring to positive effects concerning controllable electric and thermal energy uses. In this context, the present work tries to summarize the possible cycles and fluids that can be applied in a small solar thermal power plant. Despite a plethora of simulated and experimental cycles and fluids, the simplest cycle using near isentropic fluids seems to be the best choice for a small ORC-based CHP system, even if particular attention has to be done to all the sizing parameters (electricity, heating and cooling demand; area and type of solar collector; flow and temperature of the thermal carrier; flow, temperature and pressure of the working fluid; storage volumes; etc.). Indeed, efficiency and reliability of the reported systems are very different, but, it seems that global efficiency of even more than 10% and global cost of even less than 10,000 €/kW can be obtained even at size of few kW if adequate systems are constructed and managed.

M. Villarini; E. Bocci; M. Moneti; A. Di Carlo; A. Micangeli

2014-01-01T23:59:59.000Z

189

Workflow Patterns in Orc William Cook  

E-Print Network (OSTI)

1 Workflow Patterns in Orc William Cook Sourabh Patwardhan Jayadev Misra Department of Computer Sciences University of Texas at Austin 2 Overview of Orc · Orchestration language ­Invoke services ­Manage(M, N) let(z) where z : if(x) | if(y) | or(x, y) where x : M where y : N 11 Orc Summary e, f, g ::= c

Cook, William R.

190

Structured Wide-Area Programming: Orc Calculus  

E-Print Network (OSTI)

Structured Wide-Area Programming: Orc Calculus Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu #12;Concurrency · ubiquitous. · difficult interactions. · Support hierarchical structure. #12;Orc · Initial Goal: Internet scripting language. · Next

Misra, Jayadev

191

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

organic Rankine cycle waste heat power conversion system. ”Cycle (ORC) System for Waste Heat Recovery. ” Journal ofRankine Cycles in Waste Heat Uti- lizing Processes. ”

Luong, David

2013-01-01T23:59:59.000Z

192

Spy1 regulation of the cell cycle, checkpoint activation and apoptosis  

E-Print Network (OSTI)

Silva LF, Duncker BP. ORC function in late G1: maintaining128-30. DePamphilis ML. The 'ORC cycle': a novel pathway forOrigin Recognition Complex (ORC), cdc6/18, cdc45, cdt1, the

Gastwirt, Randy Francis

2008-01-01T23:59:59.000Z

193

Modeling and Experimental Validation of a Rankine Cycle Based Exhaust WHR System for Heavy Duty Applications; Modellering och experimentell validering av ett Rankinecykelbaserat Waste Heat Recovery-system.  

E-Print Network (OSTI)

?? To increase the efficiency of the engine is one of the biggest challenges for heavy vehicles. One possible method is the Rankine based Waste… (more)

Carlsson, Carin

2012-01-01T23:59:59.000Z

194

Cell cycle and DNA damage response regulation by Spy1, and the intersection of FGFR and NFkappaB pathways  

E-Print Network (OSTI)

Silva LF, Duncker BP. ORC function in late G1: maintaining128-30. DePamphilis ML. The 'ORC cycle': a novel pathway forOrigin Recognition Complex (ORC), cdc6/18, cdc45, cdt1, the

McAndrew, Christopher William

2010-01-01T23:59:59.000Z

195

Overview Orc Notation Examples Structured Wide-Area Programming  

E-Print Network (OSTI)

Overview Orc Notation Examples Structured Wide-Area Programming William Cook, Jayadev Misra, David Kitchin, Adrian Quark Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu #12;Overview Orc Notation Examples Outline Overview Orc Notation Examples #12;Overview Orc Notation

Misra, Jayadev

196

Dist-Orc: A Rewriting-based Distributed Implementation of Orc with Formal Analysis  

E-Print Network (OSTI)

Orc is a theory of orchestration of services that allows structured programming of distributed and timed computations. Several formal semantics have been proposed for Orc, including a rewriting logic semantics developed by the authors. Orc also has a fully fledged implementation in Java with functional programming features. However, as with descriptions of most distributed languages, there exists a fairly substantial gap between Orc's formal semantics and its implementation, in that: (i) programs in Orc are not easily deployable in a distributed implementation just by using Orc's formal semantics, and (ii) they are not readily formally analyzable at the level of a distributed Orc implementation. In this work, we overcome problems (i) and (ii) for Orc. Specifically, we describe an implementation technique based on rewriting logic and Maude that narrows this gap considerably. The enabling feature of this technique is Maude's support for external objects through TCP sockets. We describe how sockets are used to i...

AlTurki, Musab; 10.4204/EPTCS.36.2

2010-01-01T23:59:59.000Z

197

Performance analysis of regenerative organic Rankine cycle (RORC) using the pure working fluid and the zeotropic mixture over the whole operating range of a diesel engine  

Science Journals Connector (OSTI)

Abstract A regenerative organic Rankine cycle (RORC) system is designed to recover the exhaust heat of a diesel engine, and the influence of the intermediate pressure (the pressures at which the steam is extracted from the expander) on performance parameters such as net power output, thermal efficiency and mass flow rate of the working fluid are analyzed. The organic working fluids under investigation are \\{R245fa\\} and the zeotropic mixture isopentane/R245fa (in a 0.7/0.3 mol fraction). Based on initial calculations of RORC system performance, the intermediate pressure is set to 1.15 MPa for the RORC system when using isopentane/R245fa (in a 0.7/0.3 mol fraction) as the working fluid, and 1.2 MPa when using \\{R245fa\\} as the working fluid. A performance analysis of the RORC system using the two different working fluids is then conducted over the whole operating range of a diesel engine. The results show that the zeotropic mixture isopentane/R245fa (in a 0.7/0.3 mol fraction) performs better. Finally, a combined diesel engine and RORC system is defined to evaluate the performance improvement of such a combined system over the whole operating range. Results show that, for the combined system, a 10.54% improvement in power output and a 9.55% improvement in fuel economy can be achieved at the engine’s rated condition.

Jian Zhang; Hongguang Zhang; Kai Yang; Fubin Yang; Zhen Wang; Guangyao Zhao; Hao Liu; Enhua Wang; Baofeng Yao

2014-01-01T23:59:59.000Z

198

Overview Orc Notation Examples Structured Application Development over  

E-Print Network (OSTI)

Overview Orc Notation Examples Structured Application Development over Wide-Area Networks William of Computer Science University of Texas at Austin http://orc.csres.utexas.edu #12;Overview Orc Notation. - #12;Overview Orc Notation Examples Orchestrating Components (services) Acquire data from services

Misra, Jayadev

199

Translating Orc Features into Petri nets and the Join Calculus #  

E-Print Network (OSTI)

Translating Orc Features into Petri nets and the Join Calculus # Roberto Bruni 1 , Hern@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

200

Structured Wide-Area Programming: Orc Programming Language  

E-Print Network (OSTI)

Structured Wide-Area Programming: Orc Programming Language Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu #12;Orc Language · Data Types: Number, List, Record · Pattern Matching; Clausal Definition · Function Closure · Comingling functional and Orc

Misra, Jayadev

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Translating Orc Features into Petri nets and the Join Calculus  

E-Print Network (OSTI)

Translating Orc Features into Petri nets and the Join Calculus Roberto Bruni1, Hern´an Melgratti2@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

202

September 2, 2011 Competence Center for Sustainable Energy  

E-Print Network (OSTI)

for optimisation and certifying of energy consumption Organic Rankine Cycle (ORC) co-generation process for waste

Noé, Reinhold

203

Instructions for Human Subjects CITI Training 1. Go to the ORC IRB website at http://www.uncg.edu/orc/irb.html  

E-Print Network (OSTI)

Instructions for Human Subjects CITI Training 1. Go to the ORC IRB website at http://www.uncg.edu/orc

Saidak, Filip

204

UNIVERSITA' DEL SALENTO Dipartimento di Ingegneria dell'Innovazione  

E-Print Network (OSTI)

OF DENSE GAS FLOWS: APPLICATION TO ORGANIC RANKINE CYCLES TURBINES Coordinatore del Ph.D. Ch.mo Prof. Ing FLOWS: APPLICATION TO ORGANIC RANKINE CYCLES TURBINES by Pietro Marco Congedo (ABSTRACT) This thesis as working fluids in Organic Rankine Cycles (ORCs). The ORCs are similar to a steam Rankine Cycle where

Paris-Sud XI, Université de

205

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network (OSTI)

the organic rankine cycle (ORC). In this case an organic ?temperature applications the ORC has more bene?ts than the117] demonstrated that the ORC-process can use the exhaust

2012-01-01T23:59:59.000Z

206

ORC Seminar Series Presents: "Brillouin lasers based on chalcogenide  

E-Print Network (OSTI)

ORC Seminar Series Presents: "Brillouin lasers based on chalcogenide photonic chip" Dr. Irina in fibers and on-chip platforms. http://www.orc.soton.ac.uk/events.html #12;

Southampton, University of

207

ORC Seminar Series Presents: "New directions in photonics down under"  

E-Print Network (OSTI)

ORC Seminar Series Presents: "New directions in photonics down under" Prof Tanya Monro University of Expertise in Photonics. From 1998 - 2004 Tanya worked within the ORC at the University of Southampton of science policy and the evaluation of science. http://www.orc.soton.ac.uk/events.html #12;

Anderson, Jim

208

Properties of the Timed Operational and Denotational Semantics of Orc  

E-Print Network (OSTI)

Properties of the Timed Operational and Denotational Semantics of Orc Ian Wehrman, David Kitchin: {iwehrman,dkitchin,wcook,misra}@cs.utexas.edu December 31, 2007 i #12;Preface Orc is a language for structured concurrent programming. Orc provides three powerful combinators that define the structure

Cook, William R.

209

Orchestration in Orc: A Deterministic Distributed Programming Model  

E-Print Network (OSTI)

Orchestration in Orc: A Deterministic Distributed Programming Model William R. Cook and Jayadev}@cs.utexas.edu Abstract. Orc is a new model of distributed programming which pro- vides a strong theoretical foundation for internet computing based on compositions of web-services. Orc combines some of the power and flex- ibility

Misra, Jayadev

210

Structured Wide-Area Programming: Orc Programming Examples  

E-Print Network (OSTI)

Structured Wide-Area Programming: Orc Programming Examples Jayadev Misra Department of Computer Science University of Texas at Austin http://orc.csres.utexas.edu #12;Some Algorithms · Enumeration;Corresponding Orc program val (x, y) = (Ref(0), Ref(0)) def f1() = Ift(x?

Misra, Jayadev

211

Orc-X: Combining Orchestrations and XQuery (work in progress)  

E-Print Network (OSTI)

Orc-X: Combining Orchestrations and XQuery (work in progress) Kristi Morton David Kitchin William en- force a tight coupling of state and behavior. We have previously presented Orc, a language that provides simple but powerful con- structs to orchestrate distributed computations. Previous versions of Orc

Cook, William R.

212

ORC2DSP: Compiler Infrastructure Supports for VLIW DSP Processors  

E-Print Network (OSTI)

ORC2DSP: Compiler Infrastructure Supports for VLIW DSP Processors Cheng-Wei Chen, Chung-Lin Tang our experiences in deploying ORC infrastructures for a novel 32-bit VLIW DSP processor (known as PAC. We also present methods in retargeting ORC compilers for PAC VLIW DSP processors. In addition

Lee, Jenq-Kuen

213

Event Structure Semantics of Orc Sidney Rosario1  

E-Print Network (OSTI)

Event Structure Semantics of Orc Sidney Rosario1 , David Kitchin3 , Albert Benveniste1 , William into asymmetric event structures. The semantics is de- veloped for Orc, an orchestration language in which concurrent services are invoked to achieve a goal while managing time-outs, exceptions, and priority. Orc

Cook, William R.

214

Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics; November 2000 -- May 2005  

SciTech Connect

Report regarding a Stage 1 Study to further develop the concept of the Solar Trough Organic Rankine Cycle Electricity Systems (STORES).

Prabhu, E.

2006-03-01T23:59:59.000Z

215

Evaluation of hybrid solar/fossil Rankine-cooling concept  

SciTech Connect

The hybrid solar/fossil Rankine cycle is analyzed thermodynamically to determine fuel use and efficiency. The hybrid system is briefly compared with solar organic Rankine systems with a fossil fuel auxiliary mode, and with geothermal resources. The economic evaluation compares the present value of the superheater fuel cost over the system lifetime with the first cost reduction obtained by substituting a hybrid solar/fossil Rankine engine for an organic Rankine engine. The economics analysis indicates that even if the hybrid solar/fossil Rankine cooling system were developed to the point of being a commercial product with an economic advantage over an otherwise equivalent solar organic Rankine cooling system, it would gradually lose that advantage with rising fuel costs and decreasing collector costs. From the standpoint of national fossil fuel conservation, the hybrid concept would be preferable only in applications where the operating duration in the solar/fossil mode would be substantially greater than in the fossil fuel-only auxiliary mode. (LEW)

Curran, H M

1980-11-01T23:59:59.000Z

216

RAPID/Roadmap/4-OR-c | Open Energy Information  

Open Energy Info (EERE)

Process Been Completed? If the developer has not yet completed an environmental review process for exploration activities, Developer must do so before proceeding. 4-OR-c.2 -...

217

A Timed Semantics of Orc Ian Wehrman, David Kitchin, William R. Cook, Jayadev Misra  

E-Print Network (OSTI)

A Timed Semantics of Orc Ian Wehrman, David Kitchin, William R. Cook, Jayadev Misra The University of Texas at Austin Abstract Orc is a kernel language for structured concurrent programming. Orc provides support sequential and concurrent execution, and concurrent execution with blocking and termination. Orc

Cook, William R.

218

Matthew S. Orosz e-mail: mso@mit.edu  

E-Print Network (OSTI)

Organic Rankine Cycles The application of organic Rankine cycles (ORCs) for small scale power generation, compactness factor, isentropic efficiency kilowatt-scale organic Rankine cycle Introduction The organic) thermal sources (e.g., geothermal, solar, and industrial). Organic Rankine cycle applications

Entekhabi, Dara

219

A compositional trace semantics for Orc Dimitrios Vardoulakis and Mitchell Wand  

E-Print Network (OSTI)

A compositional trace semantics for Orc Dimitrios Vardoulakis and Mitchell Wand Northeastern University dimvar@ccs.neu.edu wand@ccs.neu.edu Abstract. Orc [9] is a language for task orchestration. It has validates some useful equivalences between Orc processes; since the se- mantics is compositional

Wand, Mitchell

220

A compositional trace semantics for Orc Dimitrios Vardoulakis and Mitchell Wand  

E-Print Network (OSTI)

A compositional trace semantics for Orc Dimitrios Vardoulakis and Mitchell Wand Northeastern University dimvar@ccs.neu.edu wand@ccs.neu.edu Abstract. Orc [6] is a language for task orchestration. It has treatment of variable binding, and proving an adequacy theorem to relate them. 1 Introduction Orc [6

Strickland, Stevie

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon  

E-Print Network (OSTI)

Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon (Cdc6)/Origin Replication Complex subunit 1 (Orc1) proteins share sequence homology with eukaryotic DNA under- stand whether Cdc6/Orc1 functions in an eukaryotic or bacterial-like manner, we have

Berger, James M.

222

Describing Simulations in the Orc Programming David Kitchin, Adrian Quark, Jayadev Misra  

E-Print Network (OSTI)

Describing Simulations in the Orc Programming Language David Kitchin, Adrian Quark, Jayadev Misra interactions. · Support hierarchical structure. #12;Orc · Goal: Internet scripting language. · Next: Component airline provides a timely quote. - #12;Orc Basics · Site: Basic service or component. · Concurrency

Misra, Jayadev

223

Workflow Patterns in Orc William R. Cook, Sourabh Patwardhan, and Jayadev Misra  

E-Print Network (OSTI)

Workflow Patterns in Orc William R. Cook, Sourabh Patwardhan, and Jayadev Misra Department systems and models. In this paper we provide implementations of the workflow patterns in Orc, a new process calculus for orchestrating wide-area computations. A key feature of the Orc implementations

Cook, William R.

224

The Orc Programming Language David Kitchin, Adrian Quark, William Cook, Jayadev Misra  

E-Print Network (OSTI)

The Orc Programming Language David Kitchin, Adrian Quark, William Cook, Jayadev Misra The University of Texas at Austin Abstract. Orc was originally presented as a process calculus. It has now practical concurrent programming problems are easily solved in Orc. 1 Introduction Concurrency has become

Cook, William R.

225

High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC  

E-Print Network (OSTI)

High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC Amandine of Mask Rule Checking (MRC) and Optical Rule Checking (ORC) have become indispensable tools for ensuring, a technique known as Critical Failure ORC (CFORC) was introduced that uses optical parameters from aerial

Boyer, Edmond

226

A compositional trace semantics for Orc Dimitrios Vardoulakis and Mitchell Wand  

E-Print Network (OSTI)

A compositional trace semantics for Orc Dimitrios Vardoulakis and Mitchell Wand Northeastern University dimvar@ccs.neu.edu wand@ccs.neu.edu Abstract. Orc [9] is a language for task orchestration. It has binding, and proving an adequacy theorem to relate them. Also, we investigate strong bisimulation in Orc

Strickland, Stevie

227

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

228

Evaluation of Brayton and Rankine alternatives for diesel waste heat exploitation  

SciTech Connect

A diesel engine may produce exhaust-gas thermal energy in excess of that needed for turbocharging. Alternatives for exploitation of the energy by producing work may be direct expansion through a gas turbine (completing a Brayton cycle that begins with the engine's compression and combustion), or transfer of heat into a Rankine cycle. It is demonstrated that either alternative may have a domain in which it is superior in work done, or in exhaust volume per unit mass of diesel exhaust. Computation models are developed and demonstrated for finding the boundaries along which the Rankine and Brayton alternatives have equal merit in either work or exhaust volume.

Woodward, J.B. (Univ. of Michigan, Ann Arbor, MI (United States). Naval Architecture and Marine Engineering)

1994-01-01T23:59:59.000Z

229

Enhancement of combined cycle performance using transpiration cooling of gas turbine blades with steam  

Science Journals Connector (OSTI)

Gas/steam combined cycle is synergetic combination of Brayton cycle based topping cycle and Rankine cycle based bottoming cycle, which have capability of operating independently too. Combined cycle performance de...

Sanjay Kumar; Onkar Singh

2014-06-01T23:59:59.000Z

230

Potassium-Rankine power conversion subsystem modeling for nuclear electric propulsion  

SciTech Connect

A potassium-Rankine power conversion system model was developed under Contract No. NAS3-25808 for the NASA-LeRC. This model predicts potassium-Rankine performance for turbine inlet temperatures (TIT) from 1200 - 1600 K, TIT to condenser temperature ratios from 1.25-1.6, power levels from 100 to 10,000 kWe, and lifetimes from 2-10 years. The model is for a Rankine cycle with reheat for turbine stage moisture control. The model assumes heat is supplied from a lithium heat transport loop. The model does not include a heat source or a condenser/heat rejection system model. These must be supplied by the user.

Johnson, G.A.

1993-09-01T23:59:59.000Z

231

Regulation of DNA Replication During Conventional and Unconventional Cell Cycles in Tetrahymena  

E-Print Network (OSTI)

replication programs, I study the impacts of changing in ORC protein contents on the fate of micro- and macro- nuclear chromosomes during the vegetative cell cycle and development in Tetrahymena. I examined the effect of down-regulation of ORC1 on genome...

Lee, Po-Hsuen

2014-02-06T23:59:59.000Z

232

GRR/Section 3-OR-c Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

OR-c Encroachment Permit OR-c Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-OR-c Encroachment Permit 3-OR-c Encroachment Permit.pdf Click to View Fullscreen Contact Agencies Oregon Department of Transportation Regulations & Policies OAR 734 - 51 OAR 734 - 55 Triggers None specified Click "Edit With Form" above to add content 3-OR-c Encroachment Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Oregon Department of Transportation ODOT issues permits for encroachments of state highway right of ways. Encroachments include the building of new approaches, the installation, maintenance, and operation of

233

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

234

Code Snippets Justin A. Roman, Tanisha Rankin,  

E-Print Network (OSTI)

Code Snippets Justin A. Roman, Tanisha Rankin, Grae Cullen, and Paul Wolfgang Fall Semester 2008 coding techniques. Professors will be allowed to assign pre-defined problems which will be listed will save, compile, run, and check the method. Pre-defined test cases will determine the validity

Wolfgang, Paul

235

Kalina combined cycle performance and operability  

SciTech Connect

Gas turbine combined cycles using Rankine bottoming cycles have gained broad market acceptance. The favorable plant economics derive from their high efficiency, short construction cycles and excellent environmental performance. The responsive operating characteristics of combined cycles is another key advantage for customers. Duty cycles cover the spectrum from daily start stop (DSS) to base load. Performance and economics of combined cycles have progressed with advances in gas turbine technology as well as the introduction of increasingly efficient multi-pressure Rankine bottoming cycles. Further advances in gas turbine technology and Rankine bottoming cycle performance are becoming incrementally more difficult and costly to achieve. The availability of the Kalina cycle presents a clear path toward improved combined-cycle system performance and reduced cost of electricity. This paper presents detailed performance and operating characteristics of a STAG 207FA combined cycle employing the Kalina bottoming cycle. These characteristics are compared to a conventional three-pressure reheat Rankine bottoming cycle. The Kalina cycle is shown to have performance and operability advantages throughout the range of site conditions and operating regimes, such as base load, load following, DSS duty, wet and dry cooling tower applications and unattended operation. These advantages derive from a single-pressure once-through heat recovery system, above atmospheric working fluid pressure throughout the system, above atmospheric working fluid pressure throughout the system, very high thermal efficiency ({approximately}2.0 to 2.5 percentage points better than the best Rankine), and compatibility with sub-freezing ambient conditions.

Smith, R.W.; Ranasinghe, J.; Stats, D.; Dykas, S.

1996-12-31T23:59:59.000Z

236

Organic Rankine power conversion subsystem development for the small community solar thermal power system  

SciTech Connect

The development and preliminary test results for an air-cooled, hermetically sealed 20 kW sub E organic Rankine cycle engine/alternator unit for use with point focussing distributed receiver solar thermal power system. A 750 F toluene is the working fluid and the system features a high speed, single-stage axial flow turbine direct-coupled to a permanent magnet alternator. Good performance was achieved with the unit in preliminary tests.

Barber, R.E.; Boda, F.P.

1982-07-01T23:59:59.000Z

237

GRR/Section 4-OR-c - Geothermal Prospect Well Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 4-OR-c - Geothermal Prospect Well Process GRR/Section 4-OR-c - Geothermal Prospect Well Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-c - Geothermal Prospect Well Process 04ORCGeothermalProspectWellProcess (1).pdf Click to View Fullscreen Contact Agencies Oregon State Department of Geology and Mineral Industries Regulations & Policies ORS 516: DOGAMI ORS 522: Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 04ORCGeothermalProspectWellProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-c.1 - Has Environmental Process Been Completed?

238

Applications guide for waste heat recovery. Final Report, May-Dec. 1982  

SciTech Connect

The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R D.

Moynihan, P.I.

1983-01-01T23:59:59.000Z

239

A novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi, Christopher S. Lynch, and Laurent Pilona)  

E-Print Network (OSTI)

organic Rankine cycles,3 and thermoelectric devices.4,5 Stirling engines and organic Rankine cyclesA novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi) This paper demonstrates a new power cycle for direct conversion of mechanical energy into electrical energy

Pilon, Laurent

240

An introduction to the Kalina cycle  

SciTech Connect

This paper is intended as a primer on the Kalina cycle--a novel, efficient power cycle that uses an ammonia-water mixture as the working fluid. The reader needs no more than a basic understanding of conventional water based Rankine cycle power plants to comprehend the basic thermodynamics, principles and arrangements of Kalina cycle power plants presented in this paper. The Kalina cycle is principally a modified Rankine cycle. The transformation starts with an important process change to the Rankine cycle--changing the working fluid in the cycle from a pure component (typically water) to a mixture of ammonia and water. The modifications that complete the transformation of the cycle from Rankine to Kalina consist of proprietary system designs that specifically exploit the virtues of the ammonia-water working fluid. These special designs, either applied individually or integrated together in a number of different combinations, comprise a family of unique Kalina cycle systems. This is somewhat analogous to the Rankine cycle which, in fact, has many design options such as reheat, regenerative heating, supercritical pressure, dual pressure, etc. all of which can be applied in a number of different combinations in a particular plant.

Micak, H.A.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Airfoil Shape Optimization for Transonic Flows of BetheZel'dovichThompson Fluids  

E-Print Network (OSTI)

, in organic Rankine cycles (ORCs). Specific interest has developed in a particular class of dense gases, known in the same way as classical steam Rankine cycles, but due to the use of low-boiling compounds as working by their potential technological advantages as working fluids in energy- conversion cycles and, specifically

Paris-Sud XI, Université de

242

GRR/Section 14-OR-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-c - Underground Injection Control Permit GRR/Section 14-OR-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-c - Underground Injection Control Permit 14ORCUndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies 40 CFR 144.26: Federal UIC Regulations 40 CFR 144.83: Notification OAR 340-044: State UIC Regulations Triggers None specified Click "Edit With Form" above to add content 14ORCUndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

243

Advances and challenges in ORC systems modeling for low grade thermal energy recovery  

Science Journals Connector (OSTI)

Abstract Low-grade thermal energy recovery has attained a renewed relevance, driven by the desire to improve system efficiency and reduce the carbon footprint of power generation. Various technologies have been suggested to exploit low-temperature thermal energy sources, otherwise difficult to access using conventional power generation systems. In this paper, the authors review the most recent advances and challenges for the exploitation of low grade thermal energy resources, with particular emphasis on ORC systems, based on information gathered from the technical literature. An outline of the issues related to ORC system modeling is also presented, and some guidelines drawn to develop an effective and powerful simulation tool. As a summary conclusion of the revised models, a simulation tool of an ORC system suitable for the exploitation of low grade thermal energy is introduced.

Davide Ziviani; Asfaw Beyene; Mauro Venturini

2014-01-01T23:59:59.000Z

244

ORCED: A model to simulate the operations and costs of bulk-power markets  

SciTech Connect

Dramatic changes in the structure and operation of US bulk-power markets require new analytical tools. The authors developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to analyze a variety of public-policy issues related to the many changes underway in the US electricity industry. Such issues include: policy and technology options to reduce carbon emissions from electricity production; the effects of electricity trading between high- and low-cost regions on consumers and producers in both regions; the ability of the owners of certain generating units to exercise market power as functions of the transmission link between two regions and the characteristics of the generating units and loads in each region; and the market penetration of new energy-production and energy-use technologies and the effects of their adoption on fuel use, electricity use and costs, and carbon emissions. ORCED treats two electrical systems connected by a single transmission link ORCED uses two load-duration curves to represent the time-varying electricity consumption in each region. The two curves represent peak and offpeak seasons. User specification of demand elasticities permits ORCED to estimate the effects of changes in electricity price, both overall and hour by hour, on overall electricity use and load shapes. ORCED represents the electricity supply in each region with 26 generating units. The two regions are connected by a single transmission link. This link is characterized by its capacity (MW), cost ({cents}/kWh), and losses (%). This report explains the inputs to, outputs from, and operation of ORCED. It also presents four examples showing applications of the model to various public-policy issues related to restructuring of the US electricity industry.

Hadley, S.; Hirst, E.

1998-06-01T23:59:59.000Z

245

Organic Rankine Cycle Turbine for Exhaust Energy Recovery in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increase Efficiency in Gasoline Powertrains Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Achieving High Efficiency at 2010 Emissions...

246

Implementation of an organic rankine cycle in a biorefinery concept:.  

E-Print Network (OSTI)

??A bio-refinery concept was defined with the Aspen software. This bio-refinery concept turns water hyacinth into furfural and syngas. Biomass undergoes a hydrolysis at 180şC… (more)

Chognot, E.

2013-01-01T23:59:59.000Z

247

Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle.  

E-Print Network (OSTI)

?? A turbine was investigated by various methods of calculating its efficiency. The project was based on an existing impulse turbine, a one-stage turbine set… (more)

Dahlqvist, Johan

2012-01-01T23:59:59.000Z

248

Working Fluids for Organic Rankine Cycles Comparative Studies  

Science Journals Connector (OSTI)

The paper presents a comparison between working fluids selection using energy and exergy analysis to recover waste heat from Diesel engine (DE). This study involves the use of a 40 kW Diesel engine with basic con...

Mahdi Hatf Kadhum Aboaltabooq; Horatiu Pop…

2014-01-01T23:59:59.000Z

249

Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

250

Rankin, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rankin, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.412569°, -79.879216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.412569,"lon":-79.879216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Tiengwe, C., Marcello, L., Farr, H., Gadelha, C., Burchmore, R., Barry, J.D., Bell, S.D., and McCulloch, R. (2012) Identification of ORC1/CDC6-  

E-Print Network (OSTI)

Culloch, R. (2012) Identification of ORC1/CDC6- interacting factors in trypanosoma brucei reveals critical publications by members of the University of Glasgow http://eprints.gla.ac.uk #12;Identification of ORC1/CDC6 Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC

Azzopardi, Leif

252

Dynamic response of Earth's magnetosphere to By reversals K. Kabin, R. Rankin, and R. Marchand  

E-Print Network (OSTI)

Dynamic response of Earth's magnetosphere to By reversals K. Kabin, R. Rankin, and R. Marchand Citation: Kabin, K., R. Rankin, R. Marchand, T. I. Gombosi, C. R. Clauer, A. J. Ridley, V. O. Papitashvili

Michigan, University of

253

Rankin County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rankin County, Mississippi: Energy Resources Rankin County, Mississippi: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2653668°, -89.9253233° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2653668,"lon":-89.9253233,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

E-Print Network 3.0 - advanced potassium rankine Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

steam directly to the turbine; for this example, the pressure chosen matches the subcritical Rankine Source: Australian National University, Department of Engineering,...

255

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

256

Author's personal copy Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle  

E-Print Network (OSTI)

into electricity by means of an electrical generator or dynamo. Alternatively, organic Rankine cycles use organicAuthor's personal copy Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle heat harvesting Ferroelectric Olsen cycle a b s t r a c t This study was concerned with designing

Pilon, Laurent

257

Selective Exhaust Gas Recycle with Membranes for CO2 Capture from Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

The combination of the combustion turbine (Brayton cycle) and steam turbine (Rankine cycle) yields a combined cycle power plant with efficiencies as high as 50%–55% (compared to 35%–40% in a typical subcritical pulverized coal power plant). ... Of course, it is also possible to combine these designs so that both parallel and series membranes are used. ...

Timothy C. Merkel; Xiaotong Wei; Zhenjie He; Lloyd S. White; J. G. Wijmans; Richard W. Baker

2012-11-27T23:59:59.000Z

258

Thermal energy conversion to motive power  

SciTech Connect

Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

Meador, J.T.

1980-01-01T23:59:59.000Z

259

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

260

A new parabolic trough solar collector P. Kohlenbach1  

E-Print Network (OSTI)

oil is circulated inside the absorber tube, and transfers the heat to a ORC FP6 unit sourced from of this facility, to develop efficient new methods of capturing and harnessing solar heat for combined heat) and remote power and energy. The array is designed to drive a small Organic Rankine Cycle unit with a power

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Packaging and deployment of a 5. 5 MWe potassium---Rankine nuclear electric propulsion spacecraft  

SciTech Connect

A design study was performed to investigate packaging and deployment options for the potassium---Rankine, nuclear electric propulsion (NEP) spacecraft described by Rovang (1992). The subject spacecraft is the cargo portion of a split-sprint (cargo/piloted) Mars mission, carrying 144 mt of cargo. Two parallel SP-100 type reactors, potassium---Rankine power conversion assemblies, and argon ion thrusters are utilized in the selected architecture. A spacecraft design and deployment approach which uses two heavy lift launch vehicles (HLLV) to insert the entire spacecraft into low Earth orbit is presented.

Rovang, R.D.; Marko, M. (Rockwell International, Rocketdyne Division, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-20T23:59:59.000Z

262

Exergy Analysis of Scroll-Based Rankine Cycles with Various Working Fluids  

Science Journals Connector (OSTI)

In this study the possibility of converting scroll compressor into expander is investigated. Refrigeration equipment manufacturers produce scroll compressors massively for refrigeration and air conditioning appli...

E. Oralli; Ibrahim Dincer

2014-01-01T23:59:59.000Z

263

E-Print Network 3.0 - advanced rankine cycle Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

two-tank molten... C. Figure 6. Temperature-entropy diagram for a reheat-regenerative subcritical ... Source: Australian National University, Department of Engineering, Solar...

264

Reduced gravity rankine cycle design and optimization with passive vortex phase separation  

E-Print Network (OSTI)

. Potential drawbacks to the technology in a reduced gravity environment include two-phase fluid management processes such as liquid-vapor phase separation. The most critical location for phase separation is at the boiler exit where only vapor must be sent...

Supak, Kevin Robert

2009-05-15T23:59:59.000Z

265

Some Alkali Metal Corrosion Effects in a Rankine Cycle Test Loop  

Science Journals Connector (OSTI)

A two-loop lithium-boiling potassium facility was constructed and tested at the Jet Propulsion Laboratory to simulate the major elements and working fluids of a two-loop, nuclear, turbo-plant concept of intere...

Wayne M. Phillips

1970-01-01T23:59:59.000Z

266

Optimisation criteria of a Rankine steam cycle powered by thorium HTR / Steven Cronier van Niekerk.  

E-Print Network (OSTI)

??HOLCIM has various cement production plants across India. These plants struggle to produce the projected amount of cement due to electricity shortages. Although coal is… (more)

Van Niekerk, Steven Cronier

2014-01-01T23:59:59.000Z

267

Influence of temperature difference calculation method on the evaluation of Rankine cycle performance  

Science Journals Connector (OSTI)

In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion (LTEC) is refocused as one of the renewable ...

Takafumi. Morisaki; Yasuyuki. Ikegami

2014-02-01T23:59:59.000Z

268

Review of alkali metal and refractory alloy compatibility for Rankine cycle applications  

Science Journals Connector (OSTI)

The principal corrosion mechanisms in refractory metal-alkali systems are dissolution, mass transfer, and impurity reactions. In general, niobium, tantalum, molybdenum, and tungsten have low solubilities in th...

James R. DiStefano

1989-12-01T23:59:59.000Z

269

Development and evaluation of a biomass-fired micro-scale CHP with organic rankine cycle.  

E-Print Network (OSTI)

??Combined Heat and Power Generation (CHP) or cogeneration has been considered worldwide as the major alternative to traditional energy systems in terms of signi ticant… (more)

Shao, Yingjuan

2011-01-01T23:59:59.000Z

270

Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

271

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network (OSTI)

. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW...

Meacher, J. S.

1981-01-01T23:59:59.000Z

272

The Conversion of Low-Grade Heat into Power Using Supercritical Rankine Cycles.  

E-Print Network (OSTI)

??Low-grade heat sources, here defined as below 300 şC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However,… (more)

Chen, Huijuan

2010-01-01T23:59:59.000Z

273

Optimal Organic Rankine Cycle Installation Planning for Factory Waste Heat Recovery  

Science Journals Connector (OSTI)

As Taiwan’s industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in...

Yu-Lin Chen; Chun-Wei Lin

2013-01-01T23:59:59.000Z

274

A novel 2kWe biomass-organic rankine cycle micro cogeneration system.  

E-Print Network (OSTI)

??Energy is potentially at the hub of modern civilization and right from Industrial Revolution, technology has refined and redefined the way we use energy; but… (more)

Daminabo, Ferdinand Frank Oko

2009-01-01T23:59:59.000Z

275

Optimisation of a Multi-Vane Expander as the Prime Mover in an Organic Rankine Cycle  

Science Journals Connector (OSTI)

This paper describes the research and development activities conducted by the Low-Grade Energy Group at Cranfield Institute of Technology in conjunction with Denco Air Ltd., Hereford, regarding the performance of...

P. W. O’Callaghan; Mohey Hussein…

1983-01-01T23:59:59.000Z

276

Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle  

Science Journals Connector (OSTI)

During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this stud...

Naser Shokati; Farzad Mohammadkhani; Navid Farrokhi…

2014-12-01T23:59:59.000Z

277

An investigation into the performance of a Rankine-heat pump combined cycle / Stephanus Phillipus Oelofse.  

E-Print Network (OSTI)

??The global growth in electricity consumption and the shortcomings of renewable electricity generation technologies are some of the reasons why it is still relevant to… (more)

Oelofse, Stephanus Phillipus

2012-01-01T23:59:59.000Z

278

Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

279

Mobile DNA can drive lineage extinction in prokaryotic populations D. J. RANKIN* , M. BICHSEL* & A. WAGNER*  

E-Print Network (OSTI)

Mobile DNA can drive lineage extinction in prokaryotic populations D. J. RANKIN* , M. BICHSEL* & A of Bioinformatics, Quartier Sorge Ba^timent Ge´nopode, Lausanne, Switzerland Introduction Mobile genetic elements the individual or the population. Mobile genetic elements illustrate this principle well, because they can self

Rankin, Daniel

280

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network (OSTI)

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network (OSTI)

F. , jr. S. B. , S. M. Steam Turbines. Second Edition, Tenththe solar-assisted cycle. Steam turbines have been used forin Figure 5. Steam entering the turbine expends a portion of

Leech, J.

2010-01-01T23:59:59.000Z

282

APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS  

E-Print Network (OSTI)

COP vapor cycle Turbo-expander efficiency With these valuesMULTI~STAGE AA1AL FLOW TURBO-EXPANDER CONCEPTS AXIAL FLOW 4.SUMMARY A variety of turbo-expanders were considered for use

Leech, J.

2010-01-01T23:59:59.000Z

283

A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam  

SciTech Connect

This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

Jaffe, L.D.

1988-11-01T23:59:59.000Z

284

A review of "Secrets and Knowledge in Medicine and Science, 1500-1800" edited by Elaine Leong and Alisha Rankin  

E-Print Network (OSTI)

of the view of musicians in the seventeenth and eighteenth centuries that do not necessarily re#24; ect a historical development. Elaine Leong and Alisha Rankin, eds. Secrets and Knowledge in Medicine and Science, 1500-1800. Farnham, England and Burlington... of the view of musicians in the seventeenth and eighteenth centuries that do not necessarily re#24; ect a historical development. Elaine Leong and Alisha Rankin, eds. Secrets and Knowledge in Medicine and Science, 1500-1800. Farnham, England and Burlington...

Kelter, Irving A.

2012-01-01T23:59:59.000Z

285

Thermodynamic analysis of a closed-cycle, solar gas-turbine plant  

Science Journals Connector (OSTI)

Thermodynamic analysis of a closed-cycle, Brayton gas-turbine plant with a heat exchanger powered by the sun has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage in places where water is scarce and expensive. A simple expression is derived for calculating the efficiency of the cycle in terms of the compression pressure ratio, the pressure loss coefficient and the ratio of the lower to higher temperature in the cycle with the efficiency of various components. The maximum permissible pressure loss coefficient has also been calculated.

P. Gandhidasan

1993-01-01T23:59:59.000Z

286

Modular symbols for reductive groups and p-adic Rankin-Selberg convolutions over number fields  

E-Print Network (OSTI)

We give a construction of a wide class of modular symbols attached to reductive groups. As an application we construct a p-adic distribution interpolating the special values of the twisted Rankin-Selberg L-function attached to cuspidal automorphic representations of GL(n) and GL(n-1) over number fields. If the representations are ordinary at p, our distribution is bounded and gives rise to a p-adic L-function.

Januszewski, Fabian

2009-01-01T23:59:59.000Z

287

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

288

Supercritical Water Reactor Cycle for Medium Power Applications  

SciTech Connect

Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

BD Middleton; J Buongiorno

2007-04-25T23:59:59.000Z

289

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

into Power Using Organic Rankine Cycles – A Review ofCriteria for an Organic Rankine Cycle Using Low-Temperatureconverted to work in organic Rankine cycle power plants. [

Coso, Dusan

2013-01-01T23:59:59.000Z

290

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network (OSTI)

heat recovery, an organic rankine cycle turbine can be usedfor power generation. Organic rankine cycle generators arefiring) ? With an organic rankine cycle turbine, 7.5-percent

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

291

CX-002111: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11: Categorical Exclusion Determination 11: Categorical Exclusion Determination CX-002111: Categorical Exclusion Determination Optimization of Hybrid-Water/Air-Cooled Condenser In an Enhanced Turbine Geothermal Organic Rankine Cycle System CX(s) Applied: B3.6, A9 Date: 05/05/2010 Location(s): East Hartford, CT Office(s): Energy Efficiency and Renewable Energy, Golden Field Office United Technologies Research Center (UTRC) would develop a hybrid water/air cooled condenser and an enhanced turbine for geothermal-based Organic Rankine Cycle (ORC) power production systems. Project work would take place in three locations: UTRC's ORC lab in East Hartford, CT; the Power plant laboratory at Chena Hot Springs Resort in Alaska; and the Mechanical Engineering Laboratory at the University of Illinois at Urbana-Champaign.

292

Status of APS 1-Mwe Parabolic Trough Project  

SciTech Connect

Arizona Public Service (APS) is currently installing new power facilities to generate a portion of its electricity from solar resources that will satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). During FY04, APS began construction on a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. Site preparation and construction activities continued throughout much of FY05, and startup activities are planned for Fall 2005 (with completion early in FY06). The plant will be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory. The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than the conventional steam Rankine cycle plant and allows unattended operation of the facility.

Canada, S.; Brosseau, D.; Kolb, G.; Moore, L.; Cable, R.; Price, H.

2005-11-01T23:59:59.000Z

293

944 VOLUME 20 NUMBER 8 AUGUST 2013 nature structural & molecular biology a rt i c l e s  

E-Print Network (OSTI)

division cycle1,2. The yeast origin recognition complex (ORC), which comprises Orc proteins 1 with the ORC to load hexameric MCM2-7, which comprises minichromosome maintenance (Mcm) proteins 2-resolution EM structures of ORC from Saccharomyces cerevisiae (ScORC) and Drosophila melanogaster (DmORC) have

Cai, Long

294

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

ect of working ?uids on organic Rankine cycle for waste heatof such devices. Organic Rankine cycles and Stirling engines

Lee, Felix

2012-01-01T23:59:59.000Z

295

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

W. , “Optimizing an Organic Rankine Cycle,” CEP, v.35, 2012,used in industrial organic Rankine cycles, and is already

Luc, Wesley Wai

296

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

297

A combined power and ejector refrigeration cycle for low temperature heat sources  

SciTech Connect

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

298

CX-001195: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

95: Categorical Exclusion Determination 95: Categorical Exclusion Determination CX-001195: Categorical Exclusion Determination Recovery Act: Electric Power Generation from Low to Intermediate Temperature Geothermal Resources CX(s) Applied: A9, B5.1, B5.2 Date: 03/23/2010 Location(s): Grand Forks, North Dakota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The University of North Dakota would demonstrate the technologic and economic feasibility of generating continuous electricity from non-conventional low temperature geothermal fluids using binary Organic Rankine Cycle (ORC) technology by installing an ORC electric power generating unit at a Continental Resources, Inc. (CRI) water flood site. The project would develop and disseminate a model that could be used to facilitate the installation of similar ORC systems in other oil and gas

299

Multiple reheat helium Brayton cycles for sodium fast reactors  

SciTech Connect

Sodium fast reactors (SFR) traditionally adopt the steam Rankine cycle for power conversion. The resulting potential for water-sodium reaction remains a continuing concern which at least partly delays the SFR technology commercialization and is a contributor to higher capital cost. Supercritical CO2 provides an alternative, but is also capable of sustaining energetic chemical reactions with sodium. Recent development on advanced inert-gas Brayton cycles could potentially solve this compatibility issue, increase thermal efficiency, and bring down the capital cost close to light water reactors. In this paper, helium Brayton cycles with multiple reheat and intercooling states are presented for SFRs with reactor outlet temperatures in the range of 510°C to 650°C. The resulting thermal efficiencies range from 39% and 47%, which is comparable with supercritical recompression CO2 cycles (SCO2 cycle). A systematic comparison between multiple reheat helium Brayton cycle and the SCO2 cycle is given, considering compatibility issues, plant site cooling temperature effect on plant efficiency, full plant cost optimization, and other important factors. The study indicates that the multiple reheat helium cycle is the preferred choice over SCO2 cycle for sodium fast reactors.

Haihua Zhao; Per F. Peterson

2008-07-01T23:59:59.000Z

300

Advanced binary cycles: Optimum working fluids  

SciTech Connect

A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265 F to 375 F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265 F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375 F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

Gawlik, K.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Central heat engine cost and availability study  

SciTech Connect

This report documents the performance and cost of commercially available heat engines for use at solar power plants. The scope of inquiry spans power ratings of 500 kW to 50 MW and peak cycle temperatures of 750 /sup 0/F to 1200 /sup 0/F. Data were collected by surveying manufacturers of steam turbines, organic Rankine (ORC) systems, and ancillary equipment (steam condensers, cooling towers, pumps, etc.). Methods were developed for estimating design-point and off-design efficiencies of steam Rankine cycle (SRC) and ORC systems. In the size-temperature range of interest, SRC systems were found to be the only heat engines requiring no additional development effort, and SRC capital and operating cost estimates were developed. Commercially available steam turbines limit peak cycle temperatures to about 1000 /sup 0/F in this size range, which in turn limits efficiency. Other systems were identified that could be prototyped using existing turbomachines. These systems include ORC, advanced SRC, and various configurations employing Brayton cycle equipment, i.e., gas turbines. The latter are limited to peak cycle temperatures of 1500 /sup 0/F in solar applications, based on existing heat-exchanger technology. The advanced systems were found to offer performance advantages over SRC in specific cases. 7 refs., 30 figs., 20 tabs.

Not Available

1987-11-01T23:59:59.000Z

302

Waste Heat-to-Power Using Scroll Expander for Organic Rankine...  

Office of Environmental Management (EM)

Cycle Bottoming Cycle DE DE - - EE0005767 EE0005767 Green Mountain Coffee (field test site) Green Mountain Coffee (field test site) July 1, 2013 July 1, 2013 - - June 30,...

303

CX-004530: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Categorical Exclusion Determination 0: Categorical Exclusion Determination CX-004530: Categorical Exclusion Determination Bald Mountain Low-Temperature Geothermal Project CX(s) Applied: A9, B3.1 Date: 11/24/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Oski Energy LLC would use U.S. Department of Energy grant funds to validate the theoretical as well as actual performance advantages of an advanced ammonia-water mixed fluid cycle (Project Cycle) over the current state-of-the-art Organic Rankine Cycle (ORC) for both on and off design point operating conditions in low temperature geothermal resource applications, validate that the Project Cycle offers significant economic benefits over ORC for similar project net output generation levels, prove

304

C-CAMP, A closed cycle alkali metal power system  

SciTech Connect

A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

Wichner, R.P.; Hoffman, H.W.

1988-01-01T23:59:59.000Z

305

Performance prediction of micro-CHP systems using simple virtual operating cycles  

Science Journals Connector (OSTI)

Abstract This paper presents a general methodology to roughly estimate in advance the actual performance of ?-CHP (micro Combined Heat and Power) systems in one year of operation, by means of limited information on the CHP prime mover efficiency and emission factors in selected set points and by means of a simplified prediction model of the operating cycle. The carried out analysis has been applied to several market-available and under development ?-CHP units of different technologies (Internal Combustion Engines, Micro Gas Turbines, Organic Rankine Cycles, Stirling, Thermo Photo Voltaic, Fuel Cell), operated under a hypothetical virtual operating cycle. The virtual cycle is obtained in this paper on the basis of the year thermal demand of a domestic user, assuming thermal load following of the CHP system. The methodology can be generalized to different applications and different management logics of the CHP system.

M. Bianchi; A. De Pascale; F. Melino; A. Peretto

2014-01-01T23:59:59.000Z

306

Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy  

Science Journals Connector (OSTI)

Abstract Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction.

Kyoung Hoon Kim; Kyung Chun Kim

2014-01-01T23:59:59.000Z

307

Assessment of dynamic energy conversion systems for radioisotope heat sources  

SciTech Connect

The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

Thayer, G.R.; Mangeng, C.A.

1985-06-01T23:59:59.000Z

308

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

309

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

310

Cycle cover with short cycles Nicole Immorlica  

E-Print Network (OSTI)

Introduction Given a graph and a subset of marked elements (nodes, edges, or some combination thereof), a cycleCycle cover with short cycles Nicole ImmorlicaÂŁ Mohammad MahdianÂŁ Vahab S. MirrokniÂŁ Abstract Cycle for variants of cycle covering problems which bound the size and/or length of the covering cycles

Immorlica, Nicole

311

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

312

Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy  

Science Journals Connector (OSTI)

In the Republic of Croatia there are some medium temperature geothermal sources by means of which it is possible to produce electricity. However, only recently concrete initiatives for the construction of geothermal power plants have been started. Consequently, the paper provides proposals of the possible cycles for the Republic of Croatia. On the example of the most prospective geothermal source in the Republic of Croatia detailed analysis for the proposed energy conversion cycles is performed: for Organic Rankine Cycle (ORC) and Kalina cycle. On the basis of analysis results both the most suitable cycle for selected and for other geothermal sources in the Republic of Croatia are proposed. It is ORC which in case of the most prospective geothermal source in the Republic of Croatia has better both the thermal efficiency (the First Law efficiency) and the exergetic efficiency (the Second Law efficiency): 14.1% vs. 10.6% and 52% vs. 44%. The ORC gives net power of 5270 kW with mass flow rate 80.13 kg/s, while the Kalina cycle gives net power of 3949 kW with mass flow rate 35.717 kg/s.

Z. Guzovi?; D. Lon?ar; N. Ferdelji

2010-01-01T23:59:59.000Z

313

Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry  

SciTech Connect

The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

1980-01-31T23:59:59.000Z

314

CX-001564: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Categorical Exclusion Determination 4: Categorical Exclusion Determination CX-001564: Categorical Exclusion Determination Beowawe Bottoming Binary Project CX(s) Applied: A9, B5.1, B5.2 Date: 04/01/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Beowawe Power, Inc. (BPL) would install a 1.5 megawatt binary Organic Rankine Cycle (ORC) in the existing 16 megawatt Beowawe Geothermal Power Plant located in Northern Nevada that would utilize low temperature/pressure brine to produce additional power before being re-injected back into the geothermal reservoir. The ORC would use the tail-water from the existing power generation unit to allow for an additional use of the geothermal fluid prior to re-injection. There would be no additional use of geothermal resource fluid from the reservoir beyond

315

Approach to designing a solar concentrator for small-scale remote power application  

Science Journals Connector (OSTI)

A small-scale concentrated solar power (CSP) unit was designed to provide electricity and hot water using an organic Rankine cycle (ORC) for Egypt as part of an undergraduate capstone project. The system was designed for a target power output of 3 kW. It uses parabolic troughs to heat ethylene glycol used as the heat transfer fluid which absorbs heat in the trough collector and transfers it to the working fluid through a heat exchanger. The system consists of 9 parabolic troughs and a total aperture area of 67 m2 providing the required 3 kW of energy to the ORC. One parabolic trough was manufactured to test its thermal efficiency according to ASHRAE standard 93-2003 [Methods of Testing to Determine the Thermal Performance of Solar Collectors (ASHRAE Inc. 1791 Tullie Circle NE Atlanta GA 30329 2003)] and compared it to its calculated value. A simple microcontroller-based system was used to track the sun.

Khaled Metwally; Ahmed Makhlouf; Lamyaa El-Gabry

2011-01-01T23:59:59.000Z

316

Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor  

SciTech Connect

The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

2006-10-01T23:59:59.000Z

317

Development of advanced off-design models for supercritical carbon dioxide power cycles  

SciTech Connect

In the search for increased efficiency of utility-scale electricity generation, Brayton cycles operating with supercritical carbon dioxide (S-CO{sub 2}) have found considerable interest. There are two main advantages of a S-CO{sub 2} Brayton cycle compared to a Rankine cycle: 1) equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery, and 2) heat rejection is not limited by the saturation temperature of the working fluid, which has the potential to reduce or completely eliminate the need for cooling water and instead allow dry cooling. While dry cooling is especially advantageous for power generation in arid climates, a reduction of water consumption in any location will be increasingly beneficial as tighter environmental regulations are enacted in the future. Because daily and seasonal weather variations may result in a plant operating away from its design point, models that are capable of predicting the off-design performance of S-CO{sub 2} power cycles are necessary for characterizing and evaluating cycle configurations and turbomachinery designs on an annual basis. To this end, an off-design model of a recuperated Brayton cycle was developed based on the radial turbomachinery currently being investigated by Sandia National Laboratory. (authors)

Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T. [Univ. of Wisconsin-Madison, Solar Energy Laboratory, 1343 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

2012-07-01T23:59:59.000Z

318

Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method.  

E-Print Network (OSTI)

??Traditionally data centers were designed with reliability, functionality, and up front cost as the primary design drivers, with secondary consideration given to cost of operation… (more)

Lettieri, David

2012-01-01T23:59:59.000Z

319

Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method  

E-Print Network (OSTI)

can affect all three pillars of sustainability. For example,three pillars, often also referred to as the triple bottom line [23], categorize sustainabilitysustainability indicators have been defined and used, and are grouped into what the report labels three “pillars”.

Lettieri, David

2012-01-01T23:59:59.000Z

320

Use of combined steam-water and organic rankine cycles for achieving better efficiency of gas turbine units and internal combustion engines  

Science Journals Connector (OSTI)

Innovative concepts of recovering waste heat using low-boiling working fluids, due to which the the efficiency can be increased to 28–30%, are presented. If distributed generation of electricity or combined pr...

M. A. Gotovskiy; M. I. Grinman; V. I. Fomin; V. K. Aref’ev…

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method  

E-Print Network (OSTI)

Coal Natural Gas Percentage of California PG & E Electricity Mix Electricity Generation The global warming

Lettieri, David

2012-01-01T23:59:59.000Z

322

Cycle Track Lessons Learned  

E-Print Network (OSTI)

Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing driveways & low-volume streets Signalized intersections #12;Trend in kilometers cycled per year

Bertini, Robert L.

323

Photovoltaics Life Cycle Analysis  

E-Print Network (OSTI)

Metrics of Life-Cycle Performance Energy Payback Times (EPBT) Greenhouse Gas Emissions (GHG) Toxic Gases #12;6 Life Cycle GHG Emissions ­EuropeLife Cycle GHG Emissions ­Europe Insolation: 1700 kwh/m2-yr 0 10 #12;7 Life Cycle GHG Emissions ­Comparison with Conventional Technologies Life Cycle GHG Emissions

324

10.1101/gad.1674108Access the most recent version at doi: 2008 22: 2633-2638Genes Dev.  

E-Print Network (OSTI)

multiprotein complexes, ORC (ori- gin recognition complex) and MCM (minichromosome maintenance), result 2002). ORC associates with replication origins throughout the entire cell cycle, whereas the MCM complex is specifically loaded during late mitosis through G1 phase under the control of ORC and ORC

325

Optimization of Air Conditioning Cycling  

E-Print Network (OSTI)

Benchmark – Long Cycle .............................................................................................. 95 5.46 System Pressures and Temperatures – Valve Part Cycle Vs Benchmark – Long Cycle...

Seshadri, Swarooph

2012-10-19T23:59:59.000Z

326

Performance improvement options for the supercritical carbon dioxide brayton cycle.  

SciTech Connect

The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

2008-07-17T23:59:59.000Z

327

Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors  

SciTech Connect

A combined thermal power and cooling cycle is proposed which combines the Rankine and absorption refrigeration cycles. It can provide power output as well as refrigeration with power generation as a primary goal. Ammonia-water mixture is used as a working fluid. The boiling temperature of the ammonia-water mixture increases as the boiling process proceeds until all liquid is vaporized, so that a better thermal match is obtained in the boiler. The proposed cycle takes advantage of the low boiling temperature of ammonia vapor so that it can be expanded to a low temperature while it is still in a vapor state or a high quality two phase state. This cycle is ideally suited for solar thermal power using low cost concentrating collectors, with the potential to reduce the capital cost of a solar thermal power plant. The cycle can also be used as a bottoming cycle for any thermal power plant. This paper presents a parametric analysis of the proposed cycle.

Goswami, D.Y.; Xu, F. [Univ. of Florida, Gainesville, FL (United States). Solar Energy and Energy Conversion Lab.

1999-05-01T23:59:59.000Z

328

Electricity generation from coal with CO2 capture by means of a novel power cycle  

SciTech Connect

Climate modelers have estimated that anthropogenic emissions of CO2 must be reduced substantially from the present rate to stabilize atmospheric concentration. To achieve this, electricity generation from fossil fuels with CO2 capture and direct sequestration may play an important role. If so, it will be worthwhile to consider power cycles that are designed to minimize atmospheric CO2 emissions and deliver CO2 ready for pipeline transport in addition to providing other desirable attributes of environmental performance and efficiency. One such novel approach, named the Matiant cycle, employs self generated CO2 as the working fluid with both Bryton and Rankine cycle turbines. Process modeling studies are being conducted at the NETL to investigate the promise of this cycle. In the work to be reported, synthesis gas is provided to the Matiant cycle by oxygen-blown dry coal entrained gasification. Oxygen for both the gasifier and the Matiant cycle is provided by use of an Ion Transport Membrane (ITM). ITM is a revolutionary approach for producing high purity oxygen from a high temperature pressurized air stream. ASPEC Plus is used as the simulation tool to compute energy balances and system performance. Two flowsheets are analyzed, the difference being the treatment of the low oxygen content raffinate stream from the ITM. Computed thermal efficiencies of the ITM/Matiant cycle are comparable to those of conventional IGCC without carbon capture. Specific carbon emissions per net MWh are many times lower for the new cycle than for other approaches being developed for power generation with CO2 capture, however. As much as 99.5% of the carbon in synthesis gas fed to the Matiant cycle could be recovered and removed in a pipeline as a high pressure liquid. Such high capture efficiencies at large central generating stations could allow use of fossil fuels without capture at smaller installations or by mobile sources, yielding a modest overall rate of CO2 emissions.

Ruether, J.; Le, P.; White, C.

2000-07-01T23:59:59.000Z

329

Optimization of Fog Inlet Air Cooling System for Combined Cycle Power Plants using Genetic Algorithm  

Science Journals Connector (OSTI)

Abstract In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year.

Mehdi A. Ehyaei; Mojtaba Tahani; Pouria Ahmadi; M. Esfandiari

2014-01-01T23:59:59.000Z

330

Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs  

SciTech Connect

The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

Haihua Zhao; Hongbin Zhang; Samuel E. Bays

2009-05-01T23:59:59.000Z

331

Quantifying Carbon Cycle Feedbacks  

Science Journals Connector (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

332

Edgeworth cycles revisited  

E-Print Network (OSTI)

Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

Doyle, Joseph J.

333

The combined cycle  

Science Journals Connector (OSTI)

Any combination of at least two cyclic processes converting thermal energy (‘heat’) to work forms a combined cycle. In principle, the potential number of ... number of options reduces to a variety of cycles consi...

R. U. Pitt

1995-01-01T23:59:59.000Z

334

Water Cycle Pilot Study  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE...

335

mathematics single cycle  

E-Print Network (OSTI)

47 mathematics education single cycle master's study programme #12;48 single cycle master's study program in Mathematics Education #12;49 single cycle master's study program in Mathematics Education MATHEMATICS EDUCATION The program is in tune with the principles of the Bologna Declaration. · Academic title

Â?umer, Slobodan

336

Julian Ly Davis, Ph.D. 315 Engineering Lab  

E-Print Network (OSTI)

, Virginia Tech, Thesis: Design of a Smart Fluid Rankine Cycle, Advisor: Mark S. Cramer TEACHING 2008

Dumont, Elizabeth R.

337

Nr. 184 / 2011 // 24. Oktober 2011 Erfolgreicher FAN-Abschluss  

E-Print Network (OSTI)

von Stoffdatenmodellen auf dem Gebiet des Organic Rankine Cycle mit dem VDI-Preis ausgezeichnet. Dipl

Ullmann, G. Matthias

338

AMY V. MUELLER, PH.D. Em: amym@mit.edu  

E-Print Network (OSTI)

. 2013. Geometric Design of Scroll Expanders Optimized for Small Organic Rankine Cycles. ASME Journal

Entekhabi, Dara

339

Author's personal copy Towards optimization of a pyroelectric energy converter for harvesting waste heat  

E-Print Network (OSTI)

efficiencies. Organic Rankine cycles use organic working fluids such as refrigerants and hydrocarbons instead

Pilon, Laurent

340

Cycle to Cycle Manufacturing Process Control  

E-Print Network (OSTI)

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

for ORC turbine and pump efficiencies as a function of the100kW) the steam turbine isentropic efficiencies ranges 50%known that turbine isentropic efficiency decreases linearly

Ho, Tony

2012-01-01T23:59:59.000Z

342

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

343

CX-001196: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Categorical Exclusion Determination 6: Categorical Exclusion Determination CX-001196: Categorical Exclusion Determination High-Potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants CX(s) Applied: A9, B3.6 Date: 03/21/2010 Location(s): Niskayuna, New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office General Electric Global Research (GE) would evaluate novel working fluids and advanced cycle combinations for use in Organic Rankine Cycles (ORC) for Enhanced Geothermal Systems (EGS) and would optimize the overall economics for an EGS plant including power plant and drilling costs, A pilot scale test setup would be used to experimentally validate the performance predictions. All work would take place at the GE Global Research Center campus, an Occupational Safety and Health Voluntary Protection Program Star

344

Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles  

Science Journals Connector (OSTI)

Abstract In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range.

Giovanni Manente; Andrea Lazzaretto

2014-01-01T23:59:59.000Z

345

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

346

Power Plant Cycling Costs  

SciTech Connect

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

347

Life Cycle Cost Estimate  

Directives, Delegations, and Requirements

Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

1997-03-28T23:59:59.000Z

348

POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR  

SciTech Connect

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Mechanical analyses were performed to determine hoop stresses and thermal expansion characteristics for the different configurations. Economic analyses were performed to estimate the cost of the various configurations.

Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

2007-05-01T23:59:59.000Z

349

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

350

Wetland (peat) Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are...

351

IFR fuel cycle  

SciTech Connect

The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States); Lineberry, M.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1992-04-01T23:59:59.000Z

352

Malone cycle refrigerator development  

SciTech Connect

This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

Shimko, M.A.; Crowley, C.J.

1999-07-01T23:59:59.000Z

353

System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801  

SciTech Connect

S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W. [Chinese Academy of Science, Beijing (China)

2008-09-15T23:59:59.000Z

354

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

355

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z

356

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2007-10-09T23:59:59.000Z

357

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

358

Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia  

Science Journals Connector (OSTI)

Abstract This paper presents the design, simulation and optimisation of a small trigeneration plant supplied by geothermal and solar energies. Different technologies are implemented in a dynamic simulation model purposely developed for research scope: a 6 kWe micro Organic Rankine Cycle (ORC); a 30 kWf single stage H2O/LiBr absorption chiller; a geothermal well; a solar field obtained by new prototypal flat-plate evacuated solar collectors. The ORC is supplied by heat obtained by a geothermal well in which geothermal brine is about at 95 °C. In order to improve system performance, additional heat is provided by solar energy obtained through a 25 m2 solar field. Diathermic oil (up to 130 °C) is adopted as working fluid in order to supply heat to the ORC evaporator. A suitable oil storage tank is modelled in order to mitigate the temperature fluctuations due to the variability of solar energy availability. The output power of the ORC depends on the availability of solar energy. The absorption chiller is switched-on in summer time and it is fed by geothermal energy only. This simulation model is implemented in TRNSYS environment. The ORC is modelled by zero-dimensional energy and mass balances implemented in Engineering Equation Solver (EES). A case study is developed in order to test the energy and economic performance of this innovative micro-trigeneration plant. In particular, the above mentioned model is applied to the Regina Isabella hotel in Ischia (Naples, South Italy), famous for its geothermal sources. Currently, such hotel is already equipped by a geothermal system (by several hot water wells) for thermal cares, domestic hot water production and space heating. By TRNSYS the optimisation of the system design parameters and the calculation of the thermo-economic conditions were performed. The system showed excellent energy performance indexes. In fact, the average yearly efficiency of the solar thermal collectors is close to 60%, whereas the average yearly ORC electric efficiency is about 6%, which is a good achievement considering the system driving temperature. Results also show that the system performance is more dependent on the availability of the geothermal energy than the solar one. From the economic point of view, good results are also obtained. In fact, in the worst operating conditions the Simple Pay Back Period is 7.6 years, decreasing to 2.5 years in the most convenient considered scenario (public funding and full utilisation of the produced thermal energy).

Annamaria Buonomano; Francesco Calise; Adolfo Palombo; Maria Vicidomini

2015-01-01T23:59:59.000Z

359

mathematical Study program cycle  

E-Print Network (OSTI)

TSW ECTS TSW Fundamentals of statistics 2 2 0 5 150 0 0 0 0 0 5 150 Probability 4 3 0 10 300 0 0 0 0 0127 mathematical statistics Master's study programms #12;128 #12;· Study program cycle: Second Statistics. In Slovenian: magister matematicne statistike (masculine), magistrica matematicne statistike

Â?umer, Slobodan

360

CLASS DESCRIPTIONS CYCLING SERIES  

E-Print Network (OSTI)

will utilize concepts from the 50-minute cycling class while going the distance to optimal health. Whether you're an avid cyclist, triathlete, or desire a longer class for a greater challenge, join us for this 75-minute AN URBANATHLETE Are you registered to compete in an adventure race like the Men's Health Urbanathlon, Warrior Dash

Pittendrigh, Barry

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RESEARCH DEVELOPMENT DIVISION OF RESEARCH  

E-Print Network (OSTI)

CENTERS (ORC) TO RECEIVE CREDIT: ORC % Credit ORC % Credit ORC/Director Signature ORC/Director Signature

Suzuki, Masatsugu

362

D-Cycle - 4-Differential -Stroke Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-Stroke Cycle The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines deer09conti.pdf...

363

ANALYSIS AND OPTIMIZATION OF CHP, CCHP, CHP-ORC, AND CCHP-ORC SYSTEMS.  

E-Print Network (OSTI)

?? Increased demand for energy, rising energy costs, and heightened environmental concerns are driving forces that continually press for the improvement and development of new… (more)

Hueffed, Anna Kathrine

2010-01-01T23:59:59.000Z

364

CX-002417: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

417: Categorical Exclusion Determination 417: Categorical Exclusion Determination CX-002417: Categorical Exclusion Determination Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas CX(s) Applied: A9, B5.1, B5.2, B5.12 Date: 05/25/2010 Location(s): Liberty County, Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Universal GeoPower LLC (UGP) would demonstrate the technical feasibility and economic viability of geothermal electricity production from oil/gas (O/G) coproduced water using binary Organic Rankine Cycle (ORC) technology to utilize a small production O/G well that is considered unproductive due to the cost of separating and re-injecting the coproduced water associated with the hydrocarbon production and has therefore been "orphaned" awaiting

365

STATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES CORPORATION FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RIGHTSIUNDER DOE COOPERATIVE AGREEMENT RIGHTSIUNDER DOE COOPERATIVE AGREEMENT NO. DE-FG36-05G015151 ENTITLED "ORGANIC RANKINE CYCLE (ORC) FOR GEOTHERMAL ELECTRICAL POWER SYSTEM VALIDATION "; W(A)- 05-021; CH-1285 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, United Technologies Corporation (UTC) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractor's employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of UTC's waiver petition, the objective of this agreement is to develop and

366

CX-004512: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Categorical Exclusion Determination 12: Categorical Exclusion Determination CX-004512: Categorical Exclusion Determination Universal GeoPower LLC Recovery Act: Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas CX(s) Applied: A9, B5.1, B5.2, B5.12 Date: 11/19/2010 Location(s): New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Universal GeoPower LLC (UGP) would demonstrate the technical feasibility and economic viability of geothermal electricity production from oil/gas (O/G) coproduced water using binary Organic Rankine Cycle (ORC) technology to utilize a small production O/G well that is considered unproductive due to the cost of separating and re-injecting the coproduced water associated

367

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

368

BNL | Carbon Cycle Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

369

Fuel Cycle Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report to NEAC Report to NEAC Fuel Cycle Subcommittee Meeting of April 23, 2013 Washington D.C. June 13, 2013 Burton Richter (Chair), Margaret Chu, Darleane Hoffman, Raymond Juzaitis, Sekazi K Mtingwa, Ronald P Omberg, Joy L Rempe, Dominique Warin 2 I Introduction and Summary The Fuel Cycle Subcommittee of NEAC met in Washington on April 23, 2013. The meeting focused on issues relating to the NE advanced reactor program (sections II, III, and IV), and on storage and transportation issues (section V) related to a possible interim storage program that is the first step in moving toward a new permanent repository as recommended by the Blue Ribbon Commission (BRC) and discussed in the recent response by DOE to Congress on the BRC report 1 . The agenda is given in

370

CANDU fuel cycle flexibility  

SciTech Connect

High neutron economy, on-power refuelling, and a simple bundle design provide a high degree of flexibility that enables CANDU (CANada Deuterium Uranium; registered trademark) reactors to be fuelled with a wide variety of fuel types. Near-term applications include the use of slightly enriched uranium (SEU), and recovered uranium (RU) from reprocessed spent Light Water Reactor (LWR) fuel. Plutonium and other actinides arising from various sources, including spent LWR fuel, can be accommodated, and weapons-origin plutonium could be destroyed by burning in CANDU. In the DUPIC fuel cycle, a dry processing method would convert spent Pressurized Water Reactor (PWR) fuel to CANDU fuel. The thorium cycle remains of strategic interest in CANDU to ensure long-term resource availability, and would be of specific interest to those countries possessing large thorium reserves, but limited uranium resources.

Torgerson, D.F.; Boczar, P.G. [Chalk River Lab., Ontario (Canada); Dastur, A.R. [AECL CANDU, Mississauga, Ontario (Canada)

1994-12-31T23:59:59.000Z

371

USCEA fuel cycle '93  

SciTech Connect

The US Council for Energy Awareness sponsored the Fuel Cycle '93 conference in Dallas, Texas, on March 21-24, 1993. Over 250 participants attended, numerous papers were presented, and several panel discussions were held. The focus of most industry participants remains the formation of USEC and the pending US-Russian HEU agreement. Following are brief summaries of two key papers and the Fuel Market Issues panel discussion.

Not Available

1993-04-01T23:59:59.000Z

372

American business cycles and innovation  

E-Print Network (OSTI)

introduces the concepts of innovation and invention. The second section discusses the business cycles and highlights general causes of business cycles. The final section details the history of the iron, steel, aluminum, and pharmaceutical industries...

Hood, Michael

2013-02-22T23:59:59.000Z

373

Edinburgh Research Explorer Money Cycles  

E-Print Network (OSTI)

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

374

HEURISTIC SEARCH FOR HAMILTON CYCLES  

E-Print Network (OSTI)

by combining it with the remaining cycles. The following is the description of the main part of the algorithmHEURISTIC SEARCH FOR HAMILTON CYCLES IN CUBIC GRAPHS Janez ALES, Bojan MOHAR and Tomaz PISANSKI. A successful heuristic algorithm for nding Hamilton cycles in cubic graphs is described. Several graphs from

Mohar, Bojan

375

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

376

n-step cycle inequalities - Optimization Online  

E-Print Network (OSTI)

also introduced the so-called cycle inequalities (called 1-step cycle inequalities in this ...... combination of the cycle detection strategy of Tarjan [16] and the ...

2014-07-02T23:59:59.000Z

377

Life-cycle Assessment of Semiconductors  

E-Print Network (OSTI)

life-cycle energy requirements (e total ) and global warmingtotal life-cycle global warming impacts. Chapter 3 Life-cycle Energy and Global

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

378

Quantum thermodynamic cooling cycle  

E-Print Network (OSTI)

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

2001-01-01T23:59:59.000Z

379

Quantum thermodynamic cooling cycle  

E-Print Network (OSTI)

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

2001-06-08T23:59:59.000Z

380

Geothermal Life Cycle Calculator  

SciTech Connect

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Minister's son from Argyll. Professor at age 19 and FRS by 21. On  

E-Print Network (OSTI)

), theory of the steam engine (Rankine cycle), shock wave propagation (Rankine-Hugoniot equations cycles, (vindicated by the CLIMAP Project 1976). Born Dunbar, East Lothian. Emigrated to U.S. at age 11

Schnaufer, Achim

382

Open cycle thermoacoustics  

SciTech Connect

A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

Reid, Robert Stowers

2000-01-01T23:59:59.000Z

383

Advanced regenerative absorption refrigeration cycles  

DOE Patents (OSTI)

Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

Dao, Kim (14 Nace Ave., Piedmont, CA 94611)

1990-01-01T23:59:59.000Z

384

AMMONIA RECEIVER DESIGN FOR DISH CONCENTRATORS Rebecca I. Dunn, Keith Lovegrove and Greg Burgess  

E-Print Network (OSTI)

, and coupled with a power cycle (Rankine or Brayton), can be used to produce dispatchable power. At 20MPa

385

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network (OSTI)

: Organic Rankine Cycle) with maximal installed net capacity of 1.5MWe (Figure 1). Several deep geothermal

Boyer, Edmond

386

Outputs and Interactions -04 1. Publications  

E-Print Network (OSTI)

). Andersen, W.C. and Bruno, T.J., "Rapid Screening of Fluids for Chemical Stability in Organic Rankine Cycle

Magee, Joseph W.

387

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

388

Building Life Cycle Cost Programs  

Energy.gov (U.S. Department of Energy (DOE))

The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Program to provide computational support for the analysis of capital investments in buildings.

389

Minimize Boiler Short Cycling Losses  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

390

Virtuous Cycle Cycles of activity and software projects  

E-Print Network (OSTI)

Inspection #12;Programming Cycle - single bug Selected Bug Shared Code Fix Bug Continuous Integration ~8 cycle cvscheck compilation style checking testing javadocs documentation jumble quality of unit testing #12;NetValue Development cvscheck - Source Code Control and Build Shared Centralized Automatic

Pfahringer, Bernhard

391

Aluto-Langano Geotermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

System - Ethiopian Rift Valley Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ethiopian Electric Power Corporation Developer Ethiopian Electric Power...

392

Demonstration of a Variable Phase Turbine Power System for Low...  

Office of Environmental Management (EM)

turbine geothermal ORC system A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a...

393

Life Cycle Asset Management  

Directives, Delegations, and Requirements

(The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

1998-10-14T23:59:59.000Z

394

Natural Gas Combined Cycle  

E-Print Network (OSTI)

The “Coal Ash Corrosion Resistant Materials Testing Program ” is being conducted by B&W at Reliant Energy’s Niles plant in Niles, Ohio. The total estimated cost of $1,864,603 is co-funded by DOE contributing 37.5%, OCDO providing 33.3 % and B&W providing 17%. The remaining 12 % is in-kind contributions by Reliant Energy and tubing suppliers. Materials development is important to the power industry, and to the use of coal. Figure 1 compares the cost of electricity for subcritical and supercritical coal-fired plants with a natural gas combined cycle (NGCC) plant based on an 85 % capacity factor. This shows that at $1.20/MBtu for fuel, coal is competitive with NGCC when gas is at $3.40/MBtu or higher. An 85 % capacity factor is realistic for a coal-fired plant, but NGCC plants are currently only achieving about 60%. This gives coal an advantage if compared on the basis of cost per kW generated per year. When subcritical and supercritical plants are compared,

Dennis K. Mcdonald; Subcritical Coal Plant; Supercritical Coal Plant

395

Biomass Gasification Combined Cycle  

SciTech Connect

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

396

Nuclear fuel cycle information workshop  

SciTech Connect

This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

Not Available

1983-01-01T23:59:59.000Z

397

Extreme Financial cycles$ B. Candelonb,  

E-Print Network (OSTI)

Extreme Financial cycles$ B. Candelonb, , G. Gauliera , C. Hurlinb aUniversity Maastricht proposes a new approach to date extreme financial cycles. Elabo- rating on recent methods in extreme value theory, it elaborates an extension of the famous calculus rule to detect extreme peaks and troughs

Paris-Sud XI, Université de

398

Reading Comprehension - The Water Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Water Cycle The Water Cycle Evaporation, Condensation and Precipitation The _________ moon sun water clouds evaporates _________ fish oceans rain water from lakes and oceans. As the air rises, it cools. The water vapor condenses into tiny droplets of _________ evaporation clouds water sunshine . The droplets crowd together and form a _________ cloud lake storm precipitation . Wind blows the _________ rain sun droplet cloud towards the land. The tiny droplets join together and fall as precipitation to the _________ river lake ground cloud . The water soaks into the ground and collects in _________ rivers and lakes oceans and clouds jars and cups plants and animals . The _________ storm cycle river house that never ends has started again! A water cycle diagram. Use the diagram to identify the different parts of the water cycle:

399

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

400

Fuel cycle cost uncertainty from nuclear fuel cycle comparison  

SciTech Connect

This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Performance and market evaluation of the bladeless turbine  

SciTech Connect

The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

1982-10-01T23:59:59.000Z

402

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

403

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

404

Sustainability Features of Nuclear Fuel Cycle Options  

E-Print Network (OSTI)

The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an ...

Passerini, Stefano

405

Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR  

SciTech Connect

For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

2012-07-01T23:59:59.000Z

406

Exergy Analysis of Stirling Cycle Cryogenerator  

Science Journals Connector (OSTI)

Exergy or the available work energy function is ... various systems. This paper attempts to present exergy analysis for Stirling cycle cryogenerator. The cycle...

K. G. Narayankhedkar

1998-01-01T23:59:59.000Z

407

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

408

The behavioral manipulation hypothesis Life cycle of  

E-Print Network (OSTI)

1 The behavioral manipulation hypothesis · No one knows how the parasite causes these Life cycle eat mostly hares · Linked cycles? Predator-Prey Cycles? · Think and then discuss: · Under the hypothesis that predators cause this cycle, what would you expect for the following when hare populations

Mitchell, Randall J.

409

SNMR pulse sequence phase cycling  

DOE Patents (OSTI)

Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

Walsh, David O; Grunewald, Elliot D

2013-11-12T23:59:59.000Z

410

Simple ocean carbon cycle models  

SciTech Connect

Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

1994-02-01T23:59:59.000Z

411

Closed cycle liquid helium refrigerators  

Science Journals Connector (OSTI)

We have developed closed cycle liquid helium refrigerators using a Joule Thomson circuit precooled by commercially available two staged Gifford Mac Mahon cryocoolers. The Joule Thomson counterflow heat exchangers are modular and have been thermo-hydraulically characterized. Fully automatic cool down and operation are achieved by two pneumatically driven by pass and expansion valves. Several apparatus have been built or are under assembly with cooling power ranging from 100 mW up to 5 Watt, for temperature ranging from 2.8 K up to 4.5 K. A trouble free operation with several warm up and cool down cycles has been proven over 7000 hours.

G. Claudet; R. Lagnier; A. Ravex

1992-01-01T23:59:59.000Z

412

GAX absorption cycle design process  

SciTech Connect

This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

Priedeman, D.K.; Christensen, R.N.

1999-07-01T23:59:59.000Z

413

VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics  

SciTech Connect

The U.S. DOE Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

2006-02-01T23:59:59.000Z

414

The potential role of data-centres in enabling investment in geothermal energy  

Science Journals Connector (OSTI)

A techno-economic analysis is presented, of the potential for data-centres and fibre optic networks to drive investment in geothermal resources. The concept is attractive because of data-centres’ stable demand for electricity and refrigeration at a scale of geothermal systems to compete with the retail price of electricity. A comparison of energy delivery outcomes was performed for both engineered geothermal systems (EGS) and hot sedimentary aquifer (HSA) reservoirs to identify the minimum conditions that could make the concept economically attractive. For the high temperature EGS, a single and dual pressure binary organic Rankine cycle (EGS-ORC, EGS-2×ORC), a single stage flash (EGS-flash) and a hybrid flash-binary system (EGS-hybrid) were studied. The HSA system investigated the direct use (HSA-DU) of the geo-fluid in an absorption chiller for refrigeration and the use of coincidental natural gas resources to deliver electricity via an internal combustion engine. The technical performance of these systems was assessed for a range of well-head pressure (EGS only) and geo-fluid flow rate scenarios. The economic performance of the combined set of investments in optical fibre and energy infrastructure was examined by estimating the expected internal rate of return (E[IRR]). The HSA-DU option yielded an E[IRR] of 14%, following the installation of energy capacity equivalent to the output of one well-doublet assuming the displacement of the Australian retail price of electricity; and 12% for the US retail price. In comparison, the EGS-hybrid was found to have an E[IRR] of 8%, if the Australian retail price were displaced and 4% if the US retail price were displaced. The EGS-flash, ORC and 2×ORC scenarios were found to be progressively less attractive than the EGS-hybrid. To identify the conditions under which the concept could satisfy commercial hurdle rates, the sensitivity of the E[IRR] was investigated for the cost of an optical fibre link; the EGS resource depth; the retail price of electricity displaced; and a data-centres’ energy consumption profile. Credits for CO2 emissions abatement at $23/ton were found to have only a marginal influence on the economic performance of the EGS and HSA scenarios examined.

Ashok A. Kaniyal; Graham J. Nathan; Jonathan J. Pincus

2012-01-01T23:59:59.000Z

415

NREL: U.S. Life Cycle Inventory Database - Life Cycle Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessments A life cycle assessment (LCA) is a systematic, cradle-to-grave process that evaluates the environmental impacts of products, processes, and services. Its...

416

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

417

The Life Cycle Analysis Toolbox  

SciTech Connect

The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools.

Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

1999-02-28T23:59:59.000Z

418

RAPID/Roadmap/3-OR-c | Open Energy Information  

Open Energy Info (EERE)

the installation, maintenance, and operation of utility facilities such as pipe lines, pole lines, buried cable, and conduits, and other activities that may affect the...

419

RAPID/Roadmap/8-OR-c | Open Energy Information  

Open Energy Info (EERE)

in the state of Oregon. When a developer proposes to construct an overhead transmission line which will require the condemnation of land or an interest in the condemnation of land,...

420

The Quebec Life Cycle Inventory Database Project  

Science Journals Connector (OSTI)

Life cycle assessment (LCA) in Quebec (Canada) is increasingly important. Yet, ... life cycle inventory (LCI) data. The Quebec government invested in the creation of a Quebec LCI database. The approach is to work...

Pascal Lesage; Réjean Samson

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Profit cycle dynamics by Kawika Pierson.  

E-Print Network (OSTI)

My thesis consists of three essays investigating the existence, causes, and mitigation of profit cycles at an industry level. The first essay examines profit cycles by proposing that the industry-specific features of how ...

Pierson, Kawika (Kawika Paul)

2011-01-01T23:59:59.000Z

422

Rethinking the light water reactor fuel cycle  

E-Print Network (OSTI)

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

423

Viable combined cycle design for automotive applications  

Science Journals Connector (OSTI)

A relatively new approach for improving fuel economy and automotive engine performance involves the use of automotive combined cycle generation technologies. The combined cycle generation, a process widely used i...

K. -B. Kim; K. -W. Choi; K. -H. Lee

2012-04-01T23:59:59.000Z

424

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

425

Toward single-cycle optical pulses  

E-Print Network (OSTI)

Single-cycle optical pulses, the never-before-achieved regime, have a great potential for attosecond science and phase-sensitive nonlinear optics. To achieve single-cycle optical pulses by active synchronization, three ...

Kim, Jung-Won, 1976-

2004-01-01T23:59:59.000Z

426

Development Plan for the Fuel Cycle Simulator  

SciTech Connect

The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

Brent Dixon

2011-09-01T23:59:59.000Z

427

Using Cycles and Scaling Parallel Algorithms  

E-Print Network (OSTI)

graph by finding a max­ imal set of edge­disjoint cycles. We give a parallel algorithm to find the first efficient parallel algorithm for finding an approximation to a min­ imum cycle cover. Our algorithm finds a cycle cover whose size is within a factor of O(1 + n log n m+n ) of the minimum sized

Yang, Junfeng

428

How Minds Work The IDA Cognitive Cycle  

E-Print Network (OSTI)

1 How Minds Work The IDA Cognitive Cycle Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis #12;HMW: The IDA Cognitive Cycle 2 Memory Systems #12;HMW: The IDA Cognitive Cycle 3 Global Workspace Theory I · The nervous system is a distributed parallel

Memphis, University of

429

SPACETELESCOPESCIENCEINSTITUTE WFPC2 Cycle 14 Calibration  

E-Print Network (OSTI)

/chip combinations used for science in Cycle 14 + Close Out ~10% reserve 2 Placeholder for unexpected items. TOTALSPACETELESCOPESCIENCEINSTITUTE WFPC2 Cycle 14 Calibration Director's Review 8 August 2005 John Biretta 1 Cycle 14 WFPC2 Calibration Plan Overall Goals: · Monitor & maintain WFPC2 health & safety

Sirianni, Marco

430

Building Life Cycle Cost Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Life Cycle Cost Programs Building Life Cycle Cost Programs The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Program...

431

Life Cycle Assessment Comparing the Use of Jatropha Biodiesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Climate Change IR Indian Railways Jatropha Jatropha curcas L. KCl potassium chloride LCA life cycle assessment LCI life cycle inventory LCIA life cycle impact assessment MSRTH...

432

Advanced Fuel Cycle Economic Sensitivity Analysis  

SciTech Connect

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

433

MHD Integrated Topping Cycle Project  

SciTech Connect

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

434

Fuel Cycle CrossCut Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CrossCut Group CrossCut Group 1 NERAC Briefing: Assessment of Dose of Closed vs Open Gen-IV Fuel Cycles David Wade NERAC Meeting September 30, 2002 Fuel Cycle CrossCut Group 2 Public Dose and Worker Dose Comparison of Open vs Closed Fuel Cycles * Gen-IV fuel cycle options are meant to address all stated Gen-IV Goals - Dose to workers and to the public is one of the numerous elements to be evaluated by Gen-IV R&D - The Fuel Cycle Crosscut Group was assigned to take an early look at dose implication tradeoffs of open and closed fuel cycles * FCCG Interpretation of Assignment: - Collect already-existing evaluations and prepare a briefing on what is currently known Fuel Cycle CrossCut Group 3 Approach * Look at Actual Historical Doses Based on Operational Experience - Data compiled by the United Nations Scientific Committee on the Effects of Atomic

435

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect

The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

2009-04-01T23:59:59.000Z

436

Definition: Brayton cycle | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Brayton cycle Jump to: navigation, search Dictionary.png Brayton cycle A thermodynamic cycle using constant pressure, heat addition and rejection. Fuel and a compressor are used to heat and increase the pressure of a gas; the gas expands and spins the blades of a turbine, which, when connected to a generator, generates electricity.[1][2] View on Wikipedia Wikipedia Definition The Brayton cycle is a thermodynamic cycle that describes the workings of a constant pressure heat engine. Gas turbine engines and airbreathing jet engines use the Brayton Cycle. Although the Brayton cycle

437

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

438

MHD Integrated Topping Cycle Project  

SciTech Connect

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

439

MHD Integrated Topping Cycle Project  

SciTech Connect

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

440

Risk of Infection and adverse outcomes among pregnant working women in selected occupational groups: A study in the Danish National Birth Cohort  

E-Print Network (OSTI)

IC95%) Multiple major congenital anomalies ORc ORa Ą ORc ORaĄ ORc ORaĄ ORc ORc ORa Ą (IC95%) (IC95%) (IC95%) (IC95%) (IC95%) (

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mechanisms of Telomere Protection and Deprotection in Human Cells  

E-Print Network (OSTI)

complex (ORC) subunits 1-6 binds origins of replication on chromosomes in the G1-phase of the cell cycle. The binding of ORC to replication origins mediates recruitment of other factors, including Cdc6, Cdc45, Cdt1, and MDM 2-7, which all work together... to license the replication origin for firing (reviewed in [90]). It is important to note that while budding yeast has sequence-specific recruitment of ORC to replication origins, ORC recruitment in humans appears to be sequence independent [90...

Sarthy, Jay Francis

2009-07-31T23:59:59.000Z

442

The Seasonal Cycle over the United States and Mexico  

Science Journals Connector (OSTI)

The annual cycle occupies a unique position in the spectra of meteorological time series. This cycle and its first three harmonics are extracted from the series as a seasonal cycle. The distributions of the annual and seasonal cycles are studied ...

Vernon E. Kousky; S. Srivatsangam

1983-01-01T23:59:59.000Z

443

MHD Integrated Topping Cycle Project  

SciTech Connect

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

444

Efficiency combined cycle power plant  

SciTech Connect

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

445

2D representation of life cycle greenhouse gas emission and life cycle cost of energy conversion for various energy resources  

Science Journals Connector (OSTI)

We suggest a 2D-plot representation combined with life cycle greenhouse gas (GHG) emissions and life cycle cost for various energy conversion technologies. In general, life cycle ... use life cycle GHG emissions ...

Heetae Kim; Claudio Tenreiro; Tae Kyu Ahn

2013-10-01T23:59:59.000Z

446

Nuclear Fuel Cycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cycle Cycle Nuclear Fuel Cycle This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. The mission of NE-54 is primarily focused on activities related to the front end of the nuclear fuel cycle which includes mining, milling, conversion, and enrichment. Uranium Mining Both "conventional" open pit, underground mining, and in situ techniques are used to recover uranium ore. In general, open pit mining is used where deposits are close to the surface and underground mining is used

447

NREL: Energy Analysis - Life Cycle Assessment Harmonization  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment Harmonization Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity Generation factsheet Download the Fact Sheet The U.S. Department of Energy enlisted NREL to review and "harmonize" life cycle assessments (LCA) of electricity generation technologies. Hundreds of assessments have been published, often with considerable variability in results. These variations in approach, while usually legitimate, hamper comparison across studies and pooling of published results. Learn more about life cycle assessments of energy technologies. By harmonizing this data, NREL seeks to reduce the uncertainty around estimates for environmental impacts of renewables and increase the value of

448

Definition: Thermodynamic cycle | Open Energy Information  

Open Energy Info (EERE)

Thermodynamic cycle Thermodynamic cycle Jump to: navigation, search Dictionary.png Thermodynamic cycle A process in which a fluid (water, air, ammonia, etc) successively changes state (from a liquid to a gas and back to a liquid) for the purpose of producing or transferring energy.[1] View on Wikipedia Wikipedia Definition A thermodynamic cycle consists of a collection of thermodynamic processes transferring heat and work, while varying pressure, temperature, and other state variables, eventually returning a system to its initial state. In the process of going through this cycle, the system may perform work on its surroundings, therefore acting as a heat engine. State quantities depend only on the thermodynamic state, and cumulative variation of such properties adds up to zero during a cycle. Process quantities (or

449

LARSON--MATH 556--CLASSROOM WORKSHEET 07 Hamilton Cycles  

E-Print Network (OSTI)

Last name First name LARSON--MATH 556--CLASSROOM WORKSHEET 07 Hamilton Cycles An alternating-cycle. A cycle which includes every point of a graph G is called a Hamilton cycle of G. 1. Draw the complete graph K5. Find one Hamilton cycle in K5. 2. Does every complete graph have a Hamilton cycle? Explain. 3

Larson, Craig E.

450

PCM energy storage during defective thermal cycling:.  

E-Print Network (OSTI)

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named “the… (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

451

Life Cycle Assessment of Biomass Conversion Pathways.  

E-Print Network (OSTI)

??This study has investigated the life cycle of three biomass feedstocks including forest residue, agricultural residue, and whole forest for biohydrogen and biopower production in… (more)

Kabir, Md R

2012-01-01T23:59:59.000Z

452

Variable pressure power cycle and control system  

DOE Patents (OSTI)

A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

Goldsberry, Fred L. (Spring, TX)

1984-11-27T23:59:59.000Z

453

Tropical Cloud Life Cycle and Overlap Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Cloud Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National...

454

Splitting the Cycle the Right Way  

Energy.gov (U.S. Department of Energy (DOE))

The unique opposed-cylinder configuration of the TourEngine allows superior thermal management and efficient gas transfer compared to other split-cycle designs.

455

Fuel Cycle Research and Development Program  

Office of Environmental Management (EM)

29, 2009 Fuel Cycle Research and Development DM 195665 5 Identify the governing phenomenology Identify the governing phenomenology Develop a first-principle based model of the...

456

UEC MSP OPSYE, Technologie des centrales nuclaires Projets d'Approfondissement Autonome  

E-Print Network (OSTI)

http://florent.ravelet.free.fr/uec.html Liens utiles : http://organic-rankine-cycle.blogspot.fr http sera divis� en deux �quipes mises en concurrence. Les cycles � r�aliser sont du type cycle de Hirn-Rankine, circuit hydraulique...). La moiti� du groupe (TSx1) travaillera sur un cycle utilisant l'eau, l

Ravelet, Florent

457

Dynamic power systems for power generation  

SciTech Connect

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

458

The influence of lateral foot displacement on cycling efficiency and maximal cycling power.  

E-Print Network (OSTI)

??HARPER, SARA A., M.S., May 2014Exercise PhysiologyTHE INFLUENCE OF LATERAL PEDAL DISPLACEMENT ON CYCLING EFFICIENCY AND MAXIMAL CYCLING POWER (27 pp.)Director of Thesis: John McDaniel,… (more)

Harper, Sara Anne

2014-01-01T23:59:59.000Z

459

S and H Cycle Engine  

SciTech Connect

Our thirst for energy is increasing at an astounding rate. World population growth is estimated to increase by 40% (to 8.5 billion) by 2050, with annual electrical energy usage estimated increase by 100% (to 25 terawatt-hours). We must find new means and fuels as well as significantly improve the efficiency of current power plants to accommodate this growing electrical energy demand. This demand is also growing in the field of space flight. Present energy and propulsion systems are limited in the amount of power (energy) that can be generated by today's technology. This limits the distance that can be safely traveled by manned and un-manned space systems. Space flight is primarily governed by two factors: time and energy. Increasing energy of space propulsion systems will decrease flight time or allow reaching farther out into space safely for manned exploration of our solar system. For example, a round trip manned mission to Mars would take about 400 days with a NERVA type thermal nuclear rocket. To reduce the 400 days to 80 days would require an increase of energy by a factor of five. We need to develop space propulsion systems with much greater energy capability than we have today to satisfy the expansion of space exploration. The S and H Cycle nuclear engine provides a revolutionary technological approach that can contribute significantly toward solving the World electrical energy and the space travel energy requirements. (authors)

Strobl, William C. [2906 Via Pepita, Carlsbad, Ca. 92009 (United States); Holland, Joe P. [10671 Jasper Ave., Redlands, Ca. 92374 (United States)

2002-07-01T23:59:59.000Z

460

MHD Integrated Topping Cycle Project  

SciTech Connect

This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

Not Available

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann,1  

E-Print Network (OSTI)

Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann,1 Y. Li,1 C. N. Arge,2-heliolatitude solar wind over approximately the last three solar cycles. Related key parameters like interplanetary explain solar magnetic field control of long-term interplanetary variations. In particular, the enduring

California at Berkeley, University of

462

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

463

PARAMETRIC CYCLE ANALYSIS FOR PULSE DETONATION ENGINES  

E-Print Network (OSTI)

PARAMETRIC CYCLE ANALYSIS FOR PULSE DETONATION ENGINES by HAIDER HEKIRI Presented to the Faculty, in particular, pulse detonation engines. Dr. Wilson taught me the basics of propulsion and made me enjoy #12;iii ABSTRACT PARAMETRIC CYCLE ANALYSIS FOR PULSE DETONATION ENGINES Publication No. ______ Haider

Texas at Arlington, University of

464

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network (OSTI)

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

465

mathematics Study program cycle and type  

E-Print Network (OSTI)

mathematics academic study programmm 11 #12;12 #12;· Study program cycle and type: First cycle academic study program. · AAnnttiicciippaatteedd aaccaaddeemmiicc ttiittllee:: Bachelor in Mathematics ggooaallss:: The principal goal of the academic study program in Mathematics is to qualify its graduates

Â?umer, Slobodan

466

Physics challenges for advanced fuel cycle assessment  

SciTech Connect

Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

2014-06-01T23:59:59.000Z

467

Life Cycle Assessment: Past, Present, and Future  

Science Journals Connector (OSTI)

Life cycle assessment (LCA) can develop into life cycle sustainability assessment (LCSA), which is a transdisciplinary integration framework of models rather than a model in itself. ... As the environmental burden from agriculture, and especially from livestock breeding, is known to be quite important, such an analysis was interesting for policy purposes. ...

Jeroen B. Guinée; Reinout Heijungs; Gjalt Huppes; Alessandra Zamagni; Paolo Masoni; Roberto Buonamici; Tomas Ekvall; Tomas Rydberg

2010-09-02T23:59:59.000Z

468

Fish are crucial in oceanic carbon cycle  

Science Journals Connector (OSTI)

... Fish may play a more important role in the marine carbon cycle than previously thought, ... marine carbon cycle than previously thought, a new study shows. Researchers have found that fish excrete prodigious amounts of a mineral, calcium carbonate, that had been thought to come ...

Roberta Kwok

2009-01-15T23:59:59.000Z

469

An automaton model for the cell cycle  

Science Journals Connector (OSTI)

...the cell cycle phases. Upon completion of the M phase, the cell...appendix A.2). -Upon completion of the M phase, the cell...growth fraction, labeling index, duration of S phase, and...the cell cycle phases. Upon completion of the M phase, the cell...

2011-01-01T23:59:59.000Z

470

Property:FuturePlans | Open Energy Information  

Open Energy Info (EERE)

FuturePlans FuturePlans Jump to: navigation, search Property Name FuturePlans Property Type Text Subproperties This property has the following 3 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Pages using the property "FuturePlans" Showing 3 pages using this property. B Beowawe Hot Springs Geothermal Area + With the award of the $2 million USDOE ARRA grant and the industry match of $4 million, the 1.5 MW binary bottoming-cycle plant is on-line. Once the plant is fully operational it will provide nonproprietary data to the National Geothermal Data System (NGDS) and the Department of Energy Geothermal Technologies Program (DOE GTP) for a minimum of two years. C Chena Geothermal Area + In 2011, Chena Hot Springs was awarded a $900,000 grant from the Fairbanks North Star Borough (FNSB) for the development to help locate and develop high-temperature resources in the Borough. The total cost of the project that is not covered by the grant is $1.25 Million. (Frey, 2011) In the mid 2000's geochemical research indicated that there may be resources in the 200°F range. fP If such resources do exist, the plan will be to expand the capacity of Chena Power. This would allow for the expansion of the resort, and the potential to finally tie Chena into the local power grid. Tying into the grid would provide clean energy to Golden Valley Electric Association and FNSB residents. Chena currently has the required equipment for a 250 kW addition when additional heat is able to be recovered. (Frey, 2011) To help gain public support for geothermal power that utilizes low temperature resources, Chena Power has built a mobile 0.28 MW ORC (organic rankine cycle) system. Chena built the mobile ORC system with the help of United Technologies (UTC) to be an entirely mobile and self contained unit by mounting the ORC system on two 45 foot step deck trailers. The two trailers are placed side by side when operational. Chena Power is currently continuing to deploy the mobile unit state to state to extract energy from the waste water that is rejected from an oil well.

471

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

472

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

473

NPP and the Global Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

the Global Carbon Cycle the Global Carbon Cycle Introduction Photosynthetic carbon fixation comprises a major component of the global carbon cycle. Data on net primary productivity (NPP) may be sparse, but a consistent NPP data set may be used to calibrate, parameterize and evaluate models of terrestrial carbon cycling, as well as for validation of remote sensing data and other applications (identifying trends, investigating biogeochemical processes, etc.). It is also useful to place such data within the context of carbon cycling and carbon storage worldwide. For example: How much carbon exists in the biosphere, and where exactly is it stored? How much is in fossil fuels (coal, oil, gas), and how large are current fossil-fuel emissions? How much is in living biomass (plants/ animals/ humans)?

474

Nuclear Fuel Cycle Integrated System Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

475

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect

The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

2010-11-01T23:59:59.000Z

476

Utilisation of deep geothermal energy for heating purposes  

Science Journals Connector (OSTI)

The Hot-Dry-Rock-(HDR) technology allows a location-independent utilisation of geothermal heat, because aquifers in deep formations, i.e. layers filled with water, are not necessary. The flow paths for the circulating water in a depth of 4 km are created by hydraulic fracturing of existing gaps. Due to the fact that this new technology is quite cost-intensive, high annual load duration of the energy system above the surface is needed for an economic operation. Therefore, a process of electricity production by using low temperature steam (Organic-Rankine-Cycle (ORC) or Kalina-Cycle) or a plant for the supply of thermal heat and hot water could be installed. Under reference conditions the average geothermal heat output amounts to approx. 7 MW and the investment costs are nearly 30 million EUR. At present, a feasibility study is accomplished to verify the technical and economic feasibility as well as the standards and chances of this technology. This study is financed by the federal state of North Rhine-Westphalia and the European Union.

Thomas Kattenstein; Hermann-Josef Wagner

2005-01-01T23:59:59.000Z

477

Pipeline bottoming cycle study. Final report  

SciTech Connect

The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

Not Available

1980-06-01T23:59:59.000Z

478

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

479

UT Arlington Rankin Society Membership Roster  

E-Print Network (OSTI)

Fairchild Aaron L. Farmer Shelly Frank William Frey David H. Gaines Robert Gamble Paul Geisel Randy and Beth Gideon Michael Gingrich John and Judy Goolsby Danny Griffin Mary Groner Sue Harl Ralph and Susan Hawkins. Wesson John and Darlene Wier Dale* and Cindy Will Stephen D. Willey Gretchen N. Williams David F. Wolf

Huang, Haiying

480

Thermodynamic analysis of adsorption refrigeration cycles  

SciTech Connect

High- and mid-temperature waste heat can be recovered by using existing heat pump technologies. However, heat utilization near environmental temperatures still faces technical hurdles. Silica gel-water adsorption cycles have a distinct advantage over other systems in their ability to be driven by near-ambient temperature heat. Waste heat (above 60 C) can be exploited by using conventional silica gel-water adsorption chiller. The advanced silica gel-water adsorption chiller can operate effectively by utilizing low-grade waste heat ({approximately}50 C) as the driving source with a cooling source of 30 C. In this paper, the effect of operating temperatures on cycle performance is discussed from the thermodynamic viewpoint. The temperature effectiveness and the entropy generation number on cycle time are analyzed. For a comparatively short cycle time, adsorber/desorber heat exchanger temperature effectiveness reaches up to 92% after only 200 sec. The entropy generation number N{sub s} is defined by the ratio between irreversibility generated during a cycle and availability of the heat transfer fluid. The result showed that for the advanced adsorption cycle the entropy generation number N{sub s} is smaller for hot water temperature between 45 to 55 C with a cooling source of 30 C, while for the conventional cycle N{sub s} is smaller for hot water temperature between 65 to 75 C /with the same cooling source temperature.

Saha, B.B.; Akisawa, Atsushi; Kashiwagi, Takao [Tokyo Univ. of Agriculture and Technology, Koganei, Tokyo (Japan)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rankine cycle orc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Triple-effect absorption chiller cycle: A step beyond double-effect cycles  

SciTech Connect

Many advanced'' absorption cycles have been proposed during the current century. Of the hundreds of absorption cycles which have been patented throughout the world, all commercially manufactured products for air conditioning buildings have been variations of just two basic absorption cycles: single-effect and condenser-coupled double-effect cycles. The relatively low cooling coefficients of performance (COPs) inherent in single-effect and double-effect cycles limits the economic applicability of absorption air conditioners (chillers) in the United States. A triple-effect absorption chiller cycle is discussed. This cycle uses two condensers and two absorbers to achieve the triple effect.'' Depending on the absorption fluids selected, this triple-effect cycle is predicted to improve cooling COPs by 18% to 60% compared with the equivalent double-effect cycle. This performance improvement is obtained without increasing the total amount of heat-transfer surface area needed for the heat exchangers. A comparison between the calculated performances of a double-effect cycle and a triple-effect cycle (both using ammonia-water (NH{sub 3}/H{sub 2}O) as the absorption fluid pair) is presented. The triple-effect cycle is predicted to have an 18% higher cooling COP (1.41 compared with 1.2 for a double-effect), lower pressure (47.70 atm (701 psi) instead of 68.05 atm (1000 psi)), significantly reduced pumping power (less than one-half that of the double-effect cycle), and potentially lower construction cost (33% less total heat exchange needed). Practical implications for this triple-effect cycle are discussed. 16 refs., 5 figs., 1 tab.

DeVault, R.C.

1990-01-01T23:59:59.000Z

482

EVOLVING LEG CYCLES TO PRODUCE HEXAPOD GAITS GARY B. PARKER  

E-Print Network (OSTI)

movement by the servos. The best means of combining these leg cycles into a gait cycle is learnedEVOLVING LEG CYCLES TO PRODUCE HEXAPOD GAITS GARY B. PARKER Computer Science, Connecticut College by dividing the prob- lem into two parts: leg cycle learning and gait cycle learning. Servo pulses required

Parker, Gary B.

483

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

484

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

485

NREL: Energy Analysis: Life Cycle Assessment Harmonization  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment Harmonization Life Cycle Assessment Harmonization Life cycle assessment (LCA) harmonization helps lenders, utility executives, and lawmakers get the best, most precise information on greenhouse gas emissions from various sources of energy. LCA has been used to estimate and compare GHG emissions from utility-scale power systems for three decades, often with considerable variability in results. Harmonization provides more exact estimates of greenhouse-gas emissions for renewable and conventional electricity generation technologies, clarifying inconsistent and conflicting estimates in the published literature and reducing uncertainty. Highlights of Recent Studies Chart that compares published and harmonized lifecycle greenhouse gas emissions. For help reading this chart, please contact the webmaster.

486

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

with conventional steam turbine powered electric generation.used to boil water for steam turbine generation as a secondturbine) and Rankine (steam turbine) cycles, as illustrated

Apps, J.A.

2006-01-01T23:59:59.000Z

487

Microsoft Word - TEV-693 Rev 1.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

standard economic evaluation methods. The economics were evaluated for the HTSE process combined with a single 600 MWt HTGR with a Rankine steam power cycle. Future work will...

488

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

489

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade...

490

Proceedings of the 12th Sede Boker Symposium on Solar Electricity Production 3 February 23-24, 2004  

E-Print Network (OSTI)

Electricity Production February 23-24, 2004 2. Solar operated organic Rankine cycle units for 0.2 to 10 MWe

Prigozhin, Leonid

491

Fuel Cell Power SystemFuel Cell Power System May 21, 2003  

E-Print Network (OSTI)

/ Commercial / Industrial Transportation Fleet Vehicles Automotive Fuel Cell Microturbine Organic Rankine Cycle · Technical Goals and Objectives · Organization and Team Structure · Background and Program Overview

492

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine.  

E-Print Network (OSTI)

??This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study… (more)

Duong, Tai Anh

2011-01-01T23:59:59.000Z

493

Painting by numbersPrinting paintings in 3D Timo de Rijk  

E-Print Network (OSTI)

Delft #12;2 Nuna7 wins again 16 Less heat loss thanks to Organic Rankine Cycle 3D reproduction of paintings

Lindken, Ralph

494

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

495

Heat Transfer in GE Jet Engines | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

LEDs, avionics, Rankine cycles, geothermal energy, concentrated solar power, compressed air energy storage, natural gas vehicles, healthcare equipment, biomass generators, fuel...

496

Nuclear Fuel Cycle | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

497

Life Cycle Inventory Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Research Projects » Life Cycle Inventory Commercial Buildings » Research Projects » Life Cycle Inventory Database Life Cycle Inventory Database The U.S. Life Cycle Inventory (LCI) Database serves as a central repository for information about the total energy and resource impacts of developing and using various commercial building materials, components, and assemblies. The database helps manufacturers, building designers, and developers select energy-efficient and environmentally friendly materials, products, and processes for their projects based on the environmental impact of an item over its entire lifespan. The U.S. Department of Energy and the National Renewable Energy Laboratory (NREL) developed the database in 2003 with input from a variety of partners. NREL maintains and updates the database with support from the

498

Obligations Notification Cycle and New Obligations Presentation  

National Nuclear Security Administration (NNSA)

Obligations Notification Cycle and Obligations Notification Cycle and Obligations Notification Cycle and Obligations Notification Cycle and New Obligations New Obligations Bill Benton, DOE/SO-62 Pat Tana, NRC/NSIR Michelle Romano, NAC/NMMSS Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop January 13, 2004 January 13, 2004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, Georgia Atlanta, Georgia Notifications Notifications * There are issues! - Timeliness - Information (or lack thereof) - Other? * DOE Facilities - Bill Benton, 301-903-1150, Bill.Benton@hq.doe.gov * NRC Facilities - Pat Tana, 301-415-8105, pmt@nrc.gov * DOE/SO-62, NRC to request meeting of Government representatives involved. * DOE/SO-62, NRC to solicit concrete case studies to

499

Life Cycle Assessment of a Wind Farm  

Science Journals Connector (OSTI)

In the next step of the LCA, specific energy expenditures and produced emissions were linked to the inventory analysis result. The database of the Swiss Center for Life Cycle Inventories Ecoinvent lists over 4,00...

Hermann-Josef Wagner; Jyotirmay Mathur

2013-01-01T23:59:59.000Z

500

Development Cycle Time Simulation For Civil Aircraft  

Science Journals Connector (OSTI)

Cycle Time Reduction (CTR) will be one of the major factors affecting the future of the civil aerospace industry. This focus is the end reflection of the level of competition in the commercial large carrier aircraft industry. Aircraft manufacturer must ...

Spitz William; Golaszewski Richard; Berardino Frank; Johnson Jesse

2001-01-01T23:59:59.000Z