Sample records for rankine cycle diesel

  1. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01T23:59:59.000Z

    Process Program for Geothermal Power Plant Cycles,'*for a Rankine Cycle Geothermal Power Plant," Proceedings,Design and Optimize Geothermal Power Cycles," presented at

  2. Rankine cycle system and method

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09T23:59:59.000Z

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  3. Evaluation of Brayton and Rankine alternatives for diesel waste heat exploitation

    SciTech Connect (OSTI)

    Woodward, J.B. (Univ. of Michigan, Ann Arbor, MI (United States). Naval Architecture and Marine Engineering)

    1994-01-01T23:59:59.000Z

    A diesel engine may produce exhaust-gas thermal energy in excess of that needed for turbocharging. Alternatives for exploitation of the energy by producing work may be direct expansion through a gas turbine (completing a Brayton cycle that begins with the engine's compression and combustion), or transfer of heat into a Rankine cycle. It is demonstrated that either alternative may have a domain in which it is superior in work done, or in exhaust volume per unit mass of diesel exhaust. Computation models are developed and demonstrated for finding the boundaries along which the Rankine and Brayton alternatives have equal merit in either work or exhaust volume.

  4. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  5. Industrial Heat Recovery with Organic Rankine Cycles

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

    1982-01-01T23:59:59.000Z

    Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

  6. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12T23:59:59.000Z

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  7. Cascaded organic rankine cycles for waste heat utilization

    DOE Patents [OSTI]

    Radcliff, Thomas D. (Vernon, CT); Biederman, Bruce P. (West Hartford, CT); Brasz, Joost J. (Fayetteville, NY)

    2011-05-17T23:59:59.000Z

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  8. Organic rankine cycle waste heat applications

    DOE Patents [OSTI]

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13T23:59:59.000Z

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  9. Rankine bottoming cycle safety analysis. Final report

    SciTech Connect (OSTI)

    Lewandowski, G.A.

    1980-02-01T23:59:59.000Z

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  10. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on...

  11. Rankine and Brayton Cycle Cogeneration for Glass Melting

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Sheth, P. R.

    1981-01-01T23:59:59.000Z

    Comparisons are made of the performance and installation costs of Rankine and Brayton power cycles when applied to waste heat recovery from a 350 ton/day container glass furnace. The power cycles investigation included: a) a conventional steam...

  12. Selection of Working Fluids for the Organic Rankine Cycle

    E-Print Network [OSTI]

    West, H. H.; Patton, J. M.; Starling, K. E.

    1979-01-01T23:59:59.000Z

    SELECTION OF WORKING FLUIDS FOR THE ORGANIC RANKINE CYCLE H. H. West J. M. Patton Energy Analysts, Inc. Engineering Design Group Houston, Texas Tulsa, Oklahoma K. E. Starling The University of Oklahoma Norman, Oklahoma ABSTRACT...

  13. Power Generation From Waste Heat Using Organic Rankine Cycle Systems

    E-Print Network [OSTI]

    Prasad, A.

    1980-01-01T23:59:59.000Z

    Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

  14. Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant

    E-Print Network [OSTI]

    DiGenova, Kevin (Kevin J.)

    2011-01-01T23:59:59.000Z

    Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

  15. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15T23:59:59.000Z

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  16. Organic rankine cycle system for use with a reciprocating engine

    DOE Patents [OSTI]

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17T23:59:59.000Z

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  17. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L. (Walnut Creek, CA); Pines, Howard S. (El Cerrito, CA); Doyle, Padraic A. (Oakland, CA); Silvester, Lenard F. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  18. The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat

    E-Print Network [OSTI]

    Sawyer, R. H.; Ichikawa, S.

    1980-01-01T23:59:59.000Z

    in a Rankine Cycle to extract The theoretical Rankine Cycle efficiency (~R) is energy from low temperature waste heat. By 1968, a defined as: 3.8 megawatt unit using R-11 refrigerant was placed in commercial operation in Japan (2) and currently ?ZR.... Figure 2 compares the theo The basic Organic Rankine Cycle may be described retical Rankine efficiency for several hydrocarbons, using the Pressure-Enthalpy Diagram of a typical fluorocarbons and water within the evaporating working fluid (R-11). (See...

  19. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01T23:59:59.000Z

    of Electricity from Geothermal Energy," Brown University,Simulation of Geothermal Energy Cycles), LBL publication-Manager), Economics "Geothermal Energy Conversion and Case

  20. Energy recovery system using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C

    2013-10-01T23:59:59.000Z

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  1. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  2. Waste Heat Recovery by Organic Fluid Rankine Cycle

    E-Print Network [OSTI]

    Verneau, A.

    1979-01-01T23:59:59.000Z

    Ntry Temperature T 3 -t. cond?'lsotion L.-S Uql.id ctITlpressiCTI 6-7 htating in IiqJid state 7-1 boiling 2OO'C\\ ?-_...,( With fluids whose expansion is ending far from the saturation curve, to obtain good efficiency neces sitates the use of an exchanger-recuperator... been investigated for use in RANKINE Cycles, Many parameters must be ta ken into account in addition to the shape of the saturation curve just mentioned, Included are - chemical stability over the entire operating range. It depends not only...

  3. Development of a Direct Evaporator for the Organic Rankine Cycle

    SciTech Connect (OSTI)

    Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

    2011-02-01T23:59:59.000Z

    This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

  4. Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs

    E-Print Network [OSTI]

    Rohrer, J. W.; Bronicki, L. Y.

    1980-01-01T23:59:59.000Z

    Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

  5. The Design of an Open Rankine-Cycle Industrial Heat Pump

    E-Print Network [OSTI]

    Leibowitz, H. M.; Chaudoir, D. W.

    1981-01-01T23:59:59.000Z

    An open Rankine-cycle heat pump is ideally suited for producing low-pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility...

  6. Thermodynamische Auslegung und transiente Simulation eines überkritischen Organic Rankine Cycles für einen leistungsoptimierten Betrieb (KIT Scientific Reports ; 7674).

    E-Print Network [OSTI]

    Vetter, Christian

    2014-01-01T23:59:59.000Z

    ??Niedertemperaturwärme im Bereich von 100 °C - 200 °C kann mittels Organic Rankine Cycles (ORC) zur Stromproduktion genutzt werden. Zur Untersuchung von Optimierungsmöglichkeiten bei ORC-Prozessen… (more)

  7. Application and Operation of a 2-MW Organic Rankine Cycle System on a Refinery FCC Unit

    E-Print Network [OSTI]

    Drake, R. L.

    The nation's largest organic Rankine cycle (ORC) waste heat recovery system was started up in July 1984 at a West Coast oil refinery. The system includes two hermetically sealed turbine-generator units, each rated at 1070 kW. Each turbine...

  8. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOE Patents [OSTI]

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23T23:59:59.000Z

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  9. Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator

    SciTech Connect (OSTI)

    Pernecker, Gerhard; Ruhland, Johannes

    1996-01-24T23:59:59.000Z

    The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

  10. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle

    SciTech Connect (OSTI)

    Fuller, Robert L.

    2005-04-20T23:59:59.000Z

    The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

  11. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect (OSTI)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01T23:59:59.000Z

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  12. Dynamic modeling and control strategies for a micro-CSP plant with thermal storage powered by the Organic Rankine cycle

    E-Print Network [OSTI]

    Ireland, Melissa Kara

    2014-01-01T23:59:59.000Z

    Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage can ...

  13. Reduced gravity Rankine cycle system design and optimization study with passive vortex phase separation

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2008-10-10T23:59:59.000Z

    REDUCED GRAVITY RANKINE CYCLE SYSTEM DESIGN AND OPTIMIZATION STUDY WITH PASSIVE VORTEX PHASE SEPARATION A Thesis by KEVIN ROBERT SUPAK Submitted to the Office of Graduate Studies of Texas A&M University... SEPARATION A Thesis by KEVIN ROBERT SUPAK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Frederick...

  14. The Carnot efficiencybetween these temperatures is: This provides an absolute upper limit to the Rankine cycle effi-

    E-Print Network [OSTI]

    Liu, Y. A.

    to the Rankine cycle effi- ciency. Heat Absorbed from Stream 3 Power Produced by Steam Turbine Required Power a steam cycle alongsidethe gas turbine cycle. LITERATURE CITED Christodoulou,K., Diploma Thesis, N Output of Gas Turbine For the Gas Turbine Cycle Calculated for Case 2, Upper Exhaust Temperature T6

  15. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

  16. Organic fluids in a supercritical Rankine cycle for low temperature power generation

    SciTech Connect (OSTI)

    Vidhi, Rachana [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Sabau, Adrian S [ORNL

    2013-01-01T23:59:59.000Z

    This paper presents a performance analysis of a supercritical organic Rankine cycle (SORC) with various working fluids with thermal energy provided from a geothermal energy source. In the present study, a number of pure fluids (R23, R32, R125, R143a, R134a, R218, and R170) are analyzed to identify the most suitable fluids for different operating conditions. The source temperature is varied between 125 C and 200 C, to study its effect on the efficiency of the cycle for fixed and variable pressure ratios. The energy and exergy efficiencies for each working fluid are obtained and the optimum fluid is selected. It is found that thermal efficiencies as high as 21% can be obtained with 200 C source temperature and 10 C cooling water temperature considered in this study. For medium source temperatures (125 150 C), thermal efficiencies higher than 12% are obtained.

  17. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  18. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOE Patents [OSTI]

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01T23:59:59.000Z

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  19. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  20. Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle

    SciTech Connect (OSTI)

    Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

    2009-07-01T23:59:59.000Z

    Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

  1. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  2. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24,...

  3. Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design

    SciTech Connect (OSTI)

    Sulfredge, CD

    2006-01-27T23:59:59.000Z

    To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

  4. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010

  5. Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

  6. Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rankine systems for automotive applications apply the same principle used worldwide in industry is then cooled by a condenser which transfers heat to an external cold sink. Most Rankine systems are designed to produce elec- tricity via a generator connected to the auxiliary network and/or an energy storage system

  7. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen; Jalal Zia

    2013-09-01T23:59:59.000Z

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

  8. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    Motorcycles, Diesel Automobiles, School  Buses, Electric for Motorcycles, Diesel Automobiles, School Buses, Electric Life?cycle Model of an Automobile.  Environmental Science & 

  9. Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines

    SciTech Connect (OSTI)

    Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

    1989-01-01T23:59:59.000Z

    This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

  10. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  11. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect (OSTI)

    Yoder, JR.G.L.

    2006-03-08T23:59:59.000Z

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  12. Modeling, design and analysis of micro-scale Rankine-based systems

    E-Print Network [OSTI]

    Cui, Ling, 1978-

    2004-01-01T23:59:59.000Z

    This thesis presents the modeling and design of two major types of micro Rankine-cycle-based machines: a single-Rankine-based power system and a waste-heat-driven cooler. As part of the Massachusetts Institute of Technology ...

  13. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  14. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01T23:59:59.000Z

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  15. Diesel Cycle: Since we use a Closed System, the work and heat transfers are calculated from changes in internal energy u

    E-Print Network [OSTI]

    Diesel Cycle: Since we use a Closed System, the work and heat transfers are calculated from changes of Diesels (and therefore potential th) are likely to be much higher, because rather than worrying about pre-ignition, we are counting on self-ignition! 1 #12;On top of that, Diesel cycles have no throttling losses, so

  16. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11T23:59:59.000Z

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  17. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  18. Extended performance of alcohol fumigation in diesel engines through different multipoint alcohol injection timing cycles

    SciTech Connect (OSTI)

    Savage, L.D.; White, R.A.; Cole, S.; Pritchett, G.

    1986-01-01T23:59:59.000Z

    This paper reports on the results of using multipoint port injection alcohol fumigation of a four-cycle turbocharged diesel engine in which the fumigation injection cycle was varied. The three cycles, dual with one-half of the alcohol injection on each engine revolution, single with all of the alcohol injection during the open intake valve revolution, and single with all of the alcohol injected during the closed intake valve revolution, lead to significant differences in the engines pressure-volume history and alcohol energy replacement tolerance. The engine was fumigated with both industrial grade ethanol and methanol and complete performance and emissions data (excluding aldehydes) were measured at low, medium, and high values of BMEP and rpm.

  19. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01T23:59:59.000Z

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  20. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report

    SciTech Connect (OSTI)

    Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H.

    1998-05-01T23:59:59.000Z

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated. Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B1OO) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In the United States, initial interest in producing and using biodiesel has focused on the use of soybean oil as the primary feedstock mainly because the United States is the largest producer of soybean oil in the world. 170 figs., 148 tabs.

  1. Economics of Organic Rankine Cycle

    E-Print Network [OSTI]

    O'Brien, W. J.

    condensing if properly selected, and because of high molecular weight and low enthalpy drop in the expansion stage can use a single stage turbine operating at low rotational speeds to accomplish l\\JABINE HeAT SOURCE VAPORIZER PUMP Fig. 1 Simplified... 0 F approach temperature in vaporizer l5 0 F approach temperature in condenser 84% expander efficiency, 95% generator efficiency, 75% pump efficiency Maintenance at 2% of investment per year Freon losses at 5% of inventory/yr, $0.85/lb...

  2. High-pressure late cycle direct injection of natural gas in a rail medium speed diesel engine

    SciTech Connect (OSTI)

    Wakenell, J.F.; O'Neal, G.B.; Baker, Q.A.

    1987-01-01T23:59:59.000Z

    The performance of an Electro-Motive Division (EMD) 567B, two-cylinder locomotive research engine, when operated on high-pressure/late-cycle injection of natural gas, is presented in this paper. A redesign and fabrication of the fuel system was undertaken to facilitate the consumption of natural gas. A small percentage of No.2 diesel fuel (DF-2) was used to ignite the natural gas. Engine performance, while running natural gas, resulted in matching rated speed and power with slightly lower thermal efficiency. Full power was achieved with a ratio of 99 percent natural gas and 1 percent diesel fuel. However, at high natural gas to diesel fuel ratios, audible knock was detected. The primary objective of the project was to establish technical feasibility of, and basic technology for, operating medium-speed rail diesel engines on high-pressure natural gas. Secondary objectives were to attain adequate engine performance levels for rail application, develop a system oriented toward retrofit of in-service locomotives, and realize any potential improvements in thermal efficiency due to use of the high-pressure/late-cycle approach.

  3. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Results 6.1 Life-Cycle Assessment (LCA) . . . . . 6.1.1Analysis (LCEA) 4. Life-Cycle Assessment (LCA) 5. Exergetic

  4. Coal diesel combined-cycle project. Annual report, January 1996--January 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The Clean Coal Diesel project will demonstrate a new Clean Coal Technology that has technical, economic and environmental advantages over conventional power generating methods. This innovative technology enables utilization of coal-based fuel in large-bore, medium-speed, diesel engines. Modular power generating applications in the 10 to 100 megawatt size range are the target applications. The University of Alaska campus in Fairbanks, Alaska, is the project`s host site. At this location, the University will construct and operate the Clean Coal Diesel System, which will serve as a 6.2 MW diesel powerplant addition. The University will also assemble and operate a 5-ton per hour coal-water fuel processing plant. The plant will utilize local coal, brought by truck from Usibelli`s mine in Healey, AK. The estimated performance characteristics of the mature commercial embodiment of the Clean Coal Diesel, if achieved, will make this technology quite competitive: 48% efficiency; $1,300/kW installed cost; and emission levels controlled to 50--70% below New Source Performance Standards. Specific objectives are to demonstrate that the Coal Diesel Technology: is durable and can operate 6,000 hours in a realistic commercial setting; will meet efficiency targets; can effectively control criteria pollutants to levels that are well below anticipated standards, as well as reduce greenhouse gas emissions; and can accommodate substantial power demand swings.

  5. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  6. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    Inventories for Motorcycles, Diesel Automobiles, School Inventories for Motorcycles, Diesel Automobiles, School Inventories for Motorcycles, Diesel Automobiles, School 

  7. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

    2010-01-01T23:59:59.000Z

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  8. Problem 6-6: The ideal Rankine cycle uses saturated steam, so it can't be at 1000 o F, since the critical

    E-Print Network [OSTI]

    , and the thermodynamic cycle calculation for the steam is p1 = 1000 psia T1 = Tsat = 544:75 o F h1 = hg = 1192:4 BTU/lbm s1 = sg = 1:3903 BTU/lbm- o R s2 = s1 = 1:3903 BTU/lbm- o R p2 = 1 psia T2 = Tsat = 101:70 o F 2 = 1:3903 0:1327 1:8453 = 0:6815 = 68% h2 = 69:74 + 0:6815 1036:0 = 775:8 BTU/lbm w1!2 = 1192:4 775:8 = 416

  9. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03T23:59:59.000Z

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  10. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01T23:59:59.000Z

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  11. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01T23:59:59.000Z

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  12. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01T23:59:59.000Z

    Conversion and Case Studies," EPRI ER-301, Project 580,at Heber, California," EPRI ER-670, Project 580, prepared byProject Manager-EPRI), "Heber Geothermal Demonstration Power

  13. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31T23:59:59.000Z

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

  14. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect (OSTI)

    Mather, Daniel

    2000-08-20T23:59:59.000Z

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  15. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    captured  for  both  diesel  and  electric  vehicles.   The for the urban diesel bus,  the electric buses’ fraction of Motorcycles, Diesel Automobiles, School  Buses, Electric 

  16. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    Energy and Emissions Inventories for Motorcycles, Diesel Energy and Emissions Inventories for Motorcycles, Diesel Energy and Emissions Inventories for Motorcycles, Diesel 

  17. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

    2011-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  19. Renewable Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

  20. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01T23:59:59.000Z

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    organic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-power cycle driven by renewable energy sources," Energy,geothermal resources," Renewable Energy, vol. 37, pp. 364-

  2. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

  3. Code Snippets Justin A. Roman, Tanisha Rankin,

    E-Print Network [OSTI]

    Wolfgang, Paul

    Code Snippets Justin A. Roman, Tanisha Rankin, Grae Cullen, and Paul Wolfgang Fall Semester 2008 coding techniques. Professors will be allowed to assign pre-defined problems which will be listed will save, compile, run, and check the method. Pre-defined test cases will determine the validity

  4. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    bus,  the electric buses’ fraction of energy consumed was Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School  Buses, Electric Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric 

  5. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Optimization," in ASME International Joint Power Generationfor Solar Rankine Power Generation," ASME Journal of SolarBrayton-Cycle Solar Power Towers," ASME Journal of Solar

  6. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

  7. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    Emissions Inventories for Motorcycles, Diesel Automobiles, Chen, K.S. , et al. , 2003.  Motorcycle Emissions and Fuel On Road  Mopeds and Motorcycles.  Available online at 

  8. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-04briggs.pdf More Documents & Publications Development of a...

  9. Simulation of an Industrial Rankine Cycle Cogeneration Plant

    E-Print Network [OSTI]

    Carattie, G.; Wepfer, W. J.

    1984-01-01T23:59:59.000Z

    Sophisticated designs of thermal systems may be evaluated, quickly and inexpensively, with the support of computer based system simulation techniques; i.e. CAD for thermal systems. Furthermore, the response of a thermal system to predicted periodic...

  10. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Efficiency in Gasoline Powertrains Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Achieving High Efficiency at 2010 Emissions...

  11. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    SciTech Connect (OSTI)

    Bharathan, D.

    2011-03-01T23:59:59.000Z

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  12. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.Solar CompanyEngine |

  13. Rankine Cycle Working Fluids for CC-OTEC

    E-Print Network [OSTI]

    Jung et al., Seoul, Korea 8 R32/R290 Similar efficiency High pressure Smaller volume Good size 2 CC-OTEC plant Boiler, condenser, turbine Initial cost Size of the equipment Working fluids al., Seoul, Korea 6 Efficiency #12;Dongsoo Jung et al., Seoul, Korea 7 Equipment size #12;Dongsoo

  14. Modifications and Optimization of the Organic Rankine Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes fromBased|SEI Layer |of

  15. Modifications and Optimization of the Organic Rankine Cycle | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomacJulyModernizing the Grid

  16. Organic Rankine Cycles for the Petro-Chemical Industry

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    and economically convert this type of heat flow into useful power. The system under development by MTI is one based on a conventional fluorocarbon refrigerant to generate a nominal 1000 kW from typical liquid and vapor streams in the process plant. The 220 F...

  17. M. Bahrami ENSC 461 (S 11) Tutorial Rankine Cycle 1 ENSC 461 Tutorial, Week#10 -Rankine Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    1) How efficiently the energy stored in the coal can be converted into a heat input to the boilerJ/kg. Assuming that 75 percent of this energy is transferred to the steam in the boiler and that the electric generator has an efficiency of 96 percent, determine: a) the overall plant efficiency (the ratio of net

  18. Driving Down Diesel Emissions

    E-Print Network [OSTI]

    Harley, Robert

    2013-01-01T23:59:59.000Z

    is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

  19. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28T23:59:59.000Z

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  20. Cleaning Up Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

  1. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

  2. Dynamic response of Earth's magnetosphere to By reversals K. Kabin, R. Rankin, and R. Marchand

    E-Print Network [OSTI]

    Michigan, University of

    Dynamic response of Earth's magnetosphere to By reversals K. Kabin, R. Rankin, and R. Marchand Citation: Kabin, K., R. Rankin, R. Marchand, T. I. Gombosi, C. R. Clauer, A. J. Ridley, V. O. Papitashvili

  3. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

  4. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19T23:59:59.000Z

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  5. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

  6. Name of Lecture Intensive Thermal Engineering

    E-Print Network [OSTI]

    gas, Carnot cycle 2. Available energy (Exergy) 3. Gas power cycles (Otto cycle, Diesel cycle, Gas turbine, etc.) 4. Vapor power cycles (Rankin cycle, Heat pump) 5. Basic concepts of heat transfer

  7. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    Adsorber Regeneration Issues Effective NOx regeneration difficult below 300C with in-pipe diesel injection Post cycle in-cylinder injection can generate more reactive reductants...

  8. DIESEL FUEL TANK FOUNDATIONS

    SciTech Connect (OSTI)

    M. Gomez

    1995-01-18T23:59:59.000Z

    The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

  9. Rankin County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaftRamsey,Rangely, Colorado: EnergyRankin

  10. E-Print Network 3.0 - advanced potassium rankine Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steam directly to the turbine; for this example, the pressure chosen matches the subcritical Rankine Source: Australian National University, Department of Engineering,...

  11. Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera psosera to the Diesel programming language, entitled Join Diesel. We describe the design decisions and trade-offs made in integrating these concurrency primitives into the Diesel language. We also give a typechecking algorithm

  12. Diesel-engine fumigation with aqueous ethanol

    SciTech Connect (OSTI)

    McLaughlin, S.L.; Stephenson, K.Q.

    1981-01-01T23:59:59.000Z

    A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

  13. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

  14. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

    1998-01-01T23:59:59.000Z

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  15. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05T23:59:59.000Z

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  16. Diesel prices slightly increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDieselDiesel

  17. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03T23:59:59.000Z

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  18. Diesel particles -a health hazard 1 Diesel particles

    E-Print Network [OSTI]

    Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

  19. Rankine-Hugoniot Relations in Relativistic Combustion Waves

    E-Print Network [OSTI]

    Gao, Yang

    2012-01-01T23:59:59.000Z

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highlyrelativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves are also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index \\Gamma < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevanc...

  20. Diesel prices decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDieselDiesel

  1. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18T23:59:59.000Z

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  2. EPA Diesel Update

    Broader source: Energy.gov (indexed) [DOE]

    for US Introduction of Tier 2 Diesels - Dr. Gerhard Schmidt, VP Research and Advanced Engineering Ford, "Our target must be 50 state programs at LEV2Bin 5. ....the prognosis...

  3. Making premium diesel fuel

    SciTech Connect (OSTI)

    Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

    1997-02-01T23:59:59.000Z

    For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

  4. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

  5. CLEERS Activities: Diesel Soot Filter Characterization & NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

  6. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  7. DIESEL et CANCER Dominique Lafon

    E-Print Network [OSTI]

    Boyer, Edmond

    1/5 DIESEL et CANCER Dominique Lafon INERIS (*) De nombreuses questions se posent sur la toxicité des émissions des moteurs diesel. C'est un sujet qui a beaucoup préoccupé les scientifiques ces EMISSIONS DU DIESEL. Avant d'aborder la toxicité des émissions du diesel, un rappel de leur composition est

  8. Diesel prices decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel prices

  9. Diesel prices decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel

  10. Diesel prices decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices decrease

  11. Diesel prices decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices

  12. Diesel prices increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDieselDiesel

  13. Diesel prices slightly decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices

  14. Diesel prices slightly decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel

  15. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01T23:59:59.000Z

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  16. Diesel Engine Alternatives

    SciTech Connect (OSTI)

    Ryan, T

    2003-08-24T23:59:59.000Z

    There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

  17. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun [ORNL

    2012-01-01T23:59:59.000Z

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  18. Optimizing Low Temperature Diesel Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Particulate Filter Regenerations," SAE Paper 2007-01-3970, SAE Fall Powertrain and Fluids Systems Conference, Chicago, IL, Oct. 2007. * "Comprehensive Characterization of...

  19. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDieselDiesel

  20. APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS

    E-Print Network [OSTI]

    Leech, J.

    2010-01-01T23:59:59.000Z

    F. , jr. S. B. , S. M. Steam Turbines. Second Edition, Tenththe solar-assisted cycle. Steam turbines have been used forin Figure 5. Steam entering the turbine expends a portion of

  1. Towards model-based control of a steam Rankine process for engine waste heat recovery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

  2. Mobile DNA can drive lineage extinction in prokaryotic populations D. J. RANKIN* , M. BICHSEL* & A. WAGNER*

    E-Print Network [OSTI]

    Rankin, Daniel

    Mobile DNA can drive lineage extinction in prokaryotic populations D. J. RANKIN* , M. BICHSEL* & A of Bioinformatics, Quartier Sorge Ba^timent Ge´nopode, Lausanne, Switzerland Introduction Mobile genetic elements the individual or the population. Mobile genetic elements illustrate this principle well, because they can self

  3. Tailored Acicular Mullite Substrates for Multifunctional Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    "New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications," Proceedings of the 9th Diesel Engine Emissions Reduction Conference August 24-28, 2003,...

  4. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  5. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  6. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

  7. Advanced Diesel Engine and Aftertreatment Technology Development...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

  8. Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants

    E-Print Network [OSTI]

    Meacher, J. S.

    1981-01-01T23:59:59.000Z

    and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented...

  9. Optimized nuclear and solar dynamic organic Rankine cycles for Space Station applications

    E-Print Network [OSTI]

    Eubanks, Dana Len

    1988-01-01T23:59:59.000Z

    1988) Dana Len Eubanks, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Frederick R. Best In order to better characterize the growth power generation system of the Space Station, the National Aeronautics and Space Administration has re... and design the required nuclear, solar dynamic, and thermodynamic components. The solar and nuclear systems are optimized with respect to one of three variables: system mass, volume, or thermodynamic effi- ciency. Having optimized the two power options& a...

  10. Reduced gravity rankine cycle design and optimization with passive vortex phase separation

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2009-05-15T23:59:59.000Z

    . Potential drawbacks to the technology in a reduced gravity environment include two-phase fluid management processes such as liquid-vapor phase separation. The most critical location for phase separation is at the boiler exit where only vapor must be sent...

  11. Optimisation criteria of a Rankine steam cycle powered by thorium HTR / Steven Cronier van Niekerk.

    E-Print Network [OSTI]

    Van Niekerk, Steven Cronier

    2014-01-01T23:59:59.000Z

    ??HOLCIM has various cement production plants across India. These plants struggle to produce the projected amount of cement due to electricity shortages. Although coal is… (more)

  12. E-Print Network 3.0 - advanced rankine cycle Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two-tank molten... C. Figure 6. Temperature-entropy diagram for a reheat-regenerative subcritical ... Source: Australian National University, Department of Engineering, Solar...

  13. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.Solar CompanyEngine | Department

  14. Performance of an Organic Rankine Cycle Waste Heat Recovery System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance AuditPerformance of aLight

  15. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhen LifeDRAFT

  16. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGHBraytonMaterialsEnergySystems on

  17. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22T23:59:59.000Z

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  18. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01T23:59:59.000Z

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  19. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  20. diesel.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575Diesel

  1. Diesel prices decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices

  2. Diesel prices flat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel prices

  3. Diesel prices flat nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel

  4. Diesel prices increase nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel prices

  5. Diesel prices rise slightly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel

  6. A review of test results on parabolic dish solar thermal power modules with dish-mounted rankine engines and for production of process steam

    SciTech Connect (OSTI)

    Jaffe, L.D.

    1988-11-01T23:59:59.000Z

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  7. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Broader source: Energy.gov (indexed) [DOE]

    Update on Diesel Exhaust Emission Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction...

  8. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  9. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Broader source: Energy.gov (indexed) [DOE]

    Retrofit Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER)...

  10. Alloy Foam Diesel Emissions Control School Bus Implementation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alloy Foam Diesel Emissions Control School Bus Implementation Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel...

  11. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

  12. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  13. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01T23:59:59.000Z

    and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

  14. Measurements of Diesel Truck Traffic Associated with Goods Movement

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2007-01-01T23:59:59.000Z

    Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

  15. adicionado ao diesel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  16. automotive diesel exhaust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  17. adiabatic diesel engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  18. advanced diesel engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  19. adiabatic diesel engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  20. advanced diesel engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  1. An Accelerated Aging Method for Diesel Exhaust Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Diesel Aftertreatment Devices Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts...

  2. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

  3. Value Analysis of Alternative Diesel Particulate Filter (DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

  4. The 60% Efficient Diesel Engine: Probably, Possible, Or Just...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

  5. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

  6. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  7. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  8. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  9. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDieselDiesel

  10. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel pricesDiesel

  11. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDiesel prices

  12. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDiesel

  13. Diesel prices slightly decrease nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDiesel

  14. Modular symbols for reductive groups and p-adic Rankin-Selberg convolutions over number fields

    E-Print Network [OSTI]

    Januszewski, Fabian

    2009-01-01T23:59:59.000Z

    We give a construction of a wide class of modular symbols attached to reductive groups. As an application we construct a p-adic distribution interpolating the special values of the twisted Rankin-Selberg L-function attached to cuspidal automorphic representations of GL(n) and GL(n-1) over number fields. If the representations are ordinary at p, our distribution is bounded and gives rise to a p-adic L-function.

  15. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01T23:59:59.000Z

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  16. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

  19. Durability of Diesel Particulate Filters - Bench Studies on Cordierite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Development of Advanced Diesel Particulate Filtration (DPF) Systems fundamental...

  20. Quantum Thermodynamic Cycles and Quantum Heat Engines (II)

    E-Print Network [OSTI]

    H. T. Quan

    2009-03-09T23:59:59.000Z

    We study the quantum mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric process, such as quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in 1D box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum mechanical) foundation for Szilard-Zurek single molecule engine.

  1. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26T23:59:59.000Z

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  2. DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

  3. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  4. BMW Diesel - Engine Concepts for Efficient Dynamics

    Broader source: Energy.gov (indexed) [DOE]

    "24 Hours of Nrburgring" 2001 - 2nd Gen. Common Rail (1600 bar) 2004 - Variable Twin Turbo - Diesel Particulate Filter of 2nd Gen. 1999 - First V8 Diesel Sedan in Premium...

  5. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01T23:59:59.000Z

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  6. Ethanol fuel for diesel tractors

    SciTech Connect (OSTI)

    da Cruz, J.M.

    1981-01-01T23:59:59.000Z

    The use of ethanol fuel in turbocharged diesel tractors is considered. The investigation was performed to evaluate the conversion of a diesel tractor for dual-fueling with ethanol by attaching a carburetor to the inlet air system or with the use of an alcohol spray-injection kit. In this system the mixture of water and alcohol is injected into the air stream by means of pressure from the turbocharger. The carburetor was attached to a by-pass apparatus which allowed the engine to start and shut off on diesel alone. Approximately 46% of the energy for the turbocharged 65 kW diesel tractor could be supplied by carbureted ethanol, and about 30% by the spray-injection approach. Knock limited the extent of substitution of ethanol for diesel fuel. The dual-fueling with ethanol caused a slight increase in brake thermal efficiency. Exhaust temperatures were much lower for equivalent high torque levels. Maximum power was increased by 36% with the spray-injection approach and about 59% with carburetion.

  7. Center for Diesel Research Potential Efficiency Improvement

    E-Print Network [OSTI]

    Minnesota, University of

    Speed Histogram #12;Center for Diesel Research Results ­ Power Data Wasted power · Engine Hydraulic FanW Fan Power Histogram Fan Power Scatter Plot #12;Center for Diesel Research Results ­ Average AccessoryCenter for Diesel Research Potential Efficiency Improvement by Accessory Load Reduction on Hybrid

  8. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31T23:59:59.000Z

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDieselDiesel

  10. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continueDiesel

  11. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDiesel prices

  12. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDiesel

  13. Diesel prices continue to fall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel prices continue

  14. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel prices

  15. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel

  16. Diesel prices remain fairly stable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel pricesDiesel

  17. Diesel prices see slight drop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices see

  18. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01T23:59:59.000Z

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  19. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

    2008-01-01T23:59:59.000Z

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  20. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25T23:59:59.000Z

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

  1. Coal-fired diesel generator

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  2. POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES

    SciTech Connect (OSTI)

    Crane, D

    2003-08-24T23:59:59.000Z

    Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

  3. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  4. OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY

    SciTech Connect (OSTI)

    Fairbanks, John

    2001-08-05T23:59:59.000Z

    Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

  5. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    SciTech Connect (OSTI)

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09T23:59:59.000Z

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  6. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01T23:59:59.000Z

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  7. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

  8. Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

  9. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

  10. The California Demonstration Program for Control of PM from Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of PM from Diesel Backup Generators Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles...

  11. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

  12. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  13. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01T23:59:59.000Z

    T. A. , (2001). Diesel engines: environmental impact andof a heavy-duty diesel engine to improve deNOx performanceOn-road heavy-duty diesel engine exhaust particulate matter

  14. Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine

    E-Print Network [OSTI]

    Tompkins, Brandon T.

    2009-05-15T23:59:59.000Z

    EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T. TOMPKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T...

  15. Modeling of a second-generation solar-driven Rankine air conditioner. Final report

    SciTech Connect (OSTI)

    Denius, M.W.; Batton, W.D.

    1984-07-01T23:59:59.000Z

    Ten configurations of a second-generation (2G), solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented in this report. The generated data are also presented. Experimental work was done under this study to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  16. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01T23:59:59.000Z

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  17. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment

    SciTech Connect (OSTI)

    K. Stork; R. Poola

    1998-10-01T23:59:59.000Z

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

  18. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

  19. Indiana: Improving Diesel Engine Performance for Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  20. Multicylinder Diesel Engine Design for HCCI Operation

    Broader source: Energy.gov (indexed) [DOE]

    7 DEER Detroit August 12-16 Multicylinder Diesel Engine Design for HCCI operation William de Ojeda Phil Zoldak, Ral Espinoza, Raj Kumar, Chunyi Xia, Dan Cornelius International...

  1. SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES

    Broader source: Energy.gov (indexed) [DOE]

    SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES Thierry Leprince & Phil Roberts Extengine Transport Systems, LLC 1370 South Acacia Avenue Fullerton, CA - 92831 www.extengine.com...

  2. Electrochemical NOx Sensors for Monitoring Diesel Emissions

    Broader source: Energy.gov (indexed) [DOE]

    x Sensors for Monitoring Diesel Emissions This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract...

  3. Review of Diesel Emission Control Technology

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Emission Control Technology Tim Johnson August 2002 2 Outline * Introduction - Regulatory update and technology approaches * Ultrafines * Filters * NOx - LNC - SCR - LNT *...

  4. Review of Emerging Diesel Emissions and Control

    Broader source: Energy.gov (indexed) [DOE]

    Emerging Diesel Emissions and Control Tim Johnson DEER Conference Dearborn, MI August 4, 2009 2 Corning Incorporated Summary * Criteria pollutant regulatory efforts are focused on...

  5. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

  6. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  7. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

  8. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  9. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  10. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

  11. The California Demonstration Program for Control of PM from Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Research and Technology EPA's AP-42 Emission Factors - Small Diesel SMALL DIESEL (< 600 hp) Emission Factor Emission Factor Emission Factor Emission (lbhp-hr) (g...

  12. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration...

  13. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

  14. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

  15. Low Temperature Combustion and Diesel Emission Reduction Research...

    Broader source: Energy.gov (indexed) [DOE]

    Low Temperature Combustion and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24,...

  16. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  17. Simplification of Diesel Emission Control System Packaging Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

  18. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  19. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER...

  20. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given...

  1. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

  2. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

  3. Dilute Clean Diesel Combustion Achieves Low Emissions and High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

  4. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  5. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Energy Savers [EERE]

    Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

  6. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  7. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

  8. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

  9. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of...

  10. The California Demonstration Program for Control of PM from Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Backup Generators (BUGs) CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab...

  11. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Technology, Dr. S. Diamond ** Plasma Science and Fusion Center, MIT ***Sloan Automobile Laboratory, MIT Diesel Plasmatron Reformers * Enhanced conversion of diesel fuel...

  12. Modeling Combustion Control for High Power Diesel Mode Switching

    Broader source: Energy.gov (indexed) [DOE]

    and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching P-20 Motivation * High power LTC-diesel mode operation * Transient...

  13. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

  14. Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster...

  15. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond Green Diesel, LLC for Construction of the Diamond Green Diesel Facility in Norco, Louisiana April...

  16. Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    System (EAS) for On- Highway Diesel Engines Highway Diesel Engines Haoran Hu Eaton Corporation August 22, 2006 2004 Eaton Corporation. All rights reserved. Agenda...

  17. Diesel Soot Filter Characterization and Modeling for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Publications Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced...

  18. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

  19. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

  20. Update on Diesel Exhaust Emission Control Technology and Regulations

    Broader source: Energy.gov (indexed) [DOE]

    Control Technology and Regulations Tim Johnson August 2004 2 Diesel emission control technology is making significant progress * Diesel regulations are getting tighter in all...

  1. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

  2. Clean Diesel: The Progress, The Message, The Opportunity

    Broader source: Energy.gov (indexed) [DOE]

    and are selling... and here's what people here's what people are saying are saying Image, Story Courtesy of Diesel Progress Washington Policymakers Have Seen the New Diesel...

  3. Burning Modes and Oxidation Rates of Soot: Relevance to Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Presentation given...

  4. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  5. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01T23:59:59.000Z

    No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

  6. Local Soot Loading Distribution in Cordierite Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

  7. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

  8. AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer...

    Energy Savers [EERE]

    09 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports The Vehicle Technologies...

  9. Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24,...

  10. New Cordierite Diesel Particulate Filters for Catalyzed and Non...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

  11. CARB Verification of Catalyzed Diesel Particulate Filters for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

  12. 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

  13. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

  14. AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  15. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

  16. Combination of Diesel fuel system architectures and Ceria-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

  17. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

  18. Improvement and Simplification of Diesel Particulate Filter System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

  19. A New CFD Model for understanding and Managing Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFD Model for understanding and Managing Diesel Particulate Filter Regeneration A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration...

  20. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

  1. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

  2. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

  3. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01T23:59:59.000Z

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  4. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  5. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

  6. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  7. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

  8. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

  9. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

  10. Achieving High-Effiency Clean Ccombustion in Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    Achieving High-Efficiency Clean Combustion in Diesel Engines Robert M. Wagner, C. Scott Sluder, John M. Storey, Sam A. Lewis Oak Ridge National Laboratory Diesel Engine Emissions...

  11. Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

  12. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

  13. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

  14. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and Other Applications Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and...

  15. Hydrogen generation from plasmatron reformers and use for diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003...

  16. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Broader source: Energy.gov (indexed) [DOE]

    R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2,...

  17. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005...

  18. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Broader source: Energy.gov (indexed) [DOE]

    Multicylinder Diesel Engine for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low...

  19. Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Emissions and fuel economy data were...

  20. Technology Development for High Efficiency Clean Diesel Engines...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

  1. New Feedstocks and Replacement Fuel Diesel Engine Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Diesel Engine Challenges New Feedstocks and Replacement Fuel Diesel Engine Challenges Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

  2. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor...

  3. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05T23:59:59.000Z

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  4. ammonia-water trilateral rankine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems University of California eScholarship Repository Summary: combined cycle concept...

  5. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    SciTech Connect (OSTI)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01T23:59:59.000Z

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  6. Diesel Brewing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska:Dickinson County isDiesel

  7. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDiesel prices

  8. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDiesel

  9. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continue to

  10. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continue

  11. Diesel prices continue to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices

  12. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue to increase

  13. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue to

  14. Diesel prices continue to rise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue

  15. Renewable Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy Diesel Fuels: Status

  16. Sandia National Laboratories: Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BERPressure, Not ChemistryDiesel

  17. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartmentDepartment ofof

  18. Diesel Reforming for Solid Oxide Fuel Cell Application

    SciTech Connect (OSTI)

    Liu, D-J.; Sheen, S-H.; Krumpelt, M.

    2005-01-27T23:59:59.000Z

    This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

  19. Diesel Locomotive Fueling Problem (LFP) in Railroad Operations

    E-Print Network [OSTI]

    Murty, Katta G.

    Chapter 2 Diesel Locomotive Fueling Problem (LFP) in Railroad Operations Bodhibrata Nag Katta G their operating costs low. About 75% of transport by railroads in the world is based on diesel locomotives by diesel locomotives. One of the major compo- nents in the operating cost of diesel powered rail transport

  20. Robust Strategy for Intake Leakage Detection in Diesel Engines

    E-Print Network [OSTI]

    Boyer, Edmond

    Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

  1. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    SciTech Connect (OSTI)

    COROLLER, P; PLASSAT, G

    2003-08-24T23:59:59.000Z

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

  2. Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.

    E-Print Network [OSTI]

    Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean at their tachometers to be sure that they were running. You would not expect that of a diesel, however. Yet these are diesel engines. The world has been looking to gas/electric hybrids and fuel cells for future fuel

  3. Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.

    E-Print Network [OSTI]

    Rajendra Prasath B

    2013-01-01T23:59:59.000Z

    ??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

  4. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    McDonald JD: Inhaled diesel emissions alter atheroscleroticinduced by inhalation of diesel exhaust. AtherosclerosisA, Sandstrom T, Newby DE: Diesel exhaust inhalation causes

  5. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  6. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

  7. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004 Diesel...

  8. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect (OSTI)

    Arsalan Razani; Kwang J. Kim

    2001-12-01T23:59:59.000Z

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has increased due to the onset of Maranogni convection as well as the population of ''dropwise-like'' condensation increased. The results have been published in peer reviewed journals.

  9. Modeling, Estimation, and Control of Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Luong, David

    2013-01-01T23:59:59.000Z

    141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

  10. Calor de combustão de Blendas do tipo diesel/biodiesel e diesel/bio-óleo.

    E-Print Network [OSTI]

    Andrade, Rômulo Davi Albuquerque

    2009-01-01T23:59:59.000Z

    ??Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, 2009. O programa brasileiro de biocombustíveis prevê a adição de 2% de biocombustíveis em diesel até 2008 e… (more)

  11. Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.

    E-Print Network [OSTI]

    Bastiani, Sergio.

    2008-01-01T23:59:59.000Z

    ??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

  12. BMW Diesel Engines - Dynamic, Efficient and Clean

    Broader source: Energy.gov (indexed) [DOE]

    about cars General Attitude towards Driving & Cars Market Study Diesel Image Germany and UK 2005 74 85 75 82 60 72 65 66 64 66 56 60 60 51 54 66 83 83 89 62 57 29 32 64...

  13. An improved visualization of diesel particulate filter/

    E-Print Network [OSTI]

    Boehm, Kevin (Kevin W.)

    2011-01-01T23:59:59.000Z

    The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

  14. French perspective on diesel engines & emissions

    Broader source: Energy.gov (indexed) [DOE]

    smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

  15. Modeling deposit formation in diesel injector nozzle

    E-Print Network [OSTI]

    Sudhiesh Kumar, Chintoo

    2009-01-01T23:59:59.000Z

    Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

  16. Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    Saskatchewan has introduced a mandate for inclusion of 2% renewable content in the average annual diesel fuel pool for fuel distributors beginning July 1, 2012. In order to allow industry to fully...

  17. Business Case for Light-Duty Diesels

    Broader source: Energy.gov (indexed) [DOE]

    Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

  18. Diesel particulate filter with zoned resistive heater

    SciTech Connect (OSTI)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08T23:59:59.000Z

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  19. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    SciTech Connect (OSTI)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24T23:59:59.000Z

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  20. Recent Developments in BMW's Diesel Technology

    SciTech Connect (OSTI)

    Steinparzer, F

    2003-08-24T23:59:59.000Z

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

  1. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    SciTech Connect (OSTI)

    Fairbanks, John W.

    2000-08-20T23:59:59.000Z

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  2. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

    2005-03-31T23:59:59.000Z

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

  3. Dynamics of a relativistic Rankine vortex for a two-constituent superfluid in a weak perturbation of cylindrical symmetry

    E-Print Network [OSTI]

    B. Boisseau

    1999-01-18T23:59:59.000Z

    From a recent study of a stationary cylindrical solution for a relativistic two-constituent superfluid at low temperature limit, we propose to specify this solution under the form of a relativistic generalisation of a Rankine vortex (Potential vortex whose the core has a solid body rotation).Then we establish the dynamics of the central line of this vortex by supposing that the deviation from the cylindrical configuration is weak in the neighbourhood of the core of the vortex. In "stiff" material the Nambu-Goto equations are obtained.

  4. A review of "Secrets and Knowledge in Medicine and Science, 1500-1800" edited by Elaine Leong and Alisha Rankin

    E-Print Network [OSTI]

    Kelter, Irving A.

    2012-01-01T23:59:59.000Z

    of the view of musicians in the seventeenth and eighteenth centuries that do not necessarily re#24; ect a historical development. Elaine Leong and Alisha Rankin, eds. Secrets and Knowledge in Medicine and Science, 1500-1800. Farnham, England and Burlington..., VT: Ashgate, 2011. ix + 247 pp. + 1 illus. $104.95. Review by #4; #5;#30; #18;. #31;#3;#15;#6;#3; , #5; #4;#3; #2; #6;#11; #14;#19; #2;#6;. #6;#7;#14;#20;#18;#2;, #7;#14; #2;#6;#14;#5;. We all have secrets. Individuals, institutions and nations...

  5. Achievement of stable and clean combustion over a wide operating range in a spark-assisted IDI diesel engine with neat ethanol

    SciTech Connect (OSTI)

    Murayama, T.; Ogawa, H.; Miyamoto, N.; Chikahisa, T.

    1984-01-01T23:59:59.000Z

    Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated.

  6. Perspective on the Future Development of Diesel Emission Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective on the Future Development of Diesel Emission Standards in Europe - Euro 5 for LDV, amendment of EURO 5 for HDV Perspective on the Future Development of Diesel Emission...

  7. Marketing Light-Duty Diesels to U.S. Consumers

    Broader source: Energy.gov (indexed) [DOE]

    levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

  8. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

  9. Durability of Diesel Engine Particulate Filters CRADA No. ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc....

  10. Performance Characteristics of Coal-to-Liquids (CTL) Diesel in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions...

  11. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

  12. BioDiesel Content On-board monitoring

    Broader source: Energy.gov (indexed) [DOE]

    2008 - all rights reserved 1 (tm) BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring August 6th, 2008 Copyright SP3H 2007 -- all rights reserved 2 Biofuel...

  13. Study of deposit formation inside diesel injectors nozzles

    E-Print Network [OSTI]

    Wang, YinChun, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

  14. Diesel Injection Shear-Stress Advanced Nozzle (DISSAN)

    Broader source: Energy.gov (indexed) [DOE]

    3th Diesel Engine-Efficiency and Emissions Research (DEER) Conference August 13, 2007 - Poster P-20 Detroit, MI...

  15. Unique Catalyst System for NOx Reduction in Diesel Exhaust

    Broader source: Energy.gov (indexed) [DOE]

    * Development Partnership: AEI & Noxtech * Presenter: Ralph Slone from Noxtech * Mobile Applications: diesel aftertreatment * Unique dual catalyst system - Cost effective:...

  16. PERFORMANCE OF DIESEL ENGINE USING BLENDED CRUDE JATROPHA OIL

    E-Print Network [OSTI]

    Kamarul Azhar Kamarudin; Nor Shahida; Akma Mohd Sazali; Ahmad Jais Alimin

    2009-01-01T23:59:59.000Z

    renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its

  17. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  18. Saving diesel fuel in the oil field

    SciTech Connect (OSTI)

    Elder, B.

    1982-11-01T23:59:59.000Z

    Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

  19. Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

  20. UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES

    E-Print Network [OSTI]

    diesel engines and stationary power plants. The possibility of early detecting small defects priorUNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical

  1. Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    the turbocharger and the diesel engine in steady-state 5]. Secondly, it modi es the power transfer to the turbineEmissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion Anna Stefanopoulouy is designed that reduces smoke generation on an experimental marine Diesel engine equipped with a variable

  2. Diesel knock noise from combustion phenomenon to perceived signals

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Diesel knock noise from combustion phenomenon to perceived signals O. Sauvagea , A. Lauracb , M for reducing Diesel knock are modifications of engine parameters used for controlling combustion processes-acoustic properties, throught its noticeable combustion noise (also called "Diesel knock"). Combustion noise generated

  3. Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion Potential of Olefin Impact in a Diesel Base Fuel D. Alseda1,2, X. Montagne1 and P. Dagaut2 1 Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion - Potential

  4. Numerical simulation of turbulent jet primary breakup in Diesel engines

    E-Print Network [OSTI]

    Helluy, Philippe

    Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary Outline 1 Introduction 2 DNS of Primary Breakup in Diesel

  5. Comparative Analysis on the Effects of Diesel Particulate Filter and

    E-Print Network [OSTI]

    Wu, Mingshen

    Comparative Analysis on the Effects of Diesel Particulate Filter and Selective Catalytic Reduction February 15, 2008. Revised manuscript received May 2, 2008. Accepted May 27, 2008. Two methods, diesel that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel

  6. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

  7. A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL ENGINES 1 Gianluca Zito ,2 Ioan is illustrated by means of an automotive case study, namely a variable geometry turbocharged diesel engine identification procedure is illustrated. In section 3 a diesel engine system, used to test the procedure

  8. Fault Tolerant Oxygen Control of a Diesel Engine Air System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

  9. Les dbuts du moteur Diesel en France Nouveaux lments historiques

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Les débuts du moteur Diesel en France Nouveaux éléments historiques par Jean-Michel Althuser 1 et Paul-Antoine Naegel 2 Résumé : Après la biographie de Rudolf DIESEL par son fils Eugen, parue dans sa première édition à Hambourg en 1937, après un dossier spécial consacré à DIESEL en 1966 par la revue

  10. TECHNICAL CERTIFICATE -MARINE DIESEL MECHANICS Lewisporte -April 16, 2012

    E-Print Network [OSTI]

    deYoung, Brad

    TECHNICAL CERTIFICATE - MARINE DIESEL MECHANICS Lewisporte - April 16, 2012 March 19, 2012 Monday - Lewisporte April 30, 2012 Monday Last date for Marine Diesel Mechanics students to register or add courses Last date for Marine Diesel Mechanics students to drop courses and receive 100% refund of tuition fees

  11. Diesel: Applying Privilege Separation to Database Access Adrienne Porter Felt

    E-Print Network [OSTI]

    Wagner, David

    Diesel: Applying Privilege Separation to Database Access Adrienne Porter Felt UC Berkeley apf reviewers. We construct a system called Diesel, which implements data sep- aration by intercepting database queries and applying mod- ules' restrictions to the queries. We evaluate Diesel on three widely

  12. Vibration signatures, wavelets and principal components analysis in diesel engine

    E-Print Network [OSTI]

    Sharkey, Amanda

    Vibration signatures, wavelets and principal components analysis in diesel engine diagnostics G of a normally aspirated diesel engine contain valu­ able information on the health of the combustion chamber induced in a 4­stroke diesel engine and the ensuing vi­ bration signals recorded. Three different feature

  13. Diesel: Applying Privilege Separation to Database Adrienne Porter Felt

    E-Print Network [OSTI]

    Wagner, David

    Diesel: Applying Privilege Separation to Database Access Adrienne Porter Felt Matthew Finifter Joel to lists, requires prior specific permission. #12;Diesel: Applying Privilege Separation to Database Access and code reviewers. We design and construct a system called Diesel, which implements data separation

  14. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  15. Diesel Generator Fuel Oil, Diesel Generator Lubricating Oil, and Diesel Generator Starting Air Requirements"

    E-Print Network [OSTI]

    Omaha Public; Power Distrct

    1979-01-01T23:59:59.000Z

    (ISTS) and adds requirements for DG Lubricating Oil, and DG Starting Air. The proposed changes will assure that required quality and quantity of DG Fuel Oil is maintained and also will assure that sufficient DG Lubricating Oil and DG Starting Air is maintained. This proposed amendment imposes limits on DG support system parameters to ensure the DGs will be able to perform their design function. This proposed amendment also brings the current TS on DG Fuel Oil into alignment with the ISTS. This amendment is modeled after the ISTS, Section 3.8.3. This amendment also incorporates into the FCS TS improvements to ISTS Sections 3.8.3 and 5.5 consistent with those provided in Technical Specification Task Force (TSTF) travelers TSTF-254, Rev. 2 and TSTF-374, Rev. 0. FCS also requests approval of reduction in commitments with respect to the FCS Quality Assurance (QA) Program associated with this License Amendment Request. This License Amendment Request adds a Surveillance [Table 3-5, Item 9c] stating that the DG Fuel Oil Properties are required to be verified within limits in accordance with the Diesel Fuel Oil Testing Program. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days.

  16. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01T23:59:59.000Z

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  17. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01T23:59:59.000Z

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  18. ChBE 2130 Thermodynamics I (required course) Credit: 2-0-2

    E-Print Network [OSTI]

    Sherrill, David

    production (e.g. Carnot cycle; Rankine cycle, internal combustion engine; Diesel engine) 10. Refrigeration: J. M. Smith, H. C. Van Ness, and M. M. Abbott, "Introduction to Chemical Engineering Thermodynamics. Be able to correctly use the First Law of Thermodynamics to find heat, work, and changes in internal

  19. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01T23:59:59.000Z

    losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

  20. Utilization of alternative fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1984-05-01T23:59:59.000Z

    The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

  1. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26T23:59:59.000Z

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  2. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect (OSTI)

    Perez, J. M.

    2000-07-06T23:59:59.000Z

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  3. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  4. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2008-01-01T23:59:59.000Z

    Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

  5. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

  6. Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2010-01-01T23:59:59.000Z

    use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

  7. Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration

    E-Print Network [OSTI]

    Wang, Yujun, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

  8. System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies

    E-Print Network [OSTI]

    de Weck, Olivier L.

    System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

  9. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  10. Future Potential of Hybrid and Diesel Powertrains in the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market 2004 Diesel...

  11. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    SciTech Connect (OSTI)

    Boehman, Andre L.

    2000-08-20T23:59:59.000Z

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

  12. Diesel Aerosol Sampling in the Atmosphere

    SciTech Connect (OSTI)

    David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

    2000-06-19T23:59:59.000Z

    The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

  13. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01T23:59:59.000Z

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  14. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect (OSTI)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05T23:59:59.000Z

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  15. Electrical diesel particulate filter (DPF) regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-12-31T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  16. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    release, December, 2004 11th DEER Conference, Chicago IL, August, 2005 2005 Detroit Diesel Corporation. All Rights Reserved. 3 Near-term Powertrain Evolution Improved Thermal...

  17. Reliability and Design Strength Limit Calculations on Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corning 2004deerwebb.pdf More Documents & Publications Predicting Thermal Stress in Diesel Particulate Filters Environmental Effects on Power Electronic Devices Effect of...

  18. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

  19. Development of SCR on Diesel Particulate Filter System for Heavy...

    Broader source: Energy.gov (indexed) [DOE]

    172012 Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Mojghan Naseri, Daniel Kucheruck, Hai-Ying Chen , Sougato Chatterjee DEER Conference 2012...

  20. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Broader source: Energy.gov (indexed) [DOE]

    light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

  1. Diesel Soot Filter Characterization and Modeling for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Reactor regeneration of soot loaded catalyzed SCF * Micro-model of soot oxidation versus spatial catalyst loading. 7 2008 DOE OVT Merit Review Diesel Soot Filter Characterization...

  2. Light-Duty Diesel Market Potential in North America

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

  3. Diesel fuel containing a tetrazole or triazole cetane improver

    SciTech Connect (OSTI)

    Martella, D.J.

    1986-12-30T23:59:59.000Z

    This patent describes a liquid fuel adapted for use in a diesel engine containing a cetane number increasing amount of at least one fuel soluble additive compound.

  4. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators deer12kocher.pdf More Documents &...

  5. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  6. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  7. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  8. Partitioning of Volatile Organics in Diesel Particulate and Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in...

  9. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

  10. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    Dynamometer Evaluation of Plasma- Catalyst for Diesel NOx Reduction February 20, 2003 CRADA Protected Document and Data 2 Introduction * Engine dynamometer evaluation of...

  11. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  12. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Presentation from the U.S. DOE Office of Vehicle Technologies...

  13. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

  14. Diesel Soot Filter Characterization and Modeling for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA and DOW Automotive) Presentation from the U.S. DOE Office of Vehicle Technologies...

  15. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey 2004deerli.pdf More Documents & Publications Desulfurization Fuel Filter...

  16. The California Demonstration Program for Control of PM from Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    for Control of PM from Diesel Backup Generators (BUGs) David R. Cocker III, Kent Johnson, John Lee, Marla Mueller, Sandip Shah, Bonnie Soriano, Bill Welch Supporting...

  17. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Energy Savers [EERE]

    with a Combined SCR and DPF Technology for Heavy-Duty Diesel Retrofit Ray Conway Johnson Matthey Environmental Catalysts & Technologies (PDF 287 KB) A Soot Formation Model...

  18. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Engine Combustion Strategies Effect of Compression Ratio and Piston Geometry on RCCI load limit High Efficiency Fuel Reactivity Controlled Compression...

  19. Combination of Diesel fuel system architectures and Ceria-based...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Integrations Diesel Particulate Filter On-Board Eolys(tm) tank Conclusions Acknowledgement 3 Content of presentation Introduction Global DPF System Approach Ceria-Based...

  20. Failure Stress and Apparent Elastic Modulus of Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF...

  1. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid...

    Energy Savers [EERE]

    to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an...

  2. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Accelerated Ash-Loading Protocol for Diesel Particulate Filters Bruce G. Bunting and Todd J. Toops Oak Ridge National Laboratory Adam Youngquist and Ke Nguyen University of...

  3. Diesel Reforming for Fuel Cell Auxiliary Power Units

    SciTech Connect (OSTI)

    Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

    2005-01-27T23:59:59.000Z

    This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

  4. Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

  5. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Corbus, D.

    2007-12-01T23:59:59.000Z

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  6. Diesel Health Impacts & Recent Comparisons to Other Fuels

    Broader source: Energy.gov (indexed) [DOE]

    ALAPCO, 2000) * Studies in California reveal that more than 70% of cancer risk from air pollution comes from diesel exhaust alone. (SCAQMD, MATES II, 2000) * A recent...

  7. A Correlation of Diesel Engine Performance with Measured NIR...

    Broader source: Energy.gov (indexed) [DOE]

    CORRELATION OF DIESEL ENGINE PERFORMANCE WITH MEASURED NIR FUEL CHARACTERISTICS Bruce Bunting, Michael Bunce, ORNL Alain Lunati, Oswin Galtier, Eric Hermitte, SP3H Monday, P-02...

  8. Advanced Modeling of Direct-Injection Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    High EGR level and multiple- injection Application to DI Diesel Combustion Optimization Marc ZELLAT, Driss ABOURI, Thierry CONTE CD-adapco Group The development of CFD...

  9. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

  10. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

  11. ao diesel mineral: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feasibility of karanja seed oilby modified the fuel using karanja methyl ester(biodiesel)blends withmineral diesel. This experimentation evaluatethe performance and emission...

  12. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

  13. Impact of Biodiesel on Modern Diesel Engine Emissions

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

  14. administered diesel exhaust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection Diesel Engine Using Pongamia Oil CiteSeer Summary: Abstract The use of biodiesel, the methyl esters of vegetable oils are becoming popular due to their low...

  15. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  16. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

  17. Future Breathing System Requirements for Clean Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    Breathing System Requirements for Clean Diesel Engines Poster Location P23 Motivation Results Understand engine air system requirements to reduce NOx Identify...

  18. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important...

  19. A Conceptual Model for Partially PremixedLow-Temperature Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling A Conceptual Model for Partially...

  20. On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

    Broader source: Energy.gov (indexed) [DOE]

    On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Mark Hemingway, Dr. Joachim Kupe, Joseph Bonadies, Mike Seino, Dr. John Kirwan, - Delphi Powertrain DEER, August...

  1. Diesel Engine Strategy & North American Market Challenges, Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the...

  2. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Broader source: Energy.gov (indexed) [DOE]

    Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results R. Aneja, B. Bolton, N. Hakim, Z. Pavlova-MacKinnon Detroit...

  3. Diesel prices decrease for first time in four weeks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDieselDieselU.S. Diesel

  4. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace037sun2012o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

  5. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

  6. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

  7. Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends

    E-Print Network [OSTI]

    Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

    Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

  8. Modeling light scattering from diesel soot particles

    SciTech Connect (OSTI)

    Hull, Patricia; Shepherd, Ian; Hunt, Arlon

    2002-07-16T23:59:59.000Z

    The Mie model is widely used to analyze light scattering from particulate aerosols. The Diesel Particle Scatterometer (DPS), for example, determines the size and optical properties of diesel exhaust particles that are characterized by measuring three angle-dependent elements of the Mueller scattering matrix. These elements are then fitted using Mie calculations with a Levenburg-Marquardt optimization program. This approach has achieved good fits for most experimental data. However, in many cases, the predicted real and imaginary parts of the index of refraction were less than that for solid carbon. To understand this result and explain the experimental data, we present an assessment of the Mie model by use of a light scattering model based on the coupled dipole approximation. The results indicate that the Mie calculation can be used to determine the largest dimension of irregularly shaped particles at sizes characteristic of Diesel soot and, for particles of known refractive index, tables can be constructed to determine the average porosity of the particles from the predicted index of refraction.

  9. Automatic Control Strategy Development for the Supercritical CO{sub 2} Brayton Cycle for LFR Autonomous Load Following

    SciTech Connect (OSTI)

    Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439 (United States)

    2006-07-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is a promising advanced alternative to the Rankine saturated steam cycle and ideal gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to develop an automatic control strategy for the whole plant in response to changes in the demand from the electrical grid. The specific features of the S-CO{sub 2} Brayton cycle that result in limitations on the control range and speed of specific control mechanisms are discussed. Calculations of whole-plant responses to plant operational transients involving step and continuous changes in grid demand are demonstrated. (authors)

  10. Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline...

    Energy Savers [EERE]

    However, from 2007 to 2009, the share of diesel vehicle sales has begun to decline. Germany and Italy have experienced the greatest declines in diesel vehicle sales, though...

  11. LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

  12. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...

    Broader source: Energy.gov (indexed) [DOE]

    Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation:...

  13. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  14. An Enabling Study of Diesel Low-Temperautre Combustion via Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Enabling Study of Diesel Low-Temperautre Combustion via Adaptive Control An Enabling Study of Diesel Low-Temperautre Combustion via Adaptive Control Adaptive control strategies...

  15. E-Print Network 3.0 - auxiliary diesel units Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: units that converted diesel fuel to electricity to supply space conditioning, and power for appliances... About Diesel Engines 14 Argonne Teams Up with...

  16. TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND

    E-Print Network [OSTI]

    #12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

  17. Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement Overview Tasked with improving cost and quality throughout the Volvo diesel engine

  18. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Broader source: Energy.gov (indexed) [DOE]

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control...

  19. Heavy-Duty Low-Temperature and Diesel Combustion Research (8748...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty Low-Temperature and Diesel...

  20. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with...

  1. X-Ray Characterization of Diesel Sprays and the Effects of Nozzle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays and the Effects of Nozzle Geometry X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  2. Analysis of experimental performance investigation on kirloskar single cylinder diesel engine using mustard seed oil and diesel blend.

    E-Print Network [OSTI]

    Ram Rattan

    2013-01-01T23:59:59.000Z

    ??This research work is focused on the mustard oil based bio diesel which is important renewable and alternative fuel in future. Mustard oil, is a… (more)

  3. Non-Catalytic Production of Hydrogen via Reforming of Diesel, Hexadecane and Bio-Diesel for Nitrogen Oxides Remediation.

    E-Print Network [OSTI]

    Hernandez-Gonzalez, Sergio Manuel

    2008-01-01T23:59:59.000Z

    ?? After-treatment technologies are required for diesel engines to meet the current and future stringent emissions regulations. Lean NOx traps and SCR catalysts represent the… (more)

  4. Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry

    SciTech Connect (OSTI)

    Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

    1980-01-31T23:59:59.000Z

    The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

  5. System studies of open-cycle OTEC components

    SciTech Connect (OSTI)

    Parsons, B.K.; Link, H.F.

    1985-09-01T23:59:59.000Z

    A system model of open Rankine cycle ocean thermal energy conversion (OC-OTEC) was used to examine the effects of component performance and design on plant cost. Three components are examined in detail: an optional seawater deaeration subsystem, the flash evaporator, and a two-stage direct-contact condenser. Preliminary data quantifying noncondensable gas release in upcomers and a debubbler chamber were used to evaluate the effect of predeaeration (removing the dissolved gases in deaeration chambers before the seawater enters the heat exchangers) on system cost and performance. Little data on the interactions between geometry and performance of vertical spout flash evaporators operating under OTEC conditions are available; therefore, we performed independent parametric variations. For the direct-contact condenser previous numerical studies provide the basis for coupling geometry and performance. Results of these studies are useful in setting research priorities, in defining operating conditions for further seawater experiments, and in updating plant cost estimates.

  6. Artificial Neural Nets and Cylinder Pressures in Diesel

    E-Print Network [OSTI]

    Sharkey, Amanda

    Artificial Neural Nets and Cylinder Pressures in Diesel Engine Fault Diagnosis * Gopi O diagnosis system for a diesel engine, which uses artificial neural nets to identify faults on the basis­temporal representation of cylinder pressures. Draw cards and power cards are regularly assessed for the condition

  7. AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    turbines. The integration of the wind system into the existing diesel power plant was modeled of the existing power system, the wind resource, and the proposed wind power plant. In addition, preliminaryWIND POWER AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM FOR THE US NAVY AT GUANTANAMO NAVAL BASE

  8. MODELING AND CONTROL OF A DIESEL HCCI ENGINE

    E-Print Network [OSTI]

    MODELING AND CONTROL OF A DIESEL HCCI ENGINE J. Chauvin A. Albrecht G. Corde N. Petit Institut of the airpath of a Diesel HCCI engine supported by experimental results. Moreover, we propose a simple, yet Ignition (HCCI) ­ has be- come of major interest. It requires the use of high Exhaust Gas Recirculation

  9. On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM

    E-Print Network [OSTI]

    Holmén, Britt A.

    & particles · Originally Dynamometer On-road study · Particle Mass & Number Emissions ­ On-board emissions Particulate Mass -- filter #12;Motivation · Ultrafine (UF) particle health effects · Diesel vehicle exhaust AC DC BATTERY Pure electrical torque -- accel fr. stop Pure mechanical torque -- maintain highway

  10. Modeling, Estimation, and Control of Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Luong, David

    2013-01-01T23:59:59.000Z

    organic Rankine cycle waste heat power conversion system. ”Cycle (ORC) System for Waste Heat Recovery. ” Journal ofRankine Cycles in Waste Heat Uti- lizing Processes. ”

  11. Analysis of Nitro-Polycyclic Aromatic Hydrocarbons in Conventional Diesel and Fischer--Tropsch Diesel Fuel Emissions Using Electron Monochromator-Mass Spectrometry

    SciTech Connect (OSTI)

    Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.

    2006-01-01T23:59:59.000Z

    The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

  12. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  13. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect (OSTI)

    Ashish Gupta

    2002-06-01T23:59:59.000Z

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  14. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, Efficient,Diesel

  15. Diesel prices continue to decrease nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel

  16. Clean Diesel Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean Air ActDiesel

  17. JatroDiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to:Jamestown, Colorado:JatroDiesel Jump

  18. Scenario-Based Fault-Tolerant Model Predictive Control for Diesel-Electric Marine Power Plant

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Scenario-Based Fault-Tolerant Model Predictive Control for Diesel-Electric Marine Power Plant where diesel gener- ator sets (a diesel engine connected to a generator) produce electrical power, which Email: torstein.bo@itk.ntnu.no, tor.arne.johansen@itk.ntnu.no Abstract--Diesel-electric propulsion

  19. Control Oriented Modeling and System Identification of a Diesel Generator Set (Genset)

    E-Print Network [OSTI]

    Li, Perry Y.

    Control Oriented Modeling and System Identification of a Diesel Generator Set (Genset) Kai Loon Cheong, Perry Y. Li and Jicheng Xia Abstract-- A diesel generator set (genset) refers to a diesel engine of a conventional PI regulator in the voltage closed control loop of a diesel driven generator is considered. In all

  20. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01T23:59:59.000Z

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.