Coshcous turbulence and its thermalization
Zhu, Jian-zhou [Los Alamos National Laboratory; Taylor, Mark [SNL
2008-01-01T23:59:59.000Z
Dissipation rate {mu}[cosh(k/k{sub c}) - 1] in Fourier space, which reduces to the Newtonian viscosity dissipation rate {nu}k{sup 2} for small k/k{sub c}, can be scaled to make a hydrodynamic system either actually or potentially converge to its Galerkin truncation. The former case acquires convergence to the truncation at a finite wavenumber k{sub G}; the latter realizes as the wavenumber grows to infinity. Intermittency reduction and vitiation of extended self-similarity (ESS) in the partially thermalized regime of turbulence are confirmed and clarified. Onsager's pictures of intermittent versus nonintermittent flows are visualized from thermalized numerical fields, showing cleanly spotty versus mistily uniform properties, the latter of which destroys self-organization and so the ESS property.
Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows
Elperin, Tov
Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows M to the turbulent diffusion, and its potential impact on aerosol distribution. This phenomenon was predicted a nondiffusive flux of aerosols in the direction of the heat flux and results in formation of long-living aerosol
Forced turbulence in thermally bistable gas: A parameter study
Seifried, D; Niemeyer, J C
2010-01-01T23:59:59.000Z
Context: The thermal instability is one of the dynamical agents for turbulence in the diffuse interstellar medium, where both, turbulence and thermal instability interact in a highly non-linear manner. Aims: We study basic properties of turbulence in thermally bistable gas for variable simulation parameters. The resulting cold gas fractions can be applied as parameterisation in simulations on galactic scales. Methods: Turbulent flow is induced on large scales by means of compressive stochastic forcing in a periodic box. The compressible Euler equations with constant UV heating and a parameterised cooling function are solved on uniform grids. We investigate several values of the mean density of the gas and different magnitudes of the forcing. For comparison with other numerical studies, solenoidal forcing is applied as well. Results: After a transient phase, we observe that a state of statistically stationary turbulence is approached. Compressive forcing generally produces a two-phase medium, with a decreasing...
Progress in Simulating Turbulent Electron Thermal Transport in NSTX
Guttenfelder, Walter; Kaye, S. M.; Ren, Y.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R. [Princeton Plasma Physics Lab., Princeton, NJ (United States); Peterson, J. L.; Nevins, W. M. [Lawrence Livermore National Lab., Livermore, CA (United States); Candy, J. [General Atomics, San Diego, CA (United States); Yuh, H. [Nova Photonics, Princeton, NJ (United States)
2013-07-17T23:59:59.000Z
Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing (MT) turbulence in a high-beta NSTX H-mode discharge predict experimental levels of electron thermal transport that are dominated by magnetic flutter and increase with collisionality, roughly consistent with energy confinement times in dimensionless collisionality scaling experiments. Electron temperature gradient (ETG) simulations predict significant electron thermal transport in some low and high beta discharges when ion scales are suppressed by E x B shear. Although the predicted transport in H-modes is insensitive to variation in collisionality (inconsistent with confinement scaling), it is sensitive to variations in other parameters, particularly density gradient stabilization. In reversed shear (RS) Lmode discharges that exhibit electron internal transport barriers, ETG transport has also been shown to be suppressed nonlinearly by strong negative magnetic shear, s<<0. In many high beta plasmas, instabilities which exhibit a stiff beta dependence characteristic of kinetic ballooning modes (KBM) are sometimes found in the core region. However, they do not have a distinct finite beta threshold, instead transitioning gradually to a trapped electron mode (TEM) as beta is reduced to zero. Nonlinear simulations of this "hybrid" TEM/KBM predict significant transport in all channels, with substantial contributions from compressional magnetic perturbations. As multiple instabilities are often unstable simultaneously in the same plasma discharge, even on the same flux surface, unique parametric dependencies are discussed which may be useful for distinguishing the different mechanisms experimentally.
Subgrid models for mass and thermal diffusion in turbulent mixing
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01T23:59:59.000Z
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the Batchelor scale, allows a feasible approach to the modeling of high Schmidt number flows.
Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence
Steven A. Balbus; Christopher S. Reynolds
2008-06-05T23:59:59.000Z
The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.
Wave-Turbulence Mixing for Upper Ocean Multifractal Thermal
Chu, Peter C.
) width ~ 0.8 km #12;Data Observation · Coastal Monitoring Buoy (CMB) - U.S. Naval Oceanographic Office) Frequency is around 4 CPH #12;Isopycnal Displacement turbulence-Dominated (00-05 GMT Aug 1) #12;Power depth #12;Structure Function (Power Law) IW-T type #12;Structure Function (Power Law) T type #12
Turbulent thermalization process in high-energy heavy-ion collisions
Jürgen Berges; Björn Schenke; Sören Schlichting; Raju Venugopalan
2014-09-05T23:59:59.000Z
We discuss the onset of the thermalization process in high-energy heavy-ion collisions from a weak coupling perspective, using classical-statistical real-time lattice simulations as a first principles tool to study the pre-equilibrium dynamics. Most remarkably, we find that the thermalization process is governed by a universal attractor, where the space-time evolution of the plasma becomes independent of the initial conditions and exhibits the self-similar dynamics characteristic of wave turbulence. We discuss the consequences of our weak coupling results for the thermalization process in heavy-ion experiments and briefly comment on the use of weak coupling techniques at larger values of the coupling.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zand Analysis Utilities (TAU)TuningTurbulence
Chaotic mean wind in turbulent thermal convection and long-term correlations in solar activity
A. Bershadskii
2009-12-25T23:59:59.000Z
It is shown that correlation function of the mean wind velocity in a turbulent thermal convection (Rayleigh number $Ra \\sim 10^{11}$) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of a chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied. Since solar activity is based on the thermal convection processes, it is reasoned that the observed solar activity long-term correlations can be an imprint of the mean wind chaotic properties. In particular, correlation function of the daily sunspots number exhibits exponential decay with a very long correlation time and corresponding largest Lyapunov exponent is certainly positive, also relative contribution of the chaotic and stochastic components follows the same pattern as for the convection mean wind.
Polymer heat transport enhancement in thermal convection: the case of Rayleigh-Taylor turbulence
G. Boffetta; A. Mazzino; S. Musacchio; L. Vozella
2010-01-19T23:59:59.000Z
We study the effects of polymer additives on turbulence generated by the ubiquitous Rayleigh-Taylor instability. Numerical simulations of complete viscoelastic models provide clear evidence that the heat transport is enhanced up to 50% with respect to the Newtonian case. This phenomenon is accompanied by a speed up of the mixing layer growth. We give a phenomenological interpretation of these results based on small-scale turbulent reduction induced by polymers.
Large-eddy simulations of isolated disc galaxies with thermal and turbulent feedback
Braun, Harald; Niemeyer, Jens C; Almgren, Ann S
2014-01-01T23:59:59.000Z
We present a subgrid-scale model for the Multi-phase Interstellar medium, Star formation, and Turbulence (MIST) and explore its behaviour in high-resolution large-eddy simulations of isolated disc galaxies. MIST follows the evolution of a clumpy cold and a diffuse warm component of the gas within a volume element which exchange mass and energy via various cooling, heating and mixing processes. The star formation rate is dynamically computed from the state of the gas in the cold phase. An important feature of MIST is the treatment of unresolved turbulence in the two phases and its interaction with star formation and feedback by supernovae. This makes MIST a particularly suitable model for the interstellar medium in galaxy simulations. We carried out a suite of simulations varying fundamental parameters of our feedback implementation. Several observational properties of galactic star formation are reproduced in our simulations, such as an average star formation efficiency ~1%, a typical velocity dispersion arou...
Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors
Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak
2003-08-06T23:59:59.000Z
The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.
Property:Pressure Range(Psi) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, search Property Name Power
Turbulent electron transport in edge pedestal by electron temperature gradient turbulence
Singh, R. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of) [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jhang, Hogun [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of) [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CMTFO and CASS, University of California, San Diego 92093-0424, California (United States)
2013-11-15T23:59:59.000Z
We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.
Turbulence production and turbulent pressure support in the intergalactic medium
Iapichino, L; Niemeyer, J C; Merklein, J
2011-01-01T23:59:59.000Z
The injection and evolution of turbulence in the intergalactic medium is studied by means of mesh-based hydrodynamical simulations, including a subgrid scale (SGS) model for small-scale unresolved turbulence. The simulations show that the production of turbulence has a different redshift dependence in the intracluster medium (ICM) and the warm-hot intergalactic medium (WHIM). We show that turbulence in the ICM is produced chiefly by merger-induced shear flows, whereas the production in the WHIM is dominated by shock interactions. Secondly, the effect of dynamical pressure support on the gravitational contraction has been studied. This turbulent support is stronger in the WHIM gas at baryon overdensities 1 < delta < 100, and less relevant for the ICM. Although the relative mass fraction of the gas with large vorticity is considerable (52% in the ICM), we find that for only about 10% in mass this is dynamically relevant, namely not associated to an equally large thermal pressure support. According to this...
Brandenburg, Axel
of applications (environmental sciences, physics of the atmosphere and meteorology, industrial turbulent flows://pof.aip.org/resource/1/PHFLE6/v24/i7 Published by the American Institute of Physics. Related Articles Light attenuation scale is large in comparison with the integral scale of the turbulence. The strength of this effect
Solar Wind Electrons and Langmuir Turbulence , D.E. Larson
California at Berkeley, University of
electron VDFs contain high-energy tail [9] which is typically described as thermal core plus superthermal are in dynamical equilibrium with quasi-thermal noise turbulence. Customary theories of superthermal electrons
Turbulence and turbulent mixing in natural fluids
Gibson, Carl H
2010-01-01T23:59:59.000Z
Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...
TURBULENT FRBRNNING MVK130 Turbulent Combustion
TURBULENT FÖRBRÄNNING MVK130 Turbulent Combustion Poäng: 3.0 Betygskala: TH Valfri för: M4 to combustion, McGraw-Hill 1996. #12;
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01T23:59:59.000Z
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
TURBULENT FRBRNNING MVK 130 Turbulent Combustion
TURBULENT FÖRBRÄNNING MVK 130 Turbulent Combustion Antal poäng: 3.0. Valfri för: M4. Kursansvarig program med hänsyn till de modeller som används. Litteratur S.R. Turns: An introduction to combustion, Mc
Turbulent Compressibilty of Protogalactic Gas
John Scalo; Anirban Biswas
2001-11-09T23:59:59.000Z
The star formation rate in galaxies should be related to the fraction of gas that can attain densities large enough for gravitational collapse. In galaxies with a turbulent interstellar medium, this fraction is controlled by the effective barotropic index $gamma = dlog P/dlog (rho)$ which measures the turbulent compressibility. When the cooling timescale is smaller than the dynamical timescale, gamma can be evaluated from the derivatives of cooling and heating functions, using the condition of thermal equilibrium. We present calculations of gamma for protogalaxies in which the metal abundance is so small that H_2 and HD cooling dominates. For a heating rate independent of temperature and proportional to the first power of density, the turbulent gas is relatively "hard", with $gamma >= 1$, at large densities, but moderately "soft", $gamma <= 0.8$, at densities below around $10^4 cm^(-3)$. At low temperatures the density probability distribution should fall ra pidly for densities larger than this value, which corresponds physically to the critical density at which collisional and radiative deexcitation rate s of HD are equal. The densities attained in turbulent protogalaxies thus depend on the relatively large deuterium abundance in our universe. We expect the same physical effect to occur in higher metallicity gas with different coolants. The case in which adiabatic (compressional) heating due to cloud collapse dominates is also discussed, and suggests a criterion for the maximum mass of Population III stars.
Aspects of Wave Turbulence in Preheating
José A. Crespo; H. P. de Oliveira
2014-06-04T23:59:59.000Z
In this work we have studied the nonlinear preheating dynamics of the $\\frac{1}{4} \\lambda \\phi^4$ inflationary model. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since matter distributions are fields instead of usual fluids. Therefore, turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the inflaton field. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number domains that indicates that there are a transfer of energy through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.
Turbulent Fluxes in Stably Stratified Boundary Layers
L'vov, Victor S; Rudenko, Oleksii; 10.1088/0031-8949/2008/T132/014010
2008-01-01T23:59:59.000Z
We present an extended version of an invited talk given on the International Conference "Turbulent Mixing and Beyond". The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations, and dimensional estimates of the turbulent thermal flux run into a well known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction with observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations removing t...
Kumar S. Gupta; Siddhartha Sen
2010-06-05T23:59:59.000Z
We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.
Modeling Compressed Turbulence
Israel, Daniel M. [Los Alamos National Laboratory
2012-07-13T23:59:59.000Z
From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.
The Temperature of Interstellar Clouds from Turbulent Heating
Liubin Pan; Paolo Padoan
2008-10-22T23:59:59.000Z
To evaluate the effect of turbulent heating in the thermal balance of interstellar clouds, we develop an extension of the log-Poisson intermittency model to supersonic turbulence. The model depends on a parameter, d, interpreted as the dimension of the most dissipative structures. By comparing the model with the probability distribution of the turbulent dissipation rate in a simulation of supersonic and super-Alfvenic turbulence, we find a best-fit value of d=1.64. We apply this intermittency model to the computation of the mass-weighted probability distribution of the gas temperature of molecular clouds, high-mass star-forming cores, and cold diffuse HI clouds. Our main results are: i) The mean gas temperature in molecular clouds can be explained as the effect of turbulent heating alone, while cosmic ray heating may dominate only in regions where the turbulent heating is low; ii) The mean gas temperature in high-mass star-forming cores with typical FWHM of ~6 km/s (corresponding to a 1D rms velocity of 2.5 km/s) may be completely controlled by turbulent heating, which predicts a mean value of approximately 36 K, two to three times larger than the mean gas temperature in the absence of turbulent heating; iii) The intermittency of the turbulent heating can generate enough hot regions in cold diffuse HI clouds to explain the observed CH+ abundance, if the rms velocity on a scale of 1 pc is at least 3 km/s, in agreement with previous results based on incompressible turbulence. Because of its importance in the thermal balance of molecular clouds and high-mass star-forming cores, the process of turbulent heating may be central in setting the characteristic stellar mass and in regulating molecular chemical reactions.
Axel Brandenburg
2008-08-07T23:59:59.000Z
Aspects of turbulence in protostellar accretion discs are being reviewed. The emergence of dead zones due to poor ionization and alternatives to the magneto-rotational instability are discussed. The coupling between dust and gas in protostellar accretion discs is explained and turbulent drag is compared with laminar drag in the Stokes and Epstein regimes. Finally, the significance of magnetic field generation in turbulent discs is emphasized in connection with driving outflows and with star-disc coupling.
Literature Review of Airflow Fluid Characteristics and their Impact on Human Thermal Comfort
Zhao, R.; Zhang, Y.; Yu, N.; Di, H.
2006-01-01T23:59:59.000Z
Airflow dynamics significantly impact indoor thermal environment and human thermal comfort. Studies on the effects of airflow fluctuations on thermal comfort mainly focus on the effects of turbulence intensity and fluctuation frequency...
Fossil turbulence and fossil turbulence waves can be dangerous
Carl H Gibson
2012-11-25T23:59:59.000Z
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales where vorticity is created to larger scales where turbulence fossilizes. Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate energy and information about previous turbulence. Ignorance of fossil turbulence properties can be dangerous. Examples include the Osama bin Laden helicopter crash and the Air France 447 Airbus crash, both unfairly blamed on the pilots. Observations support the proposed definitions, and suggest even direct numerical simulations of turbulence require caution.
Four Lectures on Turbulent Combustion
Peters, Norbert
Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion
FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER
California at Los Angeles, University of
1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due
Inertial range turbulence in kinetic plasmas
G. G. Howes
2007-11-27T23:59:59.000Z
The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.
Direct Numerical Simulations of Interfacial Turbulence at Low Froude and Weber Numbers
Zhang, Qi
2014-05-22T23:59:59.000Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Thermal signature of ocean surface and related subsurface dynamics 3 1.2.2 Surfactant effects on ocean surface . . . . . . . . . . . . . . . . . 5 1.2.3 Gas transfer and active thermography on turbulent buoyant con- vection... and investigation of passive scalar beneath the surfactant contaminated free surface. 6 1.2.3 Gas transfer and active thermography on turbulent buoyant convection One of the objectives of the IR thermal signature and subsurface dynamics study is to unveil...
Toward a wave turbulence formulation of statistical nonlinear optics
Garnier, Josselin
Toward a wave turbulence formulation of statistical nonlinear optics Josselin Garnier,1, * Mietek optical waves have been reported in the literature. This article is aimed at providing a generalized wave, the process of optical wave thermalization to thermo- dynamic equilibrium, which slows down significantly
Turbulent heating of the corona and solar wind: the heliospheric
Turbulent heating of the corona and solar wind: the heliospheric dark energy problem Stuart D. Bale and Solar Wind · There are very few collisions in the solar wind · Not in thermal equilibrium · Large' Photospheric blackbody ~5000-6000K Sunspots and `active regions' #12;Impulsive Solar Activity - `Carrington
Quantum ghost imaging through turbulence
Dixon, P. Ben
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a specific experimental configuration the effect of turbulence can be greatly diminished. By decoupling ...
Jia, S.; Chung, B.T.F. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering
1996-12-31T23:59:59.000Z
Based on a previously proposed non-linear turbulence model, a turbulent heat transfer model is formulated in the present study using the concept of Generalized Gradient Diffusion (GGD) hypothesis. Under this hypothesis, an anisotropic thermal diffusivity can be obtained through the proposed non-linear turbulent model which is applied to the turbulent flow and heat transfer in a sudden expansion pipe with a constant heat flux through the pipe wall. The numerical results are compared with the available experimental data for both turbulent and thermal quantities, with an emphasis on the non-linear heat transfer predictions. The improved results are obtained for the bulk temperature distribution showing that the present non-linear heat transfer model is capable of predicting the anisotropic turbulent heat transfer for the pipe expansion flow. Some limits of the proposed model are also identified and discussed.
Wave turbulent statistics in non-weak wave turbulence
Naoto Yokoyama
2011-05-08T23:59:59.000Z
In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsistency, closed equations are derived without assuming the separation of the time scales in accordance with Direct-Interaction Approximation (DIA), which has been successfully applied to Navier--Stokes turbulence. The kinetic equation of the weak turbulence theory is recovered from the DIA equations if the weak nonlinearity is assumed as an additional assumption. It suggests that the DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.
Turbulent Combustion Luc Vervisch
Kern, Michel
;19 "Perfect" combustion modes: Fuel + Oxidizer () Products Engines, gas turbines... Laboratory experiment1 Turbulent Combustion Modeling Luc Vervisch INSA de Rouen, IUF, CORIA-CNRS Quelques problÃ¨mes rencontrÃ©s en chimie numÃ©rique : Hydrologie - Combustion - AtmosphÃ¨re 16 dÃ©cembre, INRIA Rocquencourt #12
Sanyal, Devashish [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032 (India)]. E-mail: tpds@mahendra.iacs.res.in; Sen, Siddhartha [School of Mathematics, Trinity College, Dublin 2 (Ireland)]. E-mail: sen@maths.tcd.ie
2006-06-15T23:59:59.000Z
The present manuscript dealing with large occupation of states of a quantum system, extends the study to the case of quantum weak turbulence. The quasiparticle spectrum, calculated for such a system, using a Green's function approach, establishes the dissipative and inertial regimes, hence a Kolmogorov type of picture.
Magnetic turbulent electron transport in a reversed field pinch
Schoenberg, K.; Moses, R.
1990-01-01T23:59:59.000Z
A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs.
A Critical "Dimension" in a Shell Model for Turbulence
Paolo Giuliani; Mogens H. Jensen; Victor Yakhot
2001-02-08T23:59:59.000Z
We investigate the GOY shell model within the scenario of a critical dimension in fully developed turbulence. By changing the conserved quantities, one can continuously vary an ``effective dimension'' between $d=2$ and $d=3$. We identify a critical point between these two situations where the flux of energy changes sign and the helicity flux diverges. Close to the critical point the energy spectrum exhibits a turbulent scaling regime followed by a plateau of thermal equilibrium. We identify scaling laws and perform a rescaling argument to derive a relation between the critical exponents. We further discuss the distribution function of the energy flux.
California at Berkeley, University of
to kinetic and thermal particle energies. In this Letter we use space plasma as a turbulence laboratory the strongly turbulent solar wind down- stream of Earth's bow shock, the so-called magnetosheath (magnetic field), and CIS (ions) experiments [17]. At 09:35 UT the spacecraft crossed the bow shock
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
H. R. Strauss
2012-11-27T23:59:59.000Z
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
Polymer Stretching by Turbulence
Chertkov, Michael
2000-05-15T23:59:59.000Z
The stretching of a polymer chain by a large-scale chaotic flow is considered. The steady state which emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively described, i.e., the dependency on the flow parameters (Lyapunov exponent statistics) and the chain characteristics (the number of beads and the interbead elastic potential) is made explicit. (c) 2000 The American Physical Society.
Turbulent Reconnection and Its Implications
Lazarian, Alex; Vishniac, Ethan T; Kowal, Grzegorz
2015-01-01T23:59:59.000Z
Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes in magnetized plasmas. In most astrophysical environments the Reynolds numbers are large and therefore the transition to turbulence is inevitable. This turbulence must be taken into account for any theory of magnetic reconnection, since the initially laminar configurations can transit to the turbulence state, what is demonstrated by 3D high resolution numerical simulations. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (1999) reconnection model and present numerical evidence supporting the model and demonstrate that it is closely connected to the concept of Richardson diffusion and compatible with the Lagrangian dynamics of magnetized fluids. We point out that the Generalized Ohm's Law, that accounts for turbulent motion, predicts the subdominance of the microphysical plasma effects for a realistically turbulent media. We show that on o...
Nonclassical Velocity Statistics in a Turbulent Atomic Bose-Einstein Condensate
White, A. C.; Barenghi, C. F.; Proukakis, N. P.; Youd, A. J.; Wacks, D. H. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)
2010-02-19T23:59:59.000Z
In a recent experiment Paoletti et al. [Phys. Rev. Lett. 101, 154501 (2008)] monitored the motion of tracer particles in turbulent superfluid helium and inferred that the velocity components do not obey the Gaussian statistics observed in ordinary turbulence. Motivated by their experiment, we create a small 3D turbulent state in an atomic Bose-Einstein condensate, compute directly the velocity field, and find similar nonclassical power-law tails. We obtain similar results in 2D trapped and 3D homogeneous condensates, and in classical 2D vortex points systems. This suggests that non-Gaussian turbulent velocity statistics describe a fundamental property of quantum turbulence. We also track the decay of the vortex tangle in the presence of the thermal cloud.
Protostellar outflow-driven turbulence
Christopher D. Matzner
2007-01-01T23:59:59.000Z
Protostellar outflows crisscross the regions of star cluster formation, stirring turbulence and altering the evolution of the forming cluster. We model the stirring of turbulent motions by protostellar outflows, building on an observation that the scaling law of supersonic turbulence implies a momentum cascade analogous to the energy cascade in Kolmogorov turbulence. We then generalize this model to account for a diversity of outflow strengths, and for outflow collimation, both of which enhance turbulence. For a single value of its coupling coefficient the model is consistent with turbulence simulations by Li & Nakamura and, plausibly, with observations of the NGC 1333 cluster-forming region. Outflow-driven turbulence is strong enough to stall collapse in cluster-forming regions for several crossing times, relieving the mismatch between star formation and turbulent decay rates. The predicted line-width-size scaling implies radial density indices between -1 and -2 for regions supported by outflow-driven turbulence, with a tendency for steeper profiles in regions that are more massive or have higher column densities.
Turbulence models of gravitational clustering
Jose Gaite
2012-02-15T23:59:59.000Z
Large-scale structure formation can be modeled as a nonlinear process that transfers energy from the largest scales to successively smaller scales until it is dissipated, in analogy with Kolmogorov's cascade model of incompressible turbulence. However, cosmic turbulence is very compressible, and vorticity plays a secondary role in it. The simplest model of cosmic turbulence is the adhesion model, which can be studied perturbatively or adapting to it Kolmogorov's non-perturbative approach to incompressible turbulence. This approach leads to observationally testable predictions, e.g., to the power-law exponent of the matter density two-point correlation function.
Simple Models for Turbulent Self-Regulation in Galaxy Disks
Curtis Struck; Daniel C. Smith
1999-07-29T23:59:59.000Z
We propose that turbulent heating, wave pressure and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large-scales. We present simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. Star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk, and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observation, as well as some novel predictions, including the following. 1) The large-scale gas density and thermal phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. 2) The turbulent pressures and stresses that drive radial outflows in the warm gas also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. 3) They suggest that a star formation rate like the phenomenological Schmidt Law is the natural result of global thermohydrodynamical balance, and may not obtain in disks far from equilibrium. (Abridged)
Simulation of lean premixed turbulent combustion
2008-01-01T23:59:59.000Z
turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,
Advanced Computational Methods for Turbulence and Combustion...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...
Ris-R-1188(EN) Turbulence and turbulence-
Risø-R-1188(EN) Turbulence and turbulence- generated structural loading in wind turbine clusters af den internationale standard for vindmøller, IEC61400-1 (2005). Også ekstrembelastninger under to ensure sufficient structural sustainability of the wind turbines exposed to "wind farm flow
Advances in compressible turbulent mixing
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01T23:59:59.000Z
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Gravitational Radiation From Cosmological Turbulence
Arthur Kosowsky; Andrew Mack; Tinatin Kahniashvili
2002-06-27T23:59:59.000Z
An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.
Compound cooling flow turbulator for turbine component
Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J
2014-11-25T23:59:59.000Z
Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.
Andrey Beresnyak; Alex Lazarian
2008-05-06T23:59:59.000Z
We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.
Persson, Ola
shown that the ABL has a complicated structure involving generally quasi-persistent, thermal. These sensors were chosen to obtain observations of the thermal, kinematic and turbulent structure in the lowest beams. The wind profiler was deployed on the bow of the Oden during the entire cruise. It provided
Ezer,Tal
mixing. Surface waves can enhance turbulence kinetic energy and mixing of the upper ocean via wave interaction on the MellorYamada scheme and upper ocean thermal structure are examined and compared with each scheme. The behaviors of the MellorYamada scheme, as well as the simulated upper ocean thermal structure
Compressible Turbulence in Galaxy Clusters: Physics and Stochastic Particle Re-acceleration
G. Brunetti; A. Lazarian
2007-03-22T23:59:59.000Z
We attempt to explain the non-thermal emission arising from galaxy clusters as a result of the re-acceleration of electrons by compressible turbulence induced by cluster mergers. In our model intracluster medium (ICM) is represented by a high beta plasma in which turbulent motions are driven at large scales. The corresponding injection velocities are higher than the Alfven velocity. As a result, the turbulence is approximately isotropic up to the scale at which the turbulent velocity gets comparable with the Alfven velocity. Under the hypothesis that turbulence in the ICM is highly super- Alfvenic the magnetic field is passively advected and the field lines are bended on scales smaller than that of the classical, unmagnetized, ion-ion mean free path. This affects ion diffusion and the strength of the effective viscosity. Under these conditions the bulk of turbulence in hot (5-10 keV temperature) galaxy clusters is likely to be dissipated at collisionless scales via resonant coupling with thermal and fast particles. We use collisionless physics to derive the amplitude of the different components of the energy of the compressible modes, and review and extend the treatment of plasma damping in the ICM. We calculate the acceleration of both protons and electrons taking into account both TTD acceleration and non-resonant acceleration by large scale compressions. We find that relativistic electrons can be re-accelerated in the ICM up to energies of several GeV provided that the rms velocity of the compressible turbulent-eddies is (V_L/c_s)^2~0.15-0.3. We find that under typical conditions ~ 2-5 % of the energy flux of the cascading of compressible motions injected at large scales goes into the acceleration of fast particles and that this may explain the observed non-thermal emission from merging galaxy clusters.
Turbulent transport phenomena in a channel with periodic rib turbulators
Liou, T.M.; Hwang, J.J.; Chen, S.H. (National Tsing Hua University, Hsinchu (Taiwan))
1992-09-01T23:59:59.000Z
Periodic fully developed turbulent flow in a 2D channel with rib turbulators on two opposite walls has been studied numerically and experimentally. In numerical predictions, an algebraic Reynolds stress turbulence model is adopted, and a smoothed hybrid central/skew upstream difference scheme is developed. In experiments, the laser-Doppler velocimetry and laser holographic interferometry are employed to measure the local flow and heat transfer characteristics. The results are obtained with the ratio of pitch to rib height 5, 10, 15, and 20, for Reynolds number of 3.3 x 10 exp 4 and are presented in terms of the reattachment length, mean velocity and turbulent kinetic energy profiles, isotherm patterns, and distributions of local pressure recovery and Nusselt number. A detailed comparison with experimental data shows that the present calculations have an improvement over the previous work in the prediction of periodic ribbed-wall flow and heat transfer. In addition, regions susceptible to hot spots are identified by examining the distributions of the local Nusselt number. Furthermore, the enhancement of mean Nusselt number is documented in terms of relative contributions of the increased turbulence intensity and surface area provided by the ribs. 32 refs.
transfer of Momentum Turbulent (Reynolds) stresses Heat Turbulent heat flux Mass Turbulent: Fundamental equations · Averaging · Flow equations · Turbulence equations Part II: Characteristics, RWTH Aachen, 08.03.2010 Reynolds' experiment: Inject dye into pipe flow Observe filament at different
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01T23:59:59.000Z
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
Thermal-hydraulic analysis of cross-shaped spiral fuel in high power density BWRs
Conboy, Thomas M
2007-01-01T23:59:59.000Z
Preliminary analysis of the cross-shaped spiral (CSS) fuel assembly suggests great thermal-hydraulic upside. According to computational models, the increase in rod surface area, combined with an increase in coolant turbulence ...
Takase, Kazuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)
1997-05-01T23:59:59.000Z
Thermal-hydraulic characteristics in a spacer-ribbed annular fuel channel for high-temperature gas-cooled reactors were analyzed numerically by three-dimensional computations under a fully developed turbulent flow. The two-equation {kappa}-{epsilon} turbulence model was applied in the present turbulent analysis, and the turbulence model constants for eddy viscosity and the turbulent Prandtl number were improved from the previous standard values to increase the accuracy of numerical simulations. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number >3,000. It was clarified quantitatively that the main mechanism for heat transfer augmentation in the spacer-ribbed fuel channel was a combined effect of the turbulence promoter effect by the spacer rib and the velocity acceleration effect by a reduction in the channel cross section.
Effects of turbulent diffusion on the chemistry of diffuse clouds
P. Lesaffre; M. Gerin; P. Hennebelle
2007-04-24T23:59:59.000Z
Aims. We probe the effect of turbulent diffusion on the chemistry at the interface between a cold neutral medium (CNM) cloudlet and the warm neutral medium (WNM). Methods. We perform moving grid, multifluid, 1D, hydrodynamical simulations with chemistry including thermal and chemical diffusion. The diffusion coefficients are enhanced to account for turbulent diffusion. We post-process the steady-states of our simulations with a crude model of radiative transfer to compute line profiles. Results. Turbulent diffusion spreads out the transition region between the CNM and the WNM. We find that the CNM slightly expands and heats up: its CH and H$_2$ content decreases due to the lower density. The change of physical conditions and diffusive transport increase the H$^+$ content in the CNM which results in increased OH and H$_2$O. Diffusion transports some CO out of the CNM. It also brings H$_2$ into contact with the warm gas with enhanced production of CH$^+$, H$_3^+$, OH and H$_2$O at the interface. O lines are sensitive to the spread of the thermal profile in the intermediate region between the CNM and the WNM. Enhanced molecular content at the interface of the cloud broadens the molecular line profiles and helps exciting transitions of intermediate energy. The relative molecular yield are found higher for bigger clouds. Conclusions. Turbulent diffusion can be the source of additional molecular production and should be included in chemical models of the interstellar medium (ISM). It also is a good candidate for the interpretation of observational problems such as warm H$_2$, CH$^+$ formation and presence of H$_3^+$.
Particle Acceleration by MHD Turbulence
Jungyeon Cho; A. Lazarian
2005-10-21T23:59:59.000Z
Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We compare the results with the acceleration rate that arises from resonance scattering and Transit-Time Damping (TTD). We establish that fast modes accelerate particles more efficiently than slow modes. We find that particle acceleration by pitch-angle scattering and TTD dominates acceleration by slow or fast modes when the spatial diffusion rate is small. When the rate of spatial diffusion of particles is high, we establish an enhancement of the efficiency of particle acceleration by slow and fast modes in weak turbulence. We show that highly supersonic turbulence is an efficient agent for particle acceleration. We find that even incompressible turbulence can accelerate particles on the scales comparable with the particle mean free path.
Title of dissertation: EXPERIMENTAL CHARACTERIZATION OF TURBULENT
Lathrop, Daniel P.
ABSTRACT Title of dissertation: EXPERIMENTAL CHARACTERIZATION OF TURBULENT SUPERFLUID HELIUM Matthew S. Paoletti, Doctor of Philosophy, 2010 Dissertation directed by: Professor Daniel Lathrop. #12;EXPERIMENTAL CHARACTERIZATION OF TURBULENT SUPERFLUID HELIUM by Matthew S. Paoletti Dissertation
Turbulence and Magnetic Fields in Clouds
Shantanu Basu
2004-11-15T23:59:59.000Z
We discuss several categories of models which may explain the IMF, including the possible role of turbulence and magnetic fields.
Turbulent breakage of ductile aggregates
Marchioli, Cristian
2015-01-01T23:59:59.000Z
In this paper we study breakage rate statistics of small colloidal aggregates in non-homogeneous anisotropic turbulence. We use pseudo-spectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modelled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, $\\sigma>\\sigma_{cr}$, and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e. breakage occurs as soon as $\\sigma>\\sigma_{cr}$). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.
Turbulent Transition in an Electromagnetically Levitated Droplet
Mountziaris, T. J.
Turbulent Transition in an Electromagnetically Levitated Droplet Christina R. Rizer, Robert W a marked transition from laminar to turbulent flow, which can be observed by following the movement, will oscillate and break apart, marking the transition to turbulence. Using videos taken of these metal samples
Numerical Study of a Turbulent Hydraulic Jump
Zhao, Qun
Numerical Study of a Turbulent Hydraulic Jump Qun Zhao, Shubhra Misra, Ib. A. Svendsen and James T of a Turbulent Hydraulic Jump p.1/14 #12;Objective Our ultimate goal is to study the breaking waves. Numerical Study of a Turbulent Hydraulic Jump p.2/14 #12;A moving bore Qiantang Bore China (Courtesy of Dr J
Stability, Energetics, and Turbulent Transport in
Torquato, Salvatore
fields" Department of Astrophysical Sciences Spring Colloquium Steve Cowley (UK Atomic Energy Authority of solar-wind turbulence" Chris Chen (UC Berkeley) 2:40pm "Energy spectra in MHD turbulenceStability, Energetics, and Turbulent Transport in Astrophysical, Fusion, and Solar Plasmas 8
Turbulence transport with nonlocal interactions
Linn, R.R.; Clark, T.T.; Harlow, F.H.; Turner, L.
1998-03-01T23:59:59.000Z
This preliminary report describes a variety of issues in turbulence transport analysis with particular emphasis on closure procedures that are nonlocal in wave-number and/or physical space. Anomalous behavior of the transport equations for large scale parts of the turbulence spectrum are resolved by including the physical space nonlocal interactions. Direct and reverse cascade processes in wave-number space are given a much richer potential for realistic description by the nonlocal formulations. The discussion also describes issues, many still not resolved, regarding new classes of self-similar form functions.
Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence
F. Heitsch; M. -M. Mac Low; R. S. Klessen
2000-09-14T23:59:59.000Z
Hydrodynamic supersonic turbulence can only prevent local gravitational collapse if the turbulence is driven on scales smaller than the local Jeans lengths in the densest regions, a very severe requirement (Paper I). Magnetic fields have been suggested to support molecular clouds either magnetostatically or via magnetohydrodynamic (MHD) waves. Whereas the first mechanism would form sheet-like clouds, the second mechanism not only could exert a pressure onto the gas counteracting the gravitational forces, but could lead to a transfer of turbulent kinetic energy down to smaller spatial scales via MHD wave interactions. This turbulent magnetic cascade might provide sufficient energy at small scales to halt local collapse. We test this hypothesis with MHD simulations at resolutions up to 256^3 zones, done with ZEUS-3D. We first derive a resolution criterion for self-gravitating, magnetized gas: in order to prevent collapse of magnetostatically supported regions due to numerical diffusion, the minimum Jeans length must be resolved by four zones. Resolution of MHD waves increases this requirement to roughly six zones. We then find that magnetic fields cannot prevent local collapse unless they provide magnetostatic support. Weaker magnetic fields do somewhat delay collapse and cause it to occur more uniformly across the supported region in comparison to the hydrodynamical case. However, they still cannot prevent local collapse for much longer than a global free-fall time.
Georgi Pavlovski; Michael D. Smith; Mordecai-Mark Mac Low; Alexander Rosen
2002-08-15T23:59:59.000Z
We present the results from three dimensional hydrodynamical simulations of decaying high-speed turbulence in dense molecular clouds. We compare our results, which include a detailed cooling function, molecular hydrogen chemistry and a limited C and O chemistry, to those previously obtained for decaying isothermal turbulence. After an initial phase of shock formation, power-law decay regimes are uncovered, as in the isothermal case. We find that the turbulence decays faster than in the isothermal case because the average Mach number remains higher, due to the radiative cooling. The total thermal energy, initially raised by the introduction of turbulence, decays only a little slower than the kinetic energy. We discover that molecule reformation, as the fast turbulence decays, is several times faster than that predicted for a non-turbulent medium. This is caused by moderate speed shocks which sweep through a large fraction of the volume, compressing the gas and dust. Through reformation, the molecular density and molecular column appear as complex patterns of filaments, clumps and some diffuse structure. In contrast, the molecular fraction has a wider distribution of highly distorted clumps and copious diffuse structure, so that density and molecular density are almost identically distributed during the reformation phase. We conclude that molecules form in swept-up clumps but effectively mix throughout via subsequent expansions and compressions.
The Numerical Simulation of Turbulence
W. Schmidt
2007-12-06T23:59:59.000Z
In this contribution, I give an overview of the various approaches toward the numerical modelling of turbulence, particularly, in the interstellar medium. The discussion is placed in a physical context, i. e. computational problems are motivated from basic physical considerations. Presenting selected examples for solutions to these problems, I introduce the basic ideas of the most commonly used numerical methods.
Quantum Turbulence Matthew S. Paoletti
Texas at Austin. University of
critically review the diverse theoretical, computational, and experimental approaches from the point of view distinction between the velocity statistics of quantum and classical turbulence is exhibited and used of experimental observers. Similarities and differences between the general properties of classical and quantum
Magnetic shear-driven instability and turbulent mixing in magnetized protostellar disks
Bonanno, Alfio
2008-01-01T23:59:59.000Z
Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.
Magnetic shear-driven instability and turbulent mixing in magnetized protostellar disks
Alfio Bonanno; Vadim Urpin
2008-01-13T23:59:59.000Z
Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.
Turbulence Modelling and Stirring Mechanisms in the Cosmological Large-scale Structure
Iapichino, L; Niemeyer, J C; Merklein, J
2011-01-01T23:59:59.000Z
FEARLESS (Fluid mEchanics with Adaptively Refined Large Eddy SimulationS) is a numerical scheme for modelling subgrid-scale turbulence in cosmological adaptive mesh refinement simulations. In this contribution, the main features of this tool will be outlined. We discuss the application of this method to cosmological simulations of the large-scale structure. The simulations show that the production of turbulence has a different redshift dependence in the intra-cluster medium and the warm-hot intergalactic medium, caused by the distinct stirring mechanisms (mergers and shock interactions) acting in them. Some properties of the non-thermal pressure support in the two baryon phases are also described.
Parallel electric field generation by Alfven wave turbulence
Bian, N H; Brown, J C
2010-01-01T23:59:59.000Z
{This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare plasma conditions.} {We consider anisotropic Alfvenic fluctuations in the presence of a strong background magnetic field. Exploiting this anisotropy, a set of reduced equations governing non-linear, two-fluid plasma dynamics is derived. The low-$\\beta$ limit of this model is used to follow the turbulent cascade of the energy resulting from the non-linear interaction between kinetic Alfven waves, from the large magnetohydrodynamics (MHD) scales with $k_{\\perp}\\rho_{s}\\ll 1$ down to the small "kinetic" scales with $k_{\\perp}\\rho_{s} \\gg 1$, $\\rho_{s}$ being the ion sound gyroradius.} {Scaling relations are obtained for the magnitude of the turbulent electromagnetic fluctuations, as a function of $k_{\\perp}$ and $k_{\\parallel}$, showing that the electric field develops ...
Active control for turbulent premixed flame simulations
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-03-26T23:59:59.000Z
Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.
Inclusion of turbulence in solar modeling
L. H. Li; F. J. Robinson; P. Demarque; S. Sofia; D. B. Guenther
2001-11-07T23:59:59.000Z
The general consensus is that in order to reproduce the observed solar p-mode oscillation frequencies, turbulence should be included in solar models. However, until now there has not been any well-tested efficient method to incorporate turbulence into solar modeling. We present here two methods to include turbulence in solar modeling within the framework of the mixing length theory, using the turbulent velocity obtained from numerical simulations of the highly superadiabatic layer of the sun at three stages of its evolution. The first approach is to include the turbulent pressure alone, and the second is to include both the turbulent pressure and the turbulent kinetic energy. The latter is achieved by introducing two variables: the turbulent kinetic energy per unit mass, and the effective ratio of specific heats due to the turbulent perturbation. These are treated as additions to the standard thermodynamic coordinates (e.g. pressure and temperature). We investigate the effects of both treatments of turbulence on the structure variables, the adiabatic sound speed, the structure of the highly superadiabatic layer, and the p-mode frequencies. We find that the second method reproduces the SAL structure obtained in 3D simulations, and produces a p-mode frequency correction an order of magnitude better than the first method.
Wind reversals in turbulent Rayleigh-Benard convection
Francisco Fontenele Araujo; S. Grossmann; D. Lohse
2005-08-29T23:59:59.000Z
The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-B\\'enard convection is theoretically analysed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose dynamics is related to the Lorenz equations. For Prandtl and Rayleigh numbers in the range $10^{-2} \\leq \\Pr \\leq 10^{3}$ and $10^{7} \\leq \\Ra \\leq 10^{12}$, the model has the following features: (i) chaotic reversals may be exhibited at Ra $\\geq 10^{7}$; (ii) the Reynolds number based on the root mean square velocity scales as $\\Re_{rms} \\sim \\Ra^{[0.41 ... 0.47]}$ (depending on Pr), and as $\\Re_{rms} \\sim \\Pr^{-[0.66 ... 0.76]}$ (depending on Ra); and (iii) the mean reversal frequency follows an effective scaling law $\\omega / (\
Kandlikar, Satish
rates in the presence of thermal convection should have been nearly the same as those measured under iso in the Interfacial Boundary Layer Measured in an Open Tank of Water in Turbulent Free Convection," J. Fluid Meek Vol
Yokoi, N. [Institute of Industrial Science, University of Tokyo, Tokyo (Japan)] [Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Higashimori, K.; Hoshino, M. [Department of Earth and Planetary Science, University of Tokyo, Tokyo (Japan)] [Department of Earth and Planetary Science, University of Tokyo, Tokyo (Japan)
2013-12-15T23:59:59.000Z
Through the enhancement of transport, turbulence is expected to contribute to the fast reconnection. However, the effects of turbulence are not so straightforward. In addition to the enhancement of transport, turbulence under some environment shows effects that suppress the transport. In the presence of turbulent cross helicity, such dynamic balance between the transport enhancement and suppression occurs. As this result of dynamic balance, the region of effective enhanced magnetic diffusivity is confined to a narrow region, leading to the fast reconnection. In order to confirm this idea, a self-consistent turbulence model for the magnetic reconnection is proposed. With the aid of numerical simulations where turbulence effects are incorporated in a consistent manner through the turbulence model, the dynamic balance in the turbulence magnetic reconnection is confirmed.
Quantifying Turbulence for Tidal Power Applications
Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav
2010-08-01T23:59:59.000Z
Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.
Improved detection of atmospheric turbulence with SLODAR
Michael Goodwin; Charles Jenkins; Andrew Lambert
2007-06-19T23:59:59.000Z
We discuss several improvements in the detection of atmospheric turbulence using SLOpe Detection And Ranging (SLODAR). Frequently, SLODAR observations have shown strong ground-layer turbulence, which is beneficial to adaptive optics. We show that current methods which neglect atmospheric propagation effects can underestimate the strength of high altitude turbulence by up to ~ 30%. We show that mirror and dome seeing turbulence can be a significant fraction of measured ground-layer turbulence, some cases up to ~ 50%. We also demonstrate a novel technique to improve the nominal height resolution, by a factor of 3, called Generalized SLODAR. This can be applied when sampling high-altitude turbulence, where the nominal height resolution is the poorest, or for resolving details in the important ground-layer.
Turbulent heat transfer and friction in a square channel with discrete rib turbulators
McMillin, Robert Dale
1989-01-01T23:59:59.000Z
TURBULENT HEAT TRANSFER AND FRICTION IN A SQUARE CHANNEL WITH DISCRETE RIB TURBULATORS A Thesis by ROBERT DALE iXIGMILLIN Subniitted to the Office of Graduate Studies of Texas AK. M L niversrty in partial fulfillment of the requirements... for the degree of MASTER OF SGIE IGE Deceinber 1989 Major Subject' Mechanical Engineering TURBULENT HEAT TRANSFER AND FRICTION IN A SQUARE CHANNEL WITH DISCRETE RIB TURBULATORS A Thesrs by ROBERT DALE MCMILLI'V Approverl as to style and content...
Mimicking a turbulent signal: sequential multiaffine processes
L. Biferale; G. Boffetta; A. Celani; A. Crisanti; A. Vulpiani
1997-11-03T23:59:59.000Z
An efficient method for the construction of a multiaffine process, with prescribed scaling exponents, is presented. At variance with the previous proposals, this method is sequential and therefore it is the natural candidate in numerical computations involving synthetic turbulence. The application to the realization of a realistic turbulent-like signal is discussed in detail. The method represents a first step towards the realization of a realistic spatio-temporal turbulent field.
Assessment of Combustion and Turbulence Models for the Simulation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...
atmospheric optical turbulence: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Next Page Last Page Topic Index 1 Atmospheric Turbulence and its Influence on Adaptive Optics Physics Websites Summary: Atmospheric Turbulence and its Influence on Adaptive Optics...
Kinetic Theory of Turbulent Multiphase Phase | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
solids particles interacting with a turbulent gas phase such as those in gasification rectors. Understanding the transport of heat and mass in turbulent flows, and...
Stochastic superparameterization in quasigeostrophic turbulence
Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU-Abu Dhabi (United Arab Emirates)
2014-08-15T23:59:59.000Z
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a ?-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and efficient stochastic parameterizations for use in ensemble-based state estimation and prediction.
Cyclone separator having boundary layer turbulence control
Krishna, Coimbatore R. (Mt. Sinai, NY); Milau, Julius S. (Port Jefferson, NY)
1985-01-01T23:59:59.000Z
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.
Fifteen Lectures on Laminar and Turbulent Combustion
Peters, Norbert
Fifteen Lectures on Laminar and Turbulent Combustion N. Peters RWTH Aachen Ercoftac Summer School in Combustion Systems 1 Lecture 2: Calculation of Adiabatic Flame Temperatures and Chemical Equilibria 20: Laminar Diffusion Flames: Different Flow Geometries 156 Lecture 11: Turbulent Combustion: Introduction
turbulent heat International Journal of Numerical
Lin, Wen-Wei
flow behavior in a rectangular channel with streamwise-periodic ribs mounted on one of the principal. Nomenclature De = hydraulic diameter h = rib height H = channel height k = turbulent kinetic energy Nu = local June 1999 Accepted September 1999 Computation of enhanced turbulent heat transfer in a channel
Turbulence of a Unidirectional Flow Bjorn Birnir
Birnir, Björn
-flying aircraft. Turbulent drag also prevents the design of more fuel-efficient cars and aircrafts. Turbulence plays a role in the heat trans- fer in nuclear reactors, causes drag in oil pipelines and influence and intrigued people for centuries. Five centuries ago a fluid engineer by the name of Leonardo da Vinci tackled
Stochastic models for turbulent reacting flows
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01T23:59:59.000Z
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Theory of laminated turbulence: open questions
E. Kartashova
2006-11-17T23:59:59.000Z
Theory of laminated turbulnece includes continuous layer of turbulence (statistical description, kinetic equations, Zakharov-Kolmogorov spectra, etc) AND discrete layer of turbulence (isolated groups of interacting waves, no statisticaldescription). This theory is presented, examples of possible applications are given, important open questions are formulated.
Modelling of turbulent stratified flames
Darbyshire, Oliver Richard
) shows data with a negative correlation, (b) shows data with no correlation and (c) shows data with a positive correlation. . . . . . . . . 44 3.3 Flow chart of the SIMPLE algorithm. . . . . . . . . . . . . . . . . . . . . 50 3.4 Schematic of the V... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Comparison of predicted and measured velocities (m/s) and turbulence kinetic energy (m2/s2) for the cold flow ORACLES experiment. . . . . . 64 4.2 Comparison of cold flow results for the V-flame case. Mean axial velocity is shown on the left...
Flame front configuration of turbulent premixed flames
Furukawa, Junichi [Tokyo Metropolitan Technical Coll. (Japan). Dept. of Mechanical Engineering] [Tokyo Metropolitan Technical Coll. (Japan). Dept. of Mechanical Engineering; Maruta, Kaoru [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science] [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Hirano, Toshisuke [Univ. of Tokyo (Japan). Dept. of Chemical System Engineering] [Univ. of Tokyo (Japan). Dept. of Chemical System Engineering
1998-02-01T23:59:59.000Z
The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.
Broader source: Energy.gov [DOE]
Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...
Great Plains Turbulence Environment: Its Origins, Impact, and Simulation
Kelley, N. D.; Jonkman, B. J.; Scott, G. N.
2006-12-01T23:59:59.000Z
This paper summarizes the known impacts of nocturnal turbulence on wind turbine performance and operations.
Wind turbulence characterization for wind energy development
Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.
1991-09-01T23:59:59.000Z
As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,
Turbulence-chemistry interactions in reacting flows
Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01T23:59:59.000Z
Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.
Outflow Driven Turbulence in Molecular Clouds
Jonathan J. Carroll; Adam Frank; Eric G. Blackman; Andrew J. Cunningham; Alice C. Quillen
2008-05-30T23:59:59.000Z
In this paper we explore the relationship between protostellar outflows and turbulence in molecular clouds. Using 3-D numerical simulations we focus on the hydrodynamics of multiple outflows interacting within a parsec scale volume. We explore the extent to which transient outflows injecting directed energy and momentum into a sub-volume of a molecular cloud can be converted into random turbulent motions. We show that turbulence can readily be sustained by these interactions and show that it is possible to broadly characterize an effective driving scale of the outflows. We compare the velocity spectrum obtained in our studies to that of isotropically forced hydrodynamic turbulence finding that in outflow driven turbulence a power law is indeed achieved. However we find a steeper spectrum (beta ~ 3) is obtained in outflow driven turbulence models than in isotropically forced simulations (beta ~ 2). We discuss possible physical mechanisms responsible for these results as well and their implications for turbulence in molecular clouds where outflows will act in concert with other processes such as gravitational collapse.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gasenzer, Thomas [Universitat Heidelberg, Institut fur Theoretische Physik, Heidelberg (Germany); GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); McLerran, Larry [Brookhaven National Laboratory, Physics Department, RIKEN BNL Research Center Upton NY (United States); China Central Normal University, Physics Department, Wuhan (China); Pawlowski, Jan M [Universitat Heidelberg, Institut fur Theoretische Physik, Heidelberg (Germany); GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Sexty, Denes [Universitat Heidelberg, Institut fur Theoretische Physik, Heidelberg (Germany); GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2014-10-01T23:59:59.000Z
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-10-01T23:59:59.000Z
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore »point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less
Universal turbulence on branes in holography
Koji Hashimoto; Mitsuhiro Nishida; Akihiko Sonoda
2015-05-19T23:59:59.000Z
At a meson melting transition in holographic QCD, a weak turbulence of mesons was found with critical embeddings of probe D-branes in gravity duals. The turbulent mesons have a power-law energy distribution $\\varepsilon_n \\propto (\\omega_n)^\\alpha$ where $\\omega_n$ is the mass of the $n$-th excited resonance of the meson tower. In this paper, we find that the turbulence power $\\alpha$ is universal, irrespective of how the transition is driven, by numerically calculating the power in various static brane setups at criticality. We also find that the power $\\alpha$ depends only on the cone dimensions of the probe D-branes.
Universal turbulence on branes in holography
Hashimoto, Koji; Sonoda, Akihiko
2015-01-01T23:59:59.000Z
At a meson melting transition in holographic QCD, a weak turbulence of mesons was found with critical embeddings of probe D-branes in gravity duals. The turbulent mesons have a power-law energy distribution $\\varepsilon_n \\propto (\\omega_n)^\\alpha$ where $\\omega_n$ is the mass of the $n$-th excited resonance of the meson tower. In this paper, we find that the turbulence power $\\alpha$ is universal, irrespective of how the transition is driven, by numerically calculating the power in various static brane setups at criticality. We also find that the power $\\alpha$ depends only on the cone dimensions of the probe D-branes.
Quasi-Periodic Oscillations from Magnetorotational Turbulence
Phil Arras; Omer Blaes; Neal J. Turner
2006-02-13T23:59:59.000Z
Quasi-periodic oscillations (QPOs) in the X-ray lightcurves of accreting neutron star and black hole binaries have been widely interpreted as being due to standing wave modes in accretion disks. These disks are thought to be highly turbulent due to the magnetorotational instability (MRI). We study wave excitation by MRI turbulence in the shearing box geometry. We demonstrate that axisymmetric sound waves and radial epicyclic motions driven by MRI turbulence give rise to narrow, distinct peaks in the temporal power spectrum. Inertial waves, on the other hand, do not give rise to distinct peaks which rise significantly above the continuum noise spectrum set by MRI turbulence, even when the fluid motions are projected onto the eigenfunctions of the modes. This is a serious problem for QPO models based on inertial waves.
TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING
Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo
2013-06-13T23:59:59.000Z
A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.
Propagating and stationary superfluid turbulent fronts
Castiglione, J.; Murphy, P.J.; Tough, J.T.; Hayot, F. [Ohio State Univ., Columbus, OH (United States)] [and others
1995-09-01T23:59:59.000Z
The authors have observed that the critical heat current for the transition to superfluid turbulence in weakly nonuniform circular channels depends strongly on the flow direction. This observation is particularly surprising since no other property of the turbulence appears to have such a dependence. In a nonuniform channel the critical heat current is associated with a stationary front between the laminar and turbulent flow. The authors propose a new model for super-fluid turbulent fronts which explains the asymmetry of the critical heat currents in a simple way. The model is based on the subcritical nature of the transition, and the generic description of such a bifurcation by the Ginzburg-Landau equation. As a bonus, the model also explains a long-standing problem in superfluid physics-the nature of propagating fronts in uniform channels. The results of this analysis of both the uniform and nonuniform channel data also provide new information about the vortex line drift velocity.
Turbulent round jet under gravity waves
Ryu, Yong Uk
2002-01-01T23:59:59.000Z
The behavior of a neutrally buoyant horizontal turbulent round jet under a wavy environment was investigated. Progressive waves with different wave amplitudes in an intermediate water depth were used. The Particle Image Velocimetry (PIV) technique...
Inhomogeneous distribution of droplets in cloud turbulence
Itzhak Fouxon; Yongnam Park; Roei Harduf; Changhoon Lee
2014-10-30T23:59:59.000Z
We solve the problem of spatial distribution of inertial particles that sediment in turbulent flow with small ratio of acceleration of fluid particles to acceleration of gravity $g$. The particles are driven by linear drag and have arbitrary inertia. The pair-correlation function of concentration obeys a power-law in distance with negative exponent. Divergence at zero signifies singular distribution of particles in space. Independently of particle size the exponent is ratio of integral of energy spectrum of turbulence times the wavenumber to $g$ times numerical factor. We find Lyapunov exponents and confirm predictions by direct numerical simulations of Navier-Stokes turbulence. The predictions include typical case of water droplets in clouds. This significant progress in the study of turbulent transport is possible because strong gravity makes the particle's velocity at a given point unique.
Concepts in strong Langmuir turbulence theory
DuBois, D.F.; Rose, H.A.
1990-01-01T23:59:59.000Z
Some of the basic concepts of strong Langmuir turbulence (SLT) theory are reviewed. In SLT system, a major fraction of the turbulent energy is carried by local, time-dependent, nonlinear excitations called cavitons. Modulational instability, localization of Langmuir fields by density fluctuations, caviton nucleation, collapse, and burnout and caviton correlations are reviewed. Recent experimental evidence will be presented for SLT phenomena in the interaction of powerful HF waves with the ionosphere and in laser-plasma interaction experiments. 38 refs., 11 figs.
Quantum light in the turbulent atmosphere
A. A. Semenov; W. Vogel
2009-08-12T23:59:59.000Z
Nonclassical properties of light propagating through the turbulent atmosphere are studied. We demonstrate by numerical simulation that the probability distribution of the transmission coefficient, which characterizes the effects of the atmosphere on the quantum state of light, can be reconstructed by homodyne detection. Nonclassical photon-statistics and, more generally, nonclassical Glauber-Sudarshan functions appear to be more robust against turbulence for weak light fields rather than for bright ones.
Direct numerical simulation of turbulent reacting flows
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01T23:59:59.000Z
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Thermal hydraulics development for CASL
Lowrie, Robert B [Los Alamos National Laboratory
2010-12-07T23:59:59.000Z
This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.
Reaction and diffusion in turbulent combustion
Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)
1993-12-01T23:59:59.000Z
The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.
New perspectives on superparameterization for geophysical turbulence
Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)
2014-08-15T23:59:59.000Z
This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.
Meso-scale turbulence in living fluids
Henricus H. Wensink; Jörn Dunkel; Sebastian Heidenreich; Knut Drescher; Raymond E. Goldstein; Hartmut Löwen; Julia M. Yeomans
2012-08-21T23:59:59.000Z
Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum systems. Self-sustained turbulent motion in microbial suspensions presents an intriguing example of collective dynamical behavior amongst the simplest forms of life, and is important for fluid mixing and molecular transport on the microscale. The mathematical characterization of turbulence phenomena in active non-equilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific, or which generalizations of the Navier-Stokes equations are able to describe them adequately. Here, we combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence.
Menon, S.; Calhoon, W.H. Jr.; Goldin, G. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Aerospace Engineering; Kerstein, A.R. [Sandia National Labs., Livermore, CA (United States)
1994-01-01T23:59:59.000Z
A numerical simulation of entrainment, turbulent advection, molecular import and chemical kinetics in a turbulent diffusion flame is used to investigate effects of molecular transport on turbulence-chemistry interactions. A fun finite-rate chemical mechanism is used to represent the combustion of a hydrogen-argon mixture issuing into air. Results based on incorporation of differential diffusion and variable Lewis number are compared to cases with the former effect, or both-effects, suppressed. Significant impact on radical species production and on NO emission index (based on a reduced mechanism for thermal NO) is found. A reduced mechanism for hydrogen-air combustion, omitting both effects and incorporating other simplifications, performs comparably except that its NO predictions agree well with the case of full chemistry and molecular transport, possibly due to cancellation of errors.
Uzdensky, Dmitri A., E-mail: uzdensky@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, Boulder, CO 80309 (United States)
2013-10-01T23:59:59.000Z
In this paper, we consider two outstanding intertwined problems in modern high-energy astrophysics: (1) the vertical-thermal structure of an optically thick accretion disk heated by the dissipation of magnetohydrodynamic turbulence driven by the magnetorotational instability (MRI), and (2) determining the fraction of the accretion power released in the corona above the disk. For simplicity, we consider a gas-pressure-dominated disk and assume a constant opacity. We argue that the local turbulent dissipation rate due to the disruption of the MRI channel flows by secondary parasitic instabilities should be uniform across most of the disk, almost up to the disk photosphere. We then obtain a self-consistent analytical solution for the vertical thermal structure of the disk, governed by the balance between the heating by MRI turbulence and the cooling by radiative diffusion. Next, we argue that the coronal power fraction is determined by the competition between the Parker instability, viewed as a parasitic instability feeding off of MRI channel flows, and other parasitic instabilities. We show that the Parker instability inevitably becomes important near the disk surface, leading to a certain lower limit on the coronal power. While most of the analysis in this paper focuses on the case of a disk threaded by an externally imposed vertical magnetic field, we also discuss the zero net flux case, in which the magnetic field is produced by the MRI dynamo itself, and show that most of our arguments and conclusions should be valid in this case as well.
Accepted, Nuclear Fusion, 1999 Turbulent Transport and Turbulence in Radiative I-Mode Plasmas in
California at San Diego, University of
Accepted, Nuclear Fusion, 1999 Turbulent Transport and Turbulence in Radiative I-Mode Plasmas vs. radiated fraction suggests a common underlying suppression mechanism. #12;Accepted, Nuclear of Physics University of Alberta Edmonton, Alberta Canada, T6G 2J1 1/4/00 17:25 PM #12;Accepted, Nuclear
AQUIFER THERMAL ENERGY STORAGE
Tsang, C.-F.
2011-01-01T23:59:59.000Z
aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence
AQUIFER THERMAL ENERGY STORAGE
Tsang, C.-F.
2011-01-01T23:59:59.000Z
using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence
AQUIFER THERMAL ENERGY STORAGE
Tsang, C.-F.
2011-01-01T23:59:59.000Z
using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,
The Nature of Subproton Scale Turbulence in the Solar Wind
Chen, C H K; Xia, Q; Perez, J C
2013-01-01T23:59:59.000Z
The nature of subproton scale fluctuations in the solar wind is an open question, partly because two similar types of electromagnetic turbulence can occur: kinetic Alfven turbulence and whistler turbulence. These two possibilities, however, have one key qualitative difference: whistler turbulence, unlike kinetic Alfven turbulence, has negligible power in density fluctuations. In this Letter, we present new observational data, as well as analytical and numerical results, to investigate this difference. The results show, for the first time, that the fluctuations well below the proton scale are predominantly kinetic Alfven turbulence, and, if present at all, the whistler fluctuations make up only a small fraction of the total energy.
Evidence of critical balance in kinetic Alfven wave turbulence simulations
TenBarge, J. M.; Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)
2012-05-15T23:59:59.000Z
A numerical simulation of kinetic plasma turbulence is performed to assess the applicability of critical balance to kinetic, dissipation scale turbulence. The analysis is performed in the frequency domain to obviate complications inherent in performing a local analysis of turbulence. A theoretical model of dissipation scale critical balance is constructed and compared to simulation results, and excellent agreement is found. This result constitutes the first evidence of critical balance in a kinetic turbulence simulation and provides evidence of an anisotropic turbulence cascade extending into the dissipation range. We also perform an Eulerian frequency analysis of the simulation data and compare it to the results of a previous study of magnetohydrodynamic turbulence simulations.
Numerical Investigation of Scaling Properties of Turbulent Premixed Flames
J. C. Niemeyer; A. R. Kerstein
1997-07-09T23:59:59.000Z
Gibson scaling and related properties of flame-surface geometry in turbulent premixed combustion are demonstrated using a novel computational model, Deterministic Turbulent Mixing (DTM). In DTM, turbulent advection is represented by a sequence of maps applied to the computational domain. The structure of the mapping sequence incorporates pertinent scaling properties of the turbulent cascade. Here, combustion in Kolmogorov turbulence (kinetic-energy cascade) and in Bolgiano-Obukhov convective turbulence (potential-energy cascade) is simulated. Implications with regard to chemical flames and astrophysical (thermonuclear) flames are noted.
THERMAL HYDRAULICS KEYWORDS: thermal hydraulics,
Smith, Barton L.
-fluid modeling of nuclear reactor systems. Thermal-hydraulic analysis codes such as RELAP5-3D ~Ref. 1! and FLICA regions of the system. In fact, the CFD code FLUENT has previously been coupled to RELAP5-3D ~Refs. 3
Robert I Selkowitz; Eric G. Blackman
2007-07-31T23:59:59.000Z
We consider the dissipation by Fermi acceleration of magnetosonic turbulence in the Reynolds Layer of the interstellar medium. The scale in the cascade at which electron acceleration via stochastic Fermi acceleration (STFA) becomes comparable to further cascade of the turbulence defines the inner scale. For any magnetic turbulent spectra equal to or shallower than Goldreich-Sridhar this turns out to be $\\ge 10^{12}$cm, which is much larger than the shortest length scales observed in radio scintillation measurements. While STFA for such spectra then contradict models of scintillation which appeal directly to an extended, continuous turbulent cascade, such a separation of scales is consistent with the recent work of \\citet{Boldyrev2} and \\citet{Boldyrev3} suggesting that interstellar scintillation may result from the passage of radio waves through the galactic distribution of thin ionized boundary surfaces of HII regions, rather than density variations from cascading turbulence. The presence of STFA dissipation also provides a mechanism for the non-ionizing heat source observed in the Reynolds Layer of the interstellar medium \\citep{Reynolds}. STFA accommodates the proper heating power, and the input energy is rapidly thermalized within the low density Reynolds layer plasma.
Magnetic Turbulence and Thermodynamics in the Inner Region of Protoplanetary Discs
Hirose, Shigenobu
2015-01-01T23:59:59.000Z
Using radiation magnetohydrodynamics simulations with realistic opacities and equation of state, and zero net magnetic flux, we have explored thermodynamics in the inner part of protoplanetary discs where magnetic turbulence is expected. The thermal equilibrium curve consists of the upper, lower, and middle branches. The upper (lower) branch corresponds to hot (cool) and optically very (moderately) thick discs, respectively, while the middle branch is characterized by convective energy transport near the midplane. Convection is also the major energy transport process near the low surface density end of the upper branch. There, convective motion is fast with Mach numbers reaching $\\gtrsim 0.01$, and enhances both magnetic turbulence and cooling, raising the ratio of vertically-integrated shear stress to vertically-integrated pressure by a factor of several. This convectively enhanced ratio seems a robust feature in accretion discs having an ionization transition. We have also examined causes of the S-shaped th...
Mechanical Engineering & Thermal Group
Mojzsis, Stephen J.
Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced
Clustering of Aerosols in Atmospheric Turbulent Flow
T. Elperin; N. Kleeorin; M. A. Liberman; V. L'vov; I. Rogachevskii
2007-02-15T23:59:59.000Z
A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed applications of the analyzed effects to the dynamics of aerosols and droplets in the atmospheric turbulent flow.
Interstellar Turbulence, Cloud Formation and Pressure Balance
Enrique Vazquez-Semadeni
1998-10-23T23:59:59.000Z
We discuss HD and MHD compressible turbulence as a cloud-forming and cloud-structuring mechanism in the ISM. Results from a numerical model of the turbulent ISM at large scales suggest that the phase-like appearance of the medium, the typical values of the densities and magnetic field strengths in the intercloud medium, as well as Larson's velocity dispersion-size scaling relation in clouds may be understood as consequences of the interstellar turbulence. However, the density-size relation appears to only hold for the densest simulated clouds, there existing a large population of small, low-density clouds, which, on the other hand, are hardest to observe. We then discuss several tests and implications of a fully dynamical picture of interstellar clouds. The results imply that clouds are transient, constantly being formed, distorted and disrupted by the turbulent velocity field, with a fraction of these fluctuations undergoing gravitational collapse. Simulated line profiles and estimated cloud lifetimes are consistent with observational data. In this scenario, we suggest it is quite unlikely that quasi-hydrostatic structures on any scale can form, and that the near pressure balance between clouds and the intercloud medium is an incidental consequence of the density field driven by the turbulence and in the presence of appropriate cooling, rather than a driving or confining mechanism.
Anisotropic turbulent model for solar coronal heating
B. Bigot; S. Galtier; H. Politano
2008-08-26T23:59:59.000Z
Context : We present a self-consistent model of solar coronal heating, originally developed by Heyvaert & Priest (1992), in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence (Galtier et al. 2000). Aims : We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods :The coronal structures are assumed to be in a turbulent state maintained by the slow erratic motions of the magnetic footpoints. A description for the large-scale and the unresolved small-scale dynamics are given separately. From the latter, we compute exactly (or numerically for coronal holes) turbulent viscosites that are finally used in the former to close self-consistently the system and derive the heating flux expression. Results : We show that the heating rate and the turbulent velocity compare favorably with coronal observations. Conclusions : Although the Alfven wave turbulence regime is strongly anisotropic, and could reduce a priori the heating efficiency, it provides an unexpected satisfactory model of coronal heating for both magnetic loops and open magnetic field lines.
NO concentration imaging in turbulent nonpremixed flames
Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01T23:59:59.000Z
The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.
Biophysical coupling between turbulence, veliger behavior, and larval supply
Fuchs, Heidi L
2005-01-01T23:59:59.000Z
The goals of this thesis were to quantify the behavior of gastropod larvae (mud snails Ilyanassa obsoleta) in turbulence, and to investigate how that behavior affects larval supply in a turbulent coastal inlet. Gastropod ...
Aeroelastic Analysis of Bridges: Effects of Turbulence and Aerodynamic Nonlinearities
Kareem, Ahsan
of bridges under turbulent winds. The nonlinear force model separates the aerodynamic force into low; Buffeting; Turbulence; Bridges; Wind forces; Aerodynamics. Introduction The aerodynamic performance under aerodynamic force model and associated time domain analysis framework for predicting the aeroelastic response
Drag, turbulence, and diffusion in flow through emergent vegetation
Nepf, Heidi
Aquatic plants convert mean kinetic energy into turbulent kinetic energy at the scale of the plant stems and branches. This energy transfer, linked to wake generation, affects vegetative drag and turbulence intensity. ...
Assessment of reduced mechanisms using One Dimensional Stochastic Turbulence model
Chien, Li-Chun
2010-01-01T23:59:59.000Z
turbulence model for a syngas jet flame. Proceeding of FallKerstein 2002), a turbulent syngas (CO/H2/NO) jet flame wasand DNS results of the syngas jet flame was recently done
Coastal Microstructure: From Active Overturn to Fossil Turbulence
Leung, Pak Tao
2012-02-14T23:59:59.000Z
Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence...
Consider Installing Turbulators on Two- and Three-Pass Firetube...
Broader source: Energy.gov (indexed) [DOE]
tip sheet outlines the benefits of turbulators on firetube boilers as part of optimized steam systems. STEAM TIP SHEET 25 Consider Installing Turbulators on Two- and Three-Pass...
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31T23:59:59.000Z
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
PDF Calculations of Turbulent Nonpremixed Flames with Local Extinction
, a stochastic model of turbulence frequency, the Euclidean minimum spanning tree (EMST) mixing model, and the 16
Physics of Stratocumulus Top (POST): turbulent mixing across capping inversion
2013-01-01T23:59:59.000Z
vertical water potential horizontal wind, and turbulentof potential components of horizontal wind, and buoyantwater potential temperature, horizontal wind, and turbulent
A signature for turbulence driven magnetic islands
Agullo, O.; Muraglia, M.; Benkadda, S. [Aix-Marseille Université, CNRS, PIIM, UMR 7345 Marseille (France); France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS, Marseille (France); Poyé, A. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Yagi, M. [Plasma Theory and Simulation Gr., JAEA, Rokkasho (Japan); Garbet, X. [IRFM, CEA, St-Paul-Lez-Durance 13108 (France); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2014-09-15T23:59:59.000Z
We investigate the properties of magnetic islands arising from tearing instabilities that are driven by an interchange turbulence. We find that such islands possess a specific signature that permits an identification of their origin. We demonstrate that the persistence of a small scale turbulence maintains a mean pressure profile, whose characteristics makes it possible to discriminate between turbulence driven islands from those arising due to an unfavourable plasma current density gradient. We also find that the island poloidal turnover time, in the steady state, is independent of the levels of the interchange and tearing energy sources. Finally, we show that a mixing length approach is adequate to make theoretical predictions concerning island flattening in the island rotation frame.
Closure models for turbulent reacting flows
Dutta, A.; Tarbell, J.M. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Chemical Engineering)
1989-12-01T23:59:59.000Z
In this paper, a simple procedure based on fast and slow reaction asymptotics has been employed to drive first-order closure models for the nonlinear reaction terms in turbulent mass balances from mechanistic models of turbulent mixing and reaction. The coalescence-redispersion (CRD) model, the interaction by exchange with the mean (IEM) model, the three-environment (3E) model, and the four-environment (4E) model have been used to develop closure equations. The closure models have been tested extensively against experimental data for both single and multiple reactions. The closures based on slow asymptotics for the CRD, 3E and 4E models provide very good predictions of all of the experimental data, while other models available either in the literature or derived here are not adequate. The simple new closure equations developed in this paper may be useful in modeling systems involving turbulent mixing and complex chemical reactions.
Interpreting Power Anisotropy Measurements in Plasma Turbulence
Chen, C H K; Horbury, T S; Schekochihin, A A
2009-01-01T23:59:59.000Z
A relationship between power anisotropy and wavevector anisotropy in turbulent fluctuations is derived. This can be used to interpret plasma turbulence measurements, for example in the solar wind. If fluctuations are anisotropic in shape then the ion gyroscale break point in spectra in the directions parallel and perpendicular to the magnetic field would not occur at the same frequency, and similarly for the electron gyroscale break point. This is an important consideration when interpreting solar wind observations in terms of anisotropic turbulence theories. Model magnetic field power spectra are presented assuming a cascade of critically balanced Alfven waves in the inertial range and kinetic Alfven waves in the dissipation range. The variation of power anisotropy with scale is compared to existing solar wind measurements and the similarities and differences are discussed.
Wave turbulence served up on a plate
Pablo Cobelli; Philippe Petitjeans; Agnes Maurel; Vincent Pagneux; Nicolas Mordant
2009-10-28T23:59:59.000Z
Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform profilometry technique, the deformation field of the plate surface is measured simultaneously in time and space. This enables us to compute the wavevector-frequency Fourier ($\\mathbf k, \\omega$) spectrum of the full space-time deformation velocity. In the 3D ($\\mathbf k, \\omega$) space, we show that the energy of the motion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the linear dispersion relation. This validates the usual wavenumber-frequency change of variables used in many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases with the input power of the forcing, is attributed to weak non linear effects. Our technique opens the way for many new extensive quantitative comparisons between theory and experiments of wave turbulence.
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15T23:59:59.000Z
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Cosmic-ray diffusion in magnetized turbulence
Tautz, R C
2015-01-01T23:59:59.000Z
The problem of cosmic-ray scattering in the turbulent electromagnetic fields of the interstellar medium and the solar wind is of great importance due to the variety of applications of the resulting diffusion coefficients. Examples are diffusive shock acceleration, cosmic-ray observations, and, in the solar system, the propagation of coronal mass ejections. In recent years, it was found that the simple diffusive motion that had been assumed for decades is often in disagreement both with numerical and observational results. Here, an overview is given of the interaction processes of cosmic rays and turbulent electromagnetic fields. First, the formation of turbulent fields due to plasma instabilities is treated, where especially the non-linear behavior of the resulting unstable wave modes is discussed. Second, the analytical and the numerical side of high-energy particle propagation will be reviewed by presenting non-linear analytical theories and Monte-Carlo simulations. For the example of the solar wind, the im...
Spectrally condensed turbulence in thin layers and G. Falkovich2
Falkovich, Gregory
on the underlying turbulence; it generates stronger non-Gaussianity and reduces the efficiency of the inverse energy School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia 2 turbulence, the effects of the bottom friction and of the spectral condensation of the turbulence energy
Statistical theory of turbulent incompressible multimaterial flow
Kashiwa, B.
1987-10-01T23:59:59.000Z
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.
The First Galaxies: Assembly, Cooling and the Onset of Turbulence
Thomas H. Greif; Jarrett L. Johnson; Ralf S. Klessen; Volker Bromm
2009-10-20T23:59:59.000Z
We investigate the properties of the first galaxies at z > 10 with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds 10^4 K, and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a 5*10^7 M_sun system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures > 10^4 K catalyses the formation of H2 and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock-heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.
A note on dissipation in helical turbulence
P. D. Ditlevsen; P. Giuliani
2001-04-04T23:59:59.000Z
In helical turbulence a linear cascade of helicity accompanying the energy cascade has been suggested. Since energy and helicity have different dimensionality we suggest the existence of a characteristic inner scale, $\\xi=k_H^{-1}$, for helicity dissipation in a regime of hydrodynamic fully developed turbulence and estimate it on dimensional grounds. This scale is always larger than the Kolmogorov scale, $\\eta=k_E^{-1}$, and their ratio $\\eta / \\xi $ vanishes in the high Reynolds number limit, so the flow will always be helicity free in the small scales.
Computational aspects of astrophysical MHD and turbulence
Axel Brandenburg
2001-09-27T23:59:59.000Z
The advantages of high-order finite difference scheme for astrophysical MHD and turbulence simulations are highlighted. A number of one-dimensional test cases are presented ranging from various shock tests to Parker-type wind solutions. Applications to magnetized accretion discs and their associated outflows are discussed. Particular emphasis is placed on the possibility of dynamo action in three-dimensional turbulent convection and shear flows, which is relevant to stars and astrophysical discs. The generation of large scale fields is discussed in terms of an inverse magnetic cascade and the consequences imposed by magnetic helicity conservation are reviewed with particular emphasis on the issue of alpha-quenching.
Turbulence model of the cosmic structure
Jose Gaite
2012-02-14T23:59:59.000Z
The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here is proposed a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1--1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.
Gilmore, Mark A. [University of New Mexico
2013-06-27T23:59:59.000Z
Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.
Helton, Donald McLean
2002-01-01T23:59:59.000Z
The premise of the work presented here is to use a common analytical tool, Computational Fluid Dynamics (CFD), along with a prevalent turbulence model, Large Eddy Simulation (LES), to study the flow past rectangular cylinders. In an attempt to use...
Overview of the TurbSim Stochastic Inflow Turbulence Simulator
Kelley, N. D.; Jonkman, B. J.
2005-09-01T23:59:59.000Z
The TurbSim stochastic inflow turbulence code was developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures that reflect the proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with nocturnal boundary layer flows that are not represented well by the IEC Normal Turbulence Models (NTM). Its purpose is to provide the wind turbine designer with the ability to drive design code (FAST or MSC.ADAMS) simulations of advanced turbine designs with simulated inflow turbulence environments that incorporate many of the important fluid dynamic features known to adversely affect turbine aeroelastic response and loading.
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G. (Pittsford, NY); Geiger, Gail E. (Caledonia, NY); Moran, Donald James (Rochester, NY); Fournier, Stephane (Rochester, NY)
2002-01-01T23:59:59.000Z
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Thermal conductivity of thermal-battery insulations
Guidotti, R.A.; Moss, M.
1995-08-01T23:59:59.000Z
The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.
Turbulent drag reduction through oscillating discs
Wise, Daniel J
2014-01-01T23:59:59.000Z
The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...
AIAA-92-5101 Hypersonic Turbulent
Texas at Arlington, University of
were ob- tained in a Mach 8, turbulent, cold flow p a d a11cxpan- sion corner subjected to shock of reduced fluctuation levels. Thcsc fea- tures may be exploited in inlet design by impinging thc cowl shock = undisturbed boundary layer pit = Pitot sh = shock U = upstream influcnce W = mean wall value 1, 2, 2', 3, 4 00
6 Scalar Turbulence within the Canopy Sublayer
Katul, Gabriel
Engineering, University of Brasilia, Brazil 4 Department of Hydraulics, Transport and Civil Infrastructure changes in turbulent kinetic energy dissipation rate inside canopies, the relative importance of ejections that leads to scalar ramps is briefly discussed. The work draws upon a large number of flume, wind tunnel
Energy Spectrum of Quasi-Geostrophic Turbulence
Peter Constantin
2002-07-24T23:59:59.000Z
We consider the energy spectrum of a quasi-geostrophic model of forced, rotating turbulent flow. We provide a rigorous a priori bound E(k) energy spectrum that is expected in a two-dimensional Navier-Stokes inverse cascade. Our bound provides theoretical support for the k^{-2} spectrum observed in recent experiments.
Optical monitor for observing turbulent flow
Albrecht, Georg F. (Livermore, CA); Moore, Thomas R. (Rochester, NY)
1992-01-01T23:59:59.000Z
The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.
Inertial range turbulence in kinetic plasmas
Howes, G G
2007-01-01T23:59:59.000Z
The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the ther...
OF HEALTH CARE IN TURBULENT TIMES
Feschotte, Cedric
FIXING THE FLOW OF HEALTH CARE IN TURBULENT TIMES INNOVATION REPORT 2014 #12;Since 2012, Algorithms facing health care today. We believe there's an unprecedented opportunity to invent a new vision for health care, and academic medicine is poised to lead the way. Algorithms for Innovations is designed
Wave Packets and Turbulent Peter Jordan1
Dabiri, John O.
Wave Packets and Turbulent Jet Noise Peter Jordan1 and Tim Colonius2 1 D´epartement Fluides-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over review evidence of the existence, energetics, dynamics, and acous- tic efficiency of wave packets. We
The Spatial Scaling Laws of Compressible Turbulence
Sun, Bohua
2015-01-01T23:59:59.000Z
This Letter proposed spatial scaling laws of the density-weighted energy spectrum of compressible flow in terms of dissipation rate, wave number and the Mach number. The study has shown the compressible turbulence energy spectrum does not show the complete similarity, but incomplete similarity as $E(k,Ma)=(C+\\frac{D}{\\ln{Ma}})\
Power spectra of outflow-driven turbulence
Moraghan, Anthony; Yoon, Suk-Jin
2015-01-01T23:59:59.000Z
We investigate the power spectra of outflow-driven turbulence through high-resolution three-dimensional isothermal numerical simulations where the turbulence is driven locally in real-space by a simple spherical outflow model. The resulting turbulent flow saturates at an average Mach number of ~2.5 and is analysed through density and velocity power spectra, including an investigation of the evolution of the solenoidal and compressional components. We obtain a shallow density power spectrum with a slope of ~-1.2 attributed to the presence of a network of localised dense filamentary structures formed by strong shock interactions. The total velocity power spectrum slope is found to be ~-2.0, representative of Burgers shock dominated turbulence model. The density weighted velocity power spectrum slope is measured as ~-1.6, slightly less than the expected Kolmogorov scaling value (slope of -5/3) found in previous works. The discrepancy may be caused by the nature of our real space driving model and we suggest ther...
Electron acceleration and turbulence in solar
University College London
, 2005 Free magnetic energy ~2 1032 ergs #12;"Standard" model of a solar flare/CME Solar corona T ~ 106 K Electron energies >10 MeV Proton energies >100 MeV Large solar flare releases about 1032 ergs (about halfElectron acceleration and turbulence in solar flares Eduard Kontar School of Physics and Astronomy
Combustion-turbulence interaction in the turbulent boundary layer over a hot surface
Ng, T.T.; Cheng, R.K.; Robben, F.; Talbot, L.
1982-01-01T23:59:59.000Z
The turbulence-combustion interaction in a reacting turbulent boundary layer over a heated flat plate was studied. Ethylene/air mixture with equivalence ratio of 0.35 was used. The free stream velocity was 10.5 m/s and the wall temperature was 1250/sup 0/K. Combustion structures visualization was provided by high-speed schlieren photographs. Fluid density statistics were deduced from Rayleigh scattering intensity measurements. A single-component laser Doppler velocimetry system was used to obtain mean and root-mean-square velocity distributions, the Reynolds stress, the streamwise and the cross-stream turbulent kinetic energy diffusion, and the production of turbulent kinetic energy by Reynolds stress. The combustion process was dominated by large-scale turbulent structures of the boundary layer. Combustion causes expansion of the boundary layer. No overall self-similarity is observed in either the velocity or the density profiles. Velocity fluctuations were increased in part of the boundary layer and the Reynolds stress was reduced. The turbulent kinetic energy diffusion pattern was changed significantly and a modification of the boundary layer assumption will be needed when dealing with this problem analytically. 11 figures, 1 table.
A Dynamical Model of Plasma Turbulence in the Solar Wind
Howes, G G
2015-01-01T23:59:59.000Z
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfven waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfven waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent casca...
High Temperature Thermal Array for Next Generation Solar Thermal...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...
Kirk, Helen; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Basu, Shantanu [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)], E-mail: hkirk@uvastro.phys.uvic.ca
2009-07-10T23:59:59.000Z
We analyze a suite of thin-sheet magnetohydrodynamical simulations based on the formulation of Basu, Ciolek, Dapp, and Wurster. These simulations allow us to examine the observational consequences to a star-forming region of varying the input level of turbulence (between thermal and a Mach number of 4) and the initial magnetic field strength corresponding to a range of mass to flux ratios between subcritical ({mu}{sub 0} = 0.5) and supercritical ({mu}{sub 0} = 10). The input turbulence is allowed to decay over the duration of the simulation. We compare the measured observable quantities with those found from surveying the Perseus molecular cloud. We find that only the most turbulent of simulations (high Mach number and weak magnetic field) have sufficient large-scale velocity dispersion (at {approx}1 pc) to match that observed across extinction regions in Perseus. Generally, the simulated core ({approx}0.02 pc) and line-of-sight velocity dispersions provide a decent match to observations. The motion between the simulated core and its local environment, however, is far too large in simulations with high large-scale velocity dispersion.
Accretion Disc Turbulence and the X-Ray Power Spectra of Black Hole High States
Michael A. Nowak; Robert V. Wagoner
1994-10-06T23:59:59.000Z
The high state of black hole candidates is characterized by a quasi- thermal emission component at $kT \\sim 1$ keV. In addition, this state tends to have very low variability which indicates that it is relatively stable, at least on {\\it short} time scales. Most models of the high state imply that the bulk of the emission comes from an optically thick accretion disc; therefore, this state may be an excellent laboratory for testing our ideas about the physics of accretion discs. In this work we consider the implications of assuming that accretion disc viscosity arises from some form of turbulence. Specifically, we consider the simple case of three dimensional hydrodynamic turbulence. It is found that the coupling of such turbulence to acoustic modes in the disc can alter the disc emission. We calculate the amplitude and frequencies of this modulation, and we express our results in terms of the X-ray power spectral density. We compare our calculations with observations of the black hole candidate GS 1124-683, and show that for certain parameters we can reproduce some of the high frequency power. We then briefly explore mechanisms for producing the low frequency power, and note the difficulty that a single variability mechanism has in reproducing the full range of observed variability. In addition, we outline ways in which future spacecraft missions -- such as USA and XTE -- can further constrain our model, especially at frequencies above $\\sim 10^2$ Hz.
Numerical simulation of turbulent heat transfer in an annular fuel channel augmented by spacer ribs
Takase, Kazuyuki; Akino, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of High Temperature Engineering
1995-12-31T23:59:59.000Z
Thermal-hydraulic characteristics of fuel channels with three dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors were investigated under the same coolant conditions as the reactor operation, maximum fuel channel outlet temperature of 1,000 C and pressure of 4 MPa, and analytically by numerical simulations using the {kappa}-{var_epsilon} turbulence model. The turbulent heat transfer coefficients in the spacer ribbed fuel channel were 20 to 100% higher than those in a concentric smooth annulus for a region of Reynolds number exceeding 2,000. Furthermore, the predicted Nusselt number in the spacer ribbed fuel channel was in good agreement with the empirical correlation obtained from the present experimental data within an error of 10% with Reynolds number of more than 5000. On the other hand, the friction factors in the spacer ribbed fuel channel were higher than those in the smooth duct in the turbulent region, and also they could be predicted with sufficient accuracy. In addition, the present numerical simulation could clarify quantitatively the effects of the heat transfer augmentation due to the spacer ribs and the axial velocity increase due to a reduction in the annular channel cross-section.
Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D
Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A.; Solomon, W. M.; Wang, W. X. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Rhodes, T. L.; Schmitz, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Mordijck, S. [College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795 (United States); Meneghini, O. [Oak Ridge Associated Universities, 1299 Bethel Valley Rd, Bldg SC-200, Oak Ridge, Tennessee 37830 (United States)
2014-07-15T23:59:59.000Z
Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E{sup ?}×B{sup ?} shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.
Seasonal thermal energy storage
Allen, R.D.; Kannberg, L.D.; Raymond, J.R.
1984-05-01T23:59:59.000Z
This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.
Thermal Control & System Integration
Broader source: Energy.gov [DOE]
The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....
Solar Thermal Powered Evaporators
Moe, Christian Robert
2015-01-01T23:59:59.000Z
and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied
Locality and stability of the cascades of two-dimensional turbulence.
Gkioulekas, Eleftherios - Department of Mathematics, University of Texas
chemical combustion Stabilize plasma in a nuclear fusion reactor Propagation of laser through turbulence;Outline Why study turbulence? Brief overview of K41 theory (3D turbulence) Frisch reformulation of K41 theory. KLB theory (2D turbulence). My reformulation of Frisch to address 2D turbulence Locality
Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence
Ku, S; Dimond, P H; Dif-Pradalier, G; Kwon, J M; Sarazin, Y; Hahm, T S; Garbet, X; Chang, C S; Latu, G; Yoon, E S; Ghendrih, Ph; Yi, S; Strugarek, A; Solomon, W
2012-02-23T23:59:59.000Z
Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity
Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor
Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Mechanical Engineering; Barlow, R.S.; Fiechtner, G.J. [Sandia National Labs., Albuquerque, NM (United States)
1995-12-31T23:59:59.000Z
Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO{sub x}. However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
Che, H. [NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2014-06-15T23:59:59.000Z
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Thermalization and condensation in an incoherently pumped passive optical cavity
Michel, C.; Picozzi, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Universite de Bourgogne, F-21078 Dijon (France); Haelterman, M. [Service OPERA, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Suret, P.; Randoux, S. [Laboratoire de Physique des Lasers, Atomes et Molecules, CNRS, Universite de Lille, F-59655 Villeneuve d'Ascq (France); Kaiser, R. [Institut Non Lineaire de Nice, CNRS, Universite de Nice Sophia-Antipolis, F-06560 Valbonne (France)
2011-09-15T23:59:59.000Z
We study theoretically and numerically the condensation and the thermalization of classical optical waves in an incoherently pumped passive Kerr cavity. We show that the dynamics of the cavity exhibits a turbulent behavior that can be described by the wave turbulence theory. A mean-field kinetic equation is derived, which reveals that, in its high finesse regime, the cavity behaves essentially as a conservative Hamiltonian system. In particular, the intracavity turbulent field is shown to relax adiabatically toward a thermodynamic equilibrium state of energy equipartition. As a consequence of this effect of wave thermalization, the incoherent optical field undergoes a process of condensation, characterized by the spontaneous emergence of a plane wave from the incoherently pumped cavity. The condensation process is an equilibrium phase transition that occurs below a critical value of the (kinetic) energy of the incoherent pump. In spite of the dissipative nature of the cavity dynamics, the condensate fraction of the high-finesse cavity field is found in quantitative agreement with the theory inherited from the purely conservative (Hamiltonian) nonlinear Schroedinger equation.
Turbulence and its effects upon neutrinos
Kneller, J. P.; McLaughlin, G. C.; Patton, K. M. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)
2014-06-24T23:59:59.000Z
As a neutrino passes through turbulent matter, large amplitude transitions between its eigenstates can occur. These transitions can be modeled as like those of an irradiated polarized atom and we investigate this connection both analytically and numerically. We find a simple theory that makes use of the Rotating Wave Approximation can make predictions for the amplitudes and wavelengths of the transitions that agree very well with those from the numerical solutions.
Simulation of spherically expanding turbulent premixed flames
Ahmed, I.; Swaminathan, N.
2013-09-16T23:59:59.000Z
canonically im- portant configuration and its investigation is helpful to understand combustion in prac- tical devices such as the spark ignited internal combustion engine, modern stratified charge engines and accidental explosions of fuel vapour cloud... Simulation of spherically expanding turbulent premixed flames I. Ahmed, N. Swaminathan? Department of Engineering, Cambridge University, Cambridge, CB2 1PZ, UK. ?Corresponding author: Department of Engineering, Cambridge University, Trumpington...
Optical Turbulence Characterization at LAMOST Site: Observations and Models
Liu, L -Y; Yao, Y -Q; Vernin, J; Chadid, M; Wang, H -S; Yin, J; Wang, Y -P
2015-01-01T23:59:59.000Z
Atmospheric optical turbulence seriously limits the performance of high angular resolution instruments. An 8-night campaign of measurements was carried out at the LAMOST site in 2011, to characterize the optical turbulence. Two instruments were set up during the campaign: a Differential Image Motion Monitor (DIMM) used to measure the total atmospheric seeing, and a Single Star Scidar (SSS) to measure the vertical profiles of the turbulence C_n^2(h) and the horizontal wind velocity V(h). The optical turbulence parameters are also calculated with the Weather Research and Forecasting (WRF) model coupled with the Trinquet-Vernin model, which describes optical effects of atmospheric turbulence by using the local meteorological parameters. This paper presents assessment of the optical parameters involved in high angular resolution astronomy. Its includes seeing, isoplanatic angle, coherence time, coherence etendue, vertical profiles of optical turbulence intensity _n^2(h)$ and horizontal wind speed V(h). The median...
Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma
Mahendra K. Verma
1995-09-05T23:59:59.000Z
In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.
Continuous representation for shell models of turbulence
Alexei A. Mailybaev
2014-09-16T23:59:59.000Z
In this work we construct and analyze continuous hydrodynamic models in one space dimension, which are induced by shell models of turbulence. After Fourier transformation, such continuous models split into an infinite number of uncoupled subsystems, which are all identical to the same shell model. The two shell models, which allow such a construction, are considered: the dyadic (Desnyansky--Novikov) model with the intershell ratio $\\lambda = 2^{3/2}$ and the Sabra model of turbulence with $\\lambda = \\sqrt{2+\\sqrt{5}} \\approx 2.058$. The continuous models allow understanding various properties of shell model solutions and provide their interpretation in physical space. We show that the asymptotic solutions of the dyadic model with Kolmogorov scaling correspond to the shocks (discontinuities) for the induced continuous solutions in physical space, and the finite-time blowup together with its viscous regularization follow the scenario similar to the Burgers equation. For the Sabra model, we provide the physical space representation for blowup solutions and intermittent turbulent dynamics.
Forecasting Turbulent Modes with Nonparametric Diffusion Models
Tyrus Berry; John Harlim
2015-01-27T23:59:59.000Z
This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.
Fusion Rules in Turbulent Systems with Flux Equilibrium
Victor L'vov; Itamar Procaccia
1995-07-27T23:59:59.000Z
Fusion rules in turbulence specify the analytic structure of many-point correlation functions of the turbulent field when a group of coordinates coalesce. We show that the existence of flux equilibrium in fully developed turbulent systems combined with a direct cascade induces universal fusion rules. In certain examples these fusion rules suffice to compute the multiscaling exponents exactly, and in other examples they give rise to an infinite number of scaling relations that constrain enormously the structure of the allowed theory.
Massively Parallel Spectral Element Large Eddy Simulation of a Turbulent Channel Using Wall Models
Rabau, Joshua I
2013-05-01T23:59:59.000Z
Wall-bounded turbulent flows are prevalent in engineering and industrial applications. Walls greatly affect turbulent characteristics in many ways including production and propagation of turbulent stresses. While computational fluid dynamics can...
Hot Particle and Turbulent Transport Effects on Resistive Instabilities
Brennan, Dylan P.
2012-10-16T23:59:59.000Z
This research project included two main thrusts; energetic particle effects on resistive MHD modes in tokamaks, and turbulence interactions with tearing modes in simplified geometry.
Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...
Sandia Energy - Measuring Inflow and Wake Flow Turbulence Using...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
that characterizes inflow and wake flow velocity and turbulence around a vertical axis turbine deployed at the Roza Canal, Yakima, Washington. The ADV was mounted on a...
ASCR Workshop on Turbulent Flow Simulations at the Exascale:...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
experts in turbulent- flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants...
aperiodic magnetic turbulence: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
star formation and the interstellar medium. The density, pressure, and temperature distribution in a turbulent interstellar medium is described in comparison to a medium dominated...
alfven wave turbulence: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
from 1 Solar Radius to 1 AU: an Analytical Treatment CERN Preprints Summary: We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and...
astrophysical turbulent plasma: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Jens Juul Rasmussen Association EURATOM - Ris National Laboratory Optics and Plasma Research, OPL - 128 DK - 4000 Roskilde, Denmark October 14, 2004 The turbulent...
Scientists use plasma shaping to control turbulence in stellarators...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Scientists use plasma shaping to control turbulence in stellarators By John Greenwald By John Greenwald October 21, 2014 Tweet Widget Google Plus One Share on Facebook Magnetic...
Gyrokinetic simulations of turbulent transport in fusion plasmas
Rogers, Barrett Neil [Dartmouth] [Dartmouth
2013-05-30T23:59:59.000Z
This is the final report for a DOE award that was targeted at understanding and simulating turbulence and transport in plasma fusion devices such as tokamaks.
Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization
Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic
A sufficient condition for Gaussian departure in turbulence
Daniela Tordella; Michele Iovieno; Peter Roger Bailey
2007-10-17T23:59:59.000Z
The interaction of two isotropic turbulent fields of equal integral scale but different kinetic energy generates the simplest kind of inhomogeneous turbulent field. In this paper we present a numerical experiment where two time decaying isotropic fields of kinetic energies $E_1$ and $E_2$ initially match over a narrow region. Within this region the kinetic energy varies as a hyperbolic tangent. The following temporal evolution produces a shearless mixing. The anisotropy and intermittency of velocity and velocity derivative statistics is observed. In particular the asymptotic behavior in time and as a function of the energy ratio $E_1/E_2 \\to \\infty$ is discussed. This limit corresponds to the maximum observable turbulent energy gradient for a given $E_1$ and is obtained through the limit $E_2 \\to 0$. A field with $E_1/E_2 \\to \\infty$ represents a mixing which could be observed near a surface subject to a very small velocity gradient separating two turbulent fields, one of which is nearly quiescent. In this condition the turbulent penetration is maximum and reaches a value equal to 1.2 times the nominal mixing layer width. The experiment shows that the presence of a turbulent energy gradient is sufficient for the appearance of intermittency and that during the mixing process the pressure transport is not negligible with respect to the turbulent velocity transport. These findings may open the way to the hypothesis that the presence of a gradient of turbulent energy is the minimal requirement for Gaussian departure in turbulence.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346 (United States); Rudakov, Leonid [Icarus Research Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780 (United States)
2012-10-15T23:59:59.000Z
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
E-Print Network 3.0 - atmospheric turbulence Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Summary: by dissipation of the turbulent energy and tur- bulent eddies will transport heat to different atmospheric re... ., MST radar studies of wind and turbulence in the...
Adaptive LES Methodology for Turbulent Flow Simulations
Oleg V. Vasilyev
2008-06-12T23:59:59.000Z
Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence have recently been completed at the Japanese Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963 (approximately 10{sup 11}) grid points with a Taylor-scale Reynolds number of 1217 (Re {approx} 10{sup 6}). Impressive as these calculations are, performed on one of the world's fastest super computers, more brute computational power would be needed to simulate the flow over the fuselage of a commercial aircraft at cruising speed. Such a calculation would require on the order of 10{sup 16} grid points and would have a Reynolds number in the range of 108. Such a calculation would take several thousand years to simulate one minute of flight time on today's fastest super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which allow DNS calculations that resolve the necessary range of scales within predefined 'zones' in the flow domain, this calculation would take far too long for the result to be of engineering interest when it is finally obtained. Since computing power, memory, and time are all scarce resources, the problem of simulating turbulent flows has become one of how to abstract or simplify the complexity of the physics represented in the full Navier-Stokes (NS) equations in such a way that the 'important' physics of the problem is captured at a lower cost. To do this, a portion of the modes of the turbulent flow field needs to be approximated by a low order model that is cheaper than the full NS calculation. This model can then be used along with a numerical simulation of the 'important' modes of the problem that cannot be well represented by the model. The decision of what part of the physics to model and what kind of model to use has to be based on what physical properties are considered 'important' for the problem. It should be noted that 'nothing is free', so any use of a low order model will by definition lose some information about the original flow.
Boehringer, Hans
8. Particle Diffusion and Acceleration #12; #12; Proceedings of the Workshop: ``Diffuse Thermal. Feretti & P. Schuecker, MPE Report 271, pp. 249253 Turbulent Particle Acceleration in the Diffuse Cluster Abstract. In situ particle acceleration is probably occur ing in cluster radio haloes. This is suggested
Turbulence and Sound-field POD Analysis of a Turbulent Jet J. B. Freund
Dabiri, John O.
Division of Engineering and Applied Science California Institute of Technology colonius-validated direct numerical simulation database. Norms are defined based on near-field volume integrals of pressure, turbulence kinetic energy, streamwise velocity, and total enthalpy, two-dimensional integrals of streamswise
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Klein, R I; Li, P S; McKee, C F; Fisher, R
2008-04-10T23:59:59.000Z
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
None
2012-01-01T23:59:59.000Z
HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.
The Turbulent Alfvenic Aurora C. C. Chaston,1
California at Berkeley, University of
The Turbulent Alfve´nic Aurora C. C. Chaston,1 C. Salem,1 J. W. Bonnell,1 C. W. Carlson,1 R. E) It is demonstrated from observations that the Alfve´nic aurora may be powered by a turbulent cascade transverse acceleration of electrons from near-Earth space to form the aurora. We find that regions of Alfve´n wave
Center for Turbulence Research Proceedings of the Summer Program 2012
Wang, Wei
-to-cycle variations in internal combustion engines (Richard et al. 2007). The unresolved flame/turbulence in models for turbulent premixed combustion By D. Veynante, T. Schmitt, M. Boileau AND V. Moureau Very few attempts have been made to implement dynamic combustion models in large eddy simulations, whereas
Fractal dimension and turbulence in Giant HII Regions
Caicedo-Ortiz, H E; López-Bonilla, J; Castañeda, H O
2015-01-01T23:59:59.000Z
We have measured the fractal dimensions of the Giant HII Regions Hubble X and Hubble V in NGC6822 using images obtained with the Hubble's Wide Field Planetary Camera 2 (WFPC2). These measures are associated with the turbulence observed in these regions, which is quantified through the velocity dispersion of emission lines in the visible. Our results suggest low turbulence behaviour.
ANISOTROPY LENGTHENS THE DECAY TIME OF TURBULENCE IN MOLECULAR CLOUDS
Hansen, Charles E.; McKee, Christopher F.; Klein, Richard I. [Astronomy Department, University of California, Berkeley, CA 94720 (United States)
2011-09-01T23:59:59.000Z
The decay of isothermal turbulence with velocity anisotropy is investigated using computational simulations and synthetic observations. We decompose the turbulence into isotropic and anisotropic components with total velocity dispersions {sigma}{sub iso} and {sigma}{sub ani}, respectively. We find that the decay rate of the turbulence depends on the crossing time of the isotropic component only. A cloud of size L with significant anisotropy in its turbulence has a dissipation time, t{sub diss} = L/(2{sigma}{sub iso}). This translates into turbulent energy decay rates on the cloud scale that can be much lower for anisotropic turbulence than for isotropic turbulence. To help future observations determine whether observed molecular clouds have the level of anisotropy required to maintain the observed level of turbulence over their lifetimes, we performed a principal component analysis on our simulated clouds. Even with projection effects washing out the anisotropic signal, there is a measurable difference in the axis-constrained principal component analysis performed in directions parallel and perpendicular to the direction of maximum velocity dispersion. When this relative difference, {psi}, is 0.1, there is enough anisotropy for the dissipation time to triple the expected isotropic value. We provide a fit for converting {psi} into an estimate for the dissipation time, t{sub diss}.
Modeling of combustion noise spectrum from turbulent premixed flames
Paris-Sud XI, Université de
Modeling of combustion noise spectrum from turbulent premixed flames Y. Liu, A. P. Dowling, T. D, Nantes, France 2321 #12;Turbulent combustion processes generate sound radiation due to temporal changes, this temporal correlation and its role in the modeling of combustion noise spectrum are studied by analyzing
AIAA980057 RELATING TURBULENCE TO WIND TURBINE BLADE LOADS
Sweetman, Bert
AIAAÂ98Â0057 RELATING TURBULENCE TO WIND TURBINE BLADE LOADS: PARAMETRIC STUDY WITH MULTIPLE that is most useful in estimating fatigue loads on wind turbine blades. The histograms of rainflow counted turbulence measures---can be used to estimate fatigue loads on wind turbine blades. We first deÂ scribe
RESEARCH ARTICLE Development and characterization of a variable turbulence
Lieuwen, Timothy C.
(7):10371048, 2009), where variable blockage ratio slots are located upstream of a contoured nozzle. Vortical A Nozzle exit area E Power spectral density ReD Geometric Reynolds number Rel Turbulent Reynolds number SLRESEARCH ARTICLE Development and characterization of a variable turbulence generation system A
Center for Turbulence Research Annual Research Briefs 2001
Apte, Sourabh V.
Center for Turbulence Research Annual Research Briefs 2001 3 Large-eddy simulation of gas turbine, and solver capable of performing large-eddy simulation in geometries as complex as the combustor of a gas-turbine' grids encountered in complex geometries such as the Pratt & Whitney combustor. · Turbulent validations
Taming turbulence in magnetized plasmas: from fusion energy to
occurs (fusion of particle beams will not work...) Thermonuclear fusion in a confined plasma (T~10 keTaming turbulence in magnetized plasmas: from fusion energy to black hole accretion disks Troy?: In fusion plasmas turbulent leakage of heat and particles is a key issue. Sheared flow can suppress
Center for Turbulence Research Proceedings of the Summer Program 2012
Wang, Wei
streaks which are observed to breakdown into turbulent spots are differentiated from innocuous events the conventionally reported values of urms. Furthermore the streaks responsible for breakdown to turbulence have instability analysis of Vaughan & Zaki (2011). Regardless of the mechanism which leads to breakdown
Numerical simulation of turbulent jet primary breakup in Diesel engines
Helluy, Philippe
Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary Outline 1 Introduction 2 DNS of Primary Breakup in Diesel
RESEARCH ARTICLE Particles for tracing turbulent liquid helium
Lathrop, Daniel P.
RESEARCH ARTICLE Particles for tracing turbulent liquid helium Gregory P. Bewley Æ K. R of local flow velocities in turbulent liquid helium, using tracer particles. We survey and evaluate, we note that cryogenic helium is attractive for experimental studies because its kinematic viscosity
Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion
Bell, John B.
alternatives to traditional petroleum and natural gas fuels. Burning under lean condi- tions reduces of conditions expected from gas turbine combustors. At these higher turbulence in- tensities, hydrogen flamesTurbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion A. J. Aspden1,2 , M. S. Day2
Evolution of isolated turbulent trailing vortices Karthik Duraisamy1,a
Alonso, Juan J.
Evolution of isolated turbulent trailing vortices Karthik Duraisamy1,a and Sanjiva K. Lele2,b 1 evolution of a low swirl-number turbulent Batchelor vortex is studied using pseudospectral direct numerical application of boundary conditions. The physics of the evolution is investigated with an emphasis
Center for Turbulence Research Annual Research Briefs 2008
Prinz, Friedrich B.
in a supersonic turbulent crossflow By S. Kawai AND S. K. Lele 1. Motivation and objectives Important recent load, etc. Jet mixing in a supersonic crossflow (JISC) is a type of flow where compressible LES can, the enhancement of supersonic turbulent mixing of jet fuel and crossflow air is a critical issue in developing
Heat release response of acoustically forced turbulent premixed flamesrole
Lieuwen, Timothy C.
Heat release response of acoustically forced turbulent premixed flamesrole of kinematic surface to coherent forcing and turbulent fluctuations are coupled even at linear order in coherent forcing amplitude, ea, due to flame propagation (kinematic restoration). This coupling effectively causes
Incloud turbulence structure of marine stratocumulus N. Riemer,1
of turbulent kinetic energy is dominantly driven by wind shear. Citation: Ching, J., N. Riemer, M. Dunn, and M3 Received 10 August 2010; revised 14 September 2010; accepted 20 September 2010; published 6) in July 2005, and identifies the dominant sources of turbulent kinetic energy. We used vertical veloc- ity
Thermal unobtainiums? The perfect thermal conductor and
Braun, Paul
conduction Â· Heat conduction in Bose condensates Â electronic superconductors Â superfluid helium Â Bose condensate of magnons #12;Outline--toward perfect thermal insulators Â· Einstein and minimum thermal directions #12;Gas kinetic equation is a good place to start Â· Anharmonicity (high T limit) Â· Point defect
Autoignition in turbulent two-phase flows
Borghesi, Giulio
2013-01-08T23:59:59.000Z
and spatial evolution of the macroscopic properties of the flow. These equations will be given in Chapter 2 and are known as the Navier-Stokes equa- tions. Depending on the application considered, different numerical techniques for solving the Navier... clusters worldwide will lead to a relaxation of these constraints in the future: simulations of flows with values of Re up to O(103) are starting to become common, and, in recent years, a turbulent lifted hydrogen jet flame with a jet Reynolds number of 11...
Stretching of polymers in a turbulent environment
Bruno Eckhardt; Jochen Kronjaeger; Joerg Schumacher
2002-01-20T23:59:59.000Z
The interaction of polymers with small-scale velocity gradients can trigger a coil-stretch transition in the polymers. We analyze this transition within a direct numerical simulation of shear turbulence with an Oldroyd-B model for the polymer. In the coiled state the lengths of polymers are distributed algebraically with an exponent alpha=2 gamma-1/De, where gamma is a characteristic stretching rate of the flow and De the Deborah number. In the stretched state we demonstrate that the length distribution of the polymers is limited by the feedback to the flow.
Acceleration statistics of heavy particles in turbulence
J. Bec; L. Biferale; G. Boffetta; A. Celani; M. Cencini; A. Lanotte; S. Musacchio; F. Toschi
2005-12-09T23:59:59.000Z
We present the results of direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, up to resolution $512^3$ ($R_\\lambda\\approx 185$). Following the trajectories of up to 120 million particles with Stokes numbers, $St$, in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics of particle acceleration. We show that: ({\\it i}) The root-mean-squared acceleration $a_{\\rm rms}$ sharply falls off from the fluid tracer value already at quite small Stokes numbers; ({\\it ii}) At a given $St$ the normalised acceleration $a_{\\rm rms}/(\\epsilon^3/\
Lyapunov exponents of heavy particles in turbulence
Jeremie Bec; Luca Biferale; Guido Boffetta; Massimo Cencini; Stefano Musacchio; Federico Toschi
2006-06-08T23:59:59.000Z
Lyapunov exponents of heavy particles and tracers advected by homogeneous and isotropic turbulent flows are investigated by means of direct numerical simulations. For large values of the Stokes number, the main effect of inertia is to reduce the chaoticity with respect to fluid tracers. Conversely, for small inertia, a counter-intuitive increase of the first Lyapunov exponent is observed. The flow intermittency is found to induce a Reynolds number dependency for the statistics of the finite time Lyapunov exponents of tracers. Such intermittency effects are found to persist at increasing inertia.
Supercomputers Capture Turbulence in the Solar Wind
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success Stories Touching TheCapture Turbulence in the
Non-thermal Plasma Chemistry Non-thermal Thermal
Greifswald, Ernst-Moritz-Arndt-UniversitÃ¤t
-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;LeuchtstoffrÃ¶hre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry
The energetic coupling of scales in gyrokinetic plasma turbulence
Teaca, Bogdan, E-mail: bogdan.teaca@coventry.ac.uk [Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB (United Kingdom); Max-Planck für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Max-Planck/Princeton Center for Plasma Physics (Germany); Navarro, Alejandro Bañón, E-mail: alejandro.banon.navarro@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Jenko, Frank, E-mail: frank.jenko@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Max-Planck/Princeton Center for Plasma Physics (Germany)
2014-07-15T23:59:59.000Z
In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.
Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence
Donato, S.; Servidio, S.; Carbone, V. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, CONICET, Buenos Aires (Argentina); Shay, M. A.; Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)
2012-09-15T23:59:59.000Z
The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.
Fusion Rules and Conditional Statistics in Turbulent Advection
Emily S. C. Ching; Victor S. L'vov; Itamar Procaccia
1996-07-02T23:59:59.000Z
Fusion rules in turbulence address the asymptotic properties of many-point correlation functions when some of the coordinates are very close to each other. Here we put to experimental test some non-trivial consequences of the fusion rules for scalar correlations in turbulence. To this aim we examine passive turbulent advection as well as convective turbulence. Adding one assumption to the fusion rules one obtains a prediction for universal conditional statistics of gradient fields. We examine the conditional average of the scalar dissipation field $\\left$ for $R$ in the inertial range, and find that it is linear in $T(\\B.r+\\B.R)-T(\\B.r)$ with a fully determined proportionality constant. The implications of these findings for the general scaling theory of scalar turbulence are discussed.
Internal wave energy radiated from a turbulent mixed layer
Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2014-09-15T23:59:59.000Z
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Ignition of hydrogen/air mixing layer in turbulent flows
Im, H.G.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Law, C.K. [Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering
1998-03-01T23:59:59.000Z
Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.
Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio
2013-06-05T23:59:59.000Z
The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.
Moncrieff, John B.
to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer-Obukhov similarity, self-organizing systems 1. Introduction In convective boundary layers the structureTurbulence structure of the surface layer Boun 2247-03D TURBULENCE STRUCTURE OF THE UNSTABLE
Anomalous scalings in differential models of turbulence
Simon Thalabard; Sergey Nazarenko; Sebastien Galtier; Medvedev Sergey
2015-02-24T23:59:59.000Z
Differential models for hydrodynamic, passive-scalar and wave turbulence given by nonlinear first- and second-order evolution equations for the energy spectrum in the $k$-space were analysed. Both types of models predict formation an anomalous transient power-law spectra. The second-order models were analysed in terms of self-similar solutions of the second kind, and a phenomenological formula for the anomalous spectrum exponent was constructed using numerics for a broad range of parameters covering all known physical examples. The first-order models were examined analytically, including finding an analytical prediction for the anomalous exponent of the transient spectrum and description of formation of the Kolmogorov-type spectrum as a reflection wave from the dissipative scale back into the inertial range. The latter behaviour was linked to pre-shock/shock singularities similar to the ones arising in the Burgers equation. Existence of the transient anomalous scaling and the reflection-wave scenario are argued to be a robust feature common to the finite-capacity turbulence systems. The anomalous exponent is independent of the initial conditions but varies for for different models of the same physical system.
Caviton dynamics in strong Langmuir turbulence
DuBois, D.; Rose, H.A.; Russell, D.
1989-01-01T23:59:59.000Z
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs.
Dynamics of cavitons in strong Langmuir turbulence
DuBois, D.F.; Rose, H.A.; Russell, D.
1990-01-01T23:59:59.000Z
Recent studies of Langmuir turbulence as described by Zakharov's model will be reviewed. For parameters of interest in laser-plasma experiments and for ionospheric hf heating experiments a significant fraction of the turbulent energy is in nonlinear caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free'' Langmuir waves are emitted in the caviton collapse process. Observations and theoretical considerations also imply that when the pump frequency is slightly lower than the ambient electron plasma frequency cavitons may evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 42 refs., 12 figs.
Multiwavelength Thermal Emission
California at Santa Cruz, University of
Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks
Thermal Performance Benchmarking (Presentation)
Moreno, G.
2014-11-01T23:59:59.000Z
This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.
Thermal neutron detection system
Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)
2000-01-01T23:59:59.000Z
According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.
HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE
Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Goodman, Alyssa [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Rosolowsky, Erik [University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada)
2013-06-20T23:59:59.000Z
Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Mach numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.
COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE
TenBarge, J. M.; Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Dorland, W., E-mail: jason-tenbarge@uiowa.edu [Department of Physics, University of Maryland, College Park, MA 20742-3511 (United States)
2013-09-10T23:59:59.000Z
The dissipation of turbulence in the weakly collisional solar wind plasma is governed by unknown kinetic mechanisms. Two candidates have been suggested to play an important role in the dissipation, collisionless damping via wave-particle interactions and dissipation in small-scale current sheets. High resolution spacecraft measurements of the turbulent magnetic energy spectrum provide important constraints on the dissipation mechanism. The limitations of popular fluid and hybrid numerical schemes for simulation of the dissipation of solar wind turbulence are discussed, and instead a three-dimensional kinetic approach is recommended. We present a three-dimensional nonlinear gyrokinetic simulation of solar wind turbulence at electron scales that quantitatively reproduces the exponential form of the turbulent magnetic energy spectrum measured in the solar wind. A weakened cascade model that accounts for nonlocal interactions and collisionless Landau damping also quantitatively agrees with the observed exponential form. These results establish that a turbulent cascade of kinetic Alfven waves that is terminated by collisionless Landau damping is sufficient to explain the observed magnetic energy spectrum in the dissipation range of solar wind turbulence.
Asgari-Targhi, M.; Van Ballegooijen, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138 (United States)
2012-02-10T23:59:59.000Z
It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J; Lowrie, R B; Pritchett-Sheats, L A; Nourgaliev, R R
2013-01-01T23:59:59.000Z
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3x3 and 5x5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the single-phase incompressible Navier-Stokes equations. The simulations explicitly resolve the la...
Bryant, Duncan Burnette
2011-08-08T23:59:59.000Z
Akker 1999), and ocean CO2 sequestration (Adams and Wannamaker 2005; Adams and Wannamaker 2006). In particular, ocean CO2 sequestration has been noted by the Intergovernmental Panel on Climate Change in its 2005 special report on Carbon Dioxide... for direct carbon sequestration in the oceans have been considered as a means to mitigate the effects on global warming of burning fossil fuels. While the concept of CO2 sequestration is promising, the turbulent structures in multiphase plumes...
Wavelet analyses using parallel computing for plasma turbulence studies
Fujisawa, A.; Inagaki, S.; Matsuoka, K.; Itoh, S.-I. [Research Institute for Applied Mechanics and Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga-kouen, Kasuga 816-8580 (Japan); Shimizu, A.; Itoh, K. [National Institute for Fusion Science, Oroshi-cho, Toki-shi 509-52 (Japan); Nagashima, Y.; Yamada, T. [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan)
2010-10-15T23:59:59.000Z
The wavelet analyses have been carried out, using a cluster of personal computer, on the signal of electric field fluctuations measured with heavy ion beam probes in the compact helical system stellarator. The results have revealed the intermittent characteristics of turbulence and of the nonlinear couplings between elemental waves of turbulence. The usage of parallel computing is found to successfully reduce the calculation time as inversely proportional to the CPU number used the cluster, which shows the nature of 'embarrassingly parallel computation'. The present example of the wavelet analyses clearly demonstrates the importance of the advanced analyzing methods and the parallel computation for the modern studies of plasma turbulence.
Analytic Model of the Universal Structure of Turbulent Boundary Layers
Victor S. L'vov; Itamar Procaccia; Oleksii Rudenko
2006-06-21T23:59:59.000Z
Turbulent boundary layers exhibit a universal structure which nevertheless is rather complex, being composed of a viscous sub-layer, a buffer zone, and a turbulent log-law region. In this letter we present a simple analytic model of turbulent boundary layers which culminates in explicit formulae for the profiles of the mean velocity, the kinetic energy and the Reynolds stress as a function of the distance from the wall. The resulting profiles are in close quantitative agreement with measurements over the entire structure of the boundary layer, without any need of re-fitting in the different zones.
Edge Turbulence Velocity Changes with Lithium Coating on NSTX
Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.
2012-08-10T23:59:59.000Z
Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________
Compressive turbulent cascade and heating in the solar wind
Marino, R. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Sorriso-Valvo, L. [Liquid Crystal Laboratory, INFM/CNR, Ponte Bucci 33B, I-87036 Rende (Italy); Carbone, V. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); Noullez, A. [University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Bruno, R. [INAF-Istituto Fisica Spazio Interplanetario, Rome (Italy)
2010-03-25T23:59:59.000Z
A turbulent energy cascade has been recently identified in high-latitude solar wind data samples by using a Yaglom-like relation. However, analogous scaling law, suitably modified to take into account compressible fluctuations, has been observed in a much more extended fraction of the same data set recorded by the Ulysses spacecraft. Thus, it seems that large scale density fluctuations, despite their low amplitude, play a major role in the basic scaling properties of turbulence. The compressive turbulent cascade, moreover, seems to be able to supply the energy needed to account for the local heating of the non-adiabatic solar wind.
Forecasting stratospheric clear-air turbulence by discriminant analysis
Cox, Robert Earl
1973-01-01T23:59:59.000Z
by Discriminant Analysis. (December lg73) Robert Earl Cox, A. B. , Dartmouth College Directed by: Dr. Jam s R. Scoggins The appllca'bili. ty of the statis! ical method of discriminart sna1ysis Lo the prediction of clear-air turbulence over the western Unixed... turbulent and non-turbulent: regions of the stratosphere. The results show that the predictive periormance of most discriminant functions i. s optimized between 45, 000 and 55, 000 ft. The four best discriminant functions of the dependent sample (XB-70...
Turbulent Particle Acceleration in the Diffuse Cluster Plasma
J. A. Eilek; J. C. Weatherall
1999-06-30T23:59:59.000Z
In situ particle acceleration is probably occuring in cluster radio haloes. This is suggested by the uniformity and extent of the haloes, given that spatial diffusion is slow and that radiative losses limit particle lifetimes. Stochastic acceleration by plasma turbulence is the most likely mechanism. Alfven wave turbulence has been suggested as the means of acceleration, but it is too slow to be important in the cluster environment. We propose, instead, that acceleration occurs via strong lower-hybrid wave turbulence. We find that particle acceleration will be effective in clusters if only a small fraction of the cluster energy density is in this form.
Large scale properties in turbulent spherically symmetric accretion
Arnab K. Ray; J. K. Bhattacharjee
2005-10-05T23:59:59.000Z
The role of turbulence in a spherically symmetric accreting system has been studied on very large spatial scales of the system. This is also a highly subsonic flow region and here the accreting fluid has been treated as nearly incompressible. It has been shown here that the coupling of the mean flow and the turbulent fluctuations, gives rise to a scaling relation for an effective "turbulent viscosity". This in turn leads to a dynamic scaling for sound propagation in the accretion process. As a consequence of this scaling, the sonic horizon of the transonic inflow solution is shifted inwards, in comparison with the inviscid flow.
Collective neutrino oscillations in turbulent backgrounds
Reid, Giles; Adams, Jenni; Seunarine, Suruj [University of Canterbury, Christchurch (New Zealand); University of the West Indies, Bridgetown (Barbados)
2011-10-15T23:59:59.000Z
Using a Kolmogorov turbulence model, we investigate the effects of fluctuations in matter and neutrino density in the region near a supernova core on the flavor oscillations of neutrinos emitted in the core collapse in a single-angle, two-flavor approximation. Deviation from a smooth background neutrino density causes significant alterations in the final flavor state of the neutrino ensemble after 400 km, but even very large fluctuations in the matter density do not strongly affect the state of the neutrinos after the collective phase. In both cases, there is a strong effect on the neutrino flavor evolution at intermediate radii, with the flavor evolution becoming much more chaotic. The effect of fluctuations also depends strongly on the initial neutrino spectra. We conclude that the true neutrino fluxes arriving at Earth from core-collapse supernova could differ considerably from predictions of neutrino fluxes based on approximate models with smoothly decreasing matter and neutrino densities.
Nonlinear parallel momentum transport in strong turbulence
Wang, Lu; Diamond, P H
2015-01-01T23:59:59.000Z
Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the \\emph{nonlinear} momentum flux-$$. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas {\\bf 18}, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong turbulence is calculated by using three dimensional Hasegawa-Mima equation. It is shown that nonlinear diffusivity is smaller than quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so could be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.
Quantitative imaging of turbulent and reacting flows
Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01T23:59:59.000Z
Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.
ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE
Cranmer, Steven R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2014-07-01T23:59:59.000Z
Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.
Understanding and predicting soot generation in turbulent non-premixed jet flames.
Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.
2010-10-01T23:59:59.000Z
This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.
Catalytic thermal barrier coatings
Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)
2009-06-02T23:59:59.000Z
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
Offner, S R; Krumholz, M R; Klein, R I; McKee, C F
2008-04-18T23:59:59.000Z
In this study we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic, self-gravitating Adaptive Mesh Refinement simulations, comparing the cases where turbulence is continually driven and where it is allowed to decay. We model observations of these cores in the C{sup 18}O(2 {yields} 1), NH{sub 3}(1,1), and N{sub 2}H{sup +} (1 {yields} 0) lines, and from the simulated observations we measure the linewidths of individual cores, the linewidths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions are significantly different in the driven and decaying runs, making them potential diagnostics for determining whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with observed cores in the Perseus and {rho} Ophiuchus clouds shows reasonably good agreement between the observed and simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the linewidths through protostellar cores in both simulations are too large compared to the observations. The disagreement is noticeably worse for the decaying simulation, in which cores show highly supersonic infall signatures in their centers that decrease toward their edges, a pattern not seen in the observed regions. This result gives some support to the use of driven turbulence for modeling regions of star formation, but reaching a firm conclusion on the relative merits of driven or decaying turbulence will require more complete data on a larger sample of clouds as well as simulations that include magnetic fields, outflows, and thermal feedback from the protostars.
NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL
Ghoniem, A.F.
2013-01-01T23:59:59.000Z
1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium
Pdf modeling of turbulent nonpremixed methane jet flames
Chen, J.Y.; Kollmann, W.; Dibble, R.W. (Sandia National Labs., Livermore, CA (USA). Combustion Research Faclity)
1989-01-01T23:59:59.000Z
An expanded model of turbulent nonpremixed combustion is presented. In the model, the scalar mixing and reactions are described by a probability density function (pdf) submodel capable of handling five scalars, while the turbulent velocity field is described by a second-order moment closure. Two plausible chemical reaction models are considered: a five-scalar, four-step, reduced reaction mechanism, and a four-scalar constrained equilibrium model. Detailed comparisons of model predictions with laser Raman experimental dat provide a valuable evaluation of the model's ability in predicting nonequilibrium chemistry in turbulent nonpremixed flames. Overall, the model fails to predict greater departure from chemical equilibrium as mixing rates are increased. Interestingly, this failure is not due to the chemical model, both of which perform satisfactorily. Instead, the failure to predict greater departure from chemical equilibrium is a subtle artifact of the current Monte Carlo simulation of turbulent mixing and chemical reaction.
Title of dissertation: HYDROMAGNETIC TURBULENT INSTABILITY IN LIQUID SODIUM
Lathrop, Daniel P.
ABSTRACT Title of dissertation: HYDROMAGNETIC TURBULENT INSTABILITY IN LIQUID SODIUM EXPERIMENTS Daniel R. Sisan, Doctor of Philosophy, 2004 Dissertation directed by: Professor Daniel P. Lathrop Department of Physics This dissertation describes the observation of magnetically-induced instabil- ities
Title of dissertation: TURBULENT SHEAR FLOW IN A RAPIDLY ROTATING
Lathrop, Daniel P.
ABSTRACT Title of dissertation: TURBULENT SHEAR FLOW IN A RAPIDLY ROTATING SPHERICAL ANNULUS Daniel S. Zimmerman, Doctor of Philosophy, 2010 Dissertation directed by: Professor Daniel P. Lathrop Department of Physics This dissertation presents experimental measurements of torque, wall shear stress
ccsd00001826, Impurity Transport in Plasma Edge Turbulence
,Martin Priego Wood, and Jens Juul Rasmussen Association EURATOM Risø National Laboratory Optics and Plasma Research, OPL 128 DK 4000 Roskilde, Denmark October 14, 2004 The turbulent transport of minority
atmospheric turbulence utilizing: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
M 2008-01-01 4 Scaling turbulent atmospheric stratification: a turbulencewave wind model Physics Websites Summary: to a growing body of analyses (e.g. 1,2,3,4,5 ) 1D the...
Turbulent drag reduction by constant near-wall forcing
JIN XU, SUCHUAN DONG, MARTIN R. MAXEY and GEORGE E. KARNIADAKIS
2007-06-07T23:59:59.000Z
Injection of high molecular weight polymer solutions or gas in the near-wall region of a liquid boundary layer can result in turbulent drag reduction of more than ...
Behavior of buoyant moist plumes in turbulent atmospheres
Hamza, Redouane
1981-01-01T23:59:59.000Z
A widely applicable computational model of buoyant moist plumes in turbulent atmospheres has been constructed. To achieve this a one dimensional Planetary Boundary Layer (P.B.L.) model has been developed to account for ...
Diapycnal advection by double diffusion and turbulence in the ocean
St. Laurent, Louis C
1999-01-01T23:59:59.000Z
Observations of diapycnal mixing rates are examined and related to diapycnal advection for both double-diffusive and turbulent regimes. The role of double-diffusive mixing at the site of the North Atlantic Tracer Release ...
Turbulent Transport in Tokamak Plasmas with Rotational Shear
Barnes, M.; Highcock, E. G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Parra, F. I.; Schekochihin, A. A. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom); Cowley, S. C.; Roach, C. M. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)
2011-04-29T23:59:59.000Z
Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal ExB shear value for plasma confinement. Local maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the ExB shear. The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears; at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.
Discreteness and resolution effects in rapidly rotating turbulence
Bourouiba, Lydia
Rotating turbulence is characterized by the nondimensional Rossby number Ro, which is a measure of the strength of the Coriolis term relative to that of the nonlinear term. For rapid rotation (Ro?0), nonlinear interactions ...
Cross-Scale Effects in Solar-Wind Turbulence
Valentini, F.; Veltri, P. [Dipartimento di Fisica and CNISM, Universita della Calabria, 87036 Rende (Serbia and Montenegro) (Italy); Califano, F. [Dipartimento di Fisica and CNISM, Universita di Pisa, 56127 Pisa (Italy); Mangeney, A. [Observatoire de Paris-Meudon, 92195 Meudon Cedex (France)
2008-07-11T23:59:59.000Z
The understanding of the small-scale termination of the turbulent energy cascade in collisionless plasmas is nowadays one of the outstanding problems in space physics. In the absence of collisional viscosity, the dynamics at small scales is presumably kinetic in nature; the identification of the physical mechanism which replaces energy dissipation and establishes the link between macroscopic and microscopic scales would open a new scenario in the study of turbulent heating in space plasmas. We present a numerical analysis of kinetic effects along the turbulent energy cascade in solar-wind plasmas which provides an effective unified interpretation of a wide set of spacecraft observations and shows that, simultaneously with an increase in the ion perpendicular temperature, strong bursts of electrostatic activity in the form of ion-acoustic turbulence are produced together with accelerated beams in the ion distribution function.
Center for Turbulence Research Proceedings of the Summer Program 2008
Prinz, Friedrich B.
channel flow and turbulent boundary-layer separation, have demonstrated the good perfor that stabilizing under- resolved simulations by upwind or non-oscillatory schemes is insufficient for accurately
Magnetohydrodynamic lattice Boltzmann simulations of turbulence and rectangular jet flow
Riley, Benjamin Matthew
2009-05-15T23:59:59.000Z
relaxation time (SRT) parameter for the Maxwell’s stress tensor is developed for this study. In the MHD homogeneous turbulence studies, the kinetic/magnetic energy and enstrophy decays, kinetic enstrophy evolution, and vorticity alignment with the strain...
Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal
Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal Phys. Control. Fusion 1. Introduction Two fundamental challenges in the systematic analytical theory as f . = # # f # for n = 1, where . = denotes definition and #. . .# denotes an ensemble average) #12
Thermal Infrared Remote Sensing
Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers
Turbulent transport across shear layers in magnetically confined plasmas
Nold, B.; Ramisch, M. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, D-70569 Stuttgart (Germany); Manz, P.; Birkenmeier, G. [Physik-Department E28, Technische Universität München, James-Franck-Str.1, D-85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Ribeiro, T. T.; Müller, H. W.; Scott, B. D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fuchert, G. [IJL, Université de Lorraine, CNRS (UMR 7198), BP 40239 Vandoeuvre-lès-Nancy (France); Stroth, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universität München, James-Franck-Str.1, D-85748 Garching (Germany)
2014-10-15T23:59:59.000Z
Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.
On the Physics of Kinetic-Alfven Turbulence
Boldyrev, Stanislav
2013-01-01T23:59:59.000Z
Observations reveal nearly power-law spectra of magnetic and density plasma fluctuations at subproton scales in the solar wind, which indicates the presence of a turbulent cascade. We discuss the three-field and two-field models for micro-scale plasma fluctuations, and then present the results of numerical simulations of a two-field model of kinetic-Alfven turbulence, which models plasma motion at sub-proton scales.
Low-altitude atmospheric turbulence around an airport
Cass, Stanley Dale
1972-01-01T23:59:59.000Z
speed and the average wind speed computed over an entire run (approximately 1 hr). iv Profiles of wind speed were approximately logarithmic, but profiles of turbulent energy showed a large increase in the wake of large obstructions. Spectra of wind... from u 30-sec averages 56 57 28 Spectra of accelerometer and wind data for same period 59 LIST OF SYMBOLS Symbol Definition Exchange coefficient for momentum Height Time Kinetic energy Average kinetic energy of turbulence u' + v'2 + w' (' 2...
AQUIFER THERMAL ENERGY STORAGE
Tsang, C.-F.
2011-01-01T23:59:59.000Z
aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall
Scattering Solar Thermal Concentrators
Broader source: Energy.gov (indexed) [DOE]
eere.energy.gov * energy.govsunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...
Variable pressure thermal insulating jacket
Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.
1994-09-20T23:59:59.000Z
A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.
The evaluation of a turbulent loads characterization system
Kelley, N.D.; McKenna, H.E. [National Renewable Energy Lab., Golden, CO (United States)
1996-01-01T23:59:59.000Z
In this paper we discuss an on-line turbulent load characterization system that has been designed to acquire loading spectra from turbines of the same design operating in several different environments and from different turbine designs operating in the same environment. This System simultaneously measures the rainflow-counted alternating and mean loading spectra and the hub-height turbulent mean shearing stress and atmospheric stability associated with the turbulent inflow. We discuss the theory behind the measurement configuration and the results of proof-of-concept testing recently performed at the National Wind Technology Center (NWTC) using a Bergey EXCEL-S 10-kW wind turbine. The on-line approach to characterizing the load spectra and the inflow turbulent scaling parameter produces results that are consistent with other measurements. The on-line approximation of the turbulent shear stress or friction velocity u* also is considered adequate. The system can be used to characterize turbulence loads during turbine deployment in a wide variety of environments. Using the WISPER protocol, we found that a wide-range, variable-speed turbine will accumulate a larger number of stress cycles in the low-cycle, high-amplitude (LCHA) region when compared with a constant speed rotor under similar inflow conditions.
Effect of turbulent heat transfer on continuous ingot solidification
Shyy, W.; Chen, M.H. (Univ. of Florida, Gainesville, FL (United States). Dept. of Aerospace Engineering); Pang, Y.; Wei, D.Y. (GE Aircraft Engines, Engineering Materials Technology Labs., Lynn, MA (United States)); Hunter, G.B. (GE Aircraft Engines, Engineering Materials Technology Labs., Cincinnati, OH (United States))
1993-01-01T23:59:59.000Z
For many continuous ingot casting processes, turbulent heat transfer in the molten pool plays a critical role which, along with buoyancy and surface tension, is responsible for the quality of the end products. Based on a modified low Reynolds number K-[epsilon] two-equation closure, accounting for the phase change and mushy zone formation, the effect of turbulent heat transfer on the solidification characteristics during titanium alloy ingot casting in an electron beam melting process is investigated. The overall heat transfer rate is enhanced by turbulent transport via two sources, one through the correlated velocity and temperature fluctuations present for both single- and multi-phase flows, and the other through the correlated velocity and release of latent heat fluctuations which are unique to the flows with phase change. The roles played by both mechanisms are identified and assessed. The present turbulence model predicts that although the mushy zone defined by the mean temperature field is generally of substantial thickness as a result of the convection effect, the actual instantaneous zone thickness varies substantially due to turbulence effect. This finding is in contrast to the traditionally held viewpoint, based on the conduction analysis, of a generally thin mushy zone. The impact of turbulent heat transfer on local dendrite formation and remelting is illustrated and the issues involved in model development highlighted.
Magnetic Discontinuities in Magnetohydrodynamic Turbulence and in the Solar Wind
Vladimir Zhdankin; Stanislav Boldyrev; Joanne Mason; Jean Carlos Perez
2012-04-19T23:59:59.000Z
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Delta theta, across fixed spatial increments Delta x in direct numerical simulations of MHD turbulence with an imposed uniform guide field B_0. A large region of the probability density function (pdf) for Delta theta is found to follow an exponential decay, proportional to exp(-Delta theta/theta_*), with characteristic angle theta_* ~ (14 deg) (b_rms/B_0)^0.65 for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b_rms/B_0. We also observe an excess of small angular discontinuities when Delta x becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from near-dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS
Horton, Claude Wendell
2014-06-10T23:59:59.000Z
The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).
A Model for the Saturation of the Turbulent Dynamo
Schober, Jennifer; Federrath, Christoph; Bovino, Stefano; Klessen, Ralf S
2015-01-01T23:59:59.000Z
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e. on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate the magnetic energy in the linear regime, the saturation level, i.e. the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present the first scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover timescale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales...
Turbulent Angular Momentum Transport in Weakly-Ionized Accretion Disks
Bryan Mark Johnson
2005-09-13T23:59:59.000Z
Understanding the mechanism that drives accretion has been the primary challenge in accretion disk theory. Turbulence provides a natural means of dissipation and the removal of angular momentum, but firmly establishing its presence in disks proved for many years to be difficult. The realization in the 1990s that a weak magnetic field will destabilize a disk and result in a vigorous turbulent transport of angular momentum has revolutionized the field. Much of accretion disk research now focuses on understanding the implications of this mechanism for astrophysical observations. At the same time, the success of this mechanism depends upon a sufficient ionization level in the disk for the flow to be well-coupled to the magnetic field. Many disks, such as disks around young stars and disks in binary systems that are in quiescence, are too cold to be sufficiently ionized, and so efforts to establish the presence of turbulence in these disks continues. This dissertation focuses on several possible mechanisms for the turbulent transport of angular momentum in weakly-ionized accretion disks: gravitational instability, radial convection and vortices driving compressive motions. It appears that none of these mechanisms are very robust in driving accretion. A discussion is given, based on these results, as to the most promising directions to take in the search for a turbulent transport mechanism that does not require magnetic fields. Also discussed are the implications of assuming that no turbulent transport mechanism exists for weakly-ionized disks.
Wave turbulence revisited: Where does the energy flow?
L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov
2014-04-03T23:59:59.000Z
Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.
Caughey, David
2010-10-08T23:59:59.000Z
A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.
Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)
1985-01-01T23:59:59.000Z
An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.
Bennett, G.A.; Elder, M.G.; Kemme, J.E.
1984-03-20T23:59:59.000Z
The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.
Tong, Penger
indicates that the vertical direction is special and buoy- ancy is important even at the center is within the inertial range. Experimental measurements confirm the power-law behavior but indicate
Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell
Tong, Penger
, such as the mean velocity profile in the LSC plane, the boundary layer thickness and its scaling with Ra and Pr and organize their motions spatially between the top and bottom plates, leading to an oscillatory motion
Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors
William Linak
2004-12-16T23:59:59.000Z
Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.
Microsecond switchable thermal antenna
Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)
2014-07-21T23:59:59.000Z
We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.
Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)
2000-01-01T23:59:59.000Z
A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.
Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.
2014-07-15T23:59:59.000Z
Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.
Bennett, Charles L. (Livermore, CA)
2007-09-18T23:59:59.000Z
A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
Thermally-related safety issues associated with thermal batteries.
Guidotti, Ronald Armand
2006-06-01T23:59:59.000Z
Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.
Flavor evolution of supernova neutrinos in turbulent matter
Lund, Tina; Kneller, James P. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Raleigh, NC 27695 (United States)
2014-01-01T23:59:59.000Z
The neutrino signal from the next galactic supernova carries with it an enormous amount of information on the explosion mechanism of a core-collapse supernova, as well as on the stellar progenitor and on the neutrinos themselves. In order to extract this information we need to know how the neutrino flavor evolves over time due to the interplay of neutrino self-interactions and matter effects. Additional turbulence in the supernova matter may impart its own signatures on the neutrino spectrum, and could partly obscure the imprints of collective and matter effects. We investigate the neutrino flavor evolution due to neutrino self-interactions, matter effects due to the shock wave propagation, and turbulence in three progenitors with masses of 8.8 M?, 10.8 M? and 18.0 M?. In the lightest progenitor we find that the impact of moderate turbulence of the order 10% is limited and occurs only briefly early on. This makes the signatures of collective and matter interactions relatively straightforward to interpret. Similarly, with moderate turbulence the two heavier progenitors exhibit only minor changes in the neutrino spectrum, and collective and matter signatures persists. However, when the turbulence is increased to 30% and 50% the high density matter resonance features in the neutrino spectrum get obscured, while new features arise in the low density resonance channel and in the non-resonant channels. We conclude that with moderate amounts of turbulence spectral features of collective and matter interactions survive in all three progenitors. For the larger amounts of turbulence in the 10.8 M? and 18.0 M? progenitor new features arise, as others disappear.
Anomalous scalings in differential models of turbulence
Thalabard, Simon; Galtier, Sebastien; Sergey, Medvedev
2015-01-01T23:59:59.000Z
Differential models for hydrodynamic, passive-scalar and wave turbulence given by nonlinear first- and second-order evolution equations for the energy spectrum in the $k$-space were analysed. Both types of models predict formation an anomalous transient power-law spectra. The second-order models were analysed in terms of self-similar solutions of the second kind, and a phenomenological formula for the anomalous spectrum exponent was constructed using numerics for a broad range of parameters covering all known physical examples. The first-order models were examined analytically, including finding an analytical prediction for the anomalous exponent of the transient spectrum and description of formation of the Kolmogorov-type spectrum as a reflection wave from the dissipative scale back into the inertial range. The latter behaviour was linked to pre-shock/shock singularities similar to the ones arising in the Burgers equation. Existence of the transient anomalous scaling and the reflection-wave scenario are argu...
Primordial magnetic field amplification from turbulent reheating
Calzetta, Esteban [Departamento de Física, FCEyN-UBA and IFIBA-CONICET, Cdad. Universitaria, Buenos Aires (Argentina); Kandus, Alejandra, E-mail: calzetta@df.uba.ar, E-mail: kandus@uesc.br [LATO - DCET - UESC. Rodovia Ilhéus-Itabuna, km 16 s/n, CEP: 45662-900, Salobrinho, Ilhéus-BA (Brazil)
2010-08-01T23:59:59.000Z
We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.
Turbulent resuspension of small nondeformable particles
Lazaridis, M.; Drossinos, Y. [European Commission, Ispra (Italy). Joint Research Centre] [European Commission, Ispra (Italy). Joint Research Centre; Georgopoulos, P.G. [Rutgers-the State Univ., Piscataway, NJ (United States). Environmental and Occupational Health Sciences Inst.] [Rutgers-the State Univ., Piscataway, NJ (United States). Environmental and Occupational Health Sciences Inst.; [Univ. of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States)
1998-08-01T23:59:59.000Z
An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al{sub 2}O{sub 3} particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment.
High-Temperature Thermal Array for Next Generation Solar Thermal...
Broader source: Energy.gov (indexed) [DOE]
Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...
Ovchinnikov, K. N.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2013-09-15T23:59:59.000Z
Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.
Multilayer thermal barrier coating systems
Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)
2000-01-01T23:59:59.000Z
The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.
Kreith, F.; Meyer, R. T.
1982-11-01T23:59:59.000Z
The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.
Thermal insulations using vacuum panels
Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)
1991-07-16T23:59:59.000Z
Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.
GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING
Hicks, E. P. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Rosner, R., E-mail: eph2001@columbia.edu [Computation Institute, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637 (United States)
2013-07-10T23:59:59.000Z
In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.
Studies of Turbulence in Shallow Sediment Laden Flow With Superimposed Rainfall
Barfield, B. J.
1968-01-01T23:59:59.000Z
to the partial differential equation were the particle fall velocity and the turbulent diffusion coefficient. The diffusion coefficient used was the product of the mean square velocity and the Eulerian time scale of turbulence. A 4O ft. recirculating research...
Rothstein, Jonathan
An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical October 2009; accepted 22 April 2010; published online 11 June 2010 Superhydrophobic surfaces combine the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall
Stanley, T. F.
1982-01-01T23:59:59.000Z
Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...
Nelken, Haim
1987-01-01T23:59:59.000Z
Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...
Schmidt, Aaron Jerome, 1979-
2004-01-01T23:59:59.000Z
Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...
INTERCHANGE RECONNECTION IN A TURBULENT CORONA
Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Servidio, S. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Velli, M., E-mail: rappazzo@udel.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)
2012-10-10T23:59:59.000Z
Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.
Studies of turbulence and flows in the DIII-D tokamak
Hillesheim, Jon Clark
2012-01-01T23:59:59.000Z
The DIII-D tokamak . . . . . . . . . . . . . . . .2 Turbulence in tokamaks: background and review of existingscale instabilities in tokamaks . . . . . . . . . . . .
The absence of inactive regions in turbulent flow: Evidence from light scattering experiments
Pak, Hyuk Kyu
prediction3) for large q,4 hasled to modelswhich imply that the turbulence consists of "active" regions
Instability, mixing, and transition to turbulence in a laser-driven counterflowing shear experiment
Doss, F. W.; Loomis, E. N.; Welser-Sherrill, L.; Fincke, J. R.; Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Keiter, P. A. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2013-01-15T23:59:59.000Z
In a turbulence experiment conducted at the Omega Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)
Photovoltaic-thermal collectors
Cox, III, Charles H. (Carlisle, MA)
1984-04-24T23:59:59.000Z
A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.
Feedback Control of Turbulent Shear Flows by Genetic Programming
Duriez, Thomas; von Krbek, Kai; Bonnet, Jean-Paul; Cordier, Laurent; Noack, Bernd R; Segond, Marc; Abel, Markus; Gautier, Nicolas; Aider, Jean-Luc; Raibaudo, Cedric; Cuvier, Christophe; Stanislas, Michel; Debien, Antoine; Mazellier, Nicolas; Kourta, Azeddine; Brunton, Steven L
2015-01-01T23:59:59.000Z
Turbulent shear flows have triggered fundamental research in nonlinear dynamics, like transition scenarios, pattern formation and dynamical modeling. In particular, the control of nonlinear dynamics is subject of research since decades. In this publication, actuated turbulent shear flows serve as test-bed for a nonlinear feedback control strategy which can optimize an arbitrary cost function in an automatic self-learning manner. This is facilitated by genetic programming providing an analytically treatable control law. Unlike control based on PID laws or neural networks, no structure of the control law needs to be specified in advance. The strategy is first applied to low-dimensional dynamical systems featuring aspects of turbulence and for which linear control methods fail. This includes stabilizing an unstable fixed point of a nonlinearly coupled oscillator model and maximizing mixing, i.e.\\ the Lyapunov exponent, for forced Lorenz equations. For the first time, we demonstrate the applicability of genetic p...
The geometry and topology of turbulence in active nematics
Luca Giomi
2014-09-04T23:59:59.000Z
The problem of low Reynolds number turbulence in active nematic fluids is theoretically addressed. Using numerical simulations I demonstrate that an incompressible turbulent flow, in two-dimensional active nematics, consists of an ensemble of vortices whose areas are exponentially distributed within a range of scales. Building on this evidence, I construct a mean-field theory of active turbulence by which several measurable quantities, including the spectral densities and the correlation functions, can be analytically calculated. Due to the profound connection between the flow geometry and the topological properties of the nematic director, the theory sheds light on the mechanisms leading to the proliferation of topological defects in active nematics and provides a number of testable predictions. A hypothesis, inspired by Onsager's statistical hydrodynamics, is finally introduced to account for the equilibrium probability distribution of the vortex sizes.
MAGNETIC HELICITY IN THE DISSIPATION RANGE OF STRONG IMBALANCED TURBULENCE
Markovskii, S. A.; Vasquez, Bernard J., E-mail: sergei.markovskii@unh.edu, E-mail: bernie.vasquez@unh.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)
2013-05-01T23:59:59.000Z
Hybrid numerical simulations of freely decaying two-dimensional turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The net magnetic helicity of the initial fluctuations at large scales is zero. The turbulence is set to be imbalanced in the sense that the net cross-helicity is not zero. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations. The peak position depends on the plasma beta and correlates with a sharp decline of the cross-helicity spectrum.
Residual energy in magnetohydrodynamic turbulence and in the solar wind
Stanislav Boldyrev; Jean Carlos Perez; Vladimir Zhdankin
2011-08-30T23:59:59.000Z
Recent observations indicate that kinetic and magnetic energies are not in equipartition in the solar wind turbulence. Rather, magnetic fluctuations are more energetic and have somewhat steeper energy spectrum compared to the velocity fluctuations. This leads to the presence of the so-called residual energy E_r=E_v-E_b in the inertial interval of turbulence. This puzzling effect is addressed in the present paper in the framework of weak turbulence theory. Using a simple model of weakly colliding Alfv\\'en waves, we demonstrate that the kinetic-magnetic equipartition indeed gets broken as a result of nonlinear interaction of Alfv\\'en waves. We establish that magnetic energy is indeed generated more efficiently as a result of these interactions, which proposes an explanation for the solar wind observations.
Radiation induces turbulence in particle-laden fluids
Zamansky, Rémi [Centre for Turbulence Research, Stanford University, Stanford, California 94305-3035 (United States); Coletti, Filippo [Mechanical Engineering, Stanford University, California 94305-3035 (United States); Massot, Marc [Centre for Turbulence Research, Stanford University, Stanford, California 94305-3035 (United States); Ecole Centrale Paris, Laboratoire EM2C - UPR CNRS 288 et Fédération de Mathématiques - FR CNRS 3487, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Mani, Ali [Centre for Turbulence Research, Stanford University, Stanford, California 94305-3035 (United States); Mechanical Engineering, Stanford University, California 94305-3035 (United States)
2014-07-15T23:59:59.000Z
When a transparent fluid laden with solid particles is subject to radiative heating, non-uniformities in particle distribution result in local fluid temperature fluctuations. Under the influence of gravity, buoyancy induces vortical fluid motion which can lead to strong preferential concentration, enhancing the local heating and more non-uniformities in particle distribution. By employing direct numerical simulations this study shows that the described feedback loop can create and sustain turbulence. The velocity and length scale of the resulting turbulence is not known a priori, and is set by balance between viscous forces and buoyancy effects. When the particle response time is comparable to a viscous time scale, introduced in our analysis, the system exhibits intense fluctuations of turbulent kinetic energy and strong preferential concentration of particles.
Turbulent patterns in wall-bounded flows: a Turing instability?
Manneville, Paul
2012-01-01T23:59:59.000Z
In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An {\\it intrinsic} status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.
Reconnection outflow generated turbulence in the solar wind
Vörös, Z; Semenov, V S; Zaqarashvili, T V; Bruno, R; Khodachenko, M
2014-01-01T23:59:59.000Z
Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show that the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.
Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?
Robi Banerjee; Ralf S. Klessen; Christian Fendt
2007-06-25T23:59:59.000Z
Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposition from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.
Turbulent Nonpremixed Flames (TNF): Experimental Data Archives and Computational Submodels
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
In the 1990s an international collaboration formed around a series of workshops that became known collectively as the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames (TNF). An online library, hosted by Sandia National Laboratory (California) was established that provides data sets and submodels or "mechanisms" for the study of turbulence-chemistry interactions in turbulent nonpremixed and partially premixed combustion. Data are organized by flame types: simple jet flames, piloted jet flames, bluff body flames, and swirl flames. These data sets provide a means for collaborative comparisons of both measured and simulated/modeled research results and also assist scientists in determining priorities for further research. More than 20 data sets or databases are available from this website, along with various downloadable files of chemical mechanisms. The website also provides an extensive bibliography and the proceedings of the workshops themselves from 1996 through 2012. Information continues to be added to this collection.
Mesoscale Equipartition of kinetic energy in Quantum Turbulence
Salort, Julien; Lévêque, Emmanuel; 10.1209/0295-5075/94/24001
2012-01-01T23:59:59.000Z
The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a "truncated HVBK" model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equations with the additional constraint that this continuous description cannot extend beyond a quantum length scale associated with the mean spacing between individual superfluid vortices. A good agreement is found with experimental measurements of the vortex density. Besides, by varying the turbulence intensity only, it is observed that the inter-vortex spacing varies with the Reynolds number as $Re^{-3/4}$, like the viscous length scale in classical turbulence. In the high temperature limit, Kolmogorov's inertial cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the inertial cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic ...
On numerical turbulence generation for test-particle simulations
Tautz, R. C. [Zentrum fuer Astronomie und Astrophysik, Technische Universitaet Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany); Dosch, A. [Center for Space Plasmas and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, Alabama 35805 (United States)
2013-02-15T23:59:59.000Z
A modified method is presented to generate artificial magnetic turbulence that is used for test-particle simulations. Such turbulent fields are obtained from the superposition of a set of wave modes with random polarizations and random directions of propagation. First, it is shown that the new method simultaneously fulfils requirements of isotropy, equal mean amplitude and variance for all field components, and vanishing divergence. Second, the number of wave modes required for a stochastic particle behavior is investigated by using a Lyapunov approach. For the special case of slab turbulence, it is shown that already for 16 wave modes the particle behavior agrees with that shown for considerably larger numbers of wave modes.
Temporal Intermittency of Energy Dissipation in Magnetohydrodynamic Turbulence
Zhdankin, Vladimir; Boldyrev, Stanislav
2015-01-01T23:59:59.000Z
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheet-like coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space/astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events", responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power law index close to -1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signatu...
Short wavelength ion temperature gradient turbulence
Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)
2012-10-15T23:59:59.000Z
The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.
Friction factor for turbulent flow in rough pipes from Heisenberg's closure hypothesis
Esteban Calzetta
2009-04-17T23:59:59.000Z
We show that the main results of the analysis of the friction factor for turbulent pipe flow reported in G. Gioia and P. Chakraborty (GC), Phys. Rev. Lett. 96, 044502 (1996) can be recovered by assuming the Heisenberg closure hypothesis for the turbulent spectrum. This highlights the structural features of the turbulent spectrum underlying GC's analysis.
MULTIPLE SOLUTIONS FOR COMPRESSIBLE TURBULENT FLOW CHRISTOPHE BERTHON AND FREDERIC COQUEL
Coquel, FrÃ©dÃ©ric
continuous in the natural neighborhood of a null turbulent energy. For such models, we prove the existence of infinitely many distinct traveling wave solutions which exhibit positive turbulent energy but connect connecting end states with null turbulent energy. Due to the interplay between the relaxation term
ANALYTIC STUDY OF SHELL MODELS OF TURBULENCE PETER CONSTANTIN, BORIS LEVANT, AND EDRISS S. TITI
Constantin, Peter
Abstract. In this paper we study analytically the viscous sabra shell model of energy turbulent cascade. We of the energy-cascade mechanism in turbulence can be found in [2]. The sabra shell model of turbulence describes". The equations of motion of the sabra shell model of turbu- lence have the following form dun dt = i(akn+1un+2u n
Phys. Plasmas 2 (8), August 1995, 3017 Wavelet bicoherence: A new turbulence analysis tool
MartÃn-SolÃs, JosÃ© RamÃ³n
1 Phys. Plasmas 2 (8), August 1995, 3017 Wavelet bicoherence: A new turbulence analysis tool B, Madrid, Spain Abstract A recently introduced tool for the analysis of turbulence, wavelet bicoherence [B and usefulness of a new analysis tool for chaos and turbulence that was recently introduced [1]. First, we
Varenna Proceedings, Sept. 1, 1998 The Dynamics of Small-Scale Turbulence-Driven Flows
Hammett, Greg
of a linearly undamped component of the flow which could build up in time and lower the final turbulence levelVarenna Proceedings, Sept. 1, 1998 The Dynamics of Small-Scale Turbulence-Driven Flows M. A. Beer investigate the dynamics of small-scale turbulence-driven sheared E B flows in nonlinear gyrofluid
Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena
Fominov, Yakov
Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models
Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet
Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet instability. Yet enhanced turbulence is observed in the upwelling jet, typically as long, thin patches), Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet, J
Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection
I. Rogachevskii; N. Kleeorin
2006-05-18T23:59:59.000Z
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by the three kinds of the inhomogeneities, i.e., inhomogeneous turbulence; the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.
Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.
Paris-Sud XI, Université de
Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate
Density Power Spectrum of Compressible Hydrodynamic Turbulent Flows
Jongsoo Kim; Dongsu Ryu
2005-07-26T23:59:59.000Z
Turbulent flows are ubiquitous in astrophysical environments, and understanding density structures and their statistics in turbulent media is of great importance in astrophysics. In this paper, we study the density power spectra, $P_{\\rho}$, of transonic and supersonic turbulent flows through one and three-dimensional simulations of driven, isothermal hydrodynamic turbulence with root-mean-square Mach number in the range of $1 \\la M_{\\rm rms} \\la 10$. From one-dimensional experiments we find that the slope of the density power spectra becomes gradually shallower as the rms Mach number increases. It is because the density distribution transforms from the profile with {\\it discontinuities} having $P_{\\rho} \\propto k^{-2}$ for $M_{\\rm rms} \\sim 1$ to the profile with {\\it peaks} having $P_{\\rho} \\propto k^0$ for $M_{\\rm rms} \\gg 1$. We also find that the same trend is carried to three-dimension; that is, the density power spectrum flattens as the Mach number increases. But the density power spectrum of the flow with $M_{\\rm rms} \\sim 1$ has the Kolmogorov slope. The flattening is the consequence of the dominant density structures of {\\it filaments} and {\\it sheets}. Observations have claimed different slopes of density power spectra for electron density and cold H I gas in the interstellar medium. We argue that while the Kolmogorov spectrum for electron density reflects the {\\it transonic} turbulence of $M_{\\rm rms} \\sim 1$ in the warm ionized medium, the shallower spectrum of cold H I gas reflects the {\\it supersonic} turbulence of $M_{\\rm rms} \\sim$ a few in the cold neutral medium.
A turbulent transport network model in MULTIFLUX coupled with TOUGH2
Danko, G.; Bahrami, D.; Birkholzer, J.T.
2011-02-15T23:59:59.000Z
A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.
A Tree Swaying in a Turbulent Wind: A Scaling Analysis
Theo Odijk
2014-07-10T23:59:59.000Z
A tentative scaling theory is presented of a tree swaying in a turbulent wind. It is argued that the turbulence of the air within the crown is in the inertial regime. An eddy causes a dynamic bending response of the branches according to a time criterion. The resulting expression for the penetration depth of the wind yields an exponent which appears to be consistent with that pertaining to the morphology of the tree branches. An energy criterion shows that the dynamics of the branches is basically passive. The possibility of hydrodynamic screening by the leaves is discussed.
MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS
Joseph Katz and Omar Knio
2007-01-10T23:59:59.000Z
The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions relevant to the experiments, and (3) to explore whether the corresponding predictions can explain the experimentally-observed behavior of the rise and dispersion of oil droplets in isotropic turbulence. A brief summary of results is presented in Section 4.
Electron geodesic acoustic modes in electron temperature gradient mode turbulence
Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)
2012-08-15T23:59:59.000Z
In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.
Fusion Rules in Navier-Stokes Turbulence: First Experimental Tests
Adrienne L. Fairhall; Brindesh Dhruva; Victor S. L'vov; Itamar Procaccia; Katepalli R. Sreenivasan
1997-01-16T23:59:59.000Z
We present the first experimental tests of the recently derived fusion rules for Navier-Stokes (N-S) turbulence. The fusion rules address the asymptotic properties of many-point correlation functions as some of the coordinates coalesce, and form an important ingredient of the nonperturbative statistical theory of turbulence. Here we test the fusion rules when the spatial separations lie within the inertial range, and find good agreement between experiment and theory. An unexpected result is a simple linear law for the Laplacian of the velocity fluctuation conditioned on velocity increments across large separations.
Multiscale nature of the dissipation range in solar wind turbulence
Told, D; TenBarge, J M; Howes, G G; Hammett, G W
2015-01-01T23:59:59.000Z
Nonlinear energy transfer and dissipation in Alfv\\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range $k_\\perp\\rho_i\\gtrsim 1$. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\\'enic turbulence.
Turbulence Phase Space in Simple Magnetized Toroidal Plasmas
Ricci, Paolo [Centre de Recherches en Physique des Plasmas - Ecole Polytechnique Federale de Lausanne, Association EURATOM-Confederation Suisse, CH-1015 Lausanne (Switzerland); Rogers, B. N. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)
2010-04-09T23:59:59.000Z
Plasma turbulence in a simple magnetized torus (SMT) is explored for the first time with three-dimensional global fluid simulations. Three turbulence regimes are described: an ideal interchange mode regime, a previously undiscovered resistive interchange mode regime, and a drift-wave regime. As the pitch of the field lines is decreased, the simulations exhibit a transition from the first regime to the second, while the third--the drift-wave regime--is likely accessible to the experiments only at very low collisionalities.
Article for thermal energy storage
Salyer, Ival O. (Dayton, OH)
2000-06-27T23:59:59.000Z
A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.
Holographic thermalization in noncommutative geometry
Xiao-Xiong Zeng; Xian-Ming Liu; Wen-Biao Liu
2015-05-02T23:59:59.000Z
Gravitational collapse of a shell of dust in noncommutative geometry is probed by the renormalized geodesic length, which is dual to probe the thermalization by the two-point correlation function in the dual conformal field theory. We find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. We also investigate how the noncommutative parameter affects the thermalization velocity and thermalization acceleration.
Notes 08. Turbulence flow in thin film bearings : Characteristics and Modeling
San Andres, Luis
2009-01-01T23:59:59.000Z
NOTES 8. TURBULENCE IN THIN FILM FLOWS. Dr. Luis San Andr?s ? 2009 1 Notes 8. Turbulence in Thin Film Flows Notes 8 detail the characteristics of turbulent flows and provide insight into the flow instabilities that precede transition from a... for averaging of turbulent flow velocities [s] NOTES 8. TURBULENCE IN THIN FILM FLOWS. Dr. Luis San Andr?s ? 2009 2 Ta 2 Re C R ?? ?? ?? . Taylor number ?? 1, 2, 3 i i u ? Components of velocity field [m/s] = ? ? ii uu?? ?? 1, 2, 3 , ii i uu...
Poidevin, Frederick [Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e CIencas Atmosfericas, Rua do Matao 1226, Butanta, Sao Paulo, SP 05508-900 (Brazil); Bastien, Pierre [Departement de Physique and Observatoire du Mont-Megantic, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Matthews, Brenda C., E-mail: Poidevin@astro.iag.usp.b, E-mail: Bastien@astro.umontreal.c, E-mail: brenda.matthews@nrc-cnrc.gc.c [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC (Canada)
2010-06-20T23:59:59.000Z
The SCUBA polarized 850 {mu}m thermal emission data of the OMC-2 region in Orion A are added to and homogeneously reduced with data already available in the OMC-3 region. The data set shows that OMC-2 is a region generally less polarized than OMC-3. Where coincident, most of the 850 {mu}m polarization pattern is similar to that measured in 350 {mu}m polarization data. Only 850 {mu}m polarimetry data have been obtained in and around MMS7, FIR1 and FIR2, and in the region south of FIR6. A realignment of the polarization vectors with the filament can be seen near FIR1 in the region south of OMC-3. An analysis shows that the energy injected by CO outflows and H{sub 2} jets associated with OMC-2 and OMC-3 does not appear to alter the polarization patterns at a scale of the 14'' resolution beam. A second-order structure function analysis of the polarization position angles shows that OMC-2 is a more turbulent region than OMC-3. OMC-3 appears to be a clear case of a magnetically dominated region with respect to the turbulence. However, for OMC-2 it is not clear that this is the case. A more in-depth analysis of five regions displayed along OMC-2/3 indicates a decrease of the mean polarization degree and an increase of the turbulent angular dispersion from north to south. A statistical analysis suggests the presence of two depolarization regimes in our maps: one regime including the effects of the cores, the other one excluding it.
Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil
2013-11-19T23:59:59.000Z
A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.
Thermal insulated glazing unit
Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.
1988-04-05T23:59:59.000Z
An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.
Thermal insulated glazing unit
Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)
1991-01-01T23:59:59.000Z
An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.
On star formation rate and turbulent dissipation in galactic models
E. P. Kurbatov
2007-12-10T23:59:59.000Z
The models of star formation function and of dissipation of turbulent energy of interstellar medium are proposed. In star formation model the feedback of supernovae is taken into account. It is shown that hierarchical scenario of galaxy formation with proposed models is able to explain the observable star formation pause in the Galaxy.
Supersonic turbulent boundary layers with periodic mechanical non-equilibrium
Ekoto, Isaac Wesley
2007-04-25T23:59:59.000Z
questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface...
Refined similarity hypotheses in shell models of turbulence
Emily S. C. Ching; H. Guo; T. S. Lo
2008-04-16T23:59:59.000Z
A major challenge in turbulence research is to understand from first principles the origin of anomalous scaling of the velocity fluctuations in high-Reynolds-number turbulent flows. One important idea was proposed by Kolmogorov [J. Fluid Mech. {\\bf 13}, 82 (1962)], which attributes the anomaly to the variations of the locally averaged energy dissipation rate. Kraichnan later pointed out [J. Fluid Mech. {\\bf 62}, 305 (1973)] that the locally averaged energy dissipation rate is not an inertial-range quantity and a proper inertial-range quantity would be the local energy transfer rate. As a result, Kraichnan's idea attributes the anomaly to the variations of the local energy transfer rate. These ideas, generally known as refined similarity hypotheses, can also be extended to study the anomalous scaling of fluctuations of an active scalar, like the temperature in turbulent convection. In this paper, we examine the validity of these refined similarity hypotheses and their extensions to an active scalar in shell models of turbulence. We find that Kraichnan's refined similarity hypothesis and its extension are valid.
Center for Turbulence Research Annual Research Briefs 2008
Prinz, Friedrich B.
Turbulent multi-phase combustion is encountered in a number of engineering applica- tions, such as internal combustion engines and gas-turbine aircraft engines. Therefore, the ability to perform accurate numerical and combustion in a swirling combustor By K. Luo, O. Desjardins AND H. Pitsch 1. Motivation and objective
Notes 09. Fluid inertia and turbulence in fluid film bearings
San Andres, Luis
2009-01-01T23:59:59.000Z
. Luis San Andr?s ? 2009 14 References: Constantinescu, V.N., 1962, ?Analysis of Bearings Operating in the Turbulent Flow Regime,? ASME Journal of Lubrication Technology, Vol. 82, pp. 139-151. Hashimoto, H., S. Wada, M. Sumitomo, 1989, ?The Effects...
Wind Energy Applications of Unified and Dynamic Turbulence Models
Heinz, Stefan
Wind Energy Applications of Unified and Dynamic Turbulence Models Stefan Heinz and Harish Gopalan applicable as a low cost alternative. 1 Introduction There is a growing interest in using wind energy suggests the possibility of providing 20% of the electricity in the U.S. by wind energy in 2030
Center for Turbulence Research Annual Research Briefs 2008
Prinz, Friedrich B.
Center for Turbulence Research Annual Research Briefs 2008 115 Spurious oscillations to the discontinuity in the ratio of specific heats in the energy equation and suggested a means to overcome, the findings are summarized and an outlook for future work is outlined. 2. Numerical methods For simplicity
Unstructured spectral element methods of simulation of turbulent flows
Henderson, R.D. [California Inst. of Technology, Pasadena, CA (United States)] [California Inst. of Technology, Pasadena, CA (United States); Karniadakis, G.E. [Brown Univ., Providence, RI (United States)] [Brown Univ., Providence, RI (United States)
1995-12-01T23:59:59.000Z
In this paper we present a spectral element-Fourier algorithm for simulating incompressible turbulent flows in complex geometries using unstructured quadrilateral meshes. To this end, we compare two different interface formulations for extending the conforming spectral element method in order to allow for surgical mesh refinement and still retain spectral accuracy: the Zanolli iterative procedure and variational patching based on auxiliary {open_quotes}mortar{close_quotes} functions. We present an interpretation of the original mortar element method as a patching scheme and develop direct and iterative solution techniques that make the method efficient for simulations of turbulent flows. The properties of the new method are analyzed in detail by studying the eigenspectra of the advection and diffusion operators. We then present numerical results that illustrate the flexibility as well as the exponential convergence of the new algorithm for nonconforming discretizations. We conclude with simulation studies of the turbulent cylinder wake at Re = 1000 (external flow) and turbulent flow over riblets at Re = 3280 (internal flow). 36 refs., 29 figs., 7 tabs.
Center for Turbulence Research Annual Research Briefs 2008
Prinz, Friedrich B.
simulation of a 20 sector of a Pratt & Whitney gas turbine engine, encompassing the fan, low- and high-pressure compressors, combustor, high- and low-pressure turbines, and the exit nozzle as illustrated in Fig. 1 of turbulent combustion in a gas turbine engine combustor By D. You, F. Ham AND P. Moin 1. Motivation
Probing plasma turbulence by modulating the electron temperature gradient
DeBoo, J. C.
The local value of a/L[subscript Te], a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [ J. L. Luxon, Nucl. Fusion 42, 614 (2002) ] and the density and electron temperature ...
Spectral Cascade and Energy Dissipation in Kinetic Alfven Wave Turbulence
Lin, Zhihong
Spectral Cascade and Energy Dissipation in Kinetic AlfvÂ´en Wave Turbulence Xi Cheng, Zhihong Lin energy sources at large spatial scales. The energy of these non- linearly interacting Alfven waves. 2000). The wave-particle energy exchange rates of these channels depend on the spectral properties near
ECRH microwave beam broadening in the edge turbulent plasma
Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu. [Ioffe Institute, St. Petersburg, Russia and RL PAT SPbSPU, St. Petersburg (Russian Federation); Silva, F. da [Institute of Plasmas and Nuclear Fusion, IST, Lisbon (Portugal); Heuraux, S. [IJL UMR-7198 CNRS-Université de Lorraine, BP70239, 54506 Vandoeuvre Cedex (France)
2014-02-12T23:59:59.000Z
The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.
ATMOSPHERIC TURBULENCE MODELING AND IMPLICATIONS FOR WIND ENERGY
Chow, Fotini Katopodes
turbines off too early in high winds, or may risk severe damage to the rotors and blades by operating under Introduction Wind turbines sit at the very bottom of the at- mospheric boundary layer, where winds are highly turbulent, shear events are intermittent, and land- atmosphere interactions may be strong. Turbine hub
Global Turbulence Simulations of CYCLONE Base Case and MAST Plasmas
Saarelma, S.; Akers, R.; Reshko, M.; Roach, C. M.; Romanelli, M.; Thyagaraja, A. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX143DB (United Kingdom); Peeters, A. [Centre for Fusion, Space and Astrophysics, Warwick University, Coventry CV4 7AL (United Kingdom); Bottino, A. [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Jolliet, S. [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland)
2008-11-01T23:59:59.000Z
The non-local effects of turbulence can affect the transport especially in devices when the ration of ion gyroradius to plasma size ({rho}{sub i}*) is large. We show how the local linear and nonlinear ITG flux-tube results are modified when the simulations are done with finite {rho}{sub i}* in a global code.
The Dynamics of SmallScale Turbulence Driven Flows
Hammett, Greg
the existence of a linearly undamped component of the flow which could build up in time and lower the finalThe Dynamics of SmallScale Turbulence Driven Flows M. A. Beer and G. W. Hammett PPPL APS DPP meeting, November 1997 The dynamics of smallscale fluctuation driven flows are of great in terest
Modelling and Measurements of Power Losses and Turbulence
Pryor, Sara C.
at Middelgrunden Offshore Wind Farm R. J. Barthelmie*, , S. T. Frandsen and M. N. Nielsen, Wind Energy Department and turbulence increase due to wind turbine wake interac- tions in large offshore wind farms is crucial interactions in large offshore wind farms is crucial to optimizing wind farm design. Power losses due
Stochastic modeling of lift and drag dynamics under turbulent conditions
Peinke, Joachim
measurement. The model is being developed with the aim to integrate it into a general wind energy converter dynamics, drag dynamics. 1 Introduction Wind energy converters (WECs) are permanently exposed to turbulent.peinke@forwind.de in every second, which imposes different risks. The dynamical nature of the wind has a significant impact
Center for Turbulence Research Proceedings of the Summer Program 2012
Wang, Wei
turbulence within the separation bubble and more accurate (earlier) reattach- ment. The new model yields of the separation bubble from DNS of Marquillie et al. (2008); (x - xsep)/(xreattach - xsep) = 8% (solid), 46% (dash), 83% (dash-dot), 121% (dash-dot-dot). A rapid increase in near-wall dissipation is seen in the rear
Magnetic energy production by turbulence in binary neutron star mergers
Zrake, Jonathan
2013-01-01T23:59:59.000Z
The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would aid greatly in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level (~10^16) G fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger time scale. Since turbulent magnetic energy dissipates through reconnection events which accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10^-4 of the ~ 10^53 erg of orbital kinetic available gets processed through reconnection, and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10^-7 erg/cm^2, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detecta...
Turbulence: Modeling complex flow C.W. Oosterlee
Oosterlee, Cornelis W. "Kees"
grid should be such that they are captured. #15; Macro structure with length scale L, micro structure with the Kolmogorov length scale #17; #15; Number of grid points: #18; L #17; #19; 3 Turbulence/Folie--Nr. 7 #12; DNS storage: > 10 #2; 10 9 #15; number of computing operations: #24; 500 #15; number of time steps: #24; 10000
Modeling Turbulent Hydraulic Fracture Near a Free Surface
Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. wall Wall shear stress. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been
Modeling Turbulent Hydraulic Fracture Near a Free Surface
Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been studied for many years
Center for Turbulence Research Proceedings of the Summer Program 2012
Wang, Wei
, or automotive cooling fan systems or in heating, ventilating and air conditioning devices. However, an accurateCenter for Turbulence Research Proceedings of the Summer Program 2012 251 Uncertainty and compare well with experi- mental data. Larger uncertainties are seen in the hub and tip regions, where
The Solar Flare: A Strongly Turbulent Particle Accelerator
California at Berkeley, University of
Chapter 5 The Solar Flare: A Strongly Turbulent Particle Accelerator L. Vlahos, S. Krucker, and P) and particle acceleration during such an event are rarely discussed together in the same article. Many the topic of particle acceleration is often presented as an addi- tional complication to be addressed
Simulations of High Speed Turbulent Jets in Crossflow Xiaochuan Chai
Mahesh, Krishnan
Simulations of High Speed Turbulent Jets in Crossflow Xiaochuan Chai and Krishnan Mahesh-expanded sonic jet injected into a supersonic crossflow and an over-expanded supersonic jet injected into a subsonic crossflow. A finite volume compressible NavierStokes solver developed by Park & Mahesh (2007
Simulations of High Speed Turbulent Jets in Crossflows Xiaochuan Chai
Mahesh, Krishnan
Simulations of High Speed Turbulent Jets in Crossflows Xiaochuan Chai and Krishnan Mahesh-expanded sonic jet injected into a supersonic crossflow and an over-expanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on Santiago et al.'s (1997) and Beresh et al
Center for Turbulence Research Annual Research Briefs 2008
Prinz, Friedrich B.
breakup of turbulent liquid jets in crossflow By M. G. Pai, O. Desjardins AND H. Pitsch 1. Motivation and objectives The problem of breakup of a liquid fuel in a crossflow finds relevance in applications in a crossflow is a result of a complex process that includes development of instabilities along the liquid
Supersonic turbulent boundary layers with periodic mechanical non-equilibrium
Ekoto, Isaac Wesley
2007-04-25T23:59:59.000Z
questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface...
LES Simulations of Turbulent Combustion in a Type Ia Supernovae
New York at Stoney Brook, State University of
to be thermonuclear explosions of white dwarfs. SNIa are important sources of energy and chemical elements deposited of the burning are all determined by the speed of thermonuclear burning [27]. The problem of turbulent combustion. The mechanism and the speed of thermonuclear burning in SNIa remain an unsolved theoretical problem. A recent
LES of a Hydrogen-Enriched Lean Turbulent Premixed Flame
Groth, Clinton P. T.
LES of a Hydrogen-Enriched Lean Turbulent Premixed Flame Francisco E. Hern´andez-P´erez , Clinton the observed behaviour is examined. Hydrogen-hydrocarbon fuel blends appear to be a promising option to synergistically pave the way toward pure hydrogen-based combustion systems while alleviating green-house gas
Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma
Cassak, Paul
- lar wind find evidence that most of the turbulent energy at high wavenumber resides in highly oblique Laboratory, University of Delaware, Newark, Delaware 19716, USA Received 14 October 2008; accepted 12, differences from MHD arise, as energy dissipates into heat almost exclusively through the magnetic field
1 A Grid based distributed simulation of Plasma Turbulence
Vlad, Gregorio
1 A Grid based distributed simulation of Plasma Turbulence Beniamino Di Martino and Salvatore- cati, Rome, Italy Grid technology is widespreading, but most grid-enabled applications just exploit of Grid platforms. In this paper the porting on a Globus equipped platform of a hierarchically distributed
Lyapunov exponents of heavy particles in turbulence Jrmie Bec
Cencini, Massimo
Lyapunov exponents of heavy particles in turbulence Jérémie Bec CNRS UMR6202, Observatoire de la Ferrara, Italy Received 7 June 2006; accepted 7 August 2006; published online 7 September 2006 Lyapunov, a counterintuitive increase of the first Lyapunov exponent is observed. The flow intermittency is found to induce
Covariant Lyapunov Analysis of NavierStokes Turbulence
RIMSÂ1770 Covariant Lyapunov Analysis of NavierÂStokes Turbulence By Masanobu INUBUSHI January 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan #12; Covariant Lyapunov of the important properties of chaos. Particularly, we employ covariant Lyapunov analysis recently developed
Covariant Lyapunov Analysis of Navier-Stokes Turbulence
RIMS-1770 Covariant Lyapunov Analysis of Navier-Stokes Turbulence By Masanobu INUBUSHI January 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan #12;Covariant Lyapunov Analysis of chaos. Particularly, we employ covariant Lyapunov analysis recently developed by Ginelli et al. (2007
Ris-R-Report Investigation of turbulence measurements
many times that the mean horizontal wind speed measured by a lidar over flat terrain compares very well. We then evaluate this model by comparing the theoretical results to experimental data obtained.......................................................12 3.1 What can a cw conically scanning lidar tell us about turbulence?...12 3.2 Illustration
air pollution turbulence: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
air pollution turbulence First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Environmental Pollution Air...
Ecological collapse and the emergence of traveling waves at the onset of shear turbulence
Shih, Hong-Yan; Goldenfeld, Nigel
2015-01-01T23:59:59.000Z
The transition to turbulence exhibits remarkable spatio-temporal behavior that continues to defy detailed understanding. Near the onset to turbulence in pipes, transient turbulent regions decay either directly or, at higher Reynolds numbers through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Here we report numerical simulations of transitional pipe flow, showing that a zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations; in turn, the zonal flow suppresses the small-scale turbulence leading to stochastic predator-prey dynamics. We show that this "ecological" model of transitional turbulence reproduces the super-exponential lifetime statistics and phenomenology of pipe flow experiments. Our work demonstrates that a fluid on the edge of turbulence is mathematically analogous to an ecosystem on the edge of extinction, and provides an unbroken link between the equations of fluid dynamics and the directed percolation univ...
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.
2012-06-05T23:59:59.000Z
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.
Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants
Hardin, Corey Lee
2011-01-01T23:59:59.000Z
and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal
Koski, J.A.; Keltner, N.R.; Sobolik, K.B.
1993-02-01T23:59:59.000Z
Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.
Thermal ignition combustion system
Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.
1988-04-19T23:59:59.000Z
The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.
Scattering Solar Thermal Concentrators
Broader source: Energy.gov [DOE]
"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."
DRIVERS OF H I TURBULENCE IN DWARF GALAXIES
Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Warren, Steven R. [Department of Astronomy, University of Maryland, CSS Building, Room 1024, Stadium Drive, College Park, MD 20742-2421 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)
2013-08-20T23:59:59.000Z
Neutral hydrogen (H I) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation, recent studies have shown that this driving mechanism may not be dominant in regions of low star formation surface density ({Sigma}{sub SFR}), such those as found in dwarf galaxies or the outer regions of spirals. We have generated average H I line profiles in a number of nearby dwarfs and low-mass spirals by co-adding H I spectra in subregions with either a common radius or {Sigma}{sub SFR}. We find that the individual spatially resolved ''superprofiles'' are composed of a central narrow peak ({approx}5-15 km s{sup -1}) with higher velocity wings to either side, similar to their global counterparts as calculated for the galaxy as a whole. Under the assumption that the central peak reflects the H I turbulent velocity dispersion, we compare measures of H I kinematics determined from the superprofiles to local ISM properties, including surface mass densities and measures of star formation. The shape of the wings of the superprofiles do not show any correlation with local ISM properties, which indicates that they may be an intrinsic feature of H I line-of-sight spectra. On the other hand, the H I velocity dispersion is correlated most strongly with baryonic and H I surface mass density, which points toward a gravitational origin for turbulence, but it is unclear which, if any, gravitational instabilities are able to operate efficiently in these systems. Star formation energy is typically produced at a level sufficient to drive H I turbulent motions at realistic coupling efficiencies in regimes where {Sigma}{sub SFR} {approx}> 10{sup -4} M{sub Sun} yr{sup -1} kpc{sup -2}, as is typically found in inner spiral disks. At low star formation intensities, on the other hand, star formation cannot supply enough energy to drive the observed turbulence, nor does it uniquely determine the turbulent velocity dispersion. Nevertheless, even at low intensity, star formation does appear to provide a lower threshold for H I velocity dispersions. We find a pronounced decrease in coupling efficiency with increasing {Sigma}{sub SFR}, which would be consistent with a picture where star formation couples to the ISM with constant efficiency, but that less of that energy is found in the neutral phase at higher {Sigma}{sub SFR}. We have examined a number of potential drivers of H I turbulence, including star formation, gravitational instabilities, the magneto-rotational instability, and accretion-driven turbulence, and found that, individually, none of these drivers is capable of driving the observed levels of turbulence in the low {Sigma}{sub SFR} regime. We discuss possible solutions to this conundrum.
Systems analysis of thermal storage
Copeland, R.J.
1981-08-01T23:59:59.000Z
During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.
Energy spectra of finite temperature superfluid helium-4 turbulence
Kivotides, Demosthenes [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)
2014-10-15T23:59:59.000Z
A mesoscopic model of finite temperature superfluid helium-4 based on coupled Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments and available numerical results, a numerical method for designing well resolved, mesoscopic calculations of finite temperature superfluid turbulence is developed. The application of model and numerical method to the problem of fully developed turbulence decay in helium II, indicates that the spectral structure of normal-fluid and superfluid turbulence is significantly more complex than that of turbulence in simple-fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation in the normal-fluid is compensated by the Lundgren force, indicate three scaling regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov k{sup ?5/3} regime, a sub-turbulence, low Reynolds number, fluctuating k{sup ?2.2} regime, and an intermediate, viscous k{sup ?6} range that connects the two. The k{sup ?2.2} regime is due to normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three scaling regimes in the superfluid, that include a k{sup ?3} range that corresponds to the growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent, low wavenumber, k{sup ?5/3} regime that emerges during the termination of this growth, as superfluid vortices agglomerate between intense normal-fluid vorticity regions, and weakly polarized bundles are formed. There is also evidence of a high wavenumber k{sup ?1} range that corresponds to the probing of individual-vortex velocity fields. The Kelvin waves cascade (the main dynamical effect in zero temperature superfluids) appears to be damped at the intervortex space scale.
Anderson, Michael E
2015-01-01T23:59:59.000Z
We detect emission from [Fe XXI] $\\lambda$1354.1, which is a tracer of $10^7$ K gas, in archival HST-COS spectra from the centers of the well-known elliptical galaxies M87 and NGC 4696. The detections are at moderate significance, with S/N of 4.9 and 4.1 respectively. Using this line, we measure the kinematics of the hot gaseous halos in these galaxies, which are stirred by turbulence and bulk flows. The hot gas has a mean velocity which is consistent with zero relative to each galaxy, although in the case of M87 spatial broadening by the off-axis nucleus may be introducing a slight artificial blueshift. In both systems we measure velocity dispersions for this line, which are likely contaminated by spatial broadening. We estimate the effect of spatial broadening and infer turbulent line-of sight velocities of $105^{+28}_{-22}$ km/s and $85^{+22}_{-18}$ km/s, corresponding to turbulent pressures of $7^{+4}_{-3}$% and $5\\pm2$% of the total thermal pressure in these respective galaxies. These uncertainties inclu...
A. Y. Poludnenko; E. G. Blackman; A. Frank
2002-01-24T23:59:59.000Z
We consider the stability of an accretion disk wind to cloud formation when subject to a central radiation force. For a vertical launch velocity profile that is Keplerian or flatter and the presence of a significant radiation pressure, the wind flow streamlines cross in a conical layer. We argue that such regions are highly unstable, and are natural sites for supersonic turbulence and, consequently, density compressions. We suggest that combined with thermal instability these will all conspire to produce clouds. Such clouds can exist in dynamical equilibrium, constantly dissipating and reforming. As long as there is an inner truncation radius to the wind, our model emerges with a biconical structure similar to that inferred by Elvis (2000) for the broad line region (BLR) of active galactic nuclei (AGN). Our results may also apply to other disk-wind systems.
Nonclassicality of Thermal Radiation
Lars M. Johansen
2004-02-16T23:59:59.000Z
It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.
Not Available
1980-06-01T23:59:59.000Z
Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.
Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)
2001-01-01T23:59:59.000Z
A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.
Low thermal conductivity skutterudites
Fleurial, J.P.; Caillat, T.; Borshchevsky, A.
1997-07-01T23:59:59.000Z
Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.
Thermal Infrared Remote Sensing
to us, like reflective ("nearreflective ("near--" infrared (0.7" infrared (0.7 -- 3.03.0 µµm)m) andand near-infrared far infrared ultraviolet Thermal Infrared refers to region o EM spectrum from ~3 - 14 µm.landscape. IMPORTANT: NEARIMPORTANT: NEAR--INFRARED is short enough wavelength toINFRARED is short enough wavelength
Solar thermal financing guidebook
Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.
1983-05-01T23:59:59.000Z
This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.
High-Temperature Thermal Array for Next Generation Solar Thermal...
Broader source: Energy.gov (indexed) [DOE]
3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...
Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal
Paulino, Glaucio H.
Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal Resistance H Engineering, Newmark Laboratory, 205 North Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Department of Civil and Environmental Engineering, 4139 Engineering Gateway, University
Fast Thermal Simulation for Architecture Level Dynamic Thermal Management
Tan, Sheldon X.-D.
Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang Li, Lingling Jin, Wei Wu, Sheldon X.-D. Tan, Jun Yang Department of Electrical Engineering temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach
AQUIFER THERMAL ENERGY STORAGE-A SURVEY
Tsang, Chin Fu
2012-01-01T23:59:59.000Z
High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:
THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP
Authors, Various
2011-01-01T23:59:59.000Z
Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge
Ocean Thermal Extractable Energy Visualization: Final Technical...
Office of Environmental Management (EM)
Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...
OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT
Sands, M.Dale
2013-01-01T23:59:59.000Z
M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic
THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP
Authors, Various
2011-01-01T23:59:59.000Z
Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and
AQUIFER THERMAL ENERGY STORAGE-A SURVEY
Tsang, Chin Fu
2012-01-01T23:59:59.000Z
1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES
Thermal Modeling of Lundell Alternators
Tang, Sai Chun
Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lundell alternators is proposed, and procedures for acquiring the model parameters are elucidated. Based on the ...
Thermal Conductivity of Coated Paper
Kerr, Lei L [ORNL; Pan, Yun-Long [Smart Papers, Hamilton, OH 45013; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL; Peterson, Robert C. [Miami University, Oxford, OH
2009-01-01T23:59:59.000Z
In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.
Jet Quenching and Holographic Thermalization
Elena Caceres; Arnab Kundu; Berndt Müller; Diana Vaman; Di-Lun Yang
2012-08-31T23:59:59.000Z
We employ the AdS/CFT correspondence to investigate the thermalization of the strongly-coupled plasma and the jet quenching of a hard probe traversing such a thermalizing medium.
The Local Variational Multiscale Method for Turbulence Simulation.
Collis, Samuel Scott; Ramakrishnan, Srinivas
2005-05-01T23:59:59.000Z
Accurate and efficient turbulence simulation in complex geometries is a formidable chal-lenge. Traditional methods are often limited by low accuracy and/or restrictions to simplegeometries. We explore the merger of Discontinuous Galerkin (DG) spatial discretizationswith Variational Multi-Scale (VMS) modeling, termed Local VMS (LVMS), to overcomethese limitations. DG spatial discretizations support arbitrarily high-order accuracy on un-structured grids amenable for complex geometries. Furthermore, high-order, hierarchicalrepresentation within DG provides a natural framework fora prioriscale separation crucialfor VMS implementation. We show that the combined benefits of DG and VMS within theLVMS method leads to promising new approach to LES for use in complex geometries.The efficacy of LVMS for turbulence simulation is assessed by application to fully-developed turbulent channelflow. First, a detailed spatial resolution study is undertakento record the effects of the DG discretization on turbulence statistics. Here, the localhp[?]refinement capabilites of DG are exploited to obtain reliable low-order statistics effi-ciently. Likewise, resolution guidelines for simulating wall-bounded turbulence using DGare established. We also explore the influence of enforcing Dirichlet boundary conditionsindirectly through numericalfluxes in DG which allows the solution to jump (slip) at thechannel walls. These jumps are effective in simulating the influence of the wall commen-surate with the local resolution and this feature of DG is effective in mitigating near-wallresolution requirements. In particular, we show that by locally modifying the numericalviscousflux used at the wall, we are able to regulate the near-wall slip through a penaltythat leads to improved shear-stress predictions. This work, demonstrates the potential ofthe numerical viscousflux to act as a numerically consistent wall-model and this successwarrents future research.As in any high-order numerical method some mechanism is required to control aliasingeffects due to nonlinear interactions and to ensure nonlinear stability of the method. Inthis context, we evaluate the merits of two approaches to de-aliasing -- spectralfilteringand polynomial dealiasing. While both approaches are successful, polynomial-dealiasingis found to be better suited for use in large-eddy simulation. Finally, results using LVMSare reported and show good agreement with reference direct numerical simulation therebydemonstrating the effectiveness of LVMS for wall-bounded turbulence. This success pavesthe way for future applications of LVMS to more complex turbulentflows.3
Microviscometric studies on thermal diffusion
Reyna, Eddie
1959-01-01T23:59:59.000Z
for its improvement. This in~estigation was supported in part by the Convsir Division of General Dynamics Corporation. TABLE OF CONTENTS Chapter III INTRODUCTION EXPERINENTAL NETHODS AND PROCEDUPJIS Thermal Diffusion Column Viscosity Measurements.... The main interest of 6 tais work was the molecular weight dependence of the thermal diffusion coefficient and the suitability of thermal diffusion as a method of frac- tionation of polymers. Since the work of Debye and Bueche, applications of thermal...
TURBULENCE IN THE SUPERMODEL: MASS RECONSTRUCTION WITH NONTHERMAL PRESSURE FOR A1835
Fusco-Femiano, R. [IAPS-INAF, Via Fosso del Cavaliere, I-00133 Roma (Italy); Lapi, A. [Dip. Fisica, Univ. ''Tor Vergata'', Via Ricerca Scientifica 1, I-00133 Roma (Italy)
2013-07-10T23:59:59.000Z
The total mass derived from X-ray emission is biased low in a large number of clusters when compared with the mass estimated via strong and weak lensing. Suzaku and Chandra observations out to the virial radius report in several relaxed clusters' steep temperature gradients that on assuming pure thermal hydrostatic equilibrium (HE) imply an unphysically decreasing mass profile. Moreover, the gas mass fraction appears to be inconsistent with the cosmic value measured from the cosmic microwave background. Such findings can be interpreted as evidence for an additional nonthermal pressure in the outskirts of these clusters. This nonthermal component may be due to turbulence stirred by residual bulk motions of extragalactic gas infalling into the cluster. Here, we present a SuperModel analysis of A1835 observed by Chandra out to the virial radius. The SuperModel formalism can include in the equilibrium a nonthermal component whose level and distribution are derived imposing that the gas mass fraction (f{sub gas}) equals the cosmic value at the virial radius. Including such a nonthermal component, we reconstruct from X-rays an increasing mass profile consistent with the HE also in the cluster outskirts and in agreement at the virial boundary with the weak-lensing value. The increasing f{sub gas} profile confirms that the baryons are not missing but located at the cluster outskirts.
Methods of forming thermal management systems and thermal management methods
Gering, Kevin L.; Haefner, Daryl R.
2012-06-05T23:59:59.000Z
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Thermal Stabilization Blend Plan
RISENMAY, H.R.
2000-05-02T23:59:59.000Z
This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.
Thermally stable diamond brazing
Radtke, Robert P. (Kingwood, TX)
2009-02-10T23:59:59.000Z
A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.
Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID
2009-08-18T23:59:59.000Z
An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.
Not Available
1980-06-01T23:59:59.000Z
Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.
Proton Kinetic Effects in Vlasov and Solar Wind Turbulence
Servidio, S; Valentini, F; Perrone, D; Califano, F; Chapman, S; Matthaeus, W H; Veltri, P
2013-01-01T23:59:59.000Z
Kinetic plasma processes have been investigated in the framework of solar wind turbulence, employing Hybrid Vlasov-Maxwell (HVM) simulations. The dependency of proton temperature anisotropy T_{\\perp}/T_{\\parallel} on the parallel plasma beta \\beta_{\\parallel}, commonly observed in spacecraft data, has been recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T_{\\perp}/T_{\\parallel} and \\beta_{\\parallel}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.
Weak and strong wave turbulence spectra for elastic thin plate
Naoto Yokoyama; Masanori Takaoka
2013-02-15T23:59:59.000Z
Variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we have performed direct numerical simulations according to the F\\"{o}ppl--von K\\'{a}rm\\'{a}n equation, and successfully reproduced the variability of the energy spectra by changing the magnitude of external force systematically. When the total energies in wave fields are small, the energy spectra are close to a statistically steady solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave fields, another self-similar spectrum is found. Coexistence of the weakly nonlinear spectrum in large wavenumbers and the strongly nonlinear spectrum in small wavenumbers are also found in moderate energy wave fields.
Remarks on the KLB theory of two-dimensional turbulence
Chuong V. Tran; Theodore G. Shepherd
2004-12-10T23:59:59.000Z
We study the inverse energy transfer in forced two-dimensional (2D) Navier--Stokes turbulence in a doubly periodic domain. It is shown that an inverse energy cascade that carries a nonzero fraction of the injected energy to the large scales via a power-law energy spectrum $\\propto k^{-\\alpha}$ requires that $\\alpha\\ge5/3$. This result is consistent with the classical theory of 2D turbulence that predicts a $k^{-5/3}$ inverse-cascading range, thus providing for the first time a rigorous basis for this important feature of the theory. We derive bounds for the Kolmogorov constant $C$ in the classical energy spectrum $E(k)=C\\epsilon^{2/3}k^{-5/3}$, where $\\epsilon$ is the energy injection rate. Issues related to Kraichnan's conjecture of energy condensation and to power-law spectra as the quasi-steady dynamics become steady are discussed.
Gyrotactic trapping in laminar and turbulent Kolmogorov flow
Francesco Santamaria; Filippo De Lillo; Massimo Cencini; Guido Boffetta
2014-10-07T23:59:59.000Z
Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms are found within a small depth interval. Some species of motile phytoplankton can form TPLs by gyrotactic trapping due to the interplay of their particular swimming style (directed motion biased against gravity) and the transport by a flow with shear along the direction of gravity. Here we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable and the formation of TPLs can be fully characterized by means of dynamical systems tools. We then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the Reynolds number is large enough) on TPLs. In both cases we show that TPLs become transient, and we characterize their persistence.
Multiphase turbulent interstellar medium: some recent results from radio astronomy
Roy, Nirupam
2015-01-01T23:59:59.000Z
The radio frequency 1.4 GHz transition of the atomic hydrogen is one of the important tracers of the diffuse neutral interstellar medium. Radio astronomical observations of this transition, using either a single dish telescope or an array interferometer, reveal different properties of the interstellar medium. Such observations are particularly useful to study the multiphase nature and turbulence in the interstellar gas. Observations with multiple radio telescopes have recently been used to study these two closely related aspects in greater detail. Using various observational techniques, the density and the velocity fluctuations in the Galactic interstellar medium was found to have a Kolmogorov-like power law power spectra. The observed power law scaling of the turbulent velocity dispersion with the length scale can be used to derive the true temperature distribution of the medium. Observations from a large ongoing atomic hydrogen absorption line survey have also been used to study the distribution of gas at d...
Coherent structures in ion temperature gradient turbulence-zonal flow
Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Singh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kaw, P. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CMTFO and CASS, University of California, San Diego, California 92093 (United States)
2014-10-15T23:59:59.000Z
Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m?=?n?=?0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.
Turbulent heat transfer performance of single stage turbine
Amano, R.S.; Song, B.
1999-07-01T23:59:59.000Z
To increase the efficiency and the power of modern power plant gas turbines, designers are continually trying to raise the maximum turbine inlet temperature. Here, a numerical study based on the Navier-Stokes equations on a three-dimensional turbulent flow in a single stage turbine stator/rotor passage has been conducted and reported in this paper. The full Reynolds-stress closure model (RSM) was used for the computations and the results were also compared with the computations made by using the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} model. The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The set of the governing equations in a generalized curvilinear coordinate system was discretized by using the finite volume method with non-staggered grids. The numerical modeling was performed to interact between the stator and rotor blades.
Shock-induced turbulent flow in baffle systems
Kuhl, A.L. [Lawrence Livermore National Lab., CA (United States); Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany)
1993-07-01T23:59:59.000Z
Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.
On the Peterlin approximation for turbulent flows of polymer solutions
Dario Vincenzi; Prasad Perlekar; Luca Biferale; Federico Toschi
2015-05-26T23:59:59.000Z
We study the impact of the Peterlin approximation on the statistics of the end-to-end separation of poly- mers in a turbulent flow. The FENE and FENE-P models are numerically integrated along a large number of Lagrangian trajectories resulting from a direct numerical simulation of three-dimensional homogeneous isotropic turbulence. Although the FENE-P model yields results in qualitative agreement with those of the FENE model, quantitative differences emerge. The steady-state probability of large extensions is overesti- mated by the FENE-P model. The alignment of polymers with the eigenvectors of the rate-of-strain tensor and with the direction of vorticity is weaker when the Peterlin approximation is used. At large Weissenberg numbers, both the correlation times of the extension and of the orientation of polymers are underestimated by the FENE-P model.
On the Peterlin approximation for turbulent flows of polymer solutions
Vincenzi, Dario; Biferale, Luca; Toschi, Federico
2015-01-01T23:59:59.000Z
We study the impact of the Peterlin approximation on the statistics of the end-to-end separation of poly- mers in a turbulent flow. The FENE and FENE-P models are numerically integrated along a large number of Lagrangian trajectories resulting from a direct numerical simulation of three-dimensional homogeneous isotropic turbulence. Although the FENE-P model yields results in qualitative agreement with those of the FENE model, quantitative differences emerge. The steady-state probability of large extensions is overesti- mated by the FENE-P model. The alignment of polymers with the eigenvectors of the rate-of-strain tensor and with the direction of vorticity is weaker when the Peterlin approximation is used. At large Weissenberg numbers, both the correlation times of the extension and of the orientation of polymers are underestimated by the FENE-P model.
Ionization front-driven turbulence in the clumpy interstellar medium
Thomas Peters; Robi Banerjee; Ralf S. Klessen
2008-08-20T23:59:59.000Z
We present 3D radiation-gasdynamical simulations of an ionization front running into a dense clump. In our setup, a B0 star irradiates an overdensity which is at a distance of 10 pc and modelled as a supercritical 100 M_sol Bonnor-Ebert sphere. The radiation from the star heats up the gas and creates a shock front that expands into the interstellar medium. The shock compresses the clump material while the ionizing radiation heats it up. The outcome of this "cloud-crushing" process is a fully turbulent gas in the wake of the clump. In the end, the clump entirely dissolves. We propose that this mechanism is very efficient in creating short-living supersonic turbulence in the vicinity of massive stars.
Analogy between turbulence and quantum gravity: beyond Kolmogorov's 1941 theory
S. Succi
2011-11-14T23:59:59.000Z
Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum-space time with the recent Horava-Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on Extended Self-Similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.
Penetrative turbulence associated with mesoscale surface heat flux variations
Alam, Jahrul M
2015-01-01T23:59:59.000Z
This article investigates penetrative turbulence in the atmospheric boundary layer. Using a large eddy simulation approach, we study characteristics of the mixed layer with respect to surface heat flux variations in the range from 231.48 W/m$^2$ to 925.92 W/m$^2$, and observe that the surface heterogeneity on a spatial scale of $20$ km leads to downscale turbulent kinetic energy cascade. Coherent fluctuations of mesoscale horizontal wind is observed at 100m above the ground. Such a surface induced temporal oscillations in the horizontal wind suggest a rapid jump in mesocale wind forecasts, which is difficult to parameterize using traditional one-dimensional ensemble-mean models. Although the present work is idealized at a typical scale (20km) of surface heterogeneity, the results help develop effective subgrid scale parameterization schemes for classical weather forecasting mesoscale models.
Rotation Rate of Particle Pairs in Homogeneous Isotropic Turbulence
Daddi-Moussa-Ider, Abdallah
2015-01-01T23:59:59.000Z
Understanding the dynamics of particles in turbulent flow is important in many environmental and industrial applications. In this paper, the statistics of particle pair orientation is numerically studied in homogeneous isotropic turbulent flow, with Taylor microscale Rynolds number of 300. It is shown that the Kolmogorov scaling fails to predict the observed probability density functions (PDFs) of the pair rotation rate and the higher order moments accurately. Therefore, a multifractal formalism is derived in order to include the intermittent behavior that is neglected in the Kolmogorov picture. The PDFs of finding the pairs at a given angular velocity for small relative separations, reveals extreme events with stretched tails and high kurtosis values. Additionally, The PDFs are found to be less intermittent and follow a complementary error function distribution for larger separations.
Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley
2004-02-01T23:59:59.000Z
A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.
Turbulence in Global Simulations of Magnetized Thin Accretion Disks
Kris Beckwith; Philip J. Armitage; Jacob B. Simon
2011-05-09T23:59:59.000Z
We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio $H / R \\simeq 0.07$, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport $ > \\approx 2.5 \\times 10^{-2}$. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of $2.5H$ and $1.5H$ respectively), and generally consistent with that expected from homogenous incompressible turbulence. The density field, conversely, exhibits both a longer correlation length and a long correlation time, results which we ascribe to the importance of spiral density waves within the flow. Consistent with prior results, we show that the mean local stress displays a well-defined correlation with the local vertical flux, and that this relation is apparently causal (in the sense of the flux stimulating the stress) during portions of a global dynamo cycle. We argue that the observed flux-stress relation supports dynamo models in which the structure of coronal magnetic fields plays a central role in determining the dynamics of thin-disk accretion.
Predictability of the energy cascade in 2D turbulence
G. Boffetta; S. Musacchio
2000-06-09T23:59:59.000Z
The predictability problem in the inverse energy cascade of two-dimensional turbulence is addressed by means of direct numerical simulations. The growth rate as a function of the error level is determined by means of a finite size extension of the Lyapunov exponent. For error within the inertial range, the linear growth of the error energy, predicted by dimensional argument, is verified with great accuracy. Our numerical findings are in close agreement with the result of TFM closure approximation.
Decaying and kicked turbulence in a shell model
Jan-Otto Hooghoudt; Detlef Lohse; Federico Toschi
2000-12-06T23:59:59.000Z
Decaying and periodically kicked turbulence are analyzed within the GOY shell model, to allow for sufficiently large scaling regimes. Energy is transfered towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ensemble averaged energy decay E(t) \\~t^{-2} or the parameter dependences for the ensemble averaged total energy in the kicked case. Within numerical precision, the inertial subrange intermittency remains the same, whether the system is forced or decaying.
Turbulent Von Karman Swirling Flows , R. Schiestel2
Paris-Sud XI, Université de
is often used for studying fundamental aspects of developed turbulence and especially of magneto-hydrodynamic-rotating disks (R = 92.5 mm) enclosed by a stationary cylinder (Rc = 100 mm) (Fig.1). The in- terdisk spacing H a volumic drag force in the equation of V the tangential velocity compo- nent: f = nCD(1,2r - V)|1,2r - V
Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters
Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian
2014-03-02T23:59:59.000Z
Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.
Large eddy simulation of turbulence within heat exchangers
Pruitt, John Myron
1992-01-01T23:59:59.000Z
by the Electric Power Research Institute (EPRI), and continued within the Nuclear Engineering Department of Texas A&M University. Previous investigation has predicted the turbulent characteristics within the waterbox region of the Westinghouse D-4 steam... generator. Further investigation has included single and multiple tube configurations using coarse meshes. EPRI has supported this effort with many experimental investigations designed to provide data for comparison and validation of the technique...
Energy dissipation statistics in a shell model of turbulence
G. Boffetta; A. Celani; D. Roagna
1999-09-30T23:59:59.000Z
The Reynolds number dependence of the statistics of energy dissipation is investigated in a shell model of fully developed turbulence. The results are in agreement with a model which accounts for fluctuations of the dissipative scale with the intensity of energy dissipation. It is shown that the assumption of a fixed dissipative scale leads to a different scaling with Reynolds which is not compatible with numerical results.
Gradual eddy-wave crossover in superfluid turbulence
L'vov, Victor S; Rudenko, Oleksii
2008-01-01T23:59:59.000Z
We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a model with differential approximation for the energy fluxes in the k-space carried by the collective hydrodynamic motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves. The model predicts energy spectra of the hydrodynamic and the Kelvin waves components of the system, which experience a smooth crossover between different regimes of motion over a finite range of scales.
Gradual eddy-wave crossover in superfluid turbulence
Victor S. L'vov; Sergey V. Nazarenko; Oleksii Rudenko
2008-07-08T23:59:59.000Z
We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a model with differential approximation for the energy fluxes in the k-space carried by the collective hydrodynamic motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves. The model predicts energy spectra of the hydrodynamic and the Kelvin waves components of the system, which experience a smooth crossover between different regimes of motion over a finite range of scales.
Beyond the Betz Theory - Blockage, Wake Mixing and Turbulence
Nishino, Takafumi
2013-01-01T23:59:59.000Z
Recent analytical models concerning the limiting efficiency of marine hydrokinetic (MHK) devices are reviewed with an emphasis on the significance of blockages (of local as well as global flow passages) and wake mixing. Also discussed is the efficiency of power generation from fully developed turbulent open channel flows. These issues are primarily concerned with the design/optimization of tidal turbine arrays; however, some of them are relevant to wind turbines as well.
Intermittency and turbulence in a magnetically confined fusion plasma
V. Carbone; L. Sorriso-Valvo; E. Martines; V. Antoni; P. Veltri
2001-01-30T23:59:59.000Z
We investigate the intermittency of magnetic turbulence as measured in Reversed Field Pinch plasmas. We show that the Probability Distribution Functions of magnetic field differences are not scale invariant, that is the wings of these functions are more important at the smallest scales, a classical signature of intermittency. We show that scaling laws appear also in a region very close to the external wall of the confinement device, and we present evidences that the observed intermittency increases moving towards the wall.
Measurement of entropy production rate in compressible turbulence
M. M. Bandi; W. I. Goldburg; J. R. Cressman Jr
2006-10-22T23:59:59.000Z
The rate of change of entropy $\\dot S$ is measured for a system of particles floating on the surface of a fluid maintained in a turbulent steady state. The resulting coagulation of the floaters allows one to relate $\\dot S$ to the velocity divergence and to the Lyapunov exponents characterizing the behavior of this system. The quantities measured from experiments and simulations are found to agree well with the theoretical predictions.
Dynamics of quasi-two-dimensional turbulent jets
Landel, Julien Rémy Dominique Gérard
2012-11-13T23:59:59.000Z
of the core. To understand the transport and dispersion properties of quasi-two-dimensional jets we use a time-dependent advection–diffusion equation, with a mixing length hypothesis accounting for the turbulent eddy diffusivity. The model is supported... problems, such as sediment transport and coastal erosion (Joshi & Taylor, 1983), as well as environ- mental pollution. In the event of a spillage of pollutants in rivers, the prediction and monitoring of the transport and dispersion of the pollutants...
Rutland, Christopher J.
2009-04-26T23:59:59.000Z
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.
Mazzucato, E.; Bell, R. E.; Ethier, S.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Lee, W. W.; Ryan, P. M.; Smith, D. R.; Wang, W. X.; Wilson, J. R.
2009-03-26T23:59:59.000Z
Various theories and numerical simulations support the conjecture that the ubiquitous problem of anomalous electron transport in tokamaks may arise from a short-scale turbulence driven by the electron temperature gradient. To check whether this turbulence is present in plasmas of the National Spherical Torus Experiment (NSTX), measurements of turbulent fluctuations were performed with coherent scattering of electromagnetic waves. Results from plasmas heated by high harmonic fast waves (HHFW) show the existence of density fluctuations in the range of wave numbers k??e=0.1-0.4, corresponding to a turbulence scale length of the order of the collisionless skin depth. Experimental observations and agreement with numerical results from the linear gyro-kinetic GS2 code indicate that the observed turbulence is driven by the electron temperature gradient. These turbulent fluctuations were not observed at the location of an internal transport barrier driven by a negative magnetic shear.
Nanofluids for vehicle thermal management.
Choi, S. U.-S.; Yu, W.; Hull, J. R.; Zhang, Z. G.; Lockwood, F. E.; Energy Technology; The Valvoline Co.
2003-01-01T23:59:59.000Z
Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.
Thermal control structure and garment
Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)
2012-03-13T23:59:59.000Z
A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.
THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS
Selkowitz, S. E.
2011-01-01T23:59:59.000Z
on Thermal Performance of the Exterior Envelopes ofof thermal loads resulting from the building envelope areThermal Test Facility, LhL-9653, prepared for the ASHRAE/DOE Conference-on"t:heThermal Performance the Exterior Envelope
Turbulence in Global Simulations of Magnetized Thin Accretion Disks
Beckwith, Kris; Simon, Jacob B
2011-01-01T23:59:59.000Z
We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio $H / R \\simeq 0.07$, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport $ > \\approx 2.5 \\times 10^{-2}$. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of ...
Turbulent Kinetic Energy in the Oklahoma City Urban Environment
Lundquist, J; Leach, M; Gouveia, F
2004-06-24T23:59:59.000Z
A major field experiment, Joint URBAN 2003 (JU2003), was conducted in Oklahoma City in July 2003 to collect meteorological and tracer data sets for evaluating dispersion models in urban areas. The Department of Homeland Security and the Defense Threat Reduction Agency were the primary sponsors of JU2003. Investigators from five Department of Energy national laboratories, several other government agencies, universities, private companies, and international agencies conducted the experiment. Observations to characterize the meteorology in and around the urban area complemented the observation of the dispersion of SF6, an inert tracer gas. Over one hundred threedimensional sonic anemometers were deployed in and around the urban area to monitor wind speed, direction, and turbulence fluxes during releases of SF6. Sonic deployment locations included a profile of eight sonic anemometers mounted on a crane less than 1 km north of the central business district (CBD). Using data from these and other sonic anemometers deployed in the urban area, we can quantify the effect of the urban area on atmospheric turbulence and compare results seen in OKC to those in other urban areas to assess the parameters typically used in parameterizations of urban turbulence.
Estimation of turbulence level and scale for wind turbine applications
Powell, D.C.
1988-11-01T23:59:59.000Z
A simplified method is presented for estimating onsite turbulence variance within the wind turbine layer for horizontal wind speed. The method is based principally on estimating the probability distribution of wind speed and assigning a variance to each mean wind speed based on surface roughness estimates. The model is not proposed as an alternative to onsite measurement and analysis, but rather as an adjunct to such a program. A revision of the Kaimal neutral u-component spectrum is suggested to apply to the mix of the stabilities occurring during operational winds. Values of integral length scale calculated from data analysis are shown to contradict the length scale model implicit in turbulence power spectra. Also, these calculated values are shown to be extremely sensitive to the length of the time series and the detrending method used. The analysis and modeling are extended to the rotational frame of reference for a horizontal-axis wind turbine by modeling the ratios of harmonic spike variances (1P, 2P, etc.) in the rotational spectrum to the Eulerian turbulence variance. 15 refs., 11 figs., 3 tabs.
Mixing at the external boundary of a submerged turbulent jet
A. Eidelman; T. Elperin; N. Kleeorin; G. Hazak; I. Rogachevskii; O. Sadot; I. Sapir-Katiraie
2009-05-11T23:59:59.000Z
We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use Particle Image Velocimetry and an Image Processing Technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles which are characterized by large Schmidt number and small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that PDF of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in a qualitative agreement with the obtained experimental results.
Profiles of heating in turbulent coronal magnetic loops
E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli
2007-02-28T23:59:59.000Z
Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.
THE TURBULENCE POWER SPECTRUM IN OPTICALLY THICK INTERSTELLAR CLOUDS
Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 North Charter Street, WI 53711 (United States); Ossenkopf, V.; Stutzki, J. [Physikalisches Institut der Universitaet zu Koeln, Zuelpicher Strasse 77, D-50937 Koeln (Germany)
2013-07-10T23:59:59.000Z
The Fourier power spectrum is one of the most widely used statistical tools to analyze the nature of magnetohydrodynamic (MHD) turbulence in the interstellar medium. Lazarian and Pogosyan predicted that the spectral slope should saturate to -3 for an optically thick medium and many observations exist in support of their prediction. However, there have not been any numerical studies to date for testing these results. We analyze the spatial power spectrum of MHD simulations with a wide range of sonic and Alfvenic Mach numbers, which include radiative transfer effects of the {sup 13}CO transition. We numerically confirm the predictions of Lazarian and Pogosyan that the spectral slope of line intensity maps of an optically thick medium saturates to -3. Furthermore, for very optically thin supersonic CO gas, where the density or CO abundance values are too low to excite emission in all but the densest shock compressed gas, we find that the spectral slope is shallower than expected from the column density. Finally, we find that mixed optically thin/thick CO gas, which has average optical depths on the order of unity, shows mixed behavior: for super-Alfvenic turbulence, the integrated intensity power spectral slopes generally follow the same trend with sonic Mach number as the true column density power spectrum slopes. However, for sub-Alfvenic turbulence the spectral slopes are steeper with values near -3 which are similar to the very optically thick regime.
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-? Plasmas
Lin, Zhihong
2014-03-13T23:59:59.000Z
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
Numerical simulations of compressively driven interstellar turbulence: I. Isothermal gas
Schmidt, Wolfram; Hupp, Markus; Kern, Sebastian; Niemeyer, Jens C
2008-01-01T23:59:59.000Z
We performed numerical simulations of supersonic isothermal turbulence driven by mostly compressive large-scale forcing, using both a static grid and adaptive mesh refinement with an effective resolution N=768^3. After a transient phase dominated by shocks, turbulence evolves into a steady state with an RMS Mach number about 2.5, in which cloud-like structures of over-dense gas are surrounded by highly rarefied gas. The index of the turbulence energy spectrum function beta = 2.0 in the shock-dominated phase. As the flow approaches statistical equilibrium, the spectrum flattens, with beta = 1.9. For the scaling exponent of the root mean square velocity fluctuation, we obtain gamma = 0.43 from the velocity structure functions of second order. These results are well within the range of observed scaling properties for the velocity dispersion in molecular clouds. Calculating structure functions of order p=1,...,5, we find for all scaling exponents significant deviations from the Kolmogorov-Burgers model proposed b...
Communication with spatially modulated Light through turbulent Air across Vienna
Mario Krenn; Robert Fickler; Matthias Fink; Johannes Handsteiner; Mehul Malik; Thomas Scheidl; Rupert Ursin; Anton Zeilinger
2014-11-12T23:59:59.000Z
The transverse spatial modes of light offer a large state-space with interesting physical properties. For exploiting it in future long-distance experiments, spatial modes will have to be transmitted over turbulent free-space links. Numerous recent lab-scale experiments have found significant degradation in the mode quality after transmission through simulated turbulence and consecutive coherent detection. Here we experimentally analyze the transmission of one prominent class of spatial modes, the orbital-angular momentum (OAM) modes, through 3 km of strong turbulence over the city of Vienna. Instead of performing a coherent phase-dependent measurement, we employ an incoherent detection scheme which relies on the unambiguous intensity patterns of the different spatial modes. We use a pattern recognition algorithm (an artificial neural network) to identify the characteristic mode pattern displayed on a screen at the receiver. We were able to distinguish between 16 different OAM mode superpositions with only ~1.7% error, and use them to encode and transmit small grey-scale images. Moreover, we found that the relative phase of the superposition modes is not affected by the atmosphere, establishing the feasibility for performing long-distance quantum experiments with the OAM of photons. Our detection method works for other classes of spatial modes with unambiguous intensity patterns as well, and can further be improved by modern techniques of pattern recognition.
Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields
Rappazzo, A. F. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Delaware 19716 (United States); Velli, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)
2011-06-15T23:59:59.000Z
The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy E{sub M}(k{sub perpendicular}){proportional_to}k{sub perpendicular}{sup -2.7} exceeds kinetic energy E{sub K}(k{sub perpendicular}){proportional_to}k{sub perpendicular}{sup -0.6}. Increments scale as {delta}b{sub l}{approx_equal}l{sup -0.85}and {delta}u{sub l}{approx_equal}l{sup +0.2} with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of ''reflections'' between the two fields, cascade more than half of the total spectral energy flow.
Thermal management systems and methods
Gering, Kevin L.; Haefner, Daryl R.
2006-12-12T23:59:59.000Z
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Overview of the TurbSim Stochastic Inflow Turbulence Simulator: Version 1.10
Kelley, N. D.; Jonkman, B. J.
2006-09-01T23:59:59.000Z
The Turbsim stochastic inflow turbulence code was developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures that reflect the proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with nocturnal boundary layer flows. This report provides the user with an overview of how the TurbSim code has been developed and some of the theory behind that development.
A New Proof on Net Upscale Energy Cascade in 2D and QG Turbulence
Eleftherios Gkioulekas; Ka Kit Tung
2006-09-30T23:59:59.000Z
A general proof that more energy flows upscale than downscale in two-dimensional (2D) turbulence and barotropic quasi-geostrophic (QG) turbulence is given. A proof is also given that in Surface QG turbulence, the reverse is true. Though some of these results are known in restricted cases, the proofs given here are pedagogically simpler, require fewer assumptions and apply to both forced and unforced cases.
Thermal and non-thermal energies in solar flares
Pascal Saint-Hilaire; Arnold O. Benz
2005-03-03T23:59:59.000Z
The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.
Chuong V. Tran; Theodore G. Shepherd
2002-02-06T23:59:59.000Z
We study two-dimensional turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form $\
attached three-dimensional turbulent: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
resolutions up to 5123. We show that at varying the spectrum slope y, small-scale turbulent fluctuations change from a it forcing independent to a it forcing...
A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion
Bremer, Peer-Timo
2010-01-01T23:59:59.000Z
comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,
Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers
Not Available
2006-01-01T23:59:59.000Z
This revised ITP tip sheet on installing turbulators on firetube boilers provides how-to advice for improving the system using low-cost, proven practices and technologies.