Powered by Deep Web Technologies
Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Test Preparation Options Free Test Prep Websites  

E-Print Network (OSTI)

Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

Stowell, Michael

2

Tonopah Test Range closure sites revegetation plan  

SciTech Connect

This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

Anderson, D.C.; Hall, D.B.

1997-05-01T23:59:59.000Z

3

Ranging Tests for Laser Scanners  

Science Conference Proceedings (OSTI)

... Group (683.01) provides special tests for instruments that measure distance using the passive reflectance of the target, ie, non-cooperative targets. ...

2011-10-28T23:59:59.000Z

4

Tonopah Test Range 2030 Meeting Summary Report  

SciTech Connect

Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Closed, Closed in Place, or Closure in Progress. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized. CASs and CAUs where contaminants and/or waste have been closed in place are summarized. There is also a table that summarizes the contaminant that has been closed at each site, if land-use restrictions are present, and if post-closure inspections are required.

NSTec Environmental Restoration

2009-04-01T23:59:59.000Z

5

Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003  

Science Conference Proceedings (OSTI)

This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-04-01T23:59:59.000Z

6

Report on PV Test Sites and Test Prepared for the  

E-Print Network (OSTI)

Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test

7

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And...

8

Geothermometry At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

9

1998 Annual Site Environmental Report Tonopah Test Range, Nevada  

SciTech Connect

Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).

Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

1999-09-01T23:59:59.000Z

10

1997 annual site environmental report, Tonopah Test Range, Nevada  

SciTech Connect

Sandia National Laboratories (SNL) operates the Tonopah Test Range for the Department of Energy's (DOE) Weapons Ordnance Program. Thes annual report (calendar year 1997) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act. In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared as required by DOE Order 5400.1, General Environmental Protection Program.

Culp, Todd; Duncan, Dianne (ed.); Forston, William; Sanchez, Rebecca (ed.)

1998-08-01T23:59:59.000Z

11

Tonopah test range - outpost of Sandia National Laboratories  

Science Conference Proceedings (OSTI)

Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

Johnson, L.

1996-03-01T23:59:59.000Z

12

Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2002  

Science Conference Proceedings (OSTI)

This Post-Closure Inspection Annual Report provides documentation of the semiannual inspections conducted at the following Corrective Action Units (CAU)s: CAU 400: Bomblet Pit and Five Points Landfill; CAU 404: Roller Coaster Lagoons and Trench; CAU 407: Roller Coaster RadSafe Area; CAU 424: Area 3 Landfill Complexes; CAU 426: Cactus Spring Waste Trenches; CAU 427: Septic Waste Systems 2, 6; and CAU 453: Area 9 UXO Landfill, all located at the Tonopah Test Range, Nevada. Post-closure inspections are not required at CAU 400 but are conducted to monitor vegetation and fencing at the site. Site inspections were conducted in May and November 2002. All site inspections were made after Nevada Division of Environmental Protection (NDEP) approval of the appropriate Closure Report (CR), excluding CAU 400 which did not require a CR, and were conducted in accordance with the Post-Closure Inspection Plans in the NDEP-approved CRs. Post-closure inspections conducted during 2002 identified several areas requiring maintenance/repairs. Maintenance work and proposed additional monitoring are included in the appropriate section for each CAU. This report includes copies of the Post-Closure Inspection Plans, Post-Closure Inspection Checklists, copies of the field notes, photographs, and the Post-Closure Vegetative Monitoring Report. The Post-Closure Inspection Plan for each CAU is located in Attachment A. Post-Closure Inspection Checklists are in Attachment B. Copies of the field notes from each inspection are included in Attachment C. Attachment D consists of the photographic logs and photographs of the sites. The post-closure vegetative monitoring report for calendar year 2002 is included in Attachment E.

R. B. Jackson

2003-08-01T23:59:59.000Z

13

Modeling-Computer Simulations At Nevada Test And Training Range...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

14

Tonopah Test Range Environmental Restoration Corrective Action Sites  

SciTech Connect

This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites and Corrective Action Units at the Tonopah Test Range

NSTec Environmental Restoration

2010-08-04T23:59:59.000Z

15

Geographic Information System At Nevada Test And Training Range...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

16

Geodetic Survey At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

17

Audit of Alternatives to Testing at the Tonopah Test Range, IG...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Audit of Alternatives to Testing at the Tonopah Test Range, IG-0418 Audit of Alternatives to Testing at the Tonopah Test Range, IG-0418 The...

18

Renewable Energy and the Nevada Test and Training Range  

E-Print Network (OSTI)

1 Renewable Energy and the Nevada Test and Training Range Wednesday, December 15, 2010 Melissa due to renewable energy infrastructure development at the Nevada Test and Training Range. Nevada has have ever-increasing renewable energy goals. However, proposals for the development of 116 renewable

Lewis, Robert Michael

19

Geographic Information System At Nevada Test And Training Range Area  

Open Energy Info (EERE)

Geographic Information System At Nevada Test And Training Range Area Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal resources and possible target areas for exploration by constructing a GIS of this area and applying the occurrence model ideas outlined above (ITSI, 2003; Sabin et al., 2004). We list below many of the factors considered.

20

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Nevada Test And Training Range Geothermal Area Nevada Test And Training Range Geothermal Area (Redirected from Nevada Test And Training Range Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tonopah Test Range Summary of Corrective Action Units  

SciTech Connect

Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress.

Ronald B. Jackson

2007-05-01T23:59:59.000Z

22

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

23

Short-range tests of the equivalence principle  

SciTech Connect

We tested the equivalence principle at short length scales by rotating a 3 ton {sup 238}U attractor around a compact torsion balance containing Cu and Pb test bodies. The observed differential acceleration of the test bodies toward the attractor, a{sub Cu}-a{sub Pb}=(1.0{+-}2.8)x10{sup -13} cm/s{sup 2}, should be compared to the corresponding gravitational acceleration of 9.2x10{sup -5} cm/s{sup 2}. Our results set new constraints on equivalence-principle violating interactions with Yukawa ranges down to 1 cm, and improve by substantial factors existing limits for ranges between 10 km and 1000 km. Our data also set strong constraints on certain power-law potentials that can arise from two-boson exchange processes. (c) 1999 The American Physical Society.

Smith, G. L. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Hoyle, C. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Gundlach, J. H. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Adelberger, E. G. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Heckel, B. R. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Swanson, H. E. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

2000-01-15T23:59:59.000Z

24

Fallon Test Ranges Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fallon Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information Coordinates 39.425°, -118.70277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.425,"lon":-118.70277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.  

Science Conference Proceedings (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

2005-09-01T23:59:59.000Z

26

Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos  

E-Print Network (OSTI)

Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter $\\gamma$, with an accuracy of two parts in $10^7$, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, $G$ and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.

Slava G. Turyshev; William Farr; William M. Folkner; Andre R. Girerd; Hamid Hemmati; Thomas W. Murphy, Jr.; James G. Williams; John J. Degnan

2010-03-25T23:59:59.000Z

27

1989 environmental monitoring report, Tonopah Test Range, Tonopah, Nevada  

Science Conference Proceedings (OSTI)

This report summarizes the environmental surveillance activities conducted by Environmental Protection Agency (EPA) and Reynolds Electrical and Engineering Company (REECo) for the Tonopah Test Range (TTR) operated by Sandia National Laboratories (SNL). Other environmental compliance programs such as National Environmental Policy Act of 1969 (NEPA), environmental permits, environmental restoration, and waste management programs are also included. The maximum offsite dose impact from 1989 operations was 8.7 {times} 10{sup {minus}4} mrem as a result of an unusual occurrence. The population received a collective dose of 1.2 {times} 10{sup {minus}5} person-rem from this incidence, while the same populations received 4.94 person-rem from natural background radiation. The 1989 SNL, TTR operations had no adverse impact on the general public or the environment. 18 refs., 2 figs., 14 tabs.

Hwang, S.; Phelan, J.; Wolff, T.; Yeager, G.; Dionne, D.; West, G.

1990-05-01T23:59:59.000Z

28

Office of Inspector General audit of alternatives to testing at the Tonopah Test Range  

Science Conference Proceedings (OSTI)

Since the 1950s, the Department of Energy (DOE) and its predecessor agencies have done weapons program testing at the Tonopah Test Range (Tonopah). Beginning the in 1990s, DOE`s testing at Tonopah declined dramatically. This decline was coincident with the signing of various international treaties, the end of the Cold War, and the movement of some types of tests to other ranges. As a result, Tonopah was left with some bomb and work-for-others testing. The objective of this audit was to determine if there were viable, cost effective alternatives to testing at Tonopah. During the early 1990s, DOE`s Albuquerque Operations Office (Albuquerque) and Sandia National Laboratories (Sandia), which operates Tonopah for DOE, explored the alternative of testing elsewhere. Some of the data gathered by Albuquerque and Sandia provided indications that testing at another range would be practical and economical. This audit followed up on the Albuquerque/Sandia studies and also indicated that testing could be done elsewhere, at a potential cost savings of several million dollars annually. Therefore, it was recommended that Albuquerque conduct a comprehensive study of all testing alternatives. Albuquerque agreed to implement this recommendation but raised technical questions regarding issues such as environmental permits, scheduling flexibility, and cost components, which warrant a more detailed examination as part of the recommended study. It was also recommended that, if the study found that it was not feasible or economical to move the testing elsewhere, Albuquerque reduce the cost of Tonopah to the minimum level necessary to support testing requirements. Albuquerque agreed to this recommendation and stated that it and Sandia continued to actively pursue cost reductions at Tonopah.

Friedman, G.H.

1998-03-13T23:59:59.000Z

29

High force vibration testing with wide frequency range  

DOE Patents (OSTI)

A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

2013-04-02T23:59:59.000Z

30

KATECH (Lithium Polymer) 4-Passenger NEV Range and Battery Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization...

31

Closure Report for Corrective Action Unit 426: Cactus Spring Waste Trenches, Tonopah Test Range, Nevada  

SciTech Connect

This Closure Report provides the documentation for closure of the Cactus Spring Waste Trenches Corrective Action Unit (CAU) 426. The site is located on the Tonopah Test Range, approximately 225 kilometers northwest of Las Vegas, NV. CAU 426 consists of one corrective action site (CAS) which is comprised of four waste trenches. The trenches were excavated to receive solid waste generated in support of Operation Roller Coaster, primary the Double Tracks Test in 1963, and were subsequently backfilled. The Double Tracks Test involved use of live animals to assess the biological hazards associated with the nonnuclear detonation of plutonium-bearing devices. The Nevada Division of Environmental Protection approved Corrective Action Plan (CAP)which proposed ''capping'' methodology. The closure activities were completed in accordance with the approved CAP and consisted of constructing an engineered cover in the area of the trenches, constructing/planting a vegetative cover, installing a perimeter fence and signs, implementing restrictions on future use, and preparing a Post-Closure Monitoring Plan.

Dave Madsen

1998-08-01T23:59:59.000Z

32

EVLA Memo No. 89 The EVLA Outdoor Antenna Test Range Project  

E-Print Network (OSTI)

Projected Costs if new range equipment were purchased Total Material and Equipment costs (to date) for building test range: Funds required to complete project Total NRAO Costs (estimate) without NMT involvementEVLA Memo No. 89 The EVLA Outdoor Antenna Test Range Project: Fourth Quarter 2004, Progress Report

Groppi, Christopher

33

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

34

Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2004-09-01T23:59:59.000Z

35

LARGO hot water system long range thermal performance test report. Addendum  

DOE Green Energy (OSTI)

The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency temperature distribution and system performance degradation.

Not Available

1978-11-01T23:59:59.000Z

36

Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al.,  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geodetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes NAFR straddles the boundary of the Walker Lane belt and the Basin and Range extensional province. Neotectonic motions are inferred from GPS and seismic observations. GPS velocities indicate that the strain field changes from the east-west extension typical of the Basin and Range to the northwest-southeast-directed transtension characteristic of the Walker Lane belt across the region.

37

Closure Report for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

DOE Green Energy (OSTI)

This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 499: Hydrocarbon Spill Site, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 499: Hydrocarbon Spill Site, Tonopah Test Range (TTR), Nevada (US Department of Energy, Nevada Operations Office [DOE/NV], 2001). CAU 499 consists of one Corrective Action Site (CAS): RG-25-001-RD24: Radar 24 Diesel Spill Site which is approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of Avenue 24. The Hydrocarbon Spill Site is a diesel fuel release site that is assumed to have been caused by numerous small historical over-fillings, spills, and leaks from an above-ground storage tank (AST) over a period of approximately 36 years. The tank was located on the east side of Building 24-50 on the TTR.

K. B. Campbell

2002-07-01T23:59:59.000Z

38

DOE/EA-1557; Final Envrionmental Assessment for the National Security Test Range  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for the National Security Test Range DOE/EA-1557 April, 2007 CONTENTS 1. PURPOSE AND NEED ..................................................................................................................... 1 2. ALTERNATIVES .............................................................................................................................. 3 2.1. Consolidate Testing on a New National Security Test Range at the INL (Preferred Alternative)3 2.1.1 Construction Activities ................................................................................................. 6 2.1.2 Operational Activities................................................................................................... 6 2.2 Alternatives Considered, but Eliminated from Detailed Analysis................................................

39

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

Science Conference Proceedings (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

40

LOFT: zero power/power range physics testing measurements versus calculations  

SciTech Connect

The Loss-of-Fluid Test Reactor (LOFT), located at the Idaho National Engineering Laboratory, achieved criticality on Febraury 5, 1978. The zero power and power-range physics testing programs have subsequently been completed. At zero power reactor physics parameters were masured for uniform core conditions ranging from 319 to 556 K, where the temperature conditions were established using primary pump heat without nuclear heat. Power range testing consisted of power escalation to 98% of 50 MW/sub t/. The paper compares the experimental results to those from design calculations. Pertinent details of LOFT, design methods, and comparison results are given.

Gill, G.S.; Rushton, B.L.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005  

SciTech Connect

This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

NONE

2006-06-01T23:59:59.000Z

42

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

43

Modeling-Computer Simulations At Nevada Test And Training Range Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal

44

Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes We re-examined most of the area using newer orthophotography, SPOT, and Thematic Mapper images, and identified several areas of possible late Quaternary surface faulting (Figure 3). References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Nevada_Test_And_Training_Range_Area_(Sabin,_Et_Al.,_2004)&oldid=386843

45

Closure report for CAU No. 400: Bomblet Pit and Five Points Landfill, Tonopah test range  

SciTech Connect

This Closure Reports presents the information obtained from corrective and investigative actions performed to affirm the decision for clean closure of Corrective Action Unit No. 400 which includes the Bomblet Pit and the Five Points Landfill, two sites used for disposal of unexploded ordnance (UXO) and other solid waste at the U.S. Department of Energy`s (DOE) Tonopah Test Range, located in south-central Nevada. The first phase, or corrective action, for clean closure was performed under the Voluntary Correction Action Work Plan for Ordnance Removal from Five Disposal Sites at the Tonopah Test Range, hereafter referred to as the VCA Work Plan. The second phase consisted of collecting verification samples under the Streamlined Approach for Environmental Restoration Plan, CA U No. 400: Bomblet Pit and Five Points Landfill, Tonopah Test Range, hereafter referred to as the SAFER Plan. Results of the two phases are summarized in this document.

NONE

1996-11-01T23:59:59.000Z

46

Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004)  

Open Energy Info (EERE)

2004) 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater data are limited to a portion of NAFR; data are more plentiful beyond the range boundaries. Geothermometry yields calculated groundwater temperatures generally ranging from 30 to 105degrees C, with a rough correlation between the SiO2-chalcedony and the Na-K-Na (Mg-corrected) geothermometers. References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The

47

Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

SciTech Connect

This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

Bechtel Nevada

1998-08-31T23:59:59.000Z

48

Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report  

SciTech Connect

The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTAs testing partner, Electric Transportation Applications (ETA), at ETAs contract testing facilities and test track in Phoenix, Arizona, to AVTAs NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOEs FreedomCAR and Vehicle Technologies Program.

J. Francfort; D. Karner

2005-07-01T23:59:59.000Z

49

Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade  

SciTech Connect

Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

Ren, Weiju [ORNL; Battiste, Rick [ORNL

2006-10-01T23:59:59.000Z

50

Goethite Bench-scale and Large-scale Preparation Tests  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

Josephson, Gary B.; Westsik, Joseph H.

2011-10-23T23:59:59.000Z

51

Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities  

SciTech Connect

During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

2010-05-18T23:59:59.000Z

52

Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results  

SciTech Connect

During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

Hartwell William T.,Daniels Jeffrey,Nikolich George,Shadel Craig,Giles Ken,Karr Lynn,Kluesner Tammy

2012-01-01T23:59:59.000Z

53

Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

Bechtel Nevada

1998-09-30T23:59:59.000Z

54

Prepared  

Office of Legacy Management (LM)

Prepared Prepared by Oak Ridge Associated Universities Prepared for Division of Remedial Action Projects U.S. Department of Energy COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTYM NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK B.P. ROCCO Radiological Site Assessment Program Manpower Education, Research, and Training Division FINAL REPORT May 1983 B.P. Rocco FINAL REPORT Prepared for A.M. pitt T.J. Sowell C.F. Weaver T.S. Yoo Project Staff Prepared by J.D. Berger R.D. Condra R.C. Gosslee J.A. Mattina OFF-SITE PROPERTY M NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK CO~WREHENSIVE RADIOLOGICAL SURVEY Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program May 1983 -- til - This

55

Admission Test Preparation Admission test scores help professional and graduate programs determine who to admit (and, in some cases, to award merit-  

E-Print Network (OSTI)

Admission Test Preparation Admission test scores help professional and graduate programs determine-prepared for these tests. Some are tests of aptitude in quantitative skills, verbal and analytical reasoning and/or writing ability (e.g., GRE, LSAT, GMAT), while others are tests of content knowledge (e.g., GRE Subject Tests

Hampton, Randy

56

HIGH SODIUM SIMULANT TESTING TO SUPPORT SB8 SLUDGE PREPARATION  

Science Conference Proceedings (OSTI)

Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry.

Newell, J.

2012-09-19T23:59:59.000Z

57

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test for Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Mike Kennedy Mike D. Kennedy, Inc. Link to Accompanying Zipped Data Files (3.9 MB) This document is intended for use with the following documents: Building Energy Simulation Test for Existing Homes (BESTEST-EX), NREL/TP-550-47427 Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX, NREL/TP-550-47502 Technical Report NREL/TP-5500-52414 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

58

Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

NONE

1997-04-01T23:59:59.000Z

59

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2010  

Science Conference Proceedings (OSTI)

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2010 and includes inspection and repair activities completed at the following seven CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR) CAU 407: Roller Coaster RadSafe Area (TTR) CAU 424: Area 3 Landfill Complexes (TTR) CAU 426: Cactus Spring Waste Trenches (TTR) CAU 453: Area 9 UXO Landfill (TTR) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) CAU 487: Thunderwell Site (TTR)

NSTec Environmental Restoration

2011-03-30T23:59:59.000Z

60

Calendar Year 2001 Annual Site Environmental Report Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Sandia Corporation (a subsidiary of Lockheed Martin Corporation through its contract with the U.S. Department of Energy [DOE]), National Nuclear Security Administration (NNSA) operates the Tonopah Test Range (TTR) in Nevada. Westinghouse Government Service, TTR's operations and maintenance contractor, performs most all environmental program functions. This Annual Site Environmental Report (ASER), which is published to inform the public about environmental conditions at TTR, describes environmental protection programs and summarizes the compliance status with major environmental laws and regulations during Calendar Year (CY) 2001.

VIGIL, FRANCINE S.

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

62

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

63

Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)  

SciTech Connect

This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

DOE /NV

1998-12-18T23:59:59.000Z

64

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2008  

SciTech Connect

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2008 and includes inspection and repair activities completed at the following ten CAUs: #2; CAU 400: Bomblet Pit and Five Points Landfill (TTR) #2; CAU 404: Roller Coaster Lagoons and Trench (TTR) #2; CAU 407: Roller Coaster RadSafe Area (TTR) #2; CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) #2; CAU 424: Area 3 Landfill Complexes (TTR) #2; CAU 426: Cactus Spring Waste Trenches (TTR) #2; CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR) #2; CAU 453: Area 9 UXO Landfill (TTR) #2; CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) #2; CAU 487: Thunderwell Site (TTR)

NSTec Environmental Restoration

2009-03-19T23:59:59.000Z

65

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 489: WWII UXO Sites, Tonopah Test Range, Nevada; May 2005  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 489: WWII UXO Sites, Tonopah Test Range. CAU 489 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996.

Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-05-01T23:59:59.000Z

66

Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system  

Science Conference Proceedings (OSTI)

(This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.

Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

1996-03-01T23:59:59.000Z

67

Closure Report for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada  

SciTech Connect

This closure report (CR) provides documentation for the closure of the Roller Coaster RADSAFE Area (RCRSA) Corrective Action Unit (CAU) 407 identified in the Federal Facility Agreement and Consent Order (FFACO) (Nevada Division of Environmental Protection [NDEP] et al., 1996). CAU 407 is located at the Tonopah Test Range (TTR), Nevada. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The RCRSA is located on the northeast comer of the intersection of Main Road and Browne's Lake Road, which is approximately 8 km (5 mi) south of Area 3 (Figure 1). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Double Tracks and Clean Slate tests. Investigation of the RCRSA was conducted from June through November of 1998. A Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOEN], 1999) was approved in October of 1999. The purpose of this CR is to: Document the closure activities as proposed in the Corrective Action Plan (CAP) (DOEM, 2000). Obtain a Notice of Completion from the NDEP. Recommend the movement of CAU 407 from Appendix III to Appendix IV of the FFACO. The following is the scope of the closure actions implemented for CAU 407: Removal and disposal of surface soils which were over three times background for the area. Soils identified for removal were disposed of at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). Excavated areas were backfilled with clean borrow soil located near the site. A soil cover was constructed over the waste disposal pit area, where subsurface constituents of concern remain. The site was fenced and posted as an ''Underground Radioactive Material'' area.

T. M. Fitzmaurice

2001-12-01T23:59:59.000Z

68

Corrective Action Plan for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Plan (CAP) has been prepared for the Roller Coaster RADSAFE Area Corrective Action Unit 407 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved Corrective Action Alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The Constituents of Concern (COCs) identified during the site characterization include plutonium, uranium, and americium. No other COCS were identified. The following closure actions will be implemented under this plan: (1) Remove and dispose of surface soils which are over three times background for the area. Soils identified for removal will be disposed of at an approved disposal facility. Excavated areas will be backfilled with clean borrow soil fi-om a nearby location. (2) An engineered cover will be constructed over the waste disposal pit area where subsurface COCS will remain. (3) Upon completion of the closure and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site. Barbed wire fencing will be installed along the perimeter of this unit. Post closure monitoring will consist of site inspections to determine the condition of the engineered cover. Any identified maintenance and repair requirements will be remedied within 90 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP.

T. M. Fitzmaurice

2000-05-01T23:59:59.000Z

69

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

70

Test of a Poor Mans Ensemble Prediction System for Short-Range Probability Forecasting  

Science Conference Proceedings (OSTI)

Current operational ensemble prediction systems (EPSs) are designed specifically for medium-range forecasting, but there is also considerable interest in predictability in the short range, particularly for potential severe-weather developments. A ...

A. Arribas; K. B. Robertson; K. R. Mylne

2005-07-01T23:59:59.000Z

71

Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.  

SciTech Connect

Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacings are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.

Rautman, Christopher Arthur

2004-12-01T23:59:59.000Z

72

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011  

SciTech Connect

This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

NSTec Environmental Restoration

2012-02-21T23:59:59.000Z

73

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 496: Buried Rocket Site, Antelope Lake, Tonopah Test Range  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan details the activities necessary to close Corrective Action Unit 496: Buried Rocket Site, Antelope Lake. CAU 496 consists of one site located at the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-05-01T23:59:59.000Z

74

G-Tunnel pressurized slot-testing preparations; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National laboratories elected to conduct a development program on pressurized slot testing and featured (1) development of an improved method to cut slots using a chain saw with diamond-tipped cutters, (2) measurements useful for determining in situ stresses normal to slots, (3) measurements applicable for determining the in situ modulus of deformation parallel to a drift surface, and (4) evaluations of the potentials of pressurized slot strength testing. This report describes the preparations leading to the measurements and evaluations.

Zimmerman, R.M.; Sifre-Soto, C. [Sandia National Labs., Albuquerque, NM (United States); Mann, K.L.; Bellman, R.A. Jr.; Luker, S. [Science Applications International Corp., Las Vegas, NV (United States); Dodds, D.J. [North Pacific Research, Portland, OR (United States)

1992-04-01T23:59:59.000Z

75

Post-Closure Inspection Report for the Tonopah Test Range, Nevada  

SciTech Connect

This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal burrows observed at CAU 453 were backfilled. Cracking observed in three monuments at CAU 487 was repaired using sealant during the May 9, 2006, inspection. At this time, the TTR post-closure site inspections should continue as scheduled. Any potential problem areas previously identified (e.g., areas of erosion, subsidence) should be monitored closely, and periodic vegetation surveys of the vegetated covers should continue.

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

76

Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007  

SciTech Connect

This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as scheduled. Any potential problem areas previously identified (e.g., areas of erosion, subsidence) should be monitored closely, and periodic vegetation surveys of the vegetated covers should continue.

NSTec Environmental Restoration

2008-06-01T23:59:59.000Z

77

Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*  

Science Conference Proceedings (OSTI)

The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

1994-05-01T23:59:59.000Z

78

POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA, FOR CALENDAR YEAR 2004  

SciTech Connect

This Post-Closure Inspection Report provides an analysis and summary of the semi-annual inspections conducted at the Tonopah Test Range (TTR) during Calendar Year 2004. The report includes the inspection and/or repair activities completed at the following nine Corrective Action Units (CAUs) located at TTR, Nevada: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2,6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). Site inspections were conducted on July 7,2004, and November 9-10,2004. All inspections were conducted according to the post-closure plans in the approved Closure Reports (CRs). The post-closure inspection plan for each CAU is included in Appendix B, with the exception of CAU 400 and CAU 423. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. In addition, post-closure inspections are not currently required at CAU 423; however, the CR is being revised to include inspection requirements. The inspection checklists for each site inspection are included in Appendix C, the field notes are included in Appendix D, and the site photographs are included in Appendix E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2004, and the vegetation monitoring report is included in Appendix F. In addition, topographic survey results of two repaired landfill cells in CAU 424 are included in Appendix G. Maintenance and/or repairs were performed at the CAU 400 Five Points Landfill, CAU 407, CAU 424, CAU 427, and CAU 487. CAU 400 repairs included mending the fence, reseeding of a flood damaged area, and anchoring straw bales in the wash to help control erosion at the Five Points Landfill. CAU 407 repairs included erosion repair, reseeding the cover, and replacement of one warning sign. CAU 424 repairs included filling topographically low areas to the surrounding grade. This was performed at Landfill Cell A3-1 (CAS 03-08-001-A301) and Landfill Cell A3-4 (CAS 03-08-002-A304). CAU 427 maintenance activities included placing additional red rocks over the subsurface site markers during the July inspection to assist in locating them for future inspections. CAU 487 repairs included installing eight above-grade monuments to mark the use restriction boundaries, installing use restriction warning signs, stamping coordinates on the brass survey markers, and subsidence repair at the A-8 anomaly. With the completion of these repairs and maintenance activities, all CAUs were in excellent condition at the end of 2004. The site inspections should continue as scheduled, and any potential problem areas, such as repaired areas of erosion or subsidence, should be monitored closely for further maintenance or repair needs.

BECHTEL NEVADA

2005-04-01T23:59:59.000Z

79

Testing Hypotheses of Vicariance in the Agamid Lizard Laudakia caucasia from Mountain Ranges  

E-Print Network (OSTI)

moun- tain chains (Fig. 1): (1) west of the Caspian Sea, the Lesser Caucasus of the Iranian Plateau connects to the Greater Caucasus; (2) the Elburz Range of Iran is situated directly south of the Caspian, with a major break separating populations occurring in the greater and lesser Caucasus from Turkmen populations

Schulte, Jim

80

CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998  

SciTech Connect

This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

DOE /NV

1998-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Test of unparticle long range forces from perihelion precession of Mercury  

E-Print Network (OSTI)

Unparticle exchange gives rise to long range forces which deviate from the inverse square law due to non-canonical dimension of unparticles. It is well known that a potential of the form $r^{-n}$ where $n$ is not equal to one gives rise to a precession in the perihelion of planetary orbits. We calculate the constraints on unparticle couplings with baryons and leptons from the observations of perihelion advance of Mercury orbit.

Suratna Das; Subhendra Mohanty; Kumar Rao

2007-09-17T23:59:59.000Z

82

ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect

Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination.

K. B. Campbell

2002-04-01T23:59:59.000Z

83

EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING  

Science Conference Proceedings (OSTI)

Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was issued that recommended that the mixed acid method be replaced by the Cs{sub 2}CO{sub 3} method for the measurement of magnesium (Mg), sodium (Na), and zirconium (Zr) with additional testing of the method by DWPF Laboratory being needed before further implementation of the Cs{sub 2}CO{sub 3} method at that laboratory. While the SME acceptability testing of the Isolok does not address any of the open issues remaining after the publication of the recommendation for the replacement of the mixed acid method by the Cs{sub 2}CO{sub 3} method (since those issues are to be addressed by the DWPF Laboratory), the Cs{sub 2}CO{sub 3} testing associated with the Isolok testing does provide additional insight into the performance of the method as conducted by SRNL. The performance is to be investigated by looking to the composition measurement data generated by the samples of a standard glass, the Analytical Reference Glass - 1 (ARG-1), that were prepared by the Cs{sub 2}CO{sub 3} method and included in the SME acceptability testing of the Isolok. The measurements of these samples were presented as part of the study results, but no statistical analysis of these measurements was conducted as part of those results. It is the purpose of this report to provide that analysis, which was supported using JMP Version 7.0.2.

Edwards, T.; Hera, K.; Coleman, C.

2011-12-05T23:59:59.000Z

84

Radiochemical data collected on events from which radioactivity escaped beyond the borders of the Nevada test range complex. [NONE  

SciTech Connect

This report identifies all nuclear events in Nevada that are known to have sent radioactivity beyond the borders of the test range complex. There have been 177 such tests, representing seven different types: nuclear detonations in the atmosphere, nuclear excavation events, nuclear safety events, underground nuclear events that inadvertently seeped or vented to the atmosphere, dispersion of plutonium and/or uranium by chemical high explosives, nuclear rocket engine tests, and nuclear ramjet engine tests. The source term for each of these events is given, together with the data base from which it was derived (except where the data are classified). The computer programs used for organizing and processing the data base and calculating radionuclide production are described and included, together with the input and output data and details of the calculations. This is the basic formation needed to make computer modeling studies of the fallout from any of these 177 events.

Hicks, H.G.

1981-02-12T23:59:59.000Z

85

Preparation and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade  

SciTech Connect

Eighty new 7-cell, low-loss cell-shaped cavities are required for the CEBAF 12 GeV Upgrade project. In addition to ten pre-production units fabricated at JLab, the full set of commercially-produced cavities have been delivered. An efficient processing routine, which includes a controlled 30 micron electropolish, has been established to transform these cavities into qualified 8-cavity strings. This work began in 2010 and will run through the end of 2011. The realized cavity performance consistently exceeds project requirements and also the maximum useful gradient in CEBAF: 25 MV/m. We will describe the cavity processing and preparation protocols and summarize test results obtained to date.

Reilly, A. V.; Bass, T.; Burrill, A.; Davis, G. K.; Marhauser, F.; Reece, C. E.; Stirbet, M.

2011-07-01T23:59:59.000Z

86

Corrective Action Decision Document/Closure Report for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada: Revision No. 0  

SciTech Connect

This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, in accordance with the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 consists of five Corrective Action Sites (CASs): TA-21-003-TANL; 09-21-001-TA09; TA-19-002-TAB2; TA-21-002-TAAL; and 03-19-001. The CADD and CR have been combined into one report because no further action is recommended for this CAU. The corrective action alternative recommended for CAU 410 is Clean Closure; therefore, no corrective action or corrective action plan is required. No use restrictions are required to be placed on this CAU because the investigation showed no evidence of remaining soil contamination or remaining debris/waste upon completion of all investigation activities.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-12-22T23:59:59.000Z

87

Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

K. B. Campbell

2003-03-01T23:59:59.000Z

88

A Novel Two-Step Laser Ranging Technique for a Precision Test of the Theory of Gravity  

E-Print Network (OSTI)

All powered spacecraft experience residual systematic acceleration due to anisotropy of the thermal radiation pressure and fuel leakage. The residual acceleration limits the accuracy of any test of gravity that relies on the precise determination of the spacecraft trajectory. We describe a novel two-step laser ranging technique, which largely eliminates the effects of non-gravity acceleration sources and enables celestial mechanics checks with unprecedented precision. A passive proof mass is released from the mother spacecraft on a solar system exploration mission. Retro-reflectors attached to the proof mass allow its relative position to the spacecraft to be determined using optical ranging techniques. Meanwhile, the position of the spacecraft relative to the Earth is determined by ranging with a laser transponder. The vector sum of the two is the position, relative to the Earth, of the proof mass, the measurement of which is not affected by the residual accelerations of the mother spacecraft. We also describe the mission concept of the Dark Matter Explorers (DMX), which will demonstrate this technology and will use it to test the hypothesis that dark matter congregates around the sun. This hypothesis implies a small apparent deviation from the inverse square law of gravity, which can be detected by a sensitive experiment. We expect to achieve an acceleration resolution of $\\sim 10^{-14} m/s^2$. DMX will also be sensitive to acceleration towards the galactic center, which has a value of $\\sim 10^{-10} m/s^2$. Since dark matter dominates the galactic acceleration, DMX can also test whether dark matter obeys the equivalence principle to a level of 100 ppm by ranging to several proof masses of different composition from the mother spacecraft.

Konstantin Penanen; Talso Chui

2004-06-04T23:59:59.000Z

89

Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range  

SciTech Connect

A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

2011-03-14T23:59:59.000Z

90

Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range  

SciTech Connect

A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

2010-07-26T23:59:59.000Z

91

Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range  

Science Conference Proceedings (OSTI)

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS.

NONE

1997-07-01T23:59:59.000Z

92

Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada, Calendar Year 2000  

SciTech Connect

Corrective Action Unit (CAU) 424, the Area 3 Landfill Complex at Tonopah Test Range, consists of eight landfill sites, Corrective Action Sites (CASS), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the locations of the landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan contained, in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range. Nevada, report number DOE/NV--283. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. Post-closure monitoring consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000, and November 20, 2000. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist and photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

93

Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

Jeff Smith

1998-08-01T23:59:59.000Z

94

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 499, Hydrocarbon Spill Site, Tonopah Test Range (TTR). This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 499 is located on the TTR and consists of the following single Corrective Action Site (CAS) (Figure 1): CAS RG-25-001-RD24 - Radar 24 Diesel Spill Site is a diesel fuel release site that is assumed to have been cased by numerous small historical over fillings, spills and leaks from an above-ground storage tank (AST) over a period of 36 years. The tank was located on the north side of Building 24-50 on the TTR approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of the Avenue 24.

T. M. Fitzmaurice

2001-09-01T23:59:59.000Z

95

Chemical analyses of soil samples collected from the Sandia National Laboratories/NM, Tonopah Test Range environs, 1994-2005.  

Science Conference Proceedings (OSTI)

From 1994 through 2005, the Environmental Management Department of Sandia National Laboratories (SNL) at the Tonopah Test Range (TTR), NV, has collected soil samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at TTR. These samples were submitted to an analytical laboratory of metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

Deola, Regina Anne; Oldewage, Hans D.; Herrera, Heidi M.; Miller, Mark Laverne

2006-05-01T23:59:59.000Z

96

Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000  

SciTech Connect

Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

97

Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure monitoring requirements for the Area 9 Unexploded Ordinance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5 , 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 453 consists of the following: (1) Visual site inspections are conducted twice a year to evaluate the condition of the cover. (2) Verification that the site is secure and the condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 15, 2001 and November 6, 2001. Both site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

K. B. Campbell

2002-01-01T23:59:59.000Z

98

Post-Closure Inspection Report for Corrective Action Unit 426: Cactus Spring Waste Trenches Tonopah Test Range, Nevada Calendar Year 2000  

SciTech Connect

Post-closure monitoring requirements for the Cactus Spring Waste Trenches (Corrective Action Unit [CAW 426]) (Figure 1) are described in Closure Report for corrective Action Unit 426, Cactus Spring Waste Trenches. Tonopah Test Range, Nevada, report number DOE/NV--226. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 14, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 13, 1999. Post-closure monitoring at CAU 426 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR, and were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2001-06-01T23:59:59.000Z

99

Closure Report for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 408: Bomblet Target Area (TTR), Tonopah Test Range, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 408 is located at the Tonopah Test Range, Nevada, and consists of Corrective Action Site (CAS) TA-55-002-TAB2, Bomblet Target Areas. This CAS includes the following seven target areas: Mid Target Flightline Bomblet Location Strategic Air Command (SAC) Target Location 1 SAC Target Location 2 South Antelope Lake Tomahawk Location 1 Tomahawk Location 2 The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for the CAS within CAU 408 were met. To achieve this, the following actions were performed: Review the current site conditions, including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document Notice of Completion and closure of CAU 408 issued by the Nevada Division of Environmental Protection. From July 2009 through August 2010, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 408: Bomblet Target Area, Tonopah Test Range (TTR), Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: Identify and remove munitions of explosive concern (MEC) associated with DOE activities. Investigate potential disposal pit locations. Remove depleted uranium-contaminated fragments and soil. Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 408. Assessment of the data indicated COCs are not present at CAS TA-55-002-TAB2; therefore, no corrective action is necessary. No use restrictions are required to be placed on this CAU because the investigation showed no evidence of remaining soil contamination or remaining debris/waste upon completion of all investigation activities. The MEC was successfully removed and dispositioned as planned using current best available technologies. As MEC guidance and general MEC standards acknowledge that MEC response actions cannot determine with 100 percent certainty that all MEC and unexploded ordnance (UXO) are removed, the clean closure of CAU 408 will implement a best management practice of posting UXO hazard warning signs near the seven target areas. The signs will warn future land users of the potential for encountering residual UXO hazards. The DOE, National Nuclear Security Administration Nevada Site Office, provides the following recommendations: A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 408. Corrective Action Unit 408 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Mark Krauss

2010-09-01T23:59:59.000Z

100

Fabrication and Integrity Testing of a Korean ITER TBM FW Mock-Up in Preparation for High Heat Flux Test  

Science Conference Proceedings (OSTI)

Test Blanket, Fuel Cycle, and Breeding / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

Jae Sung Yoon; Suk Kwon Kim; Eo Hwak Lee; Seungyon Cho; Dong Won Lee

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: {lg_bullet} CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations.

NSTec Environmental Management

2006-10-01T23:59:59.000Z

102

Laser-Triggered Lightning Laboratory Tests: Preparation for Testing at Mississippi State University High-Voltage Laboratory  

Science Conference Proceedings (OSTI)

Lightning diversion using laser technology could be operationally used in the power industry to protect sensitive facilities such as nuclear power plants and critical substations, control centers, and customer facilities. This report provides results to date and plans for large-scale, high-voltage laboratory testing of laser-triggered lightning technology.

1998-01-15T23:59:59.000Z

103

Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada  

SciTech Connect

Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the discharge line at SWS 1 Septic Tank 33-1A (Figure 3). These concentrations are above the PALs of 3.0 mg/kg and 360 {micro}g/kg, respectively (DOE/NV, 1999) but are below the hazardous regulatory levels for these constituents. The soil will be excavated and disposed in the Nevada Test Site (NTS) Area 23 Sanitary Landfill.

D. S. Tobiason

2000-08-01T23:59:59.000Z

104

Corrective Action Decision Document for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 407, Roller Coaster RADSAFE Area (RCRSA), under the Federal Facility Agreement and Consent Order. Located on Tonopah Test Range (TTR), CAU 407 is located approximately 140 miles northwest of Las Vegas, Nevada, and five miles south of Area 3. The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. As a result of these operations, the surface and subsurface soils in the area have been impacted by plutonium and other contaminants of potential concern associated with decontamination activities. In June and July 1998, corrective action investigation activities were performed at CAU 407 (as outlined in the related Corrective Action Investigation Plan [CAIP]). The purpose of this investigation was to determine if any analytes were present at the site in concentrations above the preliminary action levels (PALs). The results indicated in the detection of plutonium above the PAL in samples taken from surface and subsurface soil within the exclusion zone, and uranium and americium detected above the PAL in samples taken from surface soil within the exclusion zone. No other COCs were identified above PALs specified in the CAIP. Based on this data, two corrective action objectives (CAOs) were defined: (1) to prevent or mitigate human exposure to surface and subsurface soil containing COCs, and (2) to prevent adverse impacts to groundwater quality. To accomplish these objectives, five CAAs were developed and evaluated. Based on the results of the detailed and comparative analysis of these alternatives, Alternative 3 (Partial Excavation, Disposal, and Administrative Controls With a Surface Cap) was chosen as the preferred alternative. This alternative was judged to meet all requirements for the technical components evaluated, the applicable state and federal regulations for closure of the site, the CAOs under DOE Order 5400.5 and 10 Code of Federal Regulations 20, and the reduction of potential future exposure pathways to subsurface contaminated soil.

U.S. Department of Energy, Nevada Operations Office

1999-09-24T23:59:59.000Z

105

Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

106

Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV--283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2002-02-01T23:59:59.000Z

107

Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada with ROTC 1, Revision 0  

SciTech Connect

This Closure Report provides the documentation for closure of the Roller Coaster Sewage Lagoons and North Disposal Trench Comective Action Unit (CAU) 404. CAU 404 consists of the Roller Coaster Sewage Lagoons (Corrective Action Site [CAS] TA-03-O01-TA-RC) and the North Disposal Trench (CAS TA-21-001-TA-RC). The site is located on the Tonopah Test Range, approximately 225 kilometers (km) (140 miles [mi]) northwest ofLas Vegas, Nevada. . The sewage lagoons received ~quid sanitary waste horn the Operation Roller Coaster Man Camp in 1963 and debris from subsequent range and construction cleanup activities. The debris and ordnance was subsequently removed and properly dispos~, however, pesticides were detected in soil samples born the bottom of the lagoons above the U,S. Environmental Protection Agency Region IX Prelimimuy Remediation Goals (EPA 1996). . The North Disposal Trench was excavated in 1963. Debris from the man camp and subsequent range and construction cleanup activities was placed in the trench. Investigation results indicated that no constituents of concern were detected in soil samples collected from the trench. Remedial alternative proposed in the Comctive Action Decision Document (CADD) fm the site was Covering (DOE, 1997a). The Nevada Division ofEnviromnental Protection (NDEP)-approved Correction Action Plan (CAP) proposed the Covering niethodology (1997b). The closure activities were completed in accorhce with the approwil CAP and consisted of baclctllling the sewage lagoons and disposal trench, constructing/planting an engineered/vegetative cover in the area of the sewage lagoons and dikposal trencQ installing a perimeter fence and signs, implementing restrictions on fi~e use, and preparing a Post-Closure Monitoring Plan. Since closure activities. for CAU 404 have been completed in accordance with the Nevada Division of Environmental Protection-approved CAP (DOE, 1997b) as documented in this Closure Report, the U.S. Department of Energy, NevadaOperations Office (DOE/NV) requests: CAU 404 be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. NDEP provide a Notice of Completion to the DOE/NV.

Lynn Kidman

1998-09-01T23:59:59.000Z

108

Corrective Action Decision Document/Closure Report for Corrective Action 405: Area 3 Septic Systems, Tonopah Test Range, Nevada Rev. No.: 0, April 2002  

SciTech Connect

This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 405, Area 3 Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. Located on the Tonopah Test Range (TTR) approximately 235 miles north of Las Vegas, Nevada, CAU 405 consists of three Corrective Action Sites (CASs): 03-05-002-SW03, Septic Waste System (aka: Septic Waste System [SWS] 3); 03-05-002-SW04, Septic Waste System (aka: SWS 4); 03-05-002-SW07, Septic Waste System (aka: SWS 7). The CADD and CR have been combined into one report because no further action is recommended for this CAU, and this report provides specific information necessary to support this recommendation. The CAU consists of three leachfields and associated collection systems that were installed in or near Area 3 for wastewater disposal. These systems were used until a consolidated sewer system was installed in 1990. Historically, operations within various buildin gs in and near Area 3 of the TTR generated sanitary and industrial wastewaters. There is a potential that contaminants of concern (COCs) were present in the wastewaters and were disposed of in septic tanks and leachfields. The justification for closure of this CAU without further action is based on process knowledge and the results of the investigative activities. Closure activities were performed at these CASs between January 14 and February 2, 2002, and included the removal and proper disposal of media containing regulated constituents and proper closure of septic tanks. No further action is appropriate because all necessary activities have been completed. No use restrictions are required to be imposed for these sites since the investigation showed no evidence of COCs identified in the soil for CAU 405.

IT Coroporation, Las Vegas, NV

2002-04-17T23:59:59.000Z

109

CORRRECTIVE ACTION DECISION DOCUMENT FOR CORRECTIVE ACTION UNIT 427: AREA 3 SEPTIC WASTE SYSTEMS 2 AND 6, TONOPAH TEST RANGE, NEVADA, REVISION 0, JUNE 1998  

SciTech Connect

This Corrective Action Decision Document has been prepared for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit 427) in accordance with the Federal Facility Agreement and Consent Order of 1996 (FFACO, 1996). Corrective Action Unit 427 is located at the Tonopah Test Range, Nevada, and is comprised of the following Corrective Action Sites, each an individual septic waste system (DOE/NV, 1996a): (1) Septic Waste System 2 is Corrective Action Site Number 03-05-002-SW02. (2) Septic Waste System 6 is Corrective Action Site Number 03-05-002-SW06. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for each Corrective Action Site. The scope of this Correction Action Decision Document consists of the following tasks: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend and justify a preferred corrective action alternative for each CAS. From November 1997 through January 1998, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit No. 427: Area 3 Septic Waste System Numbers 2 and 6, Tonopah Test Range, Nevada (DOE/NV, 1997b). Details can be found in Appendix A of this document. The results indicated that contamination is present in some portions of the CAU and not in others as described in Table ES-1 and shown in Figure A.2-2 of Appendix A. Based on the potential exposure pathways, the following corrective action objectives have been identified for Corrective Action Unit 427: (1) Prevent or mitigate human exposure to subsurface soils containing TPH at concentrations greater than 100 milligrams per kilogram (NAC, 1996b). (2) Close Sep tic Tank 33-5 in accordance with Nevada Administrative Code 459 (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the Tonopah Test Range, the following alternatives were developed for consideration at the Area 3 Septic Waste Systems 2 and 6: Alternative 1 - No Further Action; Alternative 2 - Closure of Septic Tank 33-5 and Administrative Controls; Alternative 3 - Closure of Septic Tank 33-5, Excavation, and Disposal The corrective action alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred alternative for Corrective Action Unit 427 is Alternative 2, Closure of Septic Tank 33-5 and Administrative Controls. The preferred corrective action alternative was evaluated on technical merit, focusing on performance, reliability, feasibility, and safety. The alternative was judged to meet all requirements for the technical components evaluated. The alternative meets all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contaminated soils. During corrective action implementation, this alternative will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

DOE /NV

1998-06-23T23:59:59.000Z

110

Spent Fuel Drying System Test Results (Dry-Run in Preparation for Run 8)  

Science Conference Proceedings (OSTI)

The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL)(a)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of a test ''dry-run'' conducted prior to the eighth and last of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister6513U. The system used for the dry-run test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. The experimental results are provided in Section 4.0 and discussed Section 5.0.

BM Oliver; GS Klinger; J Abrefah; SC Marschman; PJ MacFarlan; GA Ritter

1999-08-11T23:59:59.000Z

111

TEST - SECRETARY STEVEN CHU'S REMARKS AS PREPARED FOR DELIVERY TO THE DOE TRIBAL SUMMIT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Summit Tribal Summit Secretary Steven Chu Remarks as Prepared for Delivery Thursday, May 5, 2011 Arlington, VA Good morning. Thank you all for joining us today, including those of you watching online. The Obama Administration is committed to strong engagement with Tribal Nations. As a sign of that commitment, you heard from Secretary Vilsack yesterday, and today you will also hear from Secretary Salazar, Administrator Jackson, and White House officials. When I started as Energy Secretary, I made a commitment to hold this summit because it's important to hear directly from you about our shared energy challenges and opportunities. The second commitment I made was to support the Department of Energy's Office of Indian Energy Policy and Programs, which was established under the 2005 Energy Policy Act.

112

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01T23:59:59.000Z

113

Closure Report for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

The following site closure activities were performed at the CAU 428 site located at the TTR and are documented in this report: Preplanning and site preparation; Excavating and removing impacted soil; Removing septic tank contents; Closing septic tanks by filling them with clean soil; Collecting verification samples to verify that COCs have been removed to approved levels; Backfilling the excavations to surface grade with clean soil; Disposal of excavated materials following applicable federal, state, and DOE/NV regulations in accordance with Section 2.3 of the CAP (DOE/NV, 2000); and Decontamination of equipment as necessary. Closure was accomplished following the approved CAP (DOE/NV, 2000). Verification sample data demonstrate that all COCs were removed to the remediation standards. Therefore, the site is clean-closed.

D. H. Cox

2001-06-01T23:59:59.000Z

114

Streamlined approach for environmental restoration plan, CAU No. 400: Bomblet Pit and Five Points landfill Tonopah test range  

SciTech Connect

This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept. The SAFER process is employed at Corrective Action Units (CAUs) where enough information exists about the nature and extent of contamination to propose an appropriate corrective action prior to the implementation of a Corrective Action Investigation (CAI). This process combines elements of the Data Quality Objectives (DQO) process and the observational approach to help plan and conduct corrective actions. DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the process. The observational approach provides a framework for managing uncertainty and planning decision-making. The purpose of the investigation in the SAFER process is to document and verify the adequacy of existing information (such as process knowledge); to affirm the decision for clean closure, closure in place, or to take no further action; and to provide sufficient data to implement the corrective action.

NONE

1996-04-01T23:59:59.000Z

115

Williams et al. Reply (to the Comment by Dumin on "Progress in Lunar Laser Ranging Tests of Relativistic Gravity")  

E-Print Network (OSTI)

A decreasing gravitational constant, G, coupled with angular momentum conservation is expected to increrase a planetary semimajor axis, a, as \\dot a/a=-\\dot G/G. Analysis of lunar laser ranging data strongly limits such temporal variations and constrains a local (~1 AU) scale expansion of the solar system as \\dot a/a=-\\dot G/G =-(4\\pm9)\\times10^{-13} yr^{-1}, including that due to cosmological effects.

James G. Williams; Slava G. Turyshev; Dale H. Boggs

2006-12-27T23:59:59.000Z

116

Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure monitoring requirements for the Roller Coaster Lagoons and Trench (Corrective Action Unit [CAU] 404) (Figure 1) are described in Closure Report for Corrective Action Unit 404. Roller Coaster Sewage Lagoons and North Disposal Trench. Tonopah Test Range. Nevada, report number DOE/NV--187, September 1998. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. As stated in Section 5.0 of the NDEP-approved CRY post-closure monitoring at CAU 404 consists of the following: (1) Visual site inspections done twice a year to evaluate the condition of the cover and plant development. (2) Verification that the site is secure and condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. In addition to the above activities, vegetative monitoring of the cover (a plant census) will be done in the first, third and fifth year following revegetation. (Vegetative monitoring will done in fiscal year 2001, and the results reported in the 2002 Post-Closure Inspection Report.) Site inspections were conducted on May 16, 2001, and November 6, 2001. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2002-01-01T23:59:59.000Z

117

Post-Closure Inspection Report for Corrective Action Unit 407: Roller Coaster RadSafe Area Tonopah Test Range, Nevada, Calendar Year 2001  

SciTech Connect

Post-closure monitoring requirements for the Roller Coaster RadSafe Area (Corrective Action Unit [CAU] 407) (Figure 1) are described in Closure Report for Corrective Action Unit 407, Roller Coaster RadSafe Area, Tonopah Test Range, Nevada, report number DOEN-694, October 2001. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on April 24,2001. No issues with the post-closure monitoring plan, Section 5 .O, were raised. However, other concerns raised by stakeholders required that the CR be revised. Revision 1 of CR was issued in December of 2001 and was approved by NDEP on January 7,2002. Section 5.2 of the NDEP-approved CR calls for site inspections to be conducted within the first six months following completion of cover construction. Following the first six months, site inspection are to be conducted twice yearly for the next two years. This report provides the results of the six month post-construction site inspection. As stated in Section 5.2 of the CR, Post-closure site inspections at CAU 407 consists of the following: (1) Visual site inspections done twice a year to evaluate the condition of the cover and plant development. (2) Verification that the site is secure and condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. To meet the fiscal year 2002 post-closure inspection schedule, the first post-closure site inspection was conducted on November 6,2001. The site inspection was conducted after completion of the revegetation activities (October 24,2000) and submittal of revision 0 of the CR (October 31,2001). All site inspections were conducted in accordance with the Post-Closure Inspection requirements stated in revision 0 of the CR. This report includes copies of inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklist is found in Attachment A, a copy of the field notes is found in Attachment By and copies of the inspection photographs are found in Attachment C.

K. B. Campbell

2002-01-01T23:59:59.000Z

118

ERRATA Sheet for ''Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada''  

Science Conference Proceedings (OSTI)

In Appendix A the second sentence of the first paragraph on Page A-1-1 of the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada, erroneously cites the EPA DQO guidance outline as (EPA, 1994). The correct citation is (EPA, 2000).

K. B. Campbell

2003-03-01T23:59:59.000Z

119

Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida  

SciTech Connect

Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

1995-05-01T23:59:59.000Z

120

An in situ survey of Clean Slate 1, 2, and 3, Tonopah Test Range, Central Nevada. Date of survey: September--November 1993  

SciTech Connect

A ground-based in situ radiological survey was conducted downwind of the Clean Slate 1, 2, and 3 nuclear safety test sites at the Tonopah Test Range in central Nevada from September through November 1993. The purpose of the study was to corroborate the americium-241 ({sup 241}Am) soil concentrations that were derived from the aerial radiological survey of the Clean Slate areas, which was conducted from August through October 1993. The presence of {sup 241}Am was detected at 140 of the 190 locations, with unrecoverable or lost data accounting for fifteen (15) of the sampling points. Good agreement was obtained between the aerial and in situ results.

NONE

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ERRATA SHEET for Post-Closure Inspection Report for Corrective Action Unit 407: Roller Coaster RadSafe Area Tonopah Test Range, Nevada, Calendar year 2001  

SciTech Connect

The fifth sentence of the first paragraph on Page 1 of the Post Closure Inspection Report for Corrective Action Unit 407: Roller Coaster RadSafe Area, Tonopah Test Range, Nevada erroneously states that Revision 1 of the CR was issued in December of 2001 and was approved by NDEP on January 7, 2002. The sentence should state that Revision 1 of the CR was issued in December of 2001 and was approved by NDEP on February 22, 2002.

K. B. Campbell

2002-01-01T23:59:59.000Z

122

Environmental Restoration of Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada (Funded by the American Reinvestment and Recovery Act)  

SciTech Connect

The mission of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Environmental Restoration Program is to address the environmental impacts of weapons testing conducted on the Nevada National Security Site and the Nevada Test and Training Range. The large physical size of these sites, along with limits on funding and other resources available for remediation efforts, means that environmental restoration activities must be prioritized and accomplished incrementally over time. The remediation of a bomblet target area on the Tonopah Test Range (TTR), which is located within the Nevada Test and Training Range, was originally planned in 2007 but was not carried out until funding became available in the summer of 2009 through the American Reinvestment and Recovery Act. This activity was implemented in accordance with the Federal Facility Agreement and Consent Order established between NNSA/NSO and the Nevada Division of Environmental Protection. This activity which was complete by the end of Fiscal Year 2010, involved the excavation of disposal pits suspected of containing submunitions and the surface clearance of submunitions on seven target areas amounting to approximately 6.7 square kilometers of land at the TTR. The TTR was used by Sandia National Laboratories from the late 1960s through the mid-1980s to conduct research into the deployment of submunitions. Although there were efforts to identify, collect, and dispose various amounts of unexploded ordnance on the TTR in the past, no comprehensive effort to remediate the entire flightline area for submunitions was undertaken before this project.

Kevin Cabble (NSO), Mark Burmeister and Mark Krauss (N-I)

2011-03-03T23:59:59.000Z

123

Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER  

SciTech Connect

To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

Litaudon, X [CEA, France; Bernard, J. M. [CEA, IRFM, France; Colas, L. [CEA, France; Dumont, R. J. [CEA Cadarache, St. Paul lex Durance, France; Argouarch, A. [CEA Cadarache, St. Paul lex Durance, France; Bottollier-Curtet, H. [CEA, IRFM, France; Bremond, S. [CEA, IRFM, France; Champeaux, S. [CEA, IRFM, France; Corre, Y. [CEA Cadarache, St. Paul lex Durance, France; Dumortier, P. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Firdaouss, M. [CEA, IRFM, France; Guilhem, D. [CEA, IRFM, France; Gunn, J. P. [CEA, IRFM, France; Gouard, Ph. [CEA, DAM, DIF, Arpajon cedex, France; Hoang, G T [CEA, IRFM, France; Jacquot, Jonathan [CEA, IRFM, France; Klepper, C Christopher [ORNL; Kubic, M. [CEA, IRFM, France; Kyrytsya, V. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Lombard, G. [CEA, IRFM, France; Milanesio, D. [Politecnico di Torino; Messiaen, A. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Mollard, P. [CEA, IRFM, France; Meyer, O. [CEA Cadarache, St. Paul lex Durance, France; Zarzoso, D. [CEA, IRFM, France

2013-01-01T23:59:59.000Z

124

Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

NONE

1997-10-27T23:59:59.000Z

125

Preliminary Assessment for CAU 485: Cactus Spring Ranch Pu and DU Site CAS No. TA-39-001-TAGR: Soil Contamination, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit 485, Corrective Action Site TA-39-001-TAGR, the Cactus Spring Ranch Soil Contamination Area, is located approximately six miles southwest of the Area 3 Compound at the eastern mouth of Sleeping Column Canyon in the Cactus Range on the Tonopah Test Range. This site was used in conjunction with animal studies involving the biological effects of radionuclides (specifically plutonium) associated with Operation Roofer Coaster. The location had been used as a ranch by private citizens prior to government control of the area. According to historical records, Operation Roofer Coaster activities involved assessing the inhalation uptake of plutonium in animals from the nonnuclear detonation of nuclear weapons. Operation Roofer Coaster consisted of four nonnuclear destruction tests of a nuclear device. The four tests all took place during May and June 1963 and consisted of Double Tracks and Clean Slate 1, 11, and 111. Eighty-four dogs, 84 burros, and 136 sheep were used for the Double Tracks test, and ten sheep and ten dogs were used for Clean Slate 11. These animals were housed at Cactus Spring Ranch. Before detonation, all animals were placed in cages and transported to the field. After the shot, they were taken to the decontamination area where some may have been sacrificed immediately. All animals, including those sacrificed, were returned to Cactus Spring Ranch at this point to have autopsies performed or to await being sacrificed at a later date. A description of the Cactus Spring Ranch activities found in project files indicates the ranch was used solely for the purpose of the Roofer Coaster tests and bioaccumulation studies and was never used for any other project. No decontamination or cleanup had been conducted at Cactus Spring Ranch prior to the start of the project. When the project was complete, the pits at Cactus Spring Ranch were filled with soil, and trailers where dogs were housed and animal autopsies had been performed were removed. Additional pens and sheds were built to house and manage livestock involved with the Operation Roofer Coaster activities in 1963.

NONE

1998-07-01T23:59:59.000Z

126

Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium, beryllium, total petroleum hydrocarbons; and total Resource Conservation and Recovery Act metals. Field activities will consist of geophysical and radiological surveys, and collecting soil samples at biased locations by appropriate methods. A two-step data quality objective strategy will be followed: (1) define the nature of contamination at each CAS location by identifying any contamination above preliminary action levels (PALs); and, (2) determine the extent of contamination identified above PALs. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

NNSA /NV

2002-07-16T23:59:59.000Z

127

Comparison of Near-field and Far-field Air Monitoring of Plutonium-contaminated Soils from the Tonopah Test Range, Nevada  

SciTech Connect

Operation Roller Coaster, a series of nuclear material dispersal experiments, resulted in three areas (Clean Slates 1, 2, and 3) of widespread surface soil plutonium (Pu) contamination on the Tonopah Test Range (TTR), located 225 miles northwest of Las Vegas, Nevada. The State's Division of Environmental Protection raised concerns that dispersal of airborne Pu particles from the sites could result in undetected deposition further downwind that the background monitoring stations. Air monitoring data from different distances from the Clean Slate sites but during the same period of time were compared. From the available data, there is no indication that airborne PM10 particles are being transported to the farther distance,however, the data are statistically insufficient to conclude whether there is a difference in transport of respirable Pu particles to the closer verses the farther sites from the Clean Slate sites.

John L. Bowen; David S. Shafer

2001-05-01T23:59:59.000Z

128

An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada  

SciTech Connect

An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

Proctor, A.E.; Hendricks, T.J.

1995-08-01T23:59:59.000Z

129

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

DOE Green Energy (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

K. B. Campbell

2002-04-01T23:59:59.000Z

130

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: Clearing bomblet target areas within the study area. Identifying and remediating disposal pits. Collecting verification samples. Performing radiological screening of soil. Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

Mark Krauss

2010-03-01T23:59:59.000Z

131

Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada, REVISION 0, march 1999  

Science Conference Proceedings (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform video surveys of the discharge and outfall lines. (2) Collect samples of material in the septic tanks. (3) Conduct exploratory trenching to locate and inspect subsurface components. (4) Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. (5) Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. (6) Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. (7) Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. (10) Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. (11) Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.

DOE /NV

1999-03-26T23:59:59.000Z

132

The Operational Mesogamma-Scale Analysis and Forecast System of the U.S. Army Test and Evaluation Command. Part IV: The White Sands Missile Range Auto-Nowcast System  

Science Conference Proceedings (OSTI)

During the summer months at the U.S. Army Test and Evaluation Commands (ATEC) White Sands Missile Range (WSMR), forecasting thunderstorm activity is one of the primary duties of the range forecasters. The safety of personnel working on the range ...

Thomas R. Saxen; Cynthia K. Mueller; Thomas T. Warner; Matthias Steiner; Edward E. Ellison; Eric W. Hatfield; Terri L. Betancourt; Susan M. Dettling; Niles A. Oien

2008-04-01T23:59:59.000Z

133

Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV), the State of Nevada Division of Environmental Protection (NDEP), and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUS) or Corrective Action Sites (CASs) (FFACO, 1996). As per the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figures 1-1 and 1-2). Corrective Action Unit No. 423 is comprised of only one CAS (No. 03-02-002-0308), which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (m) (240 feet [ft]) northwest as shown on Figure 1-3.

DOE /NV

1997-10-01T23:59:59.000Z

134

Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range  

SciTech Connect

A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

NONE

1997-06-01T23:59:59.000Z

135

Post-Closure Inspection Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada, Calendar Year 2001  

Science Conference Proceedings (OSTI)

Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit [CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427, Area 3 Septic Waste Systems 2 and 6, Tonopah Test Range, Nevada, report number DOENV-56 1, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. As stated in Section 5.1 of the NDEP-approved CR, the annual Post-Closure inspection at CAU 427 consists of the following: (1) Verification of the presence of all leachfield and septic tank below-grade markers. (2) Verification that all warning signs are in-place, intact, and readable. (3) Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on May 16, 2001, and November 6, 2001. All inspections were made after NDEP approval of the CR, and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C.

K. B. Campbell

2002-01-01T23:59:59.000Z

136

Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000  

Science Conference Proceedings (OSTI)

Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit [CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C.

K. B. Campbell

2001-06-01T23:59:59.000Z

137

Corrective Action Plan for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

SciTech Connect

The Corrective Action Plan provides the closure methods for Corrective Action Unit (CAU) 423: Area 3 Building 03-60 Underground Discharge Point (UDP), Tonoopah Test Range, Nevada. CAU 423 consists of the UDP and an associated discharge pipeline extending from Building 03-60. Corrective action investigations were completed in January 1998, and are documented in the Corrective Action Decision Document (US DOE, 1998). Results indicate an asymmetrical hydrocarbon plume, measuring 11 meters (m) 35 ft in length, 6 m (20 ft) in width, and 4 to 20 m (14 to 65 ft) in depth, has formed beneath the UDP and migrated westward. Petroleum hydrocarbon levels were identified above the 100 miligrams per kilogram (mg/kg) action level specified in Nevada Administrative Code (NAC) 445A (NAC 1996). The highest petroleum hydrocarbon concentration detected was 2,4000 mg/kg at 6 m, 20 ft, below surface grade as diesel. Corrective actions will consist of administrative controls and in place closure of th e UDP and its associated discharge pipeline.

Bechtel Nevada

1998-10-31T23:59:59.000Z

138

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)  

DOE Green Energy (OSTI)

Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2012-04-01T23:59:59.000Z

139

Corrective Action Decision Document for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 428, Septic Waste Systems 1 and 5, under the Federal Facility Agreement and Consent Order. Located in Area 3 at the Tonopah Test Range (TTR) in Nevada, CAU 428 is comprised of two Corrective Action Sites (CASs): (1) CAS 03-05-002-SW01, Septic Waste System 1 and (2) CAS 03-05-002- SW05, Septic Waste System 5. A corrective action investigation performed in 1999 detected analyte concentrations that exceeded preliminary action levels; specifically, contaminants of concern (COCs) included benzo(a) pyrene in a septic tank integrity sample associated with Septic Tank 33-1A of Septic Waste System 1, and arsenic in a soil sample associated with Septic Waste System 5. During this investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to contents of the septic tanks and distribution box, to subsurface soil containing COCs, and the spread of COCs beyond the CAU. Based on these CAOs, a review of existing data, future use, and current operations in Area 3 of the TTR, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Closure in Place with Administrative Controls; and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of the evaluation, the preferred CAA was Alternative 3. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Area 3 Septic Waste Systems 1 and 5.

U.S. Department of Energy, Nevada Operations Office

2000-02-08T23:59:59.000Z

140

NUREG/CR-6695 PNNL-13375 Hydrologic Uncertainty Assessment for Decommissioning Sites: Hypothetical Test Case Applications Prepared by  

E-Print Network (OSTI)

This report uses hypothetical decommissioning test cases to illustrate an uncertainty assessment methodology for dose assessments conducted as part of decommissioning analyses for NRC-licensed facilities. This methodology was presented previously in NUREG/CR-6656. The hypothetical test case source term and scenarios are based on an actual decommissioning case and the physical setting is based on the site of a field experiment carried out for the NRC in Arizona. The emphasis in the test case was on parameter uncertainty. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The methodology uses generic parameter distributions based on national or regional databases for estimating

P. D. Meyer; R. Y. Taira

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

142

Addendum to the Closure Report for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the July 1999, Closure Report for Corrective Action Unit 423: Area 3 Building 0360 Underground Discharge Point, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-002-0308, Underground Discharge Point. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Lynn Kidman

2008-10-01T23:59:59.000Z

143

Addendum to the Closure Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2, 6, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the April 1999, Closure Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2, 6, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: CAS 03-05-002-SW02, Septic Waste System CAS 03-05-002-SW06, Septic Waste System These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2008-10-01T23:59:59.000Z

144

Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

2000-06-09T23:59:59.000Z

145

Control of Test Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric Transportation Applications Prepared by: Date: Garrett P....

146

Review of Test Results  

NLE Websites -- All DOE Office Websites (Extended Search)

GAC004 Revision 1 Effective June 2008 Review of Test Results Prepared by Electric Transportation Applications Prepared by: Date: Garrett...

147

Addendum to the Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This document constitutes an addendum to the September 1998, Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: CAS TA-03-001-TARC Roller Coaster Lagoons CAS TA-21-001-TARC Roller Coaster N. Disposal Trench These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to modify these URs to administrative URs. Administrative URs differ from standard URs in that they do not require onsite postings (i.e., signs) or other physical barriers (e.g., fencing, monuments), and they do not require periodic inspections (see Section 6.2 of the Industrial Sites Project Establishment of Final Action Levels [NNSA/NSO, 2006c]). These Administrative URs were based on a Remote Work Sites future land use scenario that was used to calculate the FAL. The administrative UR will protect workers from an exposure exceeding that used in the calculation of the FAL (i.e., 336 hours per year). Any proposed activity within these use restricted areas that would potentially cause an exposure exceeding this exposure limit would require approval from the Nevada Division of Environmental Protection (NDEP). Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2008-10-01T23:59:59.000Z

148

Addendum to the Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document constitutes an addendum to the September 1998, Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the modification of the UR for CAS TA-03-001-TARC Roller Coaster Lagoons. This UR was established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and was based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This reevaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to modify the UR for CAS TA-03-001-TARC to an administrative UR. Administrative URs differ from standard URs in that they do not require onsite postings (i.e., signs) or other physical barriers (e.g., fencing, monuments), and they do not require periodic inspections (see Section 6.2 of the Industrial Sites Project Establishment of Final Action Levels [NNSA/NSO, 2006c]). This Administrative UR was based on a Remote Work Sites future land use scenario that was used to calculate the FAL. The administrative UR will protect workers from an exposure exceeding that used in the calculation of the FAL (i.e., 336 hours per year). Any proposed activity within these use restricted areas that would potentially cause an exposure exceeding this exposure limit would require approval from the Nevada Division of Environmental Protection (NDEP). Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2009-02-01T23:59:59.000Z

149

TEST  

Science Conference Proceedings (OSTI)

This is an abstract. TEST Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia dui et est venenatis lacinia. Vestibulum lacus dolor, adipiscing id mattis sit amet, ultricies sed purus. Nulla consectetur aliquet feugiat. Maecenas ips

150

EV America Skid Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Revision 3 Effective February 1, 2008 Braking Test Prepared by Electric Transportation Applications Prepared by: Date: Derek Peterson...

151

Preparing Your  

NLE Websites -- All DOE Office Websites (Extended Search)

of third party vendors, enter "international shipping and shopping carts" or similar search terms into an Internet search engine. 52 Preparing Your Business for Global...

152

Determination of Ideal Broth Formulations Needed to Prepare Hydrous Aluminum Oxide Microspheres via the Internal Gelation Process  

SciTech Connect

A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous aluminum oxide microspheres by the internal gelation process. Broth formulations of aluminum, hexamethylenetetramine, and urea were found that can be used to prepare hydrous aluminum oxide gel spheres in the temperature range of 60-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

Collins, Jack Lee [ORNL; Pye, S. L. [University of Tennessee, Knoxville (UTK)

2009-02-01T23:59:59.000Z

153

Determination of Ideal Broth Formulations Needed to Prepare Hydrous Hafnium Oxide Microspheres via the Internal Gelation Process  

SciTech Connect

A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous hafnium oxide microspheres by the internal gelation process. Broth formulations of hafnyl chloride [HfOCl{sub 2}], hexamethylenetetramine, and urea were found that can be used to prepare hydrous hafnium oxide gel spheres in the temperature range of 70-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

Collins, Jack Lee [ORNL; Hunt, Rodney Dale [ORNL; Simmerman, S. G. [University of Tennessee, Knoxville (UTK)

2009-02-01T23:59:59.000Z

154

Specimen Preparation  

Science Conference Proceedings (OSTI)

Table 1   Standard preparation conditions for structural ceramics (e.g., Si 3 N 4 , AlN, SiC and Al 2 O 3 ), semiautomatic

155

Lunar Laser Ranging Science  

E-Print Network (OSTI)

Analysis of Lunar Laser Ranging (LLR) data provides science results: gravitational physics and ephemeris information from the orbit, lunar science from rotation and solid-body tides, and Earth science. Sensitive tests of gravitational physics include the Equivalence Principle, limits on the time variation of the gravitational constant G, and geodetic precession. The equivalence principle test is used for an accurate determination of the parametrized post-Newtonian (PPN) parameter \\beta. Lunar ephemerides are a product of the LLR analysis used by current and future spacecraft missions. The analysis is sensitive to astronomical parameters such as orbit, masses and obliquity. The dissipation-caused semimajor axis rate is 37.9 mm/yr and the associated acceleration in orbital longitude is -25.7 ''/cent^2, dominated by tides on Earth with a 1% lunar contribution. Lunar rotational variation has sensitivity to interior structure, physical properties, and energy dissipation. The second-degree lunar Love numbers are detected; k_2 has an accuracy of 11%. Lunar tidal dissipation is strong and its Q has a weak dependence on tidal frequency. A fluid core of about 20% the Moon's radius is indicated by the dissipation data. Evidence for the oblateness of the lunar fluid-core/solid-mantle boundary is getting stronger. This would be independent evidence for a fluid lunar core. Moon-centered coordinates of four retroreflectors are determined. Station positions and motion, Earth rotation variations, nutation, and precession are determined from analyses. Extending the data span and improving range accuracy will yield improved and new scientific results. Adding either new retroreflectors or precise active transponders on the Moon would improve the accuracy of the science results.

James G. Williams; Dale H. Boggs; Slava G. Turyshev; J. Todd Ratcliff

2004-11-18T23:59:59.000Z

156

Report Preparation  

NLE Websites -- All DOE Office Websites (Extended Search)

been completed (as described in ETA-GAC002, "Control of Test Conduct") prior to the report being formally issued. 4.2 All necessary test documentation has been completed,...

157

Prepared Remarks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prepared Prepared Remarks of Brian Forshaw Connecticut Municipal Electric Energy Cooperative At U.S. DOE Workshop on Transmission Congestion Hartford, Connecticut July 9,2008 The Connecticut Municipal Electric Energy Cooperative was created by the publicly-owned electric systems in the State of Connecticut to enable the municipal systems to provide electric service to their customers at the lowest reasonable cost. Currently, CMEEC provides full requirements wholesale electric service to the State's eight public power systems as well as the Mohegan Tribal Utility Authority. As Director of Energy Markets, I am responsible for strategic planning activities and analysis of the impacts that wholesale markets will have on the municipal electric utilities. My responsibilities also include representing CMEEC in the ISO-NE stakeholder process, including the ISO-NE technical committees.

158

RADIO RANGING DEVICE  

DOE Patents (OSTI)

A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

Nieset, R.T.

1961-05-16T23:59:59.000Z

159

Novel hard compositions and methods of preparation  

DOE Patents (OSTI)

Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.

Sheinberg, H.

1981-02-03T23:59:59.000Z

160

Live Fire Range Environmental Assessment  

SciTech Connect

The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

None

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pig shipping container test sequence  

SciTech Connect

This test plan outlines testing of the integrity of the pig shipping container. It is divided into four sections: (1) drop test requirements; (2) test preparations; (3) perform drop test; and (4) post-test examination.

Adkins, H.E. Jr.

1995-01-13T23:59:59.000Z

162

Prepared by:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government

Thermoelectric Plant Technologies; Phil Dipietro; Kristin Gerdes; Christopher Nichols

2008-01-01T23:59:59.000Z

163

Prepared by:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Beluga Coal Gasification Feasibility Study

Brent Sheets; Robert Chaney

2006-01-01T23:59:59.000Z

164

Prepared for  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This effort is based on the continuation of work initiated under a collaborative National Laboratory-University-industrial Three-party Program namely:

R. W. Goles; G. A. Whyatt; R. A. Merrill; D. K. Seiler; C. J. Freeman; D. A. Lamar; G. B. Josephson; R. W. Goles; G. A. Whyatt; R. A. Merrill; D. K. Seiler; C. J. Freeman; D. A. Lamar; G. B. Josephson

1998-01-01T23:59:59.000Z

165

Prepared by  

E-Print Network (OSTI)

over additional byproduct material. This new byproduct material now also includes naturally occurring materials, such as discrete sources of Radium-226, and accelerator-produced radioactive materials (NARM). This revision of NUREG-1556, Vol. 13, adds guidance needed to license commercial radiopharmacies as a result of the regulatory changes made by the EPAct and the NARM rule, Requirements for Expanded Definition of Byproduct Material. This guidance document contains information that is intended to assist applicants for commercial radiopharmacy licenses in preparing their license applications. In particular, it describes the type of information needed to complete NRC Form 313, Application for Materials License. This document both describes the methods acceptable to NRC license reviewers in implementing the regulations and the techniques used by the reviewers in evaluating the application to determine if the proposed activities are acceptable for licensing purposes. Paperwork Reduction Act Statement

Commercial Radiopharmacy Licenses; D. E. White; J. F. Katanic; D. B. Howe

2007-01-01T23:59:59.000Z

166

Prepared by:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

Philip Kerrigan; In Paper; Philip Kerrigan

2012-01-01T23:59:59.000Z

167

Long range dependence  

Science Conference Proceedings (OSTI)

The notion of long range dependence is discussed from a variety of points of view, and a new approach is suggested. A number of related topics is also discussed, including connections with non-stationary processes, with ergodic theory, self-similar processes ... Keywords: large deviations, long range dependence, rare events

Gennady Samorodnitsky

2007-01-01T23:59:59.000Z

168

RW Prepared  

Office of Legacy Management (LM)

r tz r tz s /r;1 RW Prepared by Oak Ridge Associated Un iversities Prepared for Division of Remedial Action Projects U.S. Department of Energy C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y B N I A G A R A F A L L S S T O R A G E S I T E L E W I S T O N , N E W Y O R K J . D . B E R G E R R a d i o l o g i c a l S i t e A s s e s s m e n t p r o g r a m Manpower Education, Research, and Training Division FINAL REPORT M a y 1 9 8 4 COMPREEENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY B NIAGARA FAI"LS STORAGE SITE LE"I{ISTON, NE}I YoRK u. s. F o r m e r l y U t i l i z e d P r e p a r e d f o r Department of EnergY as Dart of the S i t e s - - R e m e d i a l A c t i o n P r o g r a u J . D . B e r g e r P r o j e c t J. Burden* R . D . C o n d r a J . S . E p l e r * P . l { . F r a m e l,l . O. Eelton R . C . G o s s l e e S t a f f t { . L . S n i t h * T . J . S o w e l l ' L . B . T a u s * C. F . Weaver B . S . Z a c h a r e k R a d i o l o g i c a l Manpower Educati-on, Oak Ridge O a k R

169

Prepared for  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored.

D. M. Bachovchin; R. A. Newby; Alafaya Trail; Charles Alsup

2004-01-01T23:59:59.000Z

170

Prepared by  

E-Print Network (OSTI)

adjust their physical inventory of source or special nuclear material (SNM) to document and report such activities. The reports are submitted using U.S. Department of Energy (DOE)/NRC Form 741. Licensees may need to provide additional information on some imports or exports of source or SNM. The additional information is reported using DOE/NRC Form 740M. This NUREG contains instructions for preparing these forms. Paperwork Reduction Act Statement The information collections contained in this NUREG are covered by DOE/NRC Forms 741 and 740M, which the Office of Management and Budget (OMB) approved under approval numbers 3150-0003 and 3150-0057. Public Protection Notification If a means used to impose an information collection does not display a currently valid OMB control number, the NRC may not conduct or sponsor, and a person is not required to respond to, the information collection. iii NUREG/BR-0006, Rev. 7NUREG/BR-0006, Rev. 7 iv CONTENTS

C. Graves

2009-01-01T23:59:59.000Z

171

Prepared by:  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Cover images: Upper left: offshore wind turbine, source: Large-Scale Offshore Wind Power in the United States,

F. Alexander (lanl; M. Anitescu (anl; D. Brown (lbnl; S. Mehrotra (northwestern; A. Pinar (snl; K. Willcox (mit

2011-01-01T23:59:59.000Z

172

Prepared for:  

E-Print Network (OSTI)

Important Disclaimer: The sole purpose of this document and associated services performed by CSIRO is to provide scientific knowledge to the South Australian Government. Work has been carried out in accordance with the scope of services identified in the agreement dated 22 October 2003, between South Australian Government through the EPA (the Client) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). This document provides a review of environmental impacts of the in-situ acid leach uranium mining process. The material presented in this document has been derived from information supplied to CSIRO by the Client and from consultation with stakeholders and research conducted by CSIRO and other agencies and consultants. The passage of time, manifestation of latent conditions or impact of future events may require further exploration and re-evaluation of the findings, observations, conclusions, and recommendations expressed in this document. This document has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in conjunction with the provisions of the agreement between CSIRO and the Client. CSIRO accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this document by any third party.

Graham Taylor; Vic Farrington; Peter Woods; Robert Ring; Robert Molloy; Graham Taylor; Vic Farrington; Peter Woods; Robert Ring; Robert Molloy; Mr Peter Dolan; Adelaide Sa

2004-01-01T23:59:59.000Z

173

Prepared by  

E-Print Network (OSTI)

This report does not contain any information that is proprietary to Westinghouse Electric Company. The U.S. Nuclear Regulatory Commission (NRC) has also prepared a proprietary version of this report for internal distribution. In order to conform to the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, as set forth in Title 10, Section 2.790, of the Code of Federal Regulations (10 CFR 2.790), the proprietary information in the proprietary version of this document is contained within brackets and, where the proprietary information has been deleted in the non-proprietary version, only the brackets remain (the information within the brackets in the proprietary version having been deleted). The justification for claiming the information as proprietary is indicated in both versions by means of lower case letters (a) through (f), located as a superscript immediately following the brackets enclosing each bracketed item of proprietary information, or in the margin opposite such information. These lower case letters refer to the types of information Westinghouse customarily holds in confidence, as identified in Sections (4)(ii)(a) through (4)(ii)(f) of the affidavit accompanying the transmittal of these documents pursuant to 10 CFR 2.790(b)(1).

K. B. Welter; S. M. Bajorek; Jose Reyes; Brian Woods; John Groome; John Hopson; Eric Young; John Denoma; Kent Abel

2005-01-01T23:59:59.000Z

174

Prepared for:  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report presents and discusses results from the project Fate of Mercury in Synthetic Gypsum Used for Wallboard Production, performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has

Jessica Sanderson; Gary M. Blythe; Mandi Richardson; Charles Miller

2008-01-01T23:59:59.000Z

175

Prepared By:  

E-Print Network (OSTI)

Team (VSCPT) since the last publication in 2004. Much has happened in Vermont schools, and in schools throughout the country, to warrant the production of a second edition of the Crisis Guide. School leaders and emergency responders have learned a great deal from planning, simulating and responding to real-life school emergencies over the past four years. The Crisis Team has incorporated this new learning within the updated Crisis Guide. The Crisis Guide contains new incident response forms for severe weather, infectious disease, power outages and other hazards that schools need to address in their safety plans. It includes information and an appendix full of useful assessments, ideas and references that the Crisis Team believes will make school response plans more focused, easier to implement and effective. The guidelines are meant to bring school leaders and emergency responders together to plan for school emergencies. In reviewing the past four years, one fact is obvious, school emergencies will happen. The question is, will your school and community be prepared to minimize property damage, reduce injuries and hopefully save lives. This work is too important to ignore. The Vermont School Crisis Planning Teams work was crucial prior to and following the school shooting in Essex Town. Understanding that It Can Happen Here, school and community

unknown authors

2008-01-01T23:59:59.000Z

176

Prepared for:  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, nor any of its contractors, subcontractors, nor their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any other agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. ARC-2007-D2540-032-04 In Situ Remediation and Stabilization Technologies for Mercury in Clay Soils The present study includes innovative in situ remediation technologies for the treatment and/or stabilization of mercury contaminated soils. It presents four green alternatives for the treatment

Elsa Cabrejo (doe Fellow; Doe Em; Oak Ridge Office

2010-01-01T23:59:59.000Z

177

WSDOT Test Method T 127 Preparation of Leachate Sample for Testing Toxicity of HECP Effluents 1. Scope This test method outlines the procedure for collecting leachate from a HECP sample. 2. References 2.1 EPA-821-R-02-012 Methods for Measuring Acute Toxic  

E-Print Network (OSTI)

3.1 Lay cheesecloth over clean topsoil 3.2 Apply the HECP to the cheesecloth at the following coverage: 3.2.1 HECP Long-Term or Moderate-Term Mulch 3,500 lbs per acre in two lifts with no more than 2000 # per acre in any one lift. 3.2.2 HECP Short-Term Mulch 2000 # per acre minimum, or manufacturers recommended rate may be used. 3.3 Allow material to cure for 48 hours 3.4 Pull cheesecloth up with mat of HECP, brush off any soil 3.5 Cut HECP into squares and provide 1.02 pounds of HECP to the laboratory. 4. Preparation of the Leachate (done by the laboratory) 4.1 Allow hydromulch product to soak in water for one hour 4.2 Remove hydromulch sheet from water 4.3 Filter water through a 60 micron filter water may be pre-filtered through a 35 mesh and then a 120 mesh before using the 230 mesh/63 micron filter. Note: Leachate not immediately used for testing should be stored at 4 C in the dark until

unknown authors

2012-01-01T23:59:59.000Z

178

RADIO RANGING DEVICE  

DOE Patents (OSTI)

A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

Bogle, R.W.

1960-11-22T23:59:59.000Z

179

High dynamic range imaging  

Science Conference Proceedings (OSTI)

Current display devices can display only a limited range of contrast and colors, which is one of the main reasons that most image acquisition, processing, and display techniques use no more than eight bits per color channel. This course outlines recent ...

Paul Debevec; Erik Reinhard; Greg Ward; Sumanta Pattanaik

2004-08-01T23:59:59.000Z

180

Prepared by  

E-Print Network (OSTI)

FRAPTRAN to model steady-state and transient fuel behavior, respectively, in regulatory analysis. In this document, material property correlations for oxide fuels and cladding materials are presented and discussed. Comparisons are made between the material property correlations used in the most recent versions of the codes, FRAPCON-3.4 and FRAPTRAN 1.4. Comparisons are also made with MATPRO, which is a compilation of material property correlations with an extensive history of use with various fuel performance and severe accident codes. In addition to model-to-model comparisons, model-to-data comparisons and source codes for the FRAPCON-3.4 and FRAPTRAN 1.4 correlations are provided. iii ivForeword The U.S. Nuclear Regulatory Commission uses the computer codes FRAPCON and FRAPTRAN to model steady-state and transient fuel behavior, respectively, in regulatory analysis. To effectively model fuel behavior, material property correlations must be used for a wide range of operating conditions (e.g., temperature and burnup). In this sense, a material property is a physical characteristic of the material whose quantitative value is necessary in the analysis process.

W. G. Luscher; K. J. Geelhood

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RANGE DESIGN CRITERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RANGE DESIGN CRITERIA RANGE DESIGN CRITERIA U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Notices This document is intended for the exclusive use of elements of the Department of Energy (DOE), to include the National Nuclear Security Administration, their contractors, and other government agencies/individuals authorized to use DOE facilities. DOE disclaims any and all liability for personal injury or property damage due to use of this document in any context by any organization, group, or individual, other than during official government activities. Local DOE management is responsible for the proper execution of firearms-related programs for

182

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

183

Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process  

SciTech Connect

A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

Collins, Jack Lee [ORNL; Chi, Anthony [ORNL

2009-02-01T23:59:59.000Z

184

Range imaging laser radar  

SciTech Connect

A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

Scott, Marion W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

185

Record of Technical Change {number_sign}1 for ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0  

Science Conference Proceedings (OSTI)

This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0

US DOE Nevada Operations Office

1999-06-30T23:59:59.000Z

186

Long-Range Neutron Detection  

Science Conference Proceedings (OSTI)

A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m{sup 2}) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the {sup 3}He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10{sup 5} n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10{sup 5} n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph.

AJ Peurrung; DC Stromswold; RR Hansen; PL Reeder; DS Barnett

1999-11-24T23:59:59.000Z

187

Pyrotechnic study and test. Final report  

Science Conference Proceedings (OSTI)

Unidynamics/Phoenix entered into LANL contract {number_sign}9-X51-D9928-1 on March 11, 1991. The contract was to perform chemical analysis and provide analytical data, provide test data from functioning units, build and test pyrotechnic devices and fabricate and test approximately 100 pyrotechnic devices to approximate the chemical and functioning characteristics of the devices from the Army inventory. Because of government regulations, it became nearly impossible to ship the units from White Sands to Unidynamics. Consequently a series of functional tests were conducted at White Sands Missile Range. Comments on the functional tests are included herein. In addition, small scale tests were conducted at Unidynamics. These tests were to demonstrate a so called {open_quotes}line{close_quotes} charge and a {open_quotes}walking{close_quotes} charge. A discussion of these two charges is presented. The program was put on hold on November 6, 1991 and subsequently reopened to prepare and submit this report.

Smith, R.D.; Fronabarger, J.W. [Unidynamics/Phoenix, AZ (US)

1992-01-14T23:59:59.000Z

188

Guidebook for preparing players' handbooks  

SciTech Connect

This Addendum to the Guidebook for Preparing Players' Handbooks contains several documents that can be inserted into handbooks for future test exercises. Descriptions of these documents are provided in Section 4 of the Guidebook. While the documents are general enough to be included in handbooks with little or no editing, it is recommended the handbook preparers review the documents to determine whether the language is appropriate for a specific future exercise. Some of the documents refer to specific sections or tab numbers which may be inappropriate if future handbooks are organized differently from past handbooks.

Not Available

1989-09-01T23:59:59.000Z

189

A summary report on feed preparation offgas and glass redox data for Hanford waste vitrification plant: Letter report  

DOE Green Energy (OSTI)

Tests to evaluate feed processing options for the Hanford Waste Vitrification Plant (HWVP) were conducted by a number of investigators, and considerable data were acquired for tests of different scale, including recent full-scale tests. In this report, a comparison was made of the characteristics of feed preparation observed in tests of scale ranging from 57 ml to full-scale of 28,000 liters. These tests included Pacific Northwest Laboratory (PNL) laboratory-scale tests, Kernforschungszentrums Karlsruhe (KfK) melter feed preparation, Research Scale Melter (RSM) feed preparation, Integrated DWPF Melter System (IDMS) feed preparation, Slurry Integrated Performance Testing (SIPT) feed preparation, and formic acid addition to Hanford Neutralized Current Acid Waste (NCAW) care samples.` The data presented herein were drawn mainly from draft reports and include system characteristics such as slurry volume and depth, sweep gas flow rate, headspace, and heating and stirring characteristics. Operating conditions such as acid feed rate, temperature, starting pH, final pH, quantities and type of frit, nitrite, nitrate, and carbonate concentrations, noble metal content, and waste oxide loading were tabulated. Offgas data for CO{sub 2}, NO{sub x}, N{sub 2}O, NO{sub 2}, H{sub 2} and NH{sub 3} were tabulated on a common basis. Observation and non-observation of other species were also noted.

Merz, M.D.

1996-03-01T23:59:59.000Z

190

Range Fuels Biorefinery Groundbreaking | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Range Fuels Biorefinery Groundbreaking Range Fuels Biorefinery Groundbreaking Range Fuels Biorefinery Groundbreaking November 6, 2007 - 5:00pm Addthis Remarks as Prepared for Secretary Bodman Thank you. And let me say how much it means to have my old friend Vinodh here to introduce me. You are a true pioneer in this industry. I also want to thank Mitch for asking me to be here. It's good to see Tom Dorr from the U.S. Department of Agriculture, our partner in so much of the federal government's biomass research and development and deployment efforts. Gov. Perdue, as always, it's great to be in Georgia and to see the progress occurring here under your leadership. I want to reaffirm our support for governors and state legislators who exhibit the kind of leadership you've shown in developing America's new energy future.

191

A miniature powerplant for very small, very long range autonomous aircraft. Final report  

DOE Green Energy (OSTI)

The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

Tad McGeer

1999-09-29T23:59:59.000Z

192

Test Automation Test Automation  

E-Print Network (OSTI)

Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

Mousavi, Mohammad

193

Internal Audit Preparation Worksheet  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Internal Audit Preparation Job Aid 11_0304 Page 1 of 5 2 Internal Audit Preparation Job Aid 11_0304 Page 1 of 5 EOTA - Business Form Document Title: Internal Audit Preparation Job Aid Document Number: F-012 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-007, Internal Audit Process Notify of Changes: Internal Auditors Referenced Document(s): F-011 Internal Audit Report F-012 Internal Audit Preparation Job Aid 11_0304 Page 2 of 5 Revision History: Rev. Description of Change A Initial Release 11_0304 Change title from Worksheet to Job Aid and changed revision from alpha to numeric for consistency. F-012 Internal Audit Preparation Job Aid 11_0304 Page 3 of 5 Internal Audit Preparation Worksheet F-012 Internal Audit Preparation Job Aid 11_0304 Page 4 of 5

194

Compact range for variable-zone measurements  

DOE Patents (OSTI)

A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

1987-02-27T23:59:59.000Z

195

Compact range for variable-zone measurements  

DOE Patents (OSTI)

A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

Burnside, Walter D. (Columbus, OH); Rudduck, Roger C. (Columbus, OH); Yu, Jiunn S. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

196

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

197

Preparation of biliquid foam compositions  

DOE Green Energy (OSTI)

Technology developed by the late Dr. Felix Sebba of the VPI Chemical Engineering Department by which an oil phase can be broken up into small droplets and encapsulated in a continuous water phase led to research on the possible merits of a fuel prepared by this procedure. The resulting mixture is called a polyaphron. Part 1 of this report describes the testing of polyaphronated gasoline in an automobile engine. Nitrogen oxides (NO{sub x}) emissions, total hydrocarbon (HC) emissions, and exhaust temperature were determined for various load and RPM combinations. Difficulties with viscosity and separation of the water phase have prevented complete testing at road load conditions. Rather than continue with engine testing, some bench tests of polyaphrons were performed to see the effect of various filtering processes on fuel stability as well as measuring viscosity and density. These results are reported in Part 2 of this paper. 6 figs., 4 tabs.

Jaasma, D.R.; Osucha, D.C.; Scheuren, J.

1990-12-12T23:59:59.000Z

198

Advancing tests of relativistic gravity via laser ranging to Phobos  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space

2010-01-01T23:59:59.000Z

199

Advancing tests of relativistic gravity via laser ranging to Phobos  

E-Print Network (OSTI)

Earth-moon-Sun system provides the best solar system arenafor solar conjunctions with laser beams passing near the sununiform rotation of the Sun. However, solar oscillation data

2010-01-01T23:59:59.000Z

200

Landmark : towards and alternative testing range, Vieques, Puerto Rico  

E-Print Network (OSTI)

How does land differentiate itself from other land by the way that it is marked? What implicit power relations are evidenced in these land marking processes? Whose interests are served in the designation of certain places ...

Allora, Jennifer, 1974-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...  

Open Energy Info (EERE)

Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

202

Direct-Current Resistivity Survey At Northern Basin & Range Region...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

203

Direct-Current Resistivity Survey At Nw Basin & Range Region...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

204

EIS-0302: Notice of Intent to Prepare an Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Statement EIS-0302: Notice of Intent to Prepare an Environmental Impact Statement Transfer of the Heat Source Radioisotope Themoelectric Generator Assembly and Test...

205

Range of Glaciers: The Exploration of the Northern Cascade Range  

E-Print Network (OSTI)

D. Hook, Reference Librarian, University of Idaho Library,Moscow, Idaho 83844-2350, (208) 885-6066.Robert D. Hook University of Idaho, USA Fred Beckey. Range

Hook, Robert D.

2006-01-01T23:59:59.000Z

206

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Period Range(s) Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave Period Range(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 2.1 + Alden Small Flume + 0.0 + Alden Wave Basin + 1.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 +

207

Electrochemically Preparing of Ni-Fe Alloys in Molten Sodium ...  

Science Conference Proceedings (OSTI)

A Pilot-plant Scale Test of Coal-based Rotary Kiln Direct Reduction of Laterite Ore for Fe-Ni Production A Pilot-plant Scale Test on DRI Preparation from...

208

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Shutdown Planning Shutdown Planning Planning Templates Shutdown Planning Schedules: Current Shutdown Schedule Archives: 2006 - 2013 APS Long-Range Operations Schedule: 2014 Archives: 2013 | 2012 2011 | 2010 | 2009 | 2008 2007 | 2006 | 2005 | 2004 2003 | 2002 | 2001 | 2000 1999 | 1998 | 1997 | 1996 APS Long-Range Operations Schedule (Fiscal Year 2014) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2013-3 2014-1 2014-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

209

Adaptively parallelizing distributed range queries  

Science Conference Proceedings (OSTI)

We consider the problem of how to best parallelize range queries in a massive scale distributed database. In traditional systems the focus has been on maximizing parallelism, for example by laying out data to achieve the highest throughput. However, ...

Ymir Vigfusson; Adam Silberstein; Brian F. Cooper; Rodrigo Fonseca

2009-08-01T23:59:59.000Z

210

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

211

Fusion Science to Prepare  

NLE Websites -- All DOE Office Websites (Extended Search)

DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The...

212

Safe Frozen Turkey Preparation  

NLE Websites -- All DOE Office Websites (Extended Search)

to the dog. 4. Save time and dirty dishes, just prepare the meal. A. True why wash so many dishes? B. False wash the cutting board frequently in hot soapy water; same...

213

PREPARATION OF URANIUM MONOSULFIDE  

DOE Patents (OSTI)

A process is given for preparing uranium monosulfide from uranium tetrafluoride dissolved in molten alkali metal chloride. A hydrogen-hydrogen sulfide gas mixture passed through the solution precipitates uranium monosulfide. (AEC)

Yoshioka, K.

1964-01-28T23:59:59.000Z

214

Paper Preparation Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

735E Validation of the Window Model of the Modelica Buildings Library Thierry Stephane Nouidui, Michael Wetter, and Wangda Zuo July 2012 DISCLAIMER This document was prepared as an...

215

PROCEDURE FOR PREPARING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROCEDURE FOR PREPARING PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) Revision 1 November 1, 2007 Records Management Division, IM-23 PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) 1. If the records have not yet been inventoried, see "Procedure for Conducting a Records Inventory." An inventory must be completed prior to preparing the RIDS. 2. The Records Inventory and Disposition Schedules (RIDS) should be reviewed and updated at least annually on DOE F 1324.10 and DOE F 1324.9. The RIDS covers all record, administrative and programmatic, as well as non- record material. The RIDS must include: a. Complete and detailed information identifying the organization (s) responsible for the records.

216

EV America Skid Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Revision 2 Effective October 1, 2007 Braking Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: _________ Roberta Brayer Approved by: _________________________________________________ Date: _______________ Donald Karner Procedure ETA-HTP06 Revision 2 i TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation 1 4. Initial Conditions and Prerequisites 1 5. Testing Activity Requirements 3 5.3 Dry Controlled Test 4 6. Glossary 5 7. References 7 Appendices Appendix A - Handling Pad Test Data Sheet 8

217

RANGE INCREASER FOR PNEUMATIC GAUGES  

DOE Patents (OSTI)

An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

Fowler, A.H.; Seaborn, G.B. Jr.

1960-09-27T23:59:59.000Z

218

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

219

Testing technology  

SciTech Connect

This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

Not Available

1993-10-01T23:59:59.000Z

220

Rough Ride Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

NTP005 NTP005 Revision 2 Effective December 1, 2004 Electric Vehicle Rough Road Course Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Ryan Harkins Approved by: _________________________________________________ Date: _______________ Donald B. Karner ©2004 Electric Transportation Applications All Rights Reserved Procedure ETA-NTP005 Revision 2 2 TABLE OF CONTENTS 1.0 Objectives 3 2.0 Purpose 3 3.0 Documentation 3 4.0 Initial Conditions and Prerequisites 4 5.0 Testing Activity Requirements 6 6.0 Glossary 12 7.0 References 14 Appendices Appendix A - Electric Vehicle Rough Road Test Data Sheet 15

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Under ground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Underground Discharge Points (UDPs) included in both CAU 406 and CAU 429. The CAUs are located in Area 3 and Area 9 of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada.

DOE /NV

1999-05-20T23:59:59.000Z

222

Range Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Logo: Range Fuels Name Range Fuels Address 11101 W. 120th Avenue Place Broomfield, Colorado Zip 80021 Sector Biomass Product Uses a thermochemical process to turn biomass into synthetic gas and then fuel Website http://www.rangefuels.com/ Coordinates 39.915572°, -105.122053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.915572,"lon":-105.122053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Range gated strip proximity sensor  

DOE Patents (OSTI)

A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

McEwan, T.E.

1996-12-03T23:59:59.000Z

224

Range gated strip proximity sensor  

DOE Patents (OSTI)

A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

McEwan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

225

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

226

RMOTC TEST REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

MUD DEVIL - DEAERATOR MIXER MUD DEVIL - DEAERATOR MIXER MARCH 30, 1995 RMOTC TEST REPORT Mud Devil - Deaerator Mixer Project Test Results Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL R. TYLER RMOTC Field Engineer March 30, 1995 551103/9507:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the MUD DEVIL - Deaerator Mixer (MDDM), at the Naval Oil Shale Reserve No. 3 (NOSR-3) located west of Rifle, Colorado. Industrial Screen and Maintenance of Casper, Wyoming, manufactures the MDDM high-shear pin mixing system used to blend products in drilling fluid systems. The test was a comparison between DOE Well 1 -M-1 8 drilled without the MDDM and a sidetrack Well 1-M-18 ST drilled with the MDDM. Test results show that the MDDM, when properly used, reduced the usage of drilling fluid products, decreased water

227

Preparation of vinyl acetate  

DOE Patents (OSTI)

This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

Tustin, Gerald Charles (Kingsport, TN); Zoeller, Joseph Robert (Kingsport, TN); Depew, Leslie Sharon (Kingsport, TN)

1998-01-01T23:59:59.000Z

228

Method for preparing superconductors  

DOE Patents (OSTI)

A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

Dahlgren, Shelley D. (Richland, WA)

1976-01-01T23:59:59.000Z

229

Preparation of uranium nitride  

DOE Patents (OSTI)

A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

Potter, Ralph A. (Lynchburg, VA); Tennery, Victor J. (Upper Arlington, OH)

1976-01-01T23:59:59.000Z

230

Preparation of vinyl acetate  

DOE Patents (OSTI)

This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

1998-03-24T23:59:59.000Z

231

Process for preparing radiopharmaceuticals  

DOE Patents (OSTI)

A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

Barak, Morton (Walnut Creek, CA); Winchell, Harry S. (Lafayette, CA)

1977-01-04T23:59:59.000Z

232

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

3) 3) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2012-3 2013-1 2013-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

233

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

2) 2) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2011-3 2012-1 2012-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

234

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

1) 1) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2010-3 2011-1 2011-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

235

Extended-range tiltable micromirror  

DOE Patents (OSTI)

A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

Allen, James J. (Albuquerque, NM); Wiens, Gloria J. (Newberry, FL); Bronson, Jessica R. (Gainesville, FL)

2009-05-05T23:59:59.000Z

236

STOCK DEFINITION AND GEOGRAPHIC RANGE  

E-Print Network (OSTI)

Sperm whales are found throughout the world's oceans in deep waters to the edge of the ice at both poles (Leatherwood and Reeves 1983; Rice 1989; Whitehead 2002). Sperm whales throughout the world exhibit a geographic social structure where females and juveniles of both sexes occur in mixed groups and inhabit tropical and subtropical waters. Males, as they mature, initially form bachelor groups but eventually become more socially isolated and more wide-ranging, inhabiting temperate and polar waters as well (Whitehead 2003). Sperm whales were commercially hunted in the Caribbean Sea by American whalers from sailing vessels until the early 1900s

Puerto Rico; U. S. Virgin Isl; S Stock

2010-01-01T23:59:59.000Z

237

Secretary Directs FPO to Prepare Strategic Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2004 Volume 1, Number 2 January 2004 Volume 1, Number 2 In This Issue * Executive Order Update * $1 Million for Manhattan Project Preservation * 2004 DOE Cultural Resources Forum * ES&H Cultural Resources Update * FPO Site Visits * Oak Ridge Historic Preservation Update * Featured Site: Pantex * Save America's Treasures * Manhattan Project Interactive Website * Goucher College: HP Education Opportunity * Atomic Testing Museum Moves Forward Secretary Directs FPO to Prepare Strategic Plan On December 2, 2003, Secretary of Energy Spencer Abraham directed DOE's Federal Preservation Officer, Chief Historian F. G. Gosling, to prepare a strategic plan for the Department's history and historic preservation/cultural resource management programs. The Secretary (right) gave Gosling 90

238

Internal Audit Preparation Worksheet  

NLE Websites -- All DOE Office Websites (Extended Search)

5 ILT Course Support Checklist 10_0630 Page 1 of 4 5 ILT Course Support Checklist 10_0630 Page 1 of 4 EOTA - Business Form Document Title: ILT/Exercise Initial Preparation Checklist Document Number: ISDF-015 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: EOTA Employees Referenced Document(s): ITTP-012 Graphic Design Support Process, ISDF-018 Course Roster ISDF-008 ILT Student Feedback Survey ISDF-015 ILT Course Support Checklist 10_0630 Page 2 of 4 Revision History: Rev. Description of Change A Initial Release 10_0630 Modified to accompany TPP ISDF-015 ILT Course Support Checklist 10_0630 Page 3 of 4 ILT/Exercise Initial Preparation Checklist Anticipated

239

Preparing for the Unexpected  

E-Print Network (OSTI)

We can reduce the risk of injury or death from disasters by becoming informed and being prepared for them. This booklet explains how to make a family disaster plan, how to compile a disaster supplies kit, where to find help, and how to get involved in community efforts for disaster preparedness. It also includes special sections on children, food safety, pets, septic systems, and farms and ranches.

Harris, Janie; Norman, Lisa; Lesikar, Bruce J.; Smith, David

2007-03-26T23:59:59.000Z

240

TORIS Data Preparation Guidelines  

SciTech Connect

The objective of this manual is to present guidelines and procedures for the preparation of new data for the Tertiary Oil Recovery Information System (TORIS) data base. TORIS is an analytical system currently maintained by the Department of Energy's (DOE) Bartlesville Project Office. It uses an extensive field- and reservoir-level data base to evaluate the technical and economic recovery potential of specific crude oil reservoirs.

Guinn, H.; Remson, D.

1999-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PREPARATION OF PLUTONIUM HALIDES  

DOE Patents (OSTI)

A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

Davidson, N.R.; Katz, J.J.

1958-11-01T23:59:59.000Z

242

PREPARATION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

1959-10-01T23:59:59.000Z

243

Internal Audit Preparation Worksheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ISDF-030 Test Matrix 11_0303 Page 1 of 6 ISDF-030 Test Matrix 11_0303 Page 1 of 6 EOTA - Business Process Document Title: Test Matrix Document Number: ISDP-030 Rev. 11_0303 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-045 Analysis Project Plan, ISDF-004 Design Document, ISDF-006 WBT Script Template, ISDF-007 Lesson Plan Template, ITTP-016 WBT Programming, ISDP-002 Training Production Process ISDF-030 Test Matrix 11_0303 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0303 Updated table Test Matrix (Goals, Objectives, Corresponding Knowledge Check and Test Questions, and Content Location)

244

COPIES: Iron Range Legislative Delegation  

E-Print Network (OSTI)

Dear Legislators: We are pleased to present the annual report on our research regarding the health status of taconite workers and Iron Range community air quality. This report, as in the past, details the progress made by the University of Minnesota School of Public Health and the Natural Resources Research Institute (NRRI) in all research areas, including occupational exposure, mortality and incidence studies, the respiratory health survey of taconite workers and spouses and the environmental study of airborne particles. In addition, this report contains specific information regarding the assessment of mesothelioma as it pertains to exposure to mineral fibers, referred to as elongate mineral particles (EMP). For this report, the EMP measurement is a standard technique that identifies those fibers (EMP) considered long (over 5 microns). Although the research team felt this was the most important exposure to be assessed with the cases of mesothelioma, in the next several months there will be additional analyses that may provide further insight, including exposure to short EMP, silica and respirable dust. A final report is planned for the end of the year when all components are expected to be completed.

Sen Tony Lourey; Rep Tim Mahoney; Rep Sheldon Johnson; Rep David Dill; Rep Mary Murphy; Sen Tom Bakk; Rep John Persell; Rep Tom Anzelc; Sen Tom Saxhaug; Rep Carly Melin; Rep Jason Metsa

2013-01-01T23:59:59.000Z

245

EV America Skid Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Revision 1 Effective June 2008 Electromagnetic Interference and Susceptibility Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GTP004 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2 Purpose........................................................................................................................ 3 3 Documentation............................................................................................................

246

EV America Skid Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Revision 1 Effective June 2008 Battery Capacity and Depth of Discharge Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GTP003 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2 Purpose........................................................................................................................ 3 3 Documentation............................................................................................................

247

EV America Skid Test Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Revision 1 Effective June 2008 Traction System Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GTP002 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2 Purpose........................................................................................................................ 3 3 Documentation............................................................................................................

248

Paper Preparation Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

5E 5E MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS Author(s), Mangesh Basarkar, James O'Donnell, Philip Haves, Kevin Settlemyre and Tobias Maile Environmental Energy and Technologies Division July 2012 To be presented at the SimBuild 2012 IBPSA Conference DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes

249

THE PREPARATION AND PROPERTIES OF DISPERSION HARDENED URANIUM POWDER PRODUCTS. Quarterly Technical Report for the Perid Ending September 30, 1959  

SciTech Connect

Studies of the effect of UO/sub 2/ dispersions in uranium metal upon properties which exhibit resistance to radiation damage were continued. Procedures were developed for preparing uranium powders of particle size less than 5 mu by hydride decomposition, and methods were developed for controlled oxidation of the powders obtained. Equipment for vacuum hot pressing and/or extrusion of powders was designed and fabricated. Samples of dispersion-hardened uranium, containing 13 to 33 vol.% uranium oxide, were prepared by extrusion in the gamma uranium temperature range. These samples were subjected to thermal cycling tests through the alpha - beta transformation temperature using a total cycle time of 15 to 20 min. Dimensional stability was observed to be superior to thai of wrought, unalloyed uranium. Transverse bending tests revealed the hightemperature strength of the dispersion-hardened compositions to be substantially greater than that of wrought, unalloyed uranium. (For preceding period see NDA-21121.) (C.J.G.)

Arbiter, W.

1959-10-15T23:59:59.000Z

250

Nevada Test Site Environmental Report 2009  

SciTech Connect

The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

Cathy Wills, ed.

2010-09-13T23:59:59.000Z

251

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

252

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

253

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

254

Preparation of Enamel Frits  

Science Conference Proceedings (OSTI)

Table 6   Typical end uses and required service criteria...and heat exchangers Thermal shock resistant Laundry units Exteriors Alkali resistant Interiors Alkali resistant Oven liners Conventional Acid resistant Pyrolytic Acid and thermal shock resistant Ranges Exteriors Acid resistant Top Acid and thermal shock resistant Grates and burners Acid and thermal...

255

Help:Range blocks | Open Energy Information  

Open Energy Info (EERE)

Range blocks Jump to: navigation, search Range blocks are technical restrictions applied through Special:Blockip to a group of IP addresses that prevent them from editing, creating...

256

Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade  

Science Conference Proceedings (OSTI)

The CEBAF recirculating CW electron linear accelerator at Jefferson Lab is presently undergoing a major upgrade to 12 GeV. This project includes the fabrication, preparation, and testing of 80 new 7-cell SRF cavities, followed by their incorporation into ten new cryomodules for subsequent testing and installation. In order to maximize the cavity Q over the full operable dynamic range in CEBAF (as high as 25 MV/m), the decision was taken to apply a streamlined preparation process that includes a final light temperature-controlled electropolish of the rf surface over the vendor-provided bulk BCP etch. Cavity processing work began at JLab in September 2010 and will continue through December 2011. The excellent performance results are exceeding project requirements and indicate a fabrication and preparation process that is stable and well controlled. The cavity production and performance experience to date will be summarized and lessons learned reported to the community.

A. Burrill, G.K. Davis, F. Marhauser, C.E. Reece, A.V. Reilly, M. Stirbet

2011-09-01T23:59:59.000Z

257

Method for preparing boron-carbide articles  

DOE Patents (OSTI)

The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

Benton, S.T.; Masters, D.R.

1975-10-21T23:59:59.000Z

258

Idaho National Laboratory Radiological Response Training Range draft  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment August 4, 2010 Media contact: Brad Bugger, 208-526-0833 The public is invited to read and comment on a draft environmental assessment that the U.S. Department of Energy has published for a proposed radiological response training range at the Idaho National Laboratory (INL). At the range, INL experts would train personnel, conduct exercises, and perform technology evaluation and demonstrations in support of national technical nuclear forensic and radiological emergency response programs. �The Radiological Response Training Range will allow emergency responders to prepare for a major radiological incident by training in an environment that safely simulates scenarios they might encounter,� said Vic Pearson, DOE�s document manager for the environmental assessment. �Activities at the range would directly support the nation�s readiness to respond to a radiological incident, but more importantly, would enable responders to develop proficiency in characterizing the scene in support of determining the origins of the incident.�

259

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

260

MOISTURE MONITOR TESTING AND CALIBRATION  

SciTech Connect

ABS>Electrolytic moisture monitors which continuously analyze the moisture content of gases are commercially available. After a period of operation, these instruments may give erroneous readings, frequently because of damage to the electrolytic cell. A gas with a known and reproducible moisture content within the operating range would be useful for making operational response tests on these monltors and for checking their calibration. A paired- hydrate system of a chemical compound exhibits a water vapor pressure that is constant at a constant temperature. ff an unreactive gas is allowed to equilibrate with a paired-hydrate system, the moisture content of the gas is determined by the vapor pressure of the hydrate pair, the total pressure, and the temperature. Hydrated magnesium perchlorate was prepared which contained between four and six moles of water per mole of perchlorate. This material was pulverized lightly then packed into a stainless steel column and 100 cc/minute of air at atmospheric pressure was passed through the bed. The exit air from the column was analyzed with a moisture monitor. A gas residence time of two minutes in the column was found to be sufficient for establishing moisture equilibrium in the exit flow. The moisture content of the exit air was found to vary from 34 to 70 ppm by volume as the temperature of the paired-hydrate system varied from 20 to 28 un. Concent 85% C. Other paired-hydrate systems can extend this range to higher moisture levels. (auth)

Montgomery, C.D.; Googin, J.M.; Phillips, L.R.

1963-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Magnetotellurics At Northern Basin & Range Region Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

262

Laser Ranging for Gravitational, Lunar, and Planetary Science  

E-Print Network (OSTI)

More precise lunar and Martian ranging will enable unprecedented tests of Einstein's theory of General Relativity and well as lunar and planetary science. NASA is currently planning several missions to return to the Moon, and it is natural to consider if precision laser ranging instruments should be included. New advanced retroreflector arrays at carefully chosen landing sites would have an immediate positive impact on lunar and gravitational studies. Laser transponders are currently being developed that may offer an advantage over passive ranging, and could be adapted for use on Mars and other distant objects. Precision ranging capability can also be combined with optical communications for an extremely versatile instrument. In this paper we discuss the science that can be gained by improved lunar and Martian ranging along with several technologies that can be used for this purpose.

Stephen M. Merkowitz; Philip W. Dabney; Jeffrey C. Livas; Jan F. McGarry; Gregory A. Neumann; Thomas W. Zagwodzki

2007-12-20T23:59:59.000Z

263

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

264

Waste Minimization Plan Prepared by  

E-Print Network (OSTI)

Waste Minimization Plan Prepared by: Environmental Health and Safety Department Revised February 2012 #12;Waste Minimization Plan Table of Contents Policy Statement........................................................... 3 Centralized Waste Management Program

265

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

266

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

267

Mechanochemical Preparation of Phosphonium Salts and ...  

Researchers at Iowa State University and Ames Laboratory have developed a unique, solvent-free mechanochemical preparation method to prepare ...

268

Blue Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Creek Winter Range: Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment I F 8 - Spokane Tribe of Indians Bonneville POWER ADMINISTRATION B r n u r r o N aF THIS D O C ~ I H ~ E E 1% utifi_;'iUzi: w DOVEA-0939 November1 994 Bureay of Indian Affairs DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

269

W-025, acceptance test report  

SciTech Connect

This acceptance test report (ATR) has been prepared to establish the results of the field testing conducted on W-025 to demonstrate that the electrical/instrumentation systems functioned as intended by design. This is part of the RMW Land Disposal Facility.

Roscha, V.

1994-10-04T23:59:59.000Z

270

Medium- and Long-Range Forecasting  

Science Conference Proceedings (OSTI)

In contrast to short and extended range forecasts, predictions for periods beyond 5 days use time-averaged, midtropospheric height fields as their primary guidance. As time ranges are increased to 3O- and 90-day outlooks, guidance increasingly ...

A. James Wagner

1989-09-01T23:59:59.000Z

271

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt EREV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Volt extended range electric vehicles (EREVs) entered Accelerated testing during November 2012 in a fleet...

272

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt EREV Accelerated Testing - June 2013 Two model year 2011 Chevrolet Volt extended range electric vehicles (EREVs) entered Accelerated testing during March 2011 in a...

273

Target preparations and thickness measurements  

SciTech Connect

A wide variety of isotope target preparative methods have been used, including rolling of metals, vapor deposition, electrodeposition, chemical vapor deposition, and sputtering, to obtain thin and thick films of most elements or compounds of elements in the Periodic Table. Most thin films prepared for use in self-supported form as well as those deposited on substrates require thickness measurement (atom count and distribution) and/or thickness uniformity determination before being used in nuclear research. Preparative methods are described together with thickness and uniformity determination procedures applicable to samples being prepared (in situ) and to completed samples. Only nondestructive methods are considered applicable to target samples prepared by the ORNL Solid State Division, Isotope Research Materials Laboratory. Thickness or areal density measurements of sufficient sophistication to yield errors of less than +-1 percent have been achieved with regularity. A statistical analysis procedure is applied which avoids error caused by balance zero-point drift in direct weight measurement methods. (auth)

Adair, H.L.; Kobisk, E.H.

1975-01-01T23:59:59.000Z

274

Safe Frozen Turkey Preparation  

NLE Websites -- All DOE Office Websites (Extended Search)

you ready for a SAFE Thanksgiving? you ready for a SAFE Thanksgiving? Thanksgiving ~ time for family, Thanksgiving this year? Test your Thanksgiving safety Safety Quiz, check out the resources and share this page with your friends and family. Most importantly, take just a little extra time to make sure your Thanksgiving holiday is safe for your loved ones. Happy Thanksgiving! 1. How should you thaw a frozen turkey? A. Set it out on the kitchen counter the night before. B. In the microwave on the "thaw" setting C. Run hot water over it in the sink. D. In the refrigerator, according to its 2. How should you store turkey leftovers? A. In the same pan you cooked it in, in the refrigerator B. Put it in gallon freezer bags and freeze C. Cut the turkey into small pieces; refrigerate stuffing and turkey separately in shallow

275

Preparation of thorium-uranium gel spheres  

SciTech Connect

Ceramic oxide spheres with diameters of 15 to 1500 ..mu..m are being evaluated for fabrication of power reactor fuel rods. (Th,U)O/sub 2/ spheres can be prepared by internal or external chemical gelation of nitrate solutions or oxide sols. Two established external gelation techniques were tested but proved to be unsatisfactory for the intended application. Established internal gelation techniques for UO/sub 2/ spheres were applied with minor modifications to make 75% ThO/sub 2/-25% UO/sub 2/ spheres that sinter to diameters of 200 to 1400 ..mu..m (99% T.D.).

Spence, R.D.; Haas, P.A.

1980-01-01T23:59:59.000Z

276

Prepared by WVU Professors:  

E-Print Network (OSTI)

During the past thirty years two major concerns have developed with our current fuels. These concerns are reliable supplies and pollution. Because of these problems there has been a great interest in alternate fuels such as alcohol and natural gas. Since 1997 research has been conducted at West Virginia University on methanol as an alternate fuel for gas turbines. There have been two main areas of study in this research, the problems associated with operating a gas turbine on methanol and exhaust gas emissions. There are two major differences between methanol and aviation kerosene that affect the operation of a gas turbine. The first is methanols poor lubricating properties and the second is methanols lower heating value. During this research techniques have been developed to measure the lubricating properties of methanol and various additives. Suitable lubricant additives were found to improve methanols lubricity to equal that of aviation kerosene, with as little as 1 % additive. The lower heating value of methanol required modifications to the WVU gas turbines fuel system and atomizer, to provide higher flow rate of fuel then required with aviation kerosene. The gas turbine was modified and operated on methanol for an extended period, without failure. Exhaust gas emissions were tested

Methanol From; Coal End Use; Mr. Edward; C. Heydorn; John L. Loth; Nigel Clark; Robert Bond; Richard Guiler

2000-01-01T23:59:59.000Z

277

Lead Auditor - Auditor Preparation Checklist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Auditor - Auditor Preparation Checklist Lead Auditor - Auditor Preparation Checklist |Number|Item|Status | ||Staff the Audit || ||Auditor Qualifications|| ||Audit Notification & Audit Plan Issued|| ||Auditor access issues resolved|| ||Audit team facilities|| ||Auditor audit areas / elements assigned|| ||Check lists Prepared Issued || ||Audited Org Docs to team QPP Work plans etc|| ||Past Audits to team || ||PC availability for Auditors|| ||Audit forms to auditors People Interviewed Documents reviewed Entrance Meeting Attendance Exit Meeting Attendance, Issue Development Sheet[1] Form 11 Form 21|| ||Audit protocols, conduct of auditors|| ||Entrance meeting slides|| ||Exit meeting slide outline|| ||Report Shell to Team|| ----------------------- [1] Use of this will be explained in the second article of the series

278

Document Preparation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document Preparation Document Preparation Document Preparation Selected documents on the topic of NEPA Document Preparation. October 29, 2013 Directory of Potential Stakeholders for DOE Actions under NEPA DOE Offices are encouraged to be inclusive in providing potentially interested parties with opportunities to review NEPA documents. This Directory of Potential Stakeholders for DOE Actions under NEPA is primarily intended to supplement lists that Departmental Offices compile for individual projects or facilities. It complements the EIS Distribution Guidance. The Office of NEPA Policy and Compliance updates this Directory annually in July and may issue revisions throughout the year as new information becomes available. September 7, 2012 OMB and CEQ Joint Memorandum on Environmental Collaboration and Conflict

279

Preparation for Facility Operations RM  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this Standard Review Plan (SRP) on Preparation for Facility Operations is to provide consistency guidance to evaluate the effectiveness of the final project closure of major...

280

Preparation of Internationalized Strings ("stringprep")  

Science Conference Proceedings (OSTI)

This document describes a framework for preparing Unicode text strings in order to increase the likelihood that string input and string comparison work in ways that make sense for typical users throughout the world. The stringprep protocol is useful ...

P. Hoffman; M. Blanchet

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method for preparation of polysilanes  

DOE Patents (OSTI)

High molecular weight polysilanes are prepared using highly non-chain-transferring solvents. Certain alloys of sodium can also be used to advantage with such solvents. The high molecular weights are achievable even in the commercially preferred "normal" addition procedure.

Zeigler, John M. (2208 Lester Dr., NE, Albuquerque, NM 87112)

1991-01-01T23:59:59.000Z

282

PowerPlex Fusion Product Size Ranges  

Science Conference Proceedings (OSTI)

The schematic diagram illustrates the fluorescent dye label color and relative PCR product size ranges for the various STR loci present in this ...

2012-12-03T23:59:59.000Z

283

HY RID WIDE RANGE TRANSIMPEDAN E AMPLIFIER  

TRANSIMPEDAN E AMPLIFIER TE HNOLOGY SUMMARY Many applications require wide range detection, where detector current is converted to a voltage by a

284

Physics Out Loud - Short-range Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Chromodynamics (QCD) Previous Video (Quantum Chromodynamics (QCD)) Physics Out Loud Main Index Next Video (SRF Accelerator Cavities) SRF Accelerator Cavities Short-range...

285

Generalized similarity in finite range solar wind magnetohydrodynamic turbulence  

E-Print Network (OSTI)

Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. ULYSSES spacecraft solar polar passes at solar minimum provide \\textit{in situ} observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterises this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum -with turbulent fluctuations down by a factor of $\\sim 2$ in power- provides a test of this invariance.

Chapman, S C

2009-01-01T23:59:59.000Z

286

Adaptive Range Counting and Other Frequency-Based Range Query Problems.  

E-Print Network (OSTI)

??We consider variations of range searching in which, given a query range, our goal is to compute some function based on frequencies of points that (more)

Wilkinson, Bryan T.

2012-01-01T23:59:59.000Z

287

Nanoparticle toxicity testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoparticle toxicity testing Nanoparticle toxicity testing 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Nanoparticle toxicity testing Assessing the potential health hazards of nanotechnology March 25, 2013 Robot In the search for more accurate and efficient techniques to evaluate the health hazards of nanoparticles, Los Alamos researchers are developing artificial human tissues and organs to replace animal test subjects. A new approach to toxicity testing under development at Los Alamos uses artificial tissue and artificial organs instead of animal testing Manufactured nanoparticles such as buckyballs and carbon nanotubes, used in products ranging from sunscreens to solar panels, are proliferating so quickly that safety testing for potential health hazards-similar to those

288

Molecular communication options for long range nanonetworks  

Science Conference Proceedings (OSTI)

Nanotechnology is an emerging field of science devoted to provide new opportunities in a vast range of areas. In this paper, different techniques are proposed to enable the long range interconnection of nano-machines, deployed over distances from a few ... Keywords: Axons and action potential, Fluorescent proteins, MOLED, Molecular communication, Nanonetworks

Llus Parcerisa Gin; Ian F. Akyildiz

2009-11-01T23:59:59.000Z

289

Range search on multidimensional uncertain data  

Science Conference Proceedings (OSTI)

In an uncertain database, every object o is associated with a probability density function, which describes the likelihood that o appears at each position in a multidimensional workspace. This article studies two types of range retrieval ... Keywords: Uncertain databases, range search

Yufei Tao; Xiaokui Xiao; Reynold Cheng

2007-08-01T23:59:59.000Z

290

Chesapeake Testing  

Science Conference Proceedings (OSTI)

... Send E-Mail to NVLAP at: NVLAP@nist.gov. Personal Body Armor Testing. ... 7 Ballistic Resistance of Body Armor, Section 7, Ballistic Test Methods. ...

2014-01-03T23:59:59.000Z

291

Structural Testing  

DOE Green Energy (OSTI)

Structural testing at the National Wind Technology Center (NWTC) offers many benefits to wind turbine companies. NWTC includes a new high bay large enough to test any blade expected during the next 5 years. (There are four test bays.) In 1995, NWTC developed a saphisticated data acquisition system, known as the Blade Structural Testing Real-time Acquisition Interface Network (BSTRAIN), to monitor structural testing through 24-hour continuous video surveillance. NWTC recommends ultimate static-strength and fatigue testing, with nondestructive testing in some cases (vibrational testing is covered in a separate information sheet).

NONE

1996-06-01T23:59:59.000Z

292

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

293

Fountain Valley Electric Carrier Route Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

13 miles per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of- Charge (SOC) data was collected for only 28 of the route tests....

294

VIBRATION TEST VIBRPT3_S1100C_19APR2K6.doc  

E-Print Network (OSTI)

modifiche; MIL-HDBK-831 23 April 1999 Preparation of Test Reports (guidance only); UNI ­10653 ­ November

Roma "La Sapienza", Università di

295

Pomona Loop Baseline Performance Testing.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Pomona Loop Baseline Performance Testing Summary Pomona Loop Baseline Performance Testing Summary The U.S. Department of Energy's Field Operations Program sponsors the Urban and Freeway Pomona Loop range testing in Southern California. The testing is performed by one of the Program's testing partners, Southern California Edison. The vehicles are tested on local city streets (Urban Loop) and four highways (Freeway Loop). The Urban Loop is 19.3 miles long, ranging in elevation from 900 to 1500 feet, with approximately 50 stop signs and traffic lights. The Freeway Loop is 37.2 miles long, ranging in elevation from 700 to 1150 feet, and consists of four connected freeways shaped like a rectangle. When a vehicle is Pomona Loop tested, eight range tests are performed, with four tests on the Urban Loop and four on the Freeway Loop. The range tests are performed

296

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

Rushford, Michael C. (Livermore, CA)

1989-01-01T23:59:59.000Z

297

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

Rushford, M.C.

1989-03-28T23:59:59.000Z

298

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology  

SciTech Connect

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

2003-01-01T23:59:59.000Z

299

DOE Prepares Programmatic Environmental Impact Statement for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home DOE Prepares Programmatic Environmental Impact Statement for the Uranium Leasing Program DOE Prepares Programmatic Environmental Impact Statement for the...

300

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

P. , "Investigations on hydraulic cement from spent oilCO, April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROMUniversity of California. HYDRAULIC CEMENT PREPARATION FROM

Mehta, P.K.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Preparation of Hydroxyapatite by Microwave Heating  

Science Conference Proceedings (OSTI)

HAP powders were successfully prepared in a 2.45 GHz - 900W multimode home model microwave oven. The HAP powder was prepared by microwave heating...

302

Prepare The Nation For Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepare The Nation For Change Print E-mail What Is Adaptation and Mitigation? Adaptation An adjustment in natural and/or human systems to a new or changing environment that exploits beneficial opportunities and moderates negative impacts. Mitigation An intervention to reduce the sources or enhance the sinks of greenhouse gases and other climate warming agents. This intervention could include approaches devised to: reduce emissions of greenhouse gases to the atmosphere to enhance their removal from the atmosphere through storage in geological formations, soils, biomass, or the ocean How do we prepare for global change? Global change is affecting many aspects of society, livelihoods, and the environment. Across the United States and around the world, people are making decisions to effectively minimize (mitigate) and prepare for (adapt) global change.

303

Long range interactions in nanoscale science  

E-Print Network (OSTI)

Our understanding of the long range electrodynamic, electrostatic, and polar interactions that dominate the organization of small objects at separations beyond an interatomic bond length is reviewed. From this basic-forces ...

Rajter, Richard F.

304

Factors affecting home range of mallard pairs  

SciTech Connect

Certain habitat and social factors were investigated for their effect on home range size of mallard (Anas platyhynchos) pairs breeding in a forested region of north-central Minnesota during the spring of 1971--72. Data from 31 radio-marked hens and drakes were used, but primary emphasis was placed on 8 pairs (5 with both members of the pair marked). Pairs were radio-tracked on river marsh areas, river channels, and large sand lakes to provide comparative data for evaluating home range size differences. Home ranges varied from an average of 53 ha for pairs using primarily river habitat to 871 ha for pairs using only large sand lakes. River and lake shorelines varied considerably in species and density of vegetation. Interaction between pairs as well as density of flocked males appeared to be influenced by these habitat differences with resultant effects on home range sizes.

Riechmann, J.H.

1976-06-01T23:59:59.000Z

305

Range resolution of unequal strength targets  

E-Print Network (OSTI)

This paper examines the problem of resolving targets whose amplitudes may differ. A common metric used for resolution that assumes targets of equal strength is modified for the subject scenario. An expression for range ...

Carlson, Blair D.

306

Underwater vehicle localization using range measurements  

E-Print Network (OSTI)

This thesis investigates the problem of cooperative navigation of autonomous marine vehicles using range-only acoustic measurements. We consider the use of a single maneuvering autonomous surface vehicle (ASV) to aid the ...

Papadopoulos, Ge?rgios

2010-01-01T23:59:59.000Z

307

Smart grid e PLC: TOA ranging.  

E-Print Network (OSTI)

??In questo lavoro vengono presentati alcuni standard PLC (PowerLine Communication) nell'ottica del loro utilizzo in applicazioni di ranging in piccole reti intelligenti (micro smart grid). (more)

Danzi, Pietro

2012-01-01T23:59:59.000Z

308

NMERI 97/6/33010 IDENTIFICATION AND PROOF TESTING ...  

Science Conference Proceedings (OSTI)

... and Proof Testing of New Total Flooding ... organosilicon polymers have been prepared by incorporation of ... incorporated directly into a polymer, these ...

2012-09-01T23:59:59.000Z

309

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

310

Test Diversity  

E-Print Network (OSTI)

This paper describes a novel method for measuring the degree to which a set of test cases executes a given program in diverse ways with respect to the two fundamental programming concepts: control and data. Test Diversity is a method for measuring the variety of software control flow and data flow, comprising of four new measures: conditional diversity, data diversity, standard deviation of diversity, and test orthogonality. These closely-related measures could be used to evaluate the test effectiveness and the test-effort distribution of a test suite. The Diversity Analyzer is a novel industrial-strength testing tool that can currently perform diversity analysis on software written in C/C++/C#/VB in Windows and.NET environments. The Diversity Analyzer is used to evaluate the fault-detection effectiveness of Test Diversity on various types of industrial projects. Key Words: testing tools, verification, theory, experimentation, conditional diversity, data diversity, standard deviation,

Borislav Nikolik

2006-01-01T23:59:59.000Z

311

METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES  

DOE Patents (OSTI)

The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

Angier, R.P.

1958-02-11T23:59:59.000Z

312

Preparation  

Science Conference Proceedings (OSTI)

Table 1   Coefficients of thermal expansion for mold materials.../K 10 ??6 /°F Aluminum 22.5 12.5 Steel 12.1 6.7 Sand/polyvinyl alcohol 12.2 6.8 Sand/sodium silicate 11.5 6.4 Ceramic 12.1??12.6 6.7??7.0 Glass prepreg 11.7??13.1 6.5??7.3 Graphite prepreg 3.6 2.0 Invar 1.4??5.2 0.8??2.9 Monolithic graphite 0.2??1.8 0.1??1.0...

313

Advanced Burner Test Reactor - Preconceptual Design Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Burner Test Reactor Preconceptual Design Report ANL-ABR-1 (ANL-AFCI-173) Nuclear Engineering Division Disclaimer This report was prepared as an account of work sponsored by an...

314

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

315

2009 coal preparation buyer's guide  

Science Conference Proceedings (OSTI)

The guide contains brief descriptions and contact details of 926 US companies supplying coal preparation equipment who exhibited at the 26th annual Coal Prep exhibition and conference, 28-30 April - May 2009, in Lexington, KY, USA. An index of categories of equipment available from the manufacturers is included.

NONE

2009-04-15T23:59:59.000Z

316

Process for preparing fluorine-18  

DOE Patents (OSTI)

An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.

Winchell, Harry S. (Lafayette, CA); Wells, Dale K. (Martinez, CA); Lamb, James F. (Albany, CA); Beaudry, Samuel B. (Walnut Creek, CA)

1976-09-21T23:59:59.000Z

317

Photochemical preparation of plutonium pentafluoride  

SciTech Connect

The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

318

PREPARATION OF HALIDES OF PLUTONIUM  

DOE Patents (OSTI)

A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

Garner, C.S.; Johns, I.B.

1958-09-01T23:59:59.000Z

319

Preparation of asymmetric porous materials  

SciTech Connect

A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

Coker, Eric N. (Albuquerque, NM)

2012-08-07T23:59:59.000Z

320

Preparation of gas selective membranes  

DOE Patents (OSTI)

Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

1988-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PROCESS OF PREPARING URANIUM CARBIDE  

DOE Patents (OSTI)

A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

Miller, W.E.; Stethers, H.L.; Johnson, T.R.

1964-03-24T23:59:59.000Z

322

Gas Test Loop Booster Fuel Hydraulic Testing  

SciTech Connect

The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

Gas Test Loop Hydraulic Testing Staff

2006-09-01T23:59:59.000Z

323

Fuels Preparation Department monthly report, November 1962  

SciTech Connect

This document details activities of the Fuels Preparation Department during the month of November 1962.

1962-12-07T23:59:59.000Z

324

TA Orientation 2007 Activity #3 Lab Preparation  

E-Print Network (OSTI)

TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 1 Preparation for Teaching a Lab, based on the papers of these 6 students. #12;TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 2 #12;TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 3 Warm-up Questions

Minnesota, University of

325

TA Orientation 2006 Activity #3 Lab Preparation  

E-Print Network (OSTI)

TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 1 Preparation for Teaching a Lab, based on the papers of these 6 students. #12;TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 2 #12;TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 3 Warm-up Questions

Minnesota, University of

326

Ion Exchange Testing with SRF Resin FY2012  

Science Conference Proceedings (OSTI)

Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energys Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

2013-06-11T23:59:59.000Z

327

Elements present in leach solutions from unsaturated spent fuel tests  

SciTech Connect

Preliminary results for the composition of the leachate from unsaturated tests at 90{degrees}C with spent fuel for 55--134 days with J-13 groundwater are reported. The pH of the leachate solutions was found to be acidic, ranging from 4 to 7. The actinide concentrations were 10{sup 5} greater than those reported for saturated spent fuel tests in which the leachate pH was 8. We also found that most species in the leachate were present as colloids containing both americium and curium. The presence of actinides in a form not currently included in repository radionuclide transport models provides information that can be used in spent fuel reaction modeling, the performance assessment of the repository and the design of the engineering barrier system. This report was prepared as part of the Yucca Mountain Site Characterization Project

Finn, P.A.; Bates, J.K.; Hoh, J.C.; Emery, J.W.; Hafenrichter, L.D.; Buck, E.C.; Gong, M.

1993-10-01T23:59:59.000Z

328

Range conditions for a spherical mean transform  

E-Print Network (OSTI)

The paper is devoted to the range description of the Radon type transform that averages a function over all spheres centered on a given sphere. Such transforms arise naturally in thermoacoustic tomography, a novel method of medical imaging. Range descriptions have recently been obtained for such transforms, and consisted of smoothness and support conditions, moment conditions, and some additional orthogonality conditions of spectral nature. It has been noticed that in odd dimensions, surprisingly, the moment conditions are superfluous and can be eliminated. It is shown in this text that in fact the same happens in any dimension.

Mark Agranovsky; David Finch; Peter Kuchment

2009-02-25T23:59:59.000Z

329

Gravitomagnetism and the Earth-Mercury range  

E-Print Network (OSTI)

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2010-02-01T23:59:59.000Z

330

High-Dynamic-Range Imaging for artists  

Science Conference Proceedings (OSTI)

An introduction and overview of the practical applications and uses of high-dynamic-range imaging (HDRI) from a production point of view. The course begins with a brief overview of HDRI and pre-production, production, and post-production techniques. ...

Kirt Witte

2009-12-01T23:59:59.000Z

331

Secure multidimensional range queries in sensor networks  

Science Conference Proceedings (OSTI)

Most future large-scale sensor networks are expected to follow a two-tier architecture which consists of resource-rich master nodes at the upper tier and resource-poor sensor nodes at the lower tier. Sensor nodes submit data to nearby master nodes which ... Keywords: multidimensional range query, security, sensor networks,

Rui Zhang; Jing Shi; Yanchao Zhang

2009-05-01T23:59:59.000Z

332

Some Recent Long-Range Diffusion Observations  

Science Conference Proceedings (OSTI)

Recent atmospheric cloud-spreading (relative diffusion) data from a variety of sources are combined to show that the horizontal spreading rate is approximately linear over a time range from 1 to 10 or more hours (20?200 or more km) of downwind ...

F. A. Gifford

1995-07-01T23:59:59.000Z

333

Seasonal Variation in Daily Temperature Ranges  

Science Conference Proceedings (OSTI)

Abrupt spring and autumnal changes in the daily temperature range, from low winter values to higher nonwinter values, were noted in the Minneapolis-St. Paul temperature record. Since this feature was even more evident in five rural and small town ...

David L. Ruschy; Donald G. Baker; Richard H. Skaggs

1991-12-01T23:59:59.000Z

334

Likely Ranges of Climate Change in Bolivia  

Science Conference Proceedings (OSTI)

Bolivia is facing numerous climate-related threats, ranging from water scarcity due to rapidly retreating glaciers in the Andes to a partial loss of the Amazon forest in the lowlands. To assess what changes in climate may be expected in the future,...

Christian Seiler; Ronald W. A. Hutjes; Pavel Kabat

2013-06-01T23:59:59.000Z

335

Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.  

SciTech Connect

Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

Tuohig, W. (Honeywell FM& T, Kansas City, MO); Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

2009-02-01T23:59:59.000Z

336

EIS-0364: Notice of Intent to Prepare an Environmental Impact Statement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Notice of Intent to Prepare an Environmental Impact 4: Notice of Intent to Prepare an Environmental Impact Statement EIS-0364: Notice of Intent to Prepare an Environmental Impact Statement Decommissioning of the Fast Flux Test Facility at the Hanford Site, Richland, Washington The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington. Notice of Intent to Prepare an Environmental Impact Statement for the Decommissioning of the Fast Flux Test Facility at the Hanford Site, Richland, Washington (DOE/EIS-0364) (August 2004 - 69 FR 50176) More Documents & Publications EIS-0310: Amended Record of Decision

337

Operational test report for LERF Basin 242AL-44 integrity test  

SciTech Connect

This operational test report documents the results of LERF operational testing per operational test procedure (OTP) TFPE-WP-0231, ``LERF Basin Integrity Testing.`` The primary purpose of the OTP was to resolve test exceptions generated as a result of TFPE-WP-0184. The TOP was prepared and performed in accordance with WHC-SD-534-OTP-002, ``Operational Test Plan for the 242-A Evaporator Upgrades and the Liquid Effluent Retention Facility.`` WHC-S-086, ``Specification for Operational Testing of the Liquid Effluent Retention Facility, Basin Integrity Testing,`` identified the test requirements and acceptance criteria. The completed, signed-off test procedure is contained in Appendix A. The test log is contained in Appendix B. Section 2.1 describes all the test exceptions written during performance of the Operational Test Procedure. The test revisions generated during the testing are discussed in Section 2.2. The dispositioned test exception forms are contained in Appendix C.

Galioto, T.M.

1994-11-08T23:59:59.000Z

338

Method and apparatus for coherent burst ranging  

DOE Patents (OSTI)

A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

Wachter, E.A.; Fisher, W.G.

1998-04-28T23:59:59.000Z

339

Method and apparatus for coherent burst ranging  

DOE Patents (OSTI)

A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

Wachter, Eric A. (138 Bay Path Dr., Oak Ridge, TN 37830); Fisher, Walter G. (8514 Carl Valentine, Knoxville, TN 37931)

1998-01-01T23:59:59.000Z

340

test02  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Noel C. Balthasar, Chief, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Electric and Alter- nate Fuels. Specific information about the

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

test02  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Distribution Category UC-950 Quarterly Coal Report July-September 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Noel C. Balthasar, Chief, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Electric and Alter- nate Fuels. Specific information about

342

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO)

1998-01-01T23:59:59.000Z

343

PREPARATION OF REFRACTORY OXIDE CRYSTALS  

DOE Patents (OSTI)

A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

1962-11-13T23:59:59.000Z

344

Method for preparing ceramic composite  

DOE Patents (OSTI)

A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

Alexander, Kathleen B. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN); Becher, Paul F. (Oak Ridge, TN); Waters, Shirley B. (Knoxville, TN)

1996-01-01T23:59:59.000Z

345

Rangely, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rangely, Colorado: Energy Resources Rangely, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0874759°, -108.8048292° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0874759,"lon":-108.8048292,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Front Range Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Jump to: navigation, search Logo: Front Range Energy LLC Name Front Range Energy LLC Address 31375 Great Western Dr Place Windsor, Colorado Zip 80550 Sector Biofuels Product Ethanol producer Website http://www.frontrangeenergy.co Coordinates 40.4605154°, -104.8565272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4605154,"lon":-104.8565272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

TESTING TECHNIQUE  

Science Conference Proceedings (OSTI)

... The cooling bath should ... When testing super-high energy level specimens ... upon the resolution of the scale or readout device at the low end and the ...

2012-10-09T23:59:59.000Z

348

Test Methods  

Science Conference Proceedings (OSTI)

... of the robot, operator control unit (OCU), payload, and batteries Tools needed ... this test method is to quantitatively evaluate the battery capacity per ...

2010-10-05T23:59:59.000Z

349

2006 Long Range Development Plan Final Environmental ImpactReport  

SciTech Connect

This environmental impact report (EIR) has been prepared pursuant to the applicable provisions of the California Environmental Quality Act (CEQA) and its implementing guidelines (CEQA Guidelines), and the Amended University of California Procedures for Implementation of the California Environmental Quality Act (UC CEQA Procedures). The University of California (UC or the University) is the lead agency for this EIR, which examines the overall effects of implementation of the proposed 2006 Long Range Development Plan (LRDP; also referred to herein as the 'project' for purposes of CEQA) for Lawrence Berkeley National Laboratory (LBNL; also referred to as 'Berkeley Lab,' 'the Laboratory,' or 'the Lab' in this document). An LRDP is a land use plan that guides overall development of a site. The Lab serves as a special research campus operated by the University employees, but it is owned and financed by the federal government and as such it is distinct from the UC-owned Berkeley Campus. As a campus operated by the University of California, the Laboratory is required to prepare an EIR for an LRDP when one is prepared or updated pursuant to Public Resources Code Section 21080.09. The adoption of an LRDP does not constitute a commitment to, or final decision to implement, any specific project, construction schedule, or funding priority. Rather, the proposed 2006 LRDP describes an entire development program of approximately 980,000 gross square feet of new research and support space construction and 320,000 gross square feet of demolition of existing facilities, for a total of approximately 660,000 gross square feet of net new occupiable space for the site through 2025. Specific projects will undergo CEQA review at the time proposed to determine what, if any, additional review is necessary prior to approval. As described in Section 1.4.2, below, and in Chapter 3 of this EIR (the Project Description), the size of the project has been reduced since the Notice of Preparation for this EIR was issued. This reduction was in response to consultation with the City of Berkeley as well as other factors. CEQA requires that, before a decision can be made by a state or local government agency to approve a project that may have significant environmental effects, an EIR must be prepared that fully describes the environmental effects of the project. The EIR is a public informational document for use by University decision-makers and the public. It is intended to identify and evaluate potential environmental consequences of the proposed project, to identify mitigation measures that would lessen or avoid significant adverse impacts, and to examine feasible alternatives to the project. The information contained in the EIR is reviewed and considered by the lead agency prior to its action to approve, disapprove, or modify the proposed project.

Philliber, Jeff

2007-01-22T23:59:59.000Z

350

Inertial range turbulence in kinetic plasmas  

E-Print Network (OSTI)

The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the ther...

Howes, G G

2007-01-01T23:59:59.000Z

351

Inertial range turbulence in kinetic plasmas  

E-Print Network (OSTI)

The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.

G. G. Howes

2007-11-27T23:59:59.000Z

352

Method for preparing salt solutions having desired properties  

DOE Patents (OSTI)

The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

1994-01-01T23:59:59.000Z

353

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

NLE Websites -- All DOE Office Websites (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

354

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

355

Liquid phase methanol process development unit: installation, operation, and support studies. Topical report. Experimental catalyst preparation program  

DOE Green Energy (OSTI)

This report details the preparation of 29 catalyst samples under DOE contract No. DE-AC22-81PC30019. These were selected for gas phase activity testing from a total of 70 prepared. Based on activity results, three compositions were selected for further slurry phase testing in the Chem Systems, Inc. (CSI) laboratories. 11 references, 5 figures, 7 tables.

Not Available

1984-01-01T23:59:59.000Z

356

Summary - Plutonium Preparation Project at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site EM Project: PuPP ETR Report Date: October 2008 ETR-17 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Plutonium Preparation Project at the Savannah River Site Why DOE-EM Did This Review The purpose of the Plutonium Preparation Project (PuPP) is to prepare for disposition of plutonium materials; for examination, re-stabilization, and disassembly of the Fast Flux Test Facility (FFTF) unirradiated fuel; and for repackaging of Pu stored in 3013 containers. Of ~12.8 MT of plutonium, ~4.1 MT will be directly transferred to the MOX Fuel Fabrication Facility (MFFF); ~3.7 MT will require processing prior to transfer to the MFFF; and ~5 MT was proposed to be processed in H-Canyon with the

357

Prepared for: REGION C WATER PLANNING GROUP Prepared by:  

E-Print Network (OSTI)

This model water conservation plan was prepared by Freese and Nichols, Alan Plummer Associates, and Chiang, Patel, and Yerby for the Region C Water Planning Group. It is intended as a template for manufacturers within Region C as they develop their own water conservation plans. Manufacturers should customize the details to match their unique situation. The model plan was prepared pursuant to Texas Commission on Environmental Quality rules. The rules do not require a drought contingency plan for manufacturers. The other Region C model water conservation plans (for municipal, steam electric power, and irrigation users) include example text for a fictional water user that can be edited to match a real-life situation. However, there are a large number of manufacturers in Region C with widely varying processes and water uses, and it is difficult to generate example text that is applicable to most manufacturers. This template provides a plan structure and instructions for the type of content that belongs in each section. The water conservation plans for the City of Fort Worth 1, the City of Dallas 2, New Mexico Office of the State Engineer (Guide for Commercial, Institutional, and Industrial Users) 3 were used

Brian K. Mcdonald; Alan Plummer Associates; Thomas C. Gooch; Stephanie W. Griffin; Alan Plummer Associates

2005-01-01T23:59:59.000Z

358

ACOUSTICAL TESTING SERVICES TEST METHOD ...  

Science Conference Proceedings (OSTI)

... IEC 60704-2-3 Household and similar electrical appliances - Test code for ... noise emitted and structure-borne vibration induced by small air- moving ...

2013-05-06T23:59:59.000Z

359

APS Long Range Operations Schedule FY2009  

NLE Websites -- All DOE Office Websites (Extended Search)

09) 09) Alternate Formats: iCal | Excel | PDF APS Long Range Operation Schedule (FY2009) 2008-3 2009-1 2009-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

360

APS Long Range Operations Schedule FY2010  

NLE Websites -- All DOE Office Websites (Extended Search)

10) 10) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2009-3 2010-1 2010-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

MacArthur, Duncan W. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

362

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

MacArthur, D.W.; Bounds, J.A.

1994-05-10T23:59:59.000Z

363

Relevant energy ranges for astrophysical reaction rates  

Science Conference Proceedings (OSTI)

Effective energy windows (Gamow windows) of astrophysical reaction rates for (p,gamma), (p,n), (p,alpha), (alpha,gamma), (alpha,n), (alpha,p), (n,gamma), (n,p), and (n,alpha) on targets with 10<=Z<=83 from proton to neutron dripline are calculated using theoretical cross sections. It is shown that widely used approximation formulas for the relevant energy ranges are not valid for a large number of reactions relevant to hydrostatic and explosive nucleosynthesis. The influence of the energy dependence of the averaged widths on the location of the Gamow windows is discussed and the results are presented in tabular form.

Rauscher, Thomas [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)

2010-04-15T23:59:59.000Z

364

Preparation of Carbon Nanotube-Composite  

E-Print Network (OSTI)

A composite is made up of two distinct materials and the resulted properties are different from the individual precursors. Composite combines a huge or bulkier element called matrix and reinforcement called filler or fiber. Fiber is added in the matrix to increase the stiffness of the matrix and enhance or alter its physical properties. Since silk has high levels of toughness, strength and multifunctional nature, we decided to use bombyx mori as a matrix. Because of the superior mechanical properties, i.e., high tensile moduli, and strength of carbon nanotube, we chose carbon nanotube as a reinforcement fiber to enhance the mechanical properties of resulting composite. The main issue encountered while preparing composite was to fully disperse individual nanotubes in the matrices, because nanotubes tend to form clusters and bundles. Hence, we used ionic liquids to dissolve the cocoon, and processed homogenization of FCNT with silk by sonication, stirring. For testing, different weight percentages of functionalized carbon nanotube were used as a filler to make the silk composite, and nanoindentation and tensile tester tested the samples. The composite of various concentrations did not show the expected result of increasing mechanical properties with decreased carbon nanotube concentration. Hence, it was concluded that a different method to functionalize carbon nanotube should be implemented.

Sharma, Sundeep

2011-05-01T23:59:59.000Z

365

Method for preparing radiopharmaceutical complexes  

DOE Patents (OSTI)

A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

Jones, Alun G. (Newton Centre, MA); Davison, Alan (Needham, MA); Abrams, Michael J. (Westchester, PA)

1989-05-02T23:59:59.000Z

366

Preparation of Nanostructured Materials Having Improved Ductility  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. June 20, 2013 Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. Available for thumbnail of Feynman Center for Innovation (505) 665-9090 Email Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an

367

Dynamic Demand Input Preparation for Planning Applications  

E-Print Network (OSTI)

model to the ground truth Table 3-2 summarizes the Meanground truth and in preparing the seed dynamic OD table inground truth and the one in preparing seed dynamic OD tables

Jintanakul, Klayut

2009-01-01T23:59:59.000Z

368

Method of surface preparation of niobium  

DOE Patents (OSTI)

The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

Srinivasan-Rao, Triveni (Shoreham, NY); Schill, John F. (Ridge, NY)

2003-01-01T23:59:59.000Z

369

Using enzymes to prepare biobased surfactants  

Science Conference Proceedings (OSTI)

Enzyme-catalyzed syntheses possess many intriguing advantages as green-manufacturing approaches to prepare biobased surfactants. Using enzymes to prepare biobased surfactants Inform Magazine Edible Applications Food Structure and Functionality Nutritio

370

test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

test test test test More Documents & Publications Software Testing Checklist February2GuidanceMemorandum.pdf Site Transition Plan Guidance...

371

EXCEPTED SERVICE (EJ & EK) PAY RANGES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCEPTED SERVICE (EJ & EK) PAY RANGES EXCEPTED SERVICE (EJ & EK) PAY RANGES Eff. 01/03/2010 Pay Table (***Excludes applicable Locality Pay) Grade/Band Minimum Maximum GS Grade/Step Equivalent 01 $27,431 $47,103 5/1 to 9/5 02 $41,563 $68,310 9/1 to 12/5 03 $60,274 $95,989 12/1 to 14/5 04 $84,697 $133,403* 14/1 to 103% of 15/10 05 $145,700** $165,300 EX-V to EX-III *Change to maximum pay rate per DOE O 329.1 effective 03/30/2012. **Change to minimum pay rate per DOE O 329.1 effective 03/30/2012. ***Calculating salary to include Locality Pay: Example: An employee is selected for an EJ/EK position in the Washington, D.C. Metropolitan Area which has a locality payment rate of 24.22% (locality rate for 2011) Step One: Convert locality payment percent to a decimal - 1.2422;

372

APS Long Range Schedule FY1996  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Range Commissioning Schedule for FY1996 Long Range Commissioning Schedule for FY1996 Date First Shift 0:00-8:00 Second Shift 8:00-16:00 Third Shift 16:00-24:00 3/15/96 SR Studies 1-ID-A Shielding Verification SR Studies 3/23/96 SR Studies 3-ID-A , 2-ID-A , 3-ID-B Shielding Verifications User Beam 3/24/96 User Beam User Beam User Beam 3/25/96 User Beam 19-ID-A Shielding Verification User Beam 3/26/96 User Beam 2-ID-A , 12-BM-A Shielding Verifications User Beam 3/27/96 User Beam 5-BM-A Shielding Verification User Beam 3/28/96 User Beam 19-ID-C Shielding Verification User Beam until 20:00 3/29/96 SR Studies SR Studies SR Studies 3/30/96 SR Studies SR Studies SR Studies 3/31/96 SR Studies SR Studies SR Studies 4/1/96 SR Studies SR Studies SR Studies 4/2/96 SR Studies 5-BM-B Shielding Verification User Beam

373

Updated FY12 Ceramic Fuels Irradiation Test Plan  

SciTech Connect

The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-05-24T23:59:59.000Z

374

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

1995-01-01T23:59:59.000Z

375

Preparation of superconductor precursor powders  

DOE Patents (OSTI)

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

Bhattacharya, R.

1998-08-04T23:59:59.000Z

376

Preparation of hydrophobic organic aeorgels  

DOE Patents (OSTI)

Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

Baumann, Theodore F. (Tracy, CA); Satcher, Jr., Joe H. (Patterson, CA); Gash, Alexander E. (Livermore, CA)

2007-11-06T23:59:59.000Z

377

Railcar waste transfer system hydrostatic test  

SciTech Connect

Recent modifications have been performed on the T-Plant Railcar Waste Transfer System, This Acceptance Test Procedure (ATP) has been prepared to demonstrate that identified piping welds and mechanical connections incorporated during the modification are of high integrity and are acceptable for service. This will be achieved by implementation of a hydrostatic leak test.

Ellingson, S.D.

1997-03-31T23:59:59.000Z

378

Yale ME Turbine Test cell instructions Background  

E-Print Network (OSTI)

Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

Haller, Gary L.

379

Test plan  

U.S. Energy Information Administration (EIA)

3.0 TEST PLAN METHODOLOGY 8. 3.1 Assumptions 8. 3.2 Methodology 8. 4.0 COMMENTS ON INITIAL VIEW OF THE DATA 16 1.0 INTRODUCTION. EIA tasked Allied ...

380

Weapons of Mass Destruction Technology Evaluation and Training Range  

SciTech Connect

The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

Kevin Larry Young

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Range Selectivity Estimation for Continuous Attributes  

E-Print Network (OSTI)

Many commercial database systems maintain histograms to efficiently estimate query selectivities as part of query optimization. Most work on histogram design is implicitly geared towards discrete or categorical attribute value domains. In this paper, we consider approaches that are better suited for the continuous valued attributes commonly found in scientific and statistical databases. We propose two methods based on spline functions for estimating the selectivity of range queries over univariate and multivariate data. These methods are more accurate than histograms. As the results from our experiments on both real and synthetic data sets demonstrate, the proposed methods achieved substantially better (up to 5.5 times) estimation error than the state-of-the-art histograms, at exactly the same storage space and with comparable CPU runtime overhead; moreover, the superiority of the proposed spline methods is amplified when applied to multivariate data. 1 Introduction Selectivity esti...

Flip Korn; Theodore Johnson; H. V. Jagadish

1999-01-01T23:59:59.000Z

382

Scannerless loss modulated flash color range imaging  

SciTech Connect

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2009-02-24T23:59:59.000Z

383

Scannerless loss modulated flash color range imaging  

SciTech Connect

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2008-09-02T23:59:59.000Z

384

Ultrasonic ranging and data telemetry system  

DOE Patents (OSTI)

An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

Brashear, Hugh R. (Farragut, TN); Blair, Michael S. (Knoxville, TN); Phelps, James E. (Knoxville, TN); Bauer, Martin L. (Oak Ridge, TN); Nowlin, Charles H. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

385

Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines  

DOE Green Energy (OSTI)

The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

2011-01-01T23:59:59.000Z

386

AN E&E PUBLISHING SERVICE ENERGY EFFICIENCY: Tenn. project to test range of residential upgrades  

E-Print Network (OSTI)

retrofits -- changes costing about $10 per square foot of living space, or $25,000 for an average home will not dominate the retrofit, though. "On a first-cost basis, the biggest thing we're doing is the insulation and ability to pay for, or get a loan for, the hefty upfront costs of making upgrades, and to give researchers

387

Corrective Action Investigation Plan: Roller Coaster Lagoons and North Disposal Trench, Tonopah Test Range, Revision 1  

SciTech Connect

1.1 Purpose The purpose of this investigation is to collect data to confirm the presence or absence of contamination, evaluate the potential for contaminant migration, and select appropriate closure methods for these sites. The potential closure methods for these sites involve either clean closure, closure in place, or no further action. 1.2 Scope The scope of this investigation includes collecting surface and subsurface soil samples at the Roller Coaster Lagoons; and collecting surface soil samples at the North Disposal Trench and the small spill area associated with the Voluntary Cotiective Action (VCA) that was conducted in 1995.

IT Corporation, Las Vegas, NV

1996-06-27T23:59:59.000Z

388

Dynometer test bed (fact sheet)  

SciTech Connect

The National Renewable Energy Laboratory's (NREL's) Dynamometer Test Bed is one of a kind. It offers wind industry engineers a unique opportunity to conduct lifetime endurance tests on a wide range of wind turbine drivetrains and gearboxes at various speeds, using low or high torque. By testing full-scale wind turbines, engineers from NREL and industry hope to understand the impact of various wind conditions with the goal of improving hardware design.

O' Dell, K.

2000-04-24T23:59:59.000Z

389

Measurements of Detailed Temperature Profiles within the Radar Range Gate Using the Range Imaging Technique  

Science Conference Proceedings (OSTI)

The present study applies the range imaging (RIM) technique to radio acoustic sounding system (RASS) measurements in an attempt to improve the vertical resolution of temperature profiles obtained by RASS measurements.

Jun-ichi Furumoto; Tomonori Shinoda; Atsushi Matsugatani; Toshitaka Tsuda

2011-01-01T23:59:59.000Z

390

A Short-Range to Early-Medium-Range Ensemble Prediction System for the European Area  

Science Conference Proceedings (OSTI)

An ensemble prediction system, especially designed for the short to early-medium range for the European domain, is presented. The initial perturbations of each ensemble are based on singular vectors that maximize the 3-day total energy error ...

H. Hersbach; R. Mureau; J. D. Opsteegh; J. Barkmeijer

2000-10-01T23:59:59.000Z

391

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

Science Conference Proceedings (OSTI)

Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

BURKE, T.M.

2005-04-13T23:59:59.000Z

392

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

393

test02  

Gasoline and Diesel Fuel Update (EIA)

6 Tables 6 Tables May 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

394

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

395

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

396

Aerosol preparation of intact lipoproteins  

DOE Patents (OSTI)

A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

Benner, W. Henry (Danville, CA); Krauss, Ronald M (Berkeley, CA); Blanche, Patricia J (Berkeley, CA)

2012-01-17T23:59:59.000Z

397

Guide to Preparing SAND Reports  

E-Print Network (OSTI)

The Guide to Preparing SAND Reports contains guidelines for producing SAND Reports and other information releases. Its guidelines reflect DOE regulations and Sandia policy. The Guide includes in Section 1, policies for protecting and reproducing official information at Sandia, SAND number information, and Review & Approval procedures; in Section 2, basic writing instructions, which are illustrated in an annotated sample report; in Section 3, an explanation of the format, layout, and graphics of SAND Reports and a table that details the markings and legends needed for report covers and title pages; in Section 4, the procedures for reproducing and distributing SAND Reports; and in Section 5, information on presentations and conference papers, journal articles, book chapters, and brochures. The appendixes contain sections on Sandia's preferred style, usage, and grammar; equations; report references; and trademarks and copyrights. 4 May 1998 Intentionally Left Blank May 1998 5 Conten...

Tamara Locke Editor; Tamara K. Locke

1998-01-01T23:59:59.000Z

398

Microfluidic Sample Preparation for Immunoassays  

SciTech Connect

Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

2001-08-09T23:59:59.000Z

399

PREPARATION OF REFRACTORY OXIDE MICROSPHERE  

DOE Patents (OSTI)

A method is described of preparing thorium oxide in the form of fused spherical particles about 1 to 2 microns in diameter. A combustible organic solution of thorium nitrate containing additive metal values is dispersed into a reflected, oxygen-fed flame at a temperature above the melting point of the resulting oxide. The metal additive is aluminum at a proportion such as to provide 1 to 10 weight per cent aluminum oxide in the product, silicon at the same proportion, or beryllium at a proportion of 12 to 25 weight per cent beryllium oxide in the product. A minor proportion of uranium values may also be provided in the solution. The metal additive lowers the oxide melting point and allows fusion and sphere formation in conventional equipment. The product particles are suitable for use in thorium oxide slurries for nuclear reactors. (AEC)

Haws, C.C. Jr.

1963-09-24T23:59:59.000Z

400

Aerial radiation survey at a military range.  

SciTech Connect

Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Guidebook for preparing players' handbooks  

SciTech Connect

This Guidebook has been written to assist DOE in planning and developing Players' Handbooks for test exercises. The Guidebook is focused especially on the AST, CERM and WINTEX-CIMEX exercises, but may be useful for planning and developing Players' Handbooks for other tests. The main features of the Guidebook include Handbook Checklists and Model Shells for common sections of the AST, CERM and WINTEX-CIMEX Handbooks. The Checklist is a planning and organizing tool. The Model Shells provide much of the text for five common sections of the Handbooks. Prompts, which indicate the placement and type of insertions required for specific handbooks, are imbedded in the Model Shells. These are available as WordPerfect 5.0 files and feature an automatic search routine which locates all prompts for the user. Model Shells had been developed for the Exercise Plan (EXPLAN), Player Directory, Test Schedule, Communications Plan and Evaluation Plan (EVPLAN) sections of the Handbooks. 2 figs., 6 tabs.

Not Available

1989-09-01T23:59:59.000Z

402

Preparation of bulk superhard B-C-N nanocomposite compact  

DOE Patents (OSTI)

Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

Zhao, Yusheng (Los Alamos, NM); He, Duanwei (Sichuan, CN)

2011-05-10T23:59:59.000Z

403

Test Automation Ant JUnit Test Automation  

E-Print Network (OSTI)

Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

Mousavi, Mohammad

404

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

405

Third invitational well-testing symposium: well testing in low permeability environments  

DOE Green Energy (OSTI)

The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

Doe, T.W.; Schwarz, W.J. (eds.)

1981-03-01T23:59:59.000Z

406

ICE Cleaning Test Report.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

16 16 FIELD DEMONSTRATION OF THE ICE 250 TM CLEANING SYSTEM AT THE ROCKY MOUNTAIN OILFIELD TESTING CENTER CASPER, WYOMING August 18-19, 1999 Date Published: October 5, 1999 J.L. Johnston L.M. Jackson PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY/ROCKY MOUNTAIN OILFIELD TESTING CENTER Work Performed Under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA No. 99-009 TABLE OF CONTENTS Abstract.............................................................................................................................................1 Introduction.......................................................................................................................................1 Product Description ...........................................................................................................................1

407

State Awards for Energy Emergency Preparation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards for Energy Emergency Preparation State Awards for Energy Emergency Preparation List of States receiving awards from the Energy Emergency Preparation project under the...

408

Local Awards for Energy Emergency Preparation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Awards for Energy Emergency Preparation Local Awards for Energy Emergency Preparation List of local awards for energy emergency preparation, including city, state,...

409

The SSRL Biotechnology Sample Preparation Laboratory is available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation Laboratory User Agreement, C. PattyL. Hammon, 111411 SSRL Sample Preparation Laboratories User Access Agreement November 2011 Welcome to the SSRL sample preparation...

410

Preparation for upgrading western subbituminous coal  

SciTech Connect

The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

1990-11-01T23:59:59.000Z

411

EIS-0382: Notice of Intent to Prepare an Environmental Impact Statement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Intent to Prepare an Environmental Impact Notice of Intent to Prepare an Environmental Impact Statement EIS-0382: Notice of Intent to Prepare an Environmental Impact Statement Mesaba Energy Project, Itasca, MN The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) to assess the potential environmental impacts of a project proposed by Excelsior Energy Inc. (Excelsior), to design, construct, and operate (potentially under an agreement with an operating company) a coal-based, Integrated Gasification Combined Cycle (IGCC) electric generating facility on the Iron Range of northern Minnesota termed the ''Mesaba Energy Project''. Notice of Intent To Prepare an Environmental Impact Statement and Notice of Proposed Floodplain and Wetlands Involvement for the Mesaba Energy Project

412

Laboratory Performance Testing of Residential Dehumidifiers (Presentation)  

SciTech Connect

Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

Winkler, J.

2012-03-01T23:59:59.000Z

413

Lunar Laser Ranging Contributions to Relativity and Geodesy  

E-Print Network (OSTI)

Lunar laser ranging (LLR) is used to conduct high-precision measurements of ranges between an observatory on Earth and a laser retro-reflector on the lunar surface. Over the years, LLR has benefited from a number of improvements both in observing technology and data modeling, which led to the current accuracy of post-fit residuals of ~2 cm. Today LLR is a primary technique to study the dynamics of the Earth-Moon system and is especially important for gravitational physics, geodesy and studies of the lunar interior. LLR is used to perform high-accuracy tests of the equivalence principle, to search for a time-variation in the gravitational constant, and to test predictions of various alternative theories of gravity. On the geodesy front, LLR contributes to the determination of Earth orientation parameters, such as nutation, precession (including relativistic precession), polar motion, and UT1, i.e. especially to the long-term variation of these effects. LLR contributes to the realization of both the terrestrial and selenocentric reference frames. The realization of a dynamically defined inertial reference frame, in contrast to the kinematically realized frame of VLBI, offers new possibilities for mutual cross-checking and confirmation. Finally, LLR also investigates the processes related to the Moon's interior dynamics. Here, we review the LLR technique focusing on its impact on relativity and give an outlook to further applications, e.g. in geodesy. We present results of our dedicated studies to investigate the sensitivity of LLR data with respect to the relativistic quantities. We discuss the current observational situation and the level of LLR modeling implemented to date. We also address improvements needed to fully utilize the scientific potential of LLR.

Juergen Mueller; James G. Williams; Slava G. Turyshev

2005-09-28T23:59:59.000Z

414

test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

test test test test More Documents & Publications 2009 ECR FINAL REPORT 2010 Final ECR 2008 Report Environmental Conflict Resolution...

415

PREPARING FOR A SUCCESSFUL EVMS CERTIFICATION  

Science Conference Proceedings (OSTI)

The client, a government agency, requires its contractor to obtain an Earned Value Management System (EVMS) certification that meets the intent of ANSI/EIA-748-B, Earned Value Management Systems. The contractor has extensive experience with certification preparation, having completed two certifications within two years. Information from a previous EVMS certification and internal system surveillances are used to prepare for client-based EVMS certifications and bi-annual surveillances. The contractor also sent members of its group to assist other companies preparing for surveillances and certifications to perform 'Black Hat Reviews.' This paper is a lessons learned on preparing a team for EVMS certification. The information is also applicable for surveillances, since the contractor prepares its team for the surveillance in the same manner as the initial certification. Some of the areas covered include required documents, tracing the data through the systems, Control Account Manager (CAM) preparation, and system verification.

CROWE SL; BASCHE AD

2011-02-09T23:59:59.000Z

416

Transuranic drum hydrogen explosion tests  

DOE Green Energy (OSTI)

Radiolysis of transuranic (TRU) waste can produce flammable ({gt}4%) mixtures of hydrogen gas in 55 gallon vented waste storage drums. Explosion testing was conducted at the E. I. duPont Explosion Hazards Laboratory to determine the minimum concentration at which a drum lid removal occurs. A secondary objective was to investigate the maximum pressure and rate of pressure rise as a function of hydrogen concentration. Prior to beginning any drum explosion tests, small-scale pressure vessel tests and drum mixing tests were completed. The pressure vessel tests established a relationship between hydrogen concentration and the maximum pressure and pressure rise. These small-scale tests were used to establish the concentration range over which a drum lid removal might occur. Mixing tests were also conducted to determine the equilibration times for two different hydrogen-air mixtures in a TRU drum. Nine successful drum explosion tests were conducted over a hydrogen concentration range of 13--36% (v/v), test results suggest total integrity failure via drum lid removal will not occur below 15% (v/v). Controlled small-scale pressure vessel tests were conducted over a range of 5--50% (v/v) to determine the pressure and pressure rise as a function of hydrogen concentration. No similar relationship could be established for the drum explosion tests due to the variability in drum lid sealing and retaining ring closure. Mixing tests conducted at 5% and 25% (v/v) indicate adding pure hydrogen to the middle of a drum causes some initial stratification along the drum length, but the air and hydrogen become well-mixed after 50 minutes. 4 refs., 11 figs., 2 tabs.

Dykes, K.L.; Meyer, M.L.

1991-06-01T23:59:59.000Z

417

Properties of Saltstone Prepared Containing H-Canyon Waste  

Science Conference Proceedings (OSTI)

Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

Cozzi, A

2005-04-05T23:59:59.000Z

418

Microgrid Testing  

Science Conference Proceedings (OSTI)

With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

Shirazi, M.; Kroposki, B.

2012-01-01T23:59:59.000Z

419

Model Spectra of Rotation Powered Pulsars in the INTEGRAL Range  

E-Print Network (OSTI)

The energy range of IBIS is a promising ground for testing mutual relations of distinct components expected in the spectra of high-energy radiation from rotation powered pulsars. According to some polar-cap models two such components - due to curvature and synchrotron emission - may contribute comparable amounts of power between 15 keV and 10 MeV (Rudak & Dyks 1999). Zhang & Harding (2000) argued recently for the inclusion of a third possible component, due to inverse Compton scattering (ICS) of soft thermal photons on secondary $\\epm$-pairs. Here we present the results of Monte Carlo calculations of all three spectral components within a polar-cap model which allows for interactions of relativistic particles with the soft photons coming from the pulsar surface. For teragauss pulsars with the surface temperature of a few times 10^5 K the ICS component dominates the spectrum in the energy range below 10 MeV, and thus its presence increases the ratio of X-ray to gamma-ray luminosity (in comparison to the models ignoring the ICS on secondary $\\epm$-pairs) to a level observed in the Vela pulsar.

J. Dyks; B. Rudak; T. Bulik

2000-10-16T23:59:59.000Z

420

Operational experience during the LHC injection tests  

E-Print Network (OSTI)

Following the LHC injection tests of 2008. two injection tests took place in October and November 2009 as preparation for the LHC restart on November 20, 2009. During these injection tests beam was injected through the TI 2 transfer line into sector 23 of ring 1 and through TI 8 into the sectors 78, 67 and 56 of ring 2. The beam time was dedicated to injection steering, optics measurements and debugging of all the systems involved. Because many potential problems were sorted out in advance, these tests contributed to the rapid progress after the restart. This paper describes the experiences and issues encountered during these tests as well as related measurement results.

Fuchsberger, K; Arduini, G; Assmann, R; Bailey, R; Bruning, O; Goddard, B; Kain, V; Lamont, M; MacPherson, A; Meddahi, M; Papotti, G; Pojer, M; Ponce, L; Redaelli, S; Solfaroli Camillocci, M; Venturini Delsolaro, W; Wenninger, J

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Testing of pyrochemical centrifugal contactors  

Science Conference Proceedings (OSTI)

A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl- KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested.

Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

1996-08-01T23:59:59.000Z

422

Cavity state preparation using adiabatic transfer  

E-Print Network (OSTI)

We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage or STIRAP. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another, and also to prepare non-trivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an EPR state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrodinger cat states. The theoretical considerations are supported by numerical simulations.

Jonas Larson; Erika Andersson

2005-03-14T23:59:59.000Z

423

Fuels Preparation Department monthly report, October 1960  

SciTech Connect

This report describes the operation of the fuels preparation department for the month of October, 1960. Manufacturing, process development, employee relations, financial operations, and plant improvements are discussed.

1960-11-07T23:59:59.000Z

424

Recommendations for the Preparation of Environmental Assessments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Environmental Impact Statements Second Edition This second edition of the "Green Book" was issued by DOE to assist preparers and reviewers of NEPA documents, with the goal...

425

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

426

Catalysis on the Nanoscale: Preparation, Characterization and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis on the Nanoscale: Preparation, Characterization and Reactivity of Metal-Based Nanostructures The purpose of this program is to explore and manipulate the size, morphology...

427

ORISE: Preparing Nations to Fight Nuclear Smuggling  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepares Nations to Fight Nuclear Smuggling With the knowledge needed to incorporate radiological materials in an explosive device now widely available and unsecured stockpiles...

428

Preparation and Characterization of Microfibrous Entrapped Solid ...  

Science Conference Proceedings (OSTI)

Presentation Title, Preparation and Characterization of Microfibrous Entrapped Solid Adsorbents for Desulfurization of Liquid Fuels. Author(s), David L. Cocke,...

429

Submitted Work & Work in Preparation - CECM  

E-Print Network (OSTI)

May 23, 2001 ... Submitted Work & Work in Preparation. I. G. Lisle and G. J. Reid, Symmetry Classification Using Invariant Moving Frames, to be submitted.

430

Argonne CNM: Preparing for Your Visit  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparing for Your Visit to the Center for Nanoscale Materials Welcome to Argonne National Laboratory and the Center for Nanoscale Materials (CNM). This guide provides important...

431

Sample Preparation Laboratory Training - Course 204 | Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Preparation Laboratory Training - Course 204 Who Should Attend This course is mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS...

432

Sandia National Laboratories: Sandia National Laboratories: Tonopah Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonopah Test Range Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the Department of Energy/National Nuclear Security Administration's weapons programs. Principal DOE activities at TTR include stockpile reliability testing; arming, fusing, and firing systems testing; and the testing of nuclear weapon delivery systems. The range also offers a unique test environment for use by other U.S. government agencies and their contractors. Located about 160 miles northwest of Las Vegas, TTR is an immense area of flat terrain ideal for rockets and low-altitude, high-speed aircraft operations. Situated between two mountain ranges, TTR's remote location and restricted airspace ensure that tests can be conducted with a high degree

433

Preparations Finalized for the 2013 National Environmental Justice...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preparations Finalized for the 2013 National Environmental Justice Conference & Training Program Preparations Finalized for the 2013 National Environmental Justice Conference &...

434

COLD TEST LOOP INTEGRATED TEST LOOP RESULTS  

Science Conference Proceedings (OSTI)

A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement device, did not operate effectively. Consequently, it is not suitable for application to the AWR process. (4) Initially, the spray ring (operated at approximately 2300 psi) and the nozzles provided by the pump vendor did not perform acceptably. The nozzles were replaced with a more robust model, and the performance was then acceptable. (5) The average solids concentration achieved in the slurry before Bentogrout addition was approximately 16% by weight. The solids concentration of the slurry after Bentogrout addition ranged from 26% to approximately 40%. The slurry pump and ITL system performed well at every concentration. No line plugging or other problems were noted. The results of the CTL runs and later ITL testing are summarized in an appendix to this report.

Abraham, TJ

2003-10-22T23:59:59.000Z

435

High strength graphite and method for preparing same  

DOE Patents (OSTI)

High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.

Overholser, Lyle G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Napier, John M. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

436

Process for preparing fine grain titanium carbide powder  

DOE Patents (OSTI)

A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

Janney, M.A.

1985-03-12T23:59:59.000Z

437

EIS-0402: Notice of Intent to Prepare an Environmental Impact Statement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Notice of Intent to Prepare an Environmental Impact 2: Notice of Intent to Prepare an Environmental Impact Statement EIS-0402: Notice of Intent to Prepare an Environmental Impact Statement Remediation of Area IV of the Santa Susana Field Laboratory The Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) and conduct public scoping meetings under the National Environmental Policy Act (NEPA) for remediation of Area IV of the Santa Susana Field Laboratory (SSFL Area IV). The SSFL, approximately 2,852 acres in the hills between Chatsworth and Simi Valley, CA, was developed as a remote site to test rocket engines and conduct nuclear research. Notice of Intent To Prepare an Environmental Impact Statement for Remediation of Area IV of the Santa Susana Field Laboratory and Conduct

438

Hopper (Phase 1) Prepares NERSC for Petascale Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hopper (Phase 1) Hopper (Phase 1) Prepares NERSC for Petascale Computing Hopper (Phase 1) Prepares NERSC for Petascale Computing February 26, 2010 After several months of rigorous scientific testing, the Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC) has accepted a 5,312-core Cray XT5 machine, called Hopper (Phase 1). Innovatively built with external login nodes and an external filesystem, Hopper Phase 1 will help NERSC staff optimize the external node architecture before the second phase of the Hopper system arrives. Phase 2 will be a petascale system comprised of 150,000 processor cores and built on next generation Cray technology. "Working out the kinks in Phase 1 will ensure a more risk-free deployment when Phase 2 arrives," says Jonathan Carter, who heads NERSC's User

439

Business Owners: Prepare a Business Recovery Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Business Recovery Plan a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business functions-What resources and personnel will you need to restore or reproduce these functions during a recovery? Assign disaster response duties to your employees. Identify critical suppliers-Identify suppliers, providers, shippers, resources, and other businesses you typically interact with and

440

EIS-0310: Notice of Intent to Prepare a Programmatic Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10: Notice of Intent to Prepare a Programmatic Environmental 10: Notice of Intent to Prepare a Programmatic Environmental Impact Statement EIS-0310: Notice of Intent to Prepare a Programmatic Environmental Impact Statement Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility The Secretary of Energy recently announced DOE's intent to prepare a programmatic environmental impact statement (PEIS) on accomplishing these new missions through the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at DOE's Hanford Site near Richland, Washington. This PEIS will analyze the potential environmental impacts of alternative ways to meet the projected irradiation needs for the next 35 years.

Note: This page contains sample records for the topic "range tests prepared" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIS-0310: Notice of Intent to Prepare a Programmatic Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10: Notice of Intent to Prepare a Programmatic Environmental 10: Notice of Intent to Prepare a Programmatic Environmental Impact Statement EIS-0310: Notice of Intent to Prepare a Programmatic Environmental Impact Statement Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility The Secretary of Energy recently announced DOE's intent to prepare a programmatic environmental impact statement (PEIS) on accomplishing these new missions through the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at DOE's Hanford Site near Richland, Washington. This PEIS will analyze the potential environmental impacts of alternative ways to meet the projected irradiation needs for the next 35 years.

442

Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations  

Science Conference Proceedings (OSTI)

Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

2013-01-01T23:59:59.000Z

443

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique...

444

Analysis of Long-range Clean Energy Investment Scenarios for...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Long-range Clean Energy Investment Scenarios for Eritrea, East Africa Title Analysis of Long-range Clean Energy Investment Scenarios for Eritrea, East Africa Publication Type...

445

Are You Prepared for the Job Search?  

E-Print Network (OSTI)

Are You Prepared for the Job Search? This checklist will help you to identify where you are in preparing for your job search. Your answers to the following questions may yield some important clues closely before proceeding with your job search. Job Readiness What you know about resumes, employment

Kulp, Mark

446

Tritioacetylating reagents and processes for preparation thereof  

DOE Patents (OSTI)

Novel acetylating and tritioacetylating reagents suitable for preparation of nonlabelled and radiolabelled organic compounds. N-acetoxynaphthalimide, N-tritioacetoxyphthalimide, N-tritioacetoxysuccinimide, N-tritioacetoxynaphthalimide and processes of their preparation. The invention also concerns synthesis of nonlabelled acetylated and tritioacetylated organic compounds from precursors containing a free --NH.sub.2, --SH or --OH group.

Saljoughian, Manoucher (Moraga, CA); Morimoto, Hiromi (El Cerrito, CA); Williams, Philip G. (Oakland, CA); Than, Chit (Lafayette, CA)

2000-01-01T23:59:59.000Z

447

Electronic test circuitry  

DOE Patents (OSTI)

Circuitry for testing the ability of an intermediate range