National Library of Energy BETA

Sample records for range imperial valley

  1. Imperial Valley Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71CommercialThisImperial Valley Geothermal project

  2. Imperial Valley Renewable Energy Summit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71CommercialThisImperial Valley Geothermal

  3. Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake

    E-Print Network [OSTI]

    Archuleta, Ralph

    ]. The second is the seismic energy that relates to the dynamics of the rupture process. However, seismic energy]. This limits our general knowledge on the mechanical process of the rupture: no reliable catalog of seismicDirect seismic energy modeling and application to the 1979 Imperial Valley earthquake Pascal

  4. Imperial Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergyFacility | OpenValley,

  5. Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology

    SciTech Connect (OSTI)

    Morris, W.; Hill, J.

    1980-07-01

    Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

  6. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  7. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01

    complex in late Miocene (?) – early Pliocene time. The principal growth structure for the basin was the Emigrant detachment, which initiated and moved at a low angle. Modern Panamint Valley, west of the range, developed as a consequence of Late Pliocene...

  8. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  9. www.imperial.ac.uk/business-school Imperial MBA final project

    E-Print Network [OSTI]

    www.imperial.ac.uk/business-school Imperial MBA ­ final project #12;Imperial College Business economic development strategy in the mining industry: A Case Study of Lebowa Platinum Mine in South Africa-HOUSE PERSPECTIVES." MARTIN TREWHELLA PRINCIPAL, GLOBAL ENERGY PRACTICE, ARTHUR D. LITTLE #12;Commitment Projects

  10. Imperial Reservoir KOFA NATIONAL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    National Park El Centro Naval Auxiliary Air Station Yuma Proving Ground Yuma Marine Corps Air Station Twentynine Palms Marine Corps Base Fort Irwin Chocolate Mountain Naval Aerial Gunnery Range Barstow Marine 247 79 79 7 115 62 72 78 79 86 115 163 18 72 74 78 115 18 62 95 371 95 94 247 Solar Energy Study Areas

  11. Racism and Cultural Imperialism in Conrad's Heart of Darkness

    E-Print Network [OSTI]

    Deena, Seodial

    1997-01-01

    to demonstrate how subtle racism and cultural imperialismConrad of explicit racism. "‘ Very little criticalRACISM AND CULTURAL IMPERIALISM IN CONRAD’S HEART OF

  12. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    (Company Institution) Ram Power, Inc. Awardee Website http:www.rampower.co.ukindex.php Funding Opportunity Announcement DE-FOA-0000109 DOE Funding Level (total award...

  13. Imperial Valley Resource Recovery Plant Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergyFacility | Open

  14. Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: EnergyDarkEnergy Information ChenaOpen

  15. New River Geothermal Research Project, Imperial Valley, California

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio:Archaeological PermitsMilford,

  16. Resistivity studies of the Imperial Valley geothermal area, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidentialAlumDOEOpen

  17. Crustal Structure and tectonics of the Imperial Valley Region California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDPCross-LaminatedCruisingOpen Energy

  18. Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum

  19. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER Exemption (SPPE). The Energy Commission Committee assigned to the Niland Gas Turbine Plant Project

  20. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  1. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

  2. World Literature and Economic Hegemony: Free-Trade Imperialism and 'Whole Populations Conjured Out of the Ground' in The Communist Manifesto

    E-Print Network [OSTI]

    Andre, Chris

    1996-01-01

    and Economic Hegemony: Free-Trade Imperialism and 'Wholeand Economic Hegemony: Free-Trade Imperialism and 'Wholedevelopment of British free-trade imperialism, while Marx

  3. Last Stand For Empire: Leo Amery and Imperial Preference 

    E-Print Network [OSTI]

    Freeman, William David

    1998-01-01

    The life and career of Leo Amery are examined with respect to the subject of Imperial Preference. The paper explores Amery's intellectual development and the motivations behind his life-long championing of greater economic unity for the British...

  4. Riding Waves of Dissent: Counter-Imperial Impulses in the Age of Fuller and Melville 

    E-Print Network [OSTI]

    Lawrence, Nicholas M.

    2010-10-12

    imperialism. The chapter concludes by arguing that Cooper established an initial narrative formulation that sought to suppress counter-imperial impulses within a mainline triumphalist vision. Chapter II examines Fuller's first published book, Summer...

  5. Topics in non-equilibrium statistical mechanics Greg Pavliotis (Imperial College London)

    E-Print Network [OSTI]

    Pavliotis, Grigorios

    Topics in non-equilibrium statistical mechanics Greg Pavliotis (Imperial College London) Dates: MON and calculation of transport coefficients #12;

  6. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    fault zone-like structure extending from the baseof Dixie Valley to a broad, deep crustal conductor beneaththe Stillwater-Humboldt Range area. The deep conductor...

  7. www.imperial.ac.uk/rajivgandhicentre Imperial College London and the Rajiv Gandhi Centre would like to thank founding Patrons: BP Foundation, The Kusuma Trust

    E-Print Network [OSTI]

    www.imperial.ac.uk/rajivgandhicentre Imperial College London and the Rajiv Gandhi Centre would like of focus are: · Energy · Health & Healthcare · Digital Economy · Urban Development (Transportation, Water Strategy · Entrepreneurship and Global Growth What We Offer The Rajiv Gandhi Centre is well

  8. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

  9. Steam Men, Edisons, Connecticut Yankees: Technocracy and Imperial Identity in Nineteenth-Century American Fiction

    E-Print Network [OSTI]

    Williams, Nathaniel Langdon

    2010-12-31

    the mobility needed to reach new territories and the military advantage needed to control populations. Moreover, it contributes to an imperial mindset by 6 fostering in technology users a sense of superiority that justifies and legitimates the imperial... that complicates and sometimes confounds their function as allegories of nation- or empire-building. While they may have fostered an imperial view in an indirect way, their narrative particulars feature elements that resist or complicate outright nationalism...

  10. Imperialism and the Emerging White State in the Early Colony of Virginia 

    E-Print Network [OSTI]

    Becker, Stuart David

    2014-05-08

    What accounts for the reality of U.S. imperialism and race today? How, and to what extent, is today’s system of racial domination and U.S. imperialism prefigured by the early English colonization of Virginia during the ...

  11. Imperial Beach, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergy InformationImperial

  12. Imperial-Enlow, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergyFacility |Imperial-Enlow,

  13. Geothermal Development in Imperial County | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent Changes All SpecialGeothermal Developmentin Imperial

  14. PP-90-1 Imperial Irrigation District | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes have a moreINCREASES5-24690-1 Imperial Irrigation

  15. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  16. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  17. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  18. Imperial Nationalism: Nationalism and the Empire in late nineteenth century Scotland and British Canada 

    E-Print Network [OSTI]

    Colclough, Kevin

    2007-01-01

    The relationship between imperialism and nationalism has often been portrayed by theorists of nationalism and post colonial discourse theorists as antagonistic. Anti-democratic, aggressive empires impose their will on ...

  19. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  20. NV PFA - Steptoe Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  1. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference...

  2. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    SciTech Connect (OSTI)

    Reheis, M.C.; Noller, J.S.

    1991-09-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs.

  3. The Performance of Power and the Administration of Justice: Capital Punishment and the Case Review System in Late Imperial China

    E-Print Network [OSTI]

    Poling, Kathleen Margaret

    2012-01-01

    and Imperial Administration. Durham: Duke University Press,of Power and the Administration of Justice: Capitalof Power and the Administration of Justice: Capital

  4. The Impact of Empire on the North American Woman Suffrage Movement: Suffrage Racism in an Imperial Context

    E-Print Network [OSTI]

    Sneider, Allison L.

    1994-01-01

    of the National Suffrage Racism in an Imperial ContextSuffrage Movement: Suffrage Racism The Impact of Empire onbe- ginnings, to the racism which characterizes the later

  5. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  6. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  7. The Range of Traded Option Prices Mark H.A. Davis

    E-Print Network [OSTI]

    The Range of Traded Option Prices Mark H.A. Davis Imperial College London and David G. Hobson Suppose we are given a set of prices of European call options over a finite range of strike prices conditions for the prices to be consistent with an arbitrage- free model (in which case the model can

  8. Session: Long Valley Exploratory Well

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  9. Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  10. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  11. Evolution of sediment accommodation space in steady state bedrock-incising valleys subject to episodic aggradation

    E-Print Network [OSTI]

    % of mountain valley networks are dominated by debris flow scour and identified a transition to fluvial process length of valley bottom (Bear Creek; Table 1) in the Oregon Coast Range (OCR). And, as debris flow of sediment in mountain drainage basins. [3] In the Oregon Coast Range's Tyee Formation, the example addressed

  12. P. J. Antsaklis, "Notes on Polynomial Matrix Representation of Linear Control Systems," Publication No. 80/17, Dept. of Electrical Engineering, Imperial College, June 1980.

    E-Print Network [OSTI]

    Antsaklis, Panos

    No. 80/17, Dept. of Electrical Engineering, Imperial College, June 1980. #12;P. J. Antsaklis, "Notes of Linear Control Systems," Publication No. 80/17, Dept. of Electrical Engineering, Imperial College, June," Publication No. 80/17, Dept. of Electrical Engineering, Imperial College, June 1980. #12;P. J. Antsaklis

  13. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    b r e a k through Ground Subsidence V Inaiiced S e i s m i cBreakthroughs Ground Subsidence Interpolation of Results toPrepare estimates of surface subsidence for the cases chosen

  14. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

  15. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    1977. Utilization of seismic exploration technology for highwith seismic reflection data is important to exploration and

  16. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    to assess their geothermal desalination program. The studyin the geothermal fluids for desalination and systemdesalination project includes mining the better-quality geothermal

  17. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    seismic reflection times to subsea depths. X B L 786-1859INTERVAL 500 FEET COWTOUR WITH SUBSEA DEPTH FAULT WITH SENSEZONE e- CONTOUR WITH SUBSEA DEPTH PRODUCING QEOTHERMAL, WELL

  18. Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field

    E-Print Network [OSTI]

    Foxall, B.; Vasco, D.W.

    2008-01-01

    Nevada geothermal system”, Geothermal Resources CouncilStructure of the Dixie Valley geothermal system, a “typical”basin and range geothermal system, from thermal and gravity

  19. Strategy & Planning Division Imperial College Statistics Pocket Guide 2000-01

    E-Print Network [OSTI]

    Strategy & Planning Division Imperial College Statistics Pocket Guide 2000-01 1 Index Page Full-Time Student Numbers 2 Part-Time Student Numbers 3 Full-Time Equivalent Students by Department: 2000-01 4 FTE Staff Numbers and Student:Staff Rations: 2000-01 5 Applications and Admissions: Undergraduate 6

  20. Issue 273 5 june 2014 Sharing stories of Imperial's community robot revolution

    E-Print Network [OSTI]

    it contributing to global warming. On the other, natural gas can provide global energy security at a time when are at a crossroads when it comes to fossil fuels including natural gas. On the one hand there are concerns about ' s co r n e re d i to r ' s co r n e r Sustainable Gas Institute launches at Imperial a centre

  1. The Genetic Impact of Aztec Imperialism: Ancient Mitochondrial DNA Evidence From Xaltocan, Mexico

    E-Print Network [OSTI]

    Kemp, Brian M.

    The Genetic Impact of Aztec Imperialism: Ancient Mitochondrial DNA Evidence From Xaltocan, Mexico that the Aztecs annexed numerous polities in the Basin of Mexico over the following years, the demographic of the Toltec state in the 12th century prompted the emergence of numerous city-states in the Basin of Mexico

  2. Strategy & Planning Division Imperial College Statistics Pocket Guide 2001-02

    E-Print Network [OSTI]

    Strategy & Planning Division Imperial College Statistics Pocket Guide 2001-02 1 Index Page Full-Time Student Numbers 2 Part-Time Student Numbers 3 Full-Time Equivalent Students by Department: 2001-02 4 FTE Staff Numbers and Student:Staff Rations: 2001-02 5 Applications and Admissions: Undergraduate 6

  3. Strategy & Planning Division Imperial College Statistics Pocket Guide 1999-00

    E-Print Network [OSTI]

    Strategy & Planning Division Imperial College Statistics Pocket Guide 1999-00 1 Index Page Full-Time Student Numbers 2 Part-Time Student Numbers 3 Full-Time Equivalent Students by Department: 1999-00 3 FTE Staff Numbers and Student:Staff Rations: 1999-00 4 Applications and Admissions: Undergraduate 5

  4. Alternative muon frontend for the International Design Study (IDS) A. Alekou, Imperial College, London, UK

    E-Print Network [OSTI]

    McDonald, Kirk

    Alternative muon front­end for the International Design Study (IDS) A. Alekou, Imperial College discuss alternative designs of the muon capture front end of the Neutrino Factory International Design measurements of neutrino oscillation parame­ ters. The present paper discusses alternative muon capture

  5. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  6. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. Spring Valley Public Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting Program Info Sector Name Utility Administrator Spring Valley Public Utilities Website http:www.SaveEnergyInSpringValley.com State Minnesota Program Type Rebate...

  8. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  9. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  10. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  11. Imperial College London Department of Civil and Environmental Engineering

    E-Print Network [OSTI]

    select "Job Search" then enter the job title or vacancy reference number, EN20110024 BD into "Keywords-Continuous Frames Salary in the range: £30,680 to £39,130 per annum Fixed term appointment for two years All

  12. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  13. J.B. PENDRY -CURRICULUM VITAE Address:Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK

    E-Print Network [OSTI]

    Pendry, John

    , Prince Consort Road, London SW7 2AZ, UK telephone: 020-7594-7606 email: j.pendry@imperial.ac.uk Date

  14. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  15. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

  16. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    none,

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U/sub 3/O/sub 8/ by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive.

  17. P. J. Antsaklis, "Polynomial Matrix Characterization Using Characteristic Values and Vectors," Publication No. 80/18, Dept. of Electrical Engineering, Imperial College, July 1980.

    E-Print Network [OSTI]

    Antsaklis, Panos

    ," Publication No. 80/18, Dept. of Electrical Engineering, Imperial College, July 1980. #12;P. J. Antsaklis. of Electrical Engineering, Imperial College, July 1980. #12;P. J. Antsaklis, "Polynomial Matrix Characterization Using Characteristic Values and Vectors," Publication No. 80/18, Dept. of Electrical Engineering

  18. Ec101 Selected Topics in Economics: The Economy and the State in Late Imperial China, T, Th 1--2.30

    E-Print Network [OSTI]

    Low, Steven H.

    key characteristics similar to the market economy in pre- Industrial Revolution Western Europe. Why observing parallels between pre-Industrial Revolution Western Europe and late imperial China, we will also, then, didn't an industrial breakthrough occur in late imperial China? This course focuses

  19. Mineral resources of the North Algodones Dunes Wilderness Study Area (CDCA-360), Imperial County, California

    SciTech Connect (OSTI)

    Smith, R.S.U.; Yeend, W.; Dohrenwend, J.C.; Gese, D.D.

    1984-01-01

    This report presents the results of a mineral survey of the North Algodones Dunes Wilderness Study Area (CDCA-360), California Desert Conservation Area, Imperial County, California. The potential for undiscovered base and precious metals, and sand and gravel within the North Algodones Dunes Wilderness Study Area is low. The study area has a moderate potential for geothermal energy. One small sand-free area between the Coachella Canal and the west edge of the dune field would probably be the only feasible exploration site for geothermal energy. The study area has a moderate to high potential for the occurrence of undiscovered gas/condensate within the underlying rocks. 21 refs.

  20. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  1. Explosion at Hapton Valley Colliery, Lancashire 

    E-Print Network [OSTI]

    Stephenson, H. S.

    MINISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 By H. S. ...

  2. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  3. Microearthquakes in and near Long Valley, California

    E-Print Network [OSTI]

    Steeples, Don W.; Pitt, A. M.

    1976-02-10

    Sixteen portable seismograph stations were deployed in the vicinity of the Long Valley geothermal area, California, from April 27 to June 2, 1973. Only minor microearthquake activity was detected in the Long Valley caldera, but a high level...

  4. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan­ dersteg valley and 1100 feet above, there is another, smaller, secret valley---the Gasterntal. Flat green fields

  5. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan- dersteg valley and 1100 feet above, there is another, smaller, secret valley--the Gasterntal. Flat green fields

  6. MANAGEMENT OF AGRICULTURAL WASTES LOWER FRASER VALLEY

    E-Print Network [OSTI]

    #12;MANAGEMENT OF AGRICULTURAL WASTES IN THE LOWER FRASER VALLEY SUMMARY REPORT - A WORKING DOCUMENT Presented on Behalf of: The Management of Agricultural Wastes in the Lower Fraser Valley Program of the Agricultural Nutrient Management in the Lower Fraser Valley program. The ideas and opinions expressed herein do

  7. PACIFIC SOUTHWEST Forest and Range

    E-Print Network [OSTI]

    -Wheeler Company, Strawberry Valley, California. 1 I ncreasing criticism is being directed at logging operations

  8. History of Education Society Education and Society in Late Imperial China, 1600-1900 by Benjamin A. Elman; Alexander

    E-Print Network [OSTI]

    Elman, Benjamin

    History of Education Society Education and Society in Late Imperial China, 1600-1900 by Benjamin A. Elman; Alexander Woodside Review by: Joanna F. Handlin Smith History of Education Quarterly, Vol. 36, No. 1 (Spring, 1996), pp. 95-98 Published by: History of Education Society Stable URL: http

  9. Closed-form solutions to surface Green's functions Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom

    E-Print Network [OSTI]

    Umerski, Andrey

    for surface Green's functions within arbitrary multiorbital models. The formulation is completely generalClosed-form solutions to surface Green's functions A. Umerski Department of Mathematics, Imperial-Kohn-Rostoker and other Green's-function equivalent formalisms, where the Hamiltonian can be put into a localized i

  10. Earthquake Damage Detection in the Imperial County Services Building III: Analysis of Wave Travel Times via Impulse Response Functions

    E-Print Network [OSTI]

    Southern California, University of

    1 Earthquake Damage Detection in the Imperial County Services Building III: Analysis of Wave Travel characteristics of the structure, and are not sensitive to local damage. Wave travel times between selected changes in such characteristics of response are potentially more sensitive to local damage. In this paper

  11. Handbook of texture analysis Mirmehdi M., Xie X., Suri J., IMPERIAL COLLEGE PRESS, London, UK, 2009. 413 pp.

    E-Print Network [OSTI]

    Theune, Mariët

    Handbook of texture analysis Mirmehdi M., Xie X., Suri J., IMPERIAL COLLEGE PRESS, London, UK, 2009. 413 pp. Type: Book Date Reviewed: 06/01/10 Texture is still not fully understood. Handbooks on both in the world of science? What is the value of this handbook? The abstract of the first chapter, "Introduction

  12. The Hunter Valley Access Undertaking

    E-Print Network [OSTI]

    Bordignon, Stephen; Littlechild, Stephen

    2012-04-25

      13  FERC  staff  play  a  similar  role  with  respect  to  rate  applications  by  interstate  pipeline  and  transmission networks in the US. (Littlechild 2011)  EPRG No.1206...  coal from mines in the Hunter Valley region to  the Port of Newcastle  for export. Approximately 16  coal producers have either  existing or planned operations in the region, and it has been estimated that the  coal  shipped  on  the  network  equates  to  around  $9  billion  worth  of  export...

  13. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  14. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  15. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...

  16. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish...

  17. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  18. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  19. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  20. Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

    Office of Environmental Management (EM)

    Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

  1. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Prev Next Title: Single-valley engineering in graphene...

  2. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  3. A Study of Visitor Bicycle Use in Yosemite Valley

    E-Print Network [OSTI]

    Co, Sean; Kurani, Ken; Turrentine, Tom

    2000-01-01

    Merced to better understand bicycle use in Yosemite Valley.A Study of Visitor Bicycle Use in Yosemite Valley UCD-ITS-V Bicycle rental

  4. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  5. The Hidden Valley-Langdraney

    E-Print Network [OSTI]

    Lhundup

    2001-01-01

    , is now in Ngayabling (the land of the Yak's Tail). May the fortunate living beings of this world be guided to the palace of Zangdog Pelri (the peak of Copper Mountain) by you Lord Ugyen. Journal of Bhutan Studies 66 Living in this era... ) who is surrounded by Manaka the daughters of Amitabhs. They entertain and preach while on auspicious days the celestial beings (Amitabhs) from heaven and serpents (klu) bathe in the pond formed at the inner most part of the valley. On the slope...

  6. Spring Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop JumpValley Jump to:

  7. Magic Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York:MagicValley Jump

  8. Sexual racism and the limits of justice : a case study of intimacy and violence in the Imperial Valley, 1910-1925

    E-Print Network [OSTI]

    Ruiz, Stevie R.

    2010-01-01

    1912. “Hindu Trial for Murder,” Holtville Tribune, November1992. ———. "The Pahkar Singh Murders: A Punjabi Response toChinatown Trunk Mystery: Murder, Miscegenation, and Other

  9. Sexual racism and the limits of justice : a case study of intimacy and violence in the Imperial Valley, 1910-1925

    E-Print Network [OSTI]

    Ruiz, Stevie R.

    2010-01-01

    OF CALIFORNIA, SAN DIEGO Sexual Racism and the Limits ofOF THE THESIS Sexual Racism and the Limits of Justice: Aspace of the courtroom, racism was sexed and sexuality was

  10. Safety assessment of outdoor live fire range

    SciTech Connect (OSTI)

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  11. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  12. HISTORICAL VEGETATION AND DRAINAGE PATTERNS OF WESTERN SANTA CLARA VALLEY

    E-Print Network [OSTI]

    describing landscape ecology in Lower Peninsula, West Valley, and Guadalupe Watershed Management Areas San

  13. EVIDENCE OF ELEVATED OZONE CONCENTRATIONS ON FORESTED SLOPES OF THE LOWER FRASER VALLEY, BRITISH

    E-Print Network [OSTI]

    McKendry, Ian

    EVIDENCE OF ELEVATED OZONE CONCENTRATIONS ON FORESTED SLOPES OF THE LOWER FRASER VALLEY, BRITISH, hourly average ozone concentrations were mea- sured at three sites of differing elevation (188, 588. Sites experienced ozone concentrations ranging from 0 to 88 ppb in 2001, and 0 to 96 ppb in 2002. Daily

  14. Bear Valley Electric Service- Solar Initiative Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  15. VALMET-A valley air pollution model

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  16. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  17. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  18. The Way Ahead - West Valley Demonstration Project

    Office of Environmental Management (EM)

    Project Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 198171 The Way...

  19. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    E-Print Network [OSTI]

    Miller, N.L.

    2009-01-01

    Eastside San Joaquin Tulare Central Valley Base Period (m/y)Eastside Delta San Joaquin Tulare Central Valley BaseSacramento Eastside San Joaquin Tulare Central Valley Severe

  20. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    California’s northern Sacramento Valley* DBH class, inches†woodlands in the northern Sacramento Valley. In: Proc Sympfirewood harvest in northern Sacramento Valley by Richard B.

  1. Local diffusion networks act as pathways?to sustainable agriculture in the Sacramento River Valley

    E-Print Network [OSTI]

    Lubell, Mark; Fulton, Allan

    2007-01-01

    agriculture in the Sacramento River Valley by Mark Lubellquality management in the Sacramento River Valley. Data fromencourage growers in the Sacramento River Valley to

  2. Potential economic impacts of irrigation-water reductions estimated for Sacramento Valley

    E-Print Network [OSTI]

    Lee, Hyunok; Sumner, Daniel A.; Howtt, Richard

    2001-01-01

    Water Cuts in the Sacramento Valley. UC Agricultural Issuesare also the poorest in the Sacramento Valley. All of thereductions estimated for Sacramento Valley Hyunok Lee u

  3. Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene

    SciTech Connect (OSTI)

    Shakouri, Kh.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Vasilopoulos, P.; Vargiamidis, V. [Department of Physics, Concordia University, 7141 Sherbrooke Ouest Montréal, Québec H4B 1R6 (Canada); Hai, G.-Q. [Instituto de Fisica de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970 (Brazil)

    2014-05-26

    We study the commensurability oscillations in silicene subject to a perpendicular electric field E{sub z}, a weak magnetic field B, and a weak periodic potential V=V{sub 0}cos(Cy),C=2?/a{sub 0} with a{sub 0} its period. The field E{sub z} and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E{sub z} is replaced by a periodic one E{sub z}=E{sub 0}cos(Dy),D=2?/b{sub 0}, while the valley one is maximal for b{sub 0}?=?a{sub 0}. In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions.

  4. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    Z. 2015. Progress report: subsidence in the Central Valley,Ingebritsen SE. 1999. Land subsidence in the United States.Ireland RL. 1986. Land subsidence in the San Joaquin Valley,

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  6. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  7. Imperial College London EEE 1L1 Autumn 2009 E2.2 Analogue Electronics E2.2 Analogue Electronics

    E-Print Network [OSTI]

    Papavassiliou, Christos

    Imperial College London ­ EEE 1L1 Autumn 2009 E2.2 Analogue Electronics E2.2 Analogue Electronics Autumn 2009 E2.2 Analogue Electronics What analogue electronics is · Engineering, i.e. the analysis ­ EEE 3L1 Autumn 2009 E2.2 Analogue Electronics analogue electronics is not only · CMOS integrated

  8. Eng(3-year) and MEng(4-year) in BIOENGINEERING There are two undergraduate degrees in Bioengineering at Imperial College: a 3-

    E-Print Network [OSTI]

    the final year for every BEng and MEng student. · MEng students also have a third year group project focusedEng(3-year) and MEng(4-year) in BIOENGINEERING There are two undergraduate degrees in Bioengineering at Imperial College: a 3- year BEng and a 4-year MEng. Both courses provide a broad foundation

  9. The Evolution and Life Cycle of Valley Cold Pools

    E-Print Network [OSTI]

    Wilson, Travis Harold

    2015-01-01

    drainage flows undercut the preexisting valley air and liftof drainage flows is their ability to undercut and lift

  10. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  11. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  12. Project Reports for Elk Valley Rancheria- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  13. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  14. RANGE-ENERGY TABLES

    E-Print Network [OSTI]

    Rich, Marvin

    2010-01-01

    Particles. II. PROTON RANGE-ENERGY DATA Stopping Medium: Be2301 III. PION RANGE-ENERGY DATA Mev. Pion Kinetic Energy2301 IV. DEUTERON RANGE-ENERGY DATA Deuteron Kinetic Energy

  15. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexfordSouthValley Geothermal Project Jump

  16. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  17. Community Leadership: Best Practices for Brazos Valley 

    E-Print Network [OSTI]

    Reed, Johnathan; Harlow, Evan; Dorshaw, Carlie; Brower, David

    2008-01-01

    . #0;? Foster the creation networks between community and university entities 5. Nonprofit Resource Center #0;? Participate in efforts to organize and develop a nonprofit resource center The implementation of these action steps can help strengthen... by the Brazos Community Foundation and the Brazos Valley at large. These roles received wide support, were feasible - based on available resources, and aligned with the mission and purpose of BCF. Students developed a series of action steps to provide...

  18. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformationOpenTees Valley Biofuels Jump

  19. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia:Riva, Maryland: Energy ResourcesValley

  20. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    SciTech Connect (OSTI)

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

  1. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  2. Citrus Production in the Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01

    . TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS.... . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up to July, 1929...

  3. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    were designed to assess the Long Valley hydrothermal system and to identify possible deep geothermal drilling targets beneath the western portion of the caldera. Notes The...

  4. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    Kennedy-Bowdoin, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area...

  6. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    Ground Gravity Survey At Dixie Valley Geothermal Area (Allis, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  7. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These...

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  9. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search...

  10. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  11. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  12. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  13. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  14. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  15. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  16. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  17. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  18. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid...

  19. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  20. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Conceptual Model Activity Date 2003 - 2003...

  1. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  2. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  3. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1998 - 2002...

  4. The Mechanics of Unrest at Long Valley Caldera, California. 2...

    Open Energy Info (EERE)

    gravity change determinations are used to estimate the intrusion geometry, assuming a vertical prolate ellipsoidal source. The U.S. Geological Survey occupied the Long Valley...

  5. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

  6. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature...

  7. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  8. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  9. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  10. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  11. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  12. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic...

  13. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated...

  14. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  15. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  16. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  17. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

  18. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  19. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

  20. Update On Geothermal Exploration At Fort Bidwell, Surprise Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Abstract A...

  1. Multiple Ruptures For Long Valley Microearthquakes- A Link To...

    Open Energy Info (EERE)

    Tremor(Question) Abstract Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not...

  2. Clean Cities: Clean Cities Coachella Valley Region coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    achievements, and from DOE for outstanding public outreach. Through his leadership, hydrogen fueling infrastructure and vehicles were also implemented in the Coachella Valley. In...

  3. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings...

  4. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

  5. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At...

  6. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  8. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  9. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  11. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration...

  12. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  13. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  14. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  15. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    System. Geothermics. () . Related Geothermal Exploration Activities Activities (4) Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Isotopic...

  16. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    Mariner & Willey, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,...

  18. Voluntary Protection Program Onsite Review, West Valley Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    June 2008 Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review...

  19. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  20. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Additional References Retrieved from...

  1. DOE Awards Contract for the West Valley Demonstration Project...

    Energy Savers [EERE]

    to the U.S. Department of Energy (DOE) West Valley Demonstration Project (WVDP), and the New York State Energy Research and Development Authority (NYSERDA) in performing a...

  2. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  3. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  4. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    W. Younker, C. Dan Miller, Grant H. Heiken, Kenneth H. Wohletz (1988) Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California...

  6. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    Open Energy Info (EERE)

    Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  7. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  8. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  9. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    Chemical Logging At Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density...

  12. Farmscape ecology of a native stink bug in the Sacramento Valley

    E-Print Network [OSTI]

    2002-01-01

    to rural roadsides in the Sacramento Valley of Cali­ fornia:tomato, a major crop in the Sacramento Valley. This is notLPJM Prop-am. In the Sacramento Valley, there are several

  13. Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley

    E-Print Network [OSTI]

    Owens, Peter Marshall

    2005-01-01

    in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

  14. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force Presentation...

  15. When Emergency Rooms Close: Ambulance Diversion in the West San Fernando Valley

    E-Print Network [OSTI]

    Natasha Mihal; Renee Moilanen

    2005-01-01

    of diversion on the West Valley, identifies major problemsa working group of the five West Valley hospitals to exposehigh diversion rates in the West Valley and proposed ways to

  16. Seismotectonics of the Coso Range-Indian Wells Valley region, California:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectional Modelof the Coso

  17. Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii |Methods Jump to:NevadaOpen

  18. Dixie Valley - Geothermal Development in the Basin and Range | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWindSite

  19. Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain View CA, USA

    E-Print Network [OSTI]

    Fiat, Amos

    Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain University, Ithaca NY, USA Aleksandrs Slivkins, Microsoft Research Silicon Valley, Mountain View CA, USA We

  20. Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster

    E-Print Network [OSTI]

    Steinfield, Charles

    Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster Valley biotech region located in Denmark and Southern Sweden. Responding companies included established

  1. VWA-0033- In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc.

    Broader source: Energy.gov [DOE]

    This decision considers a Complaint filed by John L. Gretencord (Gretencord) against West Valley Nuclear Services, Inc. (West Valley) under the Department of Energy's (DOE) Contractor Employee...

  2. Unalakleet Valley Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltraUnalakleet Valley Elec Coop

  3. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources JumpSouth,GrapeGrass Valley

  4. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin GeothermalValley Ethanol

  5. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudorOpenApplicationDixie Valley

  6. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio:St. Paul,Valley

  7. Chippewa Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa Valley Electric Coop Place:

  8. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableIncAlcornNRELAlineasolarValley

  9. Penoyer Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltosPenoyer Valley Electric Coop Jump

  10. Powell Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexusJumpPowder RiverValley

  11. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority (Kentucky)

  12. Tennessee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley AuthorityTennessee

  13. Valley Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API VersionVadiumNevada) JumpValley

  14. Valley View Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:Valley Rural Electric

  15. Antelope Valley Neset | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo, Nebraska:AnsonNebraska:Valley

  16. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen Energy Information Geothermal AreaAire Valley

  17. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchem IncLighthouse Solar Address:Valley

  18. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList ofBalanceLittle Valley Geothermal

  19. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpIICalifornia:BlueBioStarValley

  20. Bolton Valley Resort | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass FacilityBluegrass Ridge Wind2BoeingBolton Valley

  1. Clayton Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,GeorgiaValley Geothermal Project Jump to:

  2. Bear Creek Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585Bear Creek Valley

  3. Bethel Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy| DepartmentBethel Valley Watershed. Topics

  4. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest Valley

  5. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest ValleyWest

  6. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyofC3ECALIFORNIA VALLEY

  7. Counting Mountain-Valley Assignments for Flat Folds

    E-Print Network [OSTI]

    Hull, Thomas C.

    Counting Mountain-Valley Assignments for Flat Folds Thomas Hull Department of Mathematics Merrimack), a mountain-valley (MV) assignment is a function f : E {M,V} which indicates which crease lines are con- vex can be thought of as a structural blueprint of the fold.) Creases come in two types: mountain creases

  8. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    SALTON SEA SEAWATER WATER CALIFORNIA COMPUTERS DISPERSIONS FELDSPARS FLUIDS HYDROGEN COMPOUNDS IMPERIAL VALLEY ITERATIVE METHODS KINETICS MANAGEMENT MIXTURES NORTH...

  9. Calculation of chemical equilibrium between aqueous solution...

    Office of Scientific and Technical Information (OSTI)

    SALTON SEA; SEAWATER; WATER; CALIFORNIA; COMPUTERS; DISPERSIONS; FELDSPARS; FLUIDS; HYDROGEN COMPOUNDS; IMPERIAL VALLEY; ITERATIVE METHODS; KINETICS; MANAGEMENT; MIXTURES; NORTH...

  10. Research news: UC Desert Research and Extension Center celebrates 100 years

    E-Print Network [OSTI]

    Meadows, Robin

    2012-01-01

    for low desert biofuel production. Leafy greens and climateyield crops for biofuel production in the Imperial Valley

  11. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  12. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  13. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  14. Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective

    E-Print Network [OSTI]

    Singer, Michael

    Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective L. Allan in the Sacramento Valley. The valley is a broad, low plain with backswamp basins that were frequently inundated in the Sacramento Valley due to high flow variability, mining sedimentation, lack of a coordinated levee system

  15. Guide for Citrus Production in the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Maxwell, Norman P. (Norman Paul); Bailey, Morris A.

    1963-01-01

    Norman Maxwell, Ralph Petersen, Robert Orton and Donald Haddock* The earliest record of citrus planted in the Valley is a planting of seedling orange trees, made by Don JIaceclona Vela in the early 1880's, on the Laguna 5eca Ranch, north of Edinburg..., Morris Bailey, Norman Maxwell, V. C. Cooper and Bruce Lime" GRAPF,%R UIT VA R6ETI.S The Valley's reputation as a citrus area is based primarily upon the high interior quality of its grape- fruit. Valley grapefruit is sweeter than that raised...

  16. Influence of logjam-formed hard points on the formation of valley-bottom landforms in an old-growth forest valley, Queets River, Washington, USA

    E-Print Network [OSTI]

    Montgomery, David R.

    -growth forest valley, Queets River, Washington, USA David R. Montgomery *, Tim B. Abbe 1 Department of Earth for the role of logjam-formed ``hard points'' on creating and maintaining valley-bottom surfaces that shelter

  17. Quaternary Glaciations in the Lago Pueyrredón Valley, Argentina 

    E-Print Network [OSTI]

    Hein, Andrew S.

    This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley...

  18. Little Boxes: High Tech and the Silicon Valley

    E-Print Network [OSTI]

    Crawford, Margaret

    2013-01-01

    Immigrant Workers and the High-Tech Global Economy (Newin a clerical position at high-tech firms like Varian. TheCrawford Little Boxes High-Tech and the Silicon Valley The

  19. Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING

    E-Print Network [OSTI]

    Gray, Matthew

    IN 1 YEAR BAR-TAILED GODWIT 6,000 MILES NON-STOP Tennessee Valley Shorebird Assessment Project NICHE Assessment Project Overview Construction of TVA dams over the past 60+ years has created extensive inland

  20. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Energy, Tthe American Recovery and Reinvestment Act, and AltaRock Energy Inc. Notes A GIS Database was populated to help develop a conceptual model of the Dixie Valley...

  1. A Four-Dimensional Viscoelastic Deformation Model For Long Valley...

    Open Energy Info (EERE)

    1995 And 2000 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera,...

  2. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    DE, Swain LA. 1989. Ground-water flow in the Central Valley,California Department of Water Resources. 2015. CaliforniaCalifornia Department of Water Resources. [cited 2015 Sep

  3. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal...

  4. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

  5. Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...

    Open Energy Info (EERE)

    Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to...

  6. Red River Valley REA- Heat Pump Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  7. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    is needed to preserve the geochemical signature of the reservoir and . Finally, a new stress model is planned to be used for Dixie Valley, the model will utilize a boundary...

  8. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface geological conditions within...

  9. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  10. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  11. Sulphur Springs Valley EC- SunWatts Loan Program

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of ...

  12. RANGE-ENERGY TABLES

    E-Print Network [OSTI]

    Rich, Marvin

    2010-01-01

    Mev gm/ era Mev gm/crn" Mev-cnf/gm 5. 817 x 10" 1. 685 x 10"2301 RANGE OF DEUTERONS IN CARBON J T Mev R gm/cm - dT "dTi T Mev R gm/cm - dT dF Mev- Mev-cn^gm cm/gm 5. 517 x lu" 3.

  13. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  14. Light beam range finder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  15. Light beam range finder

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  16. Higgs portal valleys, stability and inflation

    E-Print Network [OSTI]

    Guillermo Ballesteros; Carlos Tamarit

    2015-09-30

    The measured values of the Higgs and top quark masses imply that the Standard Model potential is very likely to be unstable at large Higgs values. This is particularly problematic during inflation, which sources large perturbations of the Higgs. The instability could be cured by a threshold effect induced by a scalar with a large vacuum expectation value and directly connected to the Standard Model through a Higgs portal coupling. However, we find that in a minimal model in which the scalar generates inflation, this mechanism does not stabilize the potential because the mass required for inflation is beyond the instability scale. This conclusion does not change if the Higgs has a direct weak coupling to the scalar curvature. On the other hand, if the potential is absolutely stable, successful inflation in agreement with current CMB data can occur along a valley of the potential with a Mexican hat profile. We revisit the stability conditions, independently of inflation, and clarify that the threshold effect cannot work if the Higgs portal coupling is too small. We also show that inflation in a false Higgs vacuum appearing radiatively for a tuned ratio of the Higgs and top masses leads to an amplitude of primordial gravitational waves that is far too high, ruling out this possibility.

  17. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  18. Long Range Development Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChinaC L S CLogin HelpLoisLong Range

  19. Consumer culture imperialism

    E-Print Network [OSTI]

    De Carvalho, Marcelo Gon?calves

    2010-01-01

    State Department, Top Secret Cable from Amb. Lincoln Gordon,these documents are Top Secret cables sent by US AmbassadorState Department, Top Secret Cable from Amb. Lincoln Gordon,

  20. Consumer culture imperialism

    E-Print Network [OSTI]

    De Carvalho, Marcelo Gon?calves

    2010-01-01

    arquivo/2008/11/26/124/Lula-apela-ao- povo-para-comprar.htmlPresident Luís Ignácio Lula. O Globo On Line. November 06,pib_pode_quebrar_cara_diz_lula-586283015.asp Goulart, João

  1. An Economic Analysis of Cotton Gin Plants -- High Plains, Rolling Plains and Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Thompson, Russell G.; Ward, J. M.

    1964-01-01

    volumes of cotton had much lower costs than those ginning relatively small volumes. For com- parable volumes, single-battery gins on the High Plains had lower costs per bale than multiple- battery gins. Costs per bale were considerably greater... in the Lower Rio Grande Valley than at comparable gin plants on the Plains. Costs per bale ranged from $8.41 to $16.49 at single-battery gin plants and from $9.72 to $16.66 at multiple- battery gin plants on the High Plains. Total costs ranged from $13...

  2. Ward Valley status report: Science versus politics. Which will win?

    SciTech Connect (OSTI)

    Pasternak, A.D.

    1996-10-01

    The State of California has issued a license to US Ecology, Inc. to construct and operate a disposal facility for low-level radioactive waste (LLRW) at the remote, arid Ward Valley site in the Mojave Desert. The license and certification of the associated environmental documentation have been upheld by the California courts. The Ward Valley license is the first and, so far, only license to be issued for a new LLRW disposal facility pursuant to the Low-Level Radioactive Waste Policy Act enacted in 1980 and amended in 1985. However, the dates of construction and operation of the disposal facility are uncertain because the federal government has refused to sell land in Ward Valley to the State of California for the site of the Southwestern Compact`s regional disposal facility. The Clinton Administration`s repeated excuses for delaying the land transfer, and the circumstances of these delays, indicate that prospects for success of the Ward Valley project, and perhaps the Policy Act itself, depend on the outcome of a battle between science and politics. In view of these delays by the administration, Congressional action to Transfer the Ward Valley lands to California will serve both state and federal goals for safe disposal of LLRW.

  3. The diurnal cycle of air pollution in the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    Panday, Arnico Kumar

    2006-01-01

    This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

  4. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  5. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    and the origin of the Sacramento Valley red fox Benjamin N.in arid habitats in the Sacramento Valley of California wellState University Sacramento, Sacramento, CA 95819, USA M. J.

  6. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    E-Print Network [OSTI]

    Panday, Arnico K.

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

  7. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  8. Preliminary Open File Report: Geological and Geophysical Studies in Grass Valley, Nevada

    E-Print Network [OSTI]

    Beyer, H.

    2010-01-01

    component. The 3 shaded areas in Figure 51 correspond toValley area that is seismically active (Figure 51). The

  9. Evidence for Multiple Glacial Advances and Ice Loading From a Buried Valley in Southern Manhattan

    E-Print Network [OSTI]

    Merguerian, Charles

    of unraveling glacial history. A site in lower Manhattan near the Brooklyn Bridge occupies a bedrock valley

  10. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    to the Valley via transcontinental railway, after it reachedthe West along the transcontinental railway (e.g. , Wyoming,

  11. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  12. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  13. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  14. West Valley Demonstration Project site environmental report, calendar year 1997

    SciTech Connect (OSTI)

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  15. DOE Awards Small Business Contract for West Valley NY Services

    Broader source: Energy.gov [DOE]

    CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  16. North Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio:St. Paul,ValleyValley,

  17. San Luis Valley R E C, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon DevelopmentValley Clean EnergySanLuis Valley

  18. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  19. HABITAT AND POPULATIONS OF THE VALLEY ELDERBERRY LONGHORN BEETLE ALONG THE SACRAMENTO RIVER1

    E-Print Network [OSTI]

    HABITAT AND POPULATIONS OF THE VALLEY ELDERBERRY LONGHORN BEETLE ALONG THE SACRAMENTO RIVER1 F, and Environmental Specialist, respectively, Jones & Stokes Associates, Inc., Sacramento, California. Abstract: Prior and Putah Creek in the Sacramento Valley, and along several rivers in the northern San Joaquin Valley

  20. MAP IOP 10 South Foehn Event in the Wipp Valley: Verification of High-Resolution Numerical

    E-Print Network [OSTI]

    Gohm, Alexander

    MAP IOP 10 South Foehn Event in the Wipp Valley: Verification of High-Resolution Numerical-of-the-art mesoscale model run in a very high- resolution mode. The phenomenon: Deep south foehn in the Wipp Valley-sigma levels · initialized with operational ECMWF analysis at 23 Oct 18 UTC and 24 Oct 00 UTC Wipp Valley

  1. Great Spaces of Rock: The Traprock Ridgelands of the Central Connecticut Valley

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    Great Spaces of Rock: The Traprock Ridgelands of the Central Connecticut Valley Photography Ridgelands of the Central Connecticut Valley Photography by Robert Pagini With essays by Peter M. Le and bad, to the beauty, joy, and solace of the Traprock Ridgelands of the central Connecticut Valley. Born

  2. The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal ­ a bowl

  3. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  4. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  5. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  6. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  7. Appendix C: The sources of Copan Valley obsidian

    SciTech Connect (OSTI)

    Harbottle, G. [Brookhaven National Lab., Upton, NY (United States); Neff, H.; Bishop, R.L. [Smithsonian Institution, Washington, DC (United States). Conservation Analytical Lab.

    1995-05-01

    One hundred thirty-nine obsidian samples from the Copan Valley were subjected to neutron activation analysis at Brookhaven National Laboratory (BNL). Obsidian sources from Mesoamerica have been characterized by a number of different laboratories using several techniques. Over 1,800 samples from Mesoamerica have been analyzed by neutron activation at BNL. These data are now housed both at BNL and in the Smithsonian Archaeometric Research Collections and Records (SARCAR) data base. Previous statistical analysis of the Mesoamerican obsidian artifacts and source samples has produced reference groups representing many of the sources, including Ixtepeque, San Martin Jilotepeque, and El Chayal, the three sources closest to the Copan Valley and therefore most likely to be represented in the analyzed sample. As anticipated, the overwhelming majority of obsidian recovered in the Copan Valley comes from the closest source, Ixtepeque. Of the seven El Chayal specimens, four pertain to CV-43 and three pertain to CV-20. These data provide no evidence of a difference between the two localities in external obsidian exchange relations. Thus, the authors find no grounds for questioning the assumption that the minor quantities of El Chayal obsidian that reached the Copan Valley were distributed through the same channels responsible for distribution of the more common Ixtepeque obsidian.

  8. Field Testing Protocol Western Mountains, Valleys and Coast Regional Supplement

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Field Testing Protocol Western Mountains, Valleys and Coast Regional Supplement Organization and oversee the field testing of the draft Regional Supplement. Field testing will be done in cooperation, the District coordinator will provide team members with an introduction to the Regional Supplement

  9. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  10. PRACTICAL TECHNIQUES FOR VALLEY ELDERBERRY LONGHORN BEETLE MITIGATION1

    E-Print Network [OSTI]

    -24, 1988, Davis, California 2 Resource Ecologist, Jones & Stokes Associates Inc., Sacramento, Calif.; Entomologist, U.S. Fish and Wildlife Service, Sacramento Endangered Species Office, Sacramento Calif of Flood Management, Sacramento Calif.; Owner and Manager, Cornflower Farms, Elk Grove, Calif. The valley

  11. University Of California, Berkeley Valley Life Sciences Building

    E-Print Network [OSTI]

    University Of California, Berkeley Valley Life Sciences Building (VLSB) Building Emergency Plan Date Revised: January 2014 Prepared By: Derek Apodaca #12;TABLE OF CONTENTS I. BUILDING INFORMATION 1. Building Name 2. Building Coordinator Name 3. Alternate BC Name 4. Emergency Assembly Area Location 5

  12. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  13. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  14. Effective range function below threshold

    E-Print Network [OSTI]

    A. Deloff

    2000-06-26

    We demonstrate that the kernel of the Lippmann-Schwinger equation, associated with interactions consisting of a sum of the Coulomb plus a short range nuclear potential, below threshold becomes degenerate. Taking advantage of this fact, we present a simple method of calculating the effective range function for negative energies. This may be useful in practice since the effective range expansion extrapolated to threshold allows to extract low-energy scattering parameters: the Coulomb-modified scattering length and the effective range.

  15. Coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides

    SciTech Connect (OSTI)

    Xiao, Di; Liu, G. B.; Feng, wanxiang; Xu, Xiaodong; Yao, Wang

    2012-01-01

    We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the 0.1 eV valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.

  16. EIS-0337: West Valley Demonstration Project Waste Management

    Broader source: Energy.gov [DOE]

    The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energy’s proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

  17. The Lower Rio Grande Valley Regional Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    Lower Rio Grande Valley Development Council

    2006-11-30

    . Prepared By Lago Elsa Solis Pharr Muniz Donna Bixby Alton Alamo Olmito Lozano Yznaga Lyford Lasana Combes Lasara Encino Havana Bayview Primera Weslaco Nurillo Mission McAllen La Homa Hidalgo Edcouch Penitas Laureles Willamar Ratamosa La Feria Scissors... Isidro Port Isabel South Point Los Fresnos Indian Lake Brownsville Palm Valley Grand Acres Santa Maria Rangerville Arroyo Alto San Perlita Villa Verde South Alamo North Alamo Laguna Seca Citrus City Alton North Villa Pancho Rancho Viejo Laguna Vista...

  18. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie Valley Geothermal Area

  19. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie Valley Geothermal|(Newman,

  20. Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish Lake Valley

  1. Quail Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuail Valley, California: Energy

  2. Queen Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuailValley, Arizona: Energy

  3. Black Hole Portal into Hidden Valleys

    E-Print Network [OSTI]

    Sergei Dubovsky; Victor Gorbenko

    2010-12-13

    Superradiant instability turns rotating astrophysical black holes into unique probes of light axions. We consider what happens when a light axion is coupled to a strongly coupled hidden gauge sector. In this case superradiance results in an adiabatic increase of a hidden sector CP-violating $\\theta$-parameter in a near horizon region. This may trigger a first order phase transition in the gauge sector. As a result a significant fraction of a black hole mass is released as a cloud of hidden mesons and can be later converted into electromagnetic radiation. This results in a violent electromagnetic burst. The characteristic frequency of such bursts may range approximately from 100 eV to 100 MeV.

  4. do you know your RANGE

    E-Print Network [OSTI]

    Hoffman, Garlyn O.

    1957-01-01

    need a good knowledge of range man- asemen2 b~f~re m~kjng CID?E CD~~B~~DDS DY range plots as is required in Part 111. An ex- ample of Part I11 is on page 12. The four range plots are placed just exactly like placing a class of livestock at a stock... good cover of native grass. Grass is a product which is harvested and marketed as meat, ~uool, mohair and wildlife. When you market animals you are paid for the number of poz~nds rather than the number of head you sell. By practicing good range m...

  5. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers

    SciTech Connect (OSTI)

    Gong, Zhirui; Liu, G. B.; Yu, Hongyi; Xiao, Di; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2013-01-01

    In monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit.

  6. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  7. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  8. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2014-01-02

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  9. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  10. PACIFIC SOUTHWEST Forest and Range

    E-Print Network [OSTI]

    PACIFIC SOUTHWEST Forest and Range Experiment Station Ash Leachate Can Reduce Surface Erosion leachate can reduce surface erosion. Res. Note PSW-342, 4 p., illus. Pacific Southwest Forest and Range Exp from north- western California, ash leachate flocculated the clay frac- tions. As a result, the soil

  11. Geology of the central part of the James River Valley, Mason County, Texas 

    E-Print Network [OSTI]

    Dannemiller, George David

    1957-01-01

    ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ P LATE I ~ II ' XIII' ILLUSTHATIOJJS GEOLOGIC J"A: AND CROSS SECTIONS GF THF CENTRAL PART OP THE JAMi'S RIVER VALLEY MASON COUNTY, IIJDr~ MAP OP THE CENTRAL PART OP HJ? JAMES RIVER VALLEY, MASON COUNTY, TEXAS ~ "WAGON TRACKS~ IN THE UPPER... VALLEY, RA~OR COURTY, TEXAS ABSTRACT The Central Part of the James River Valley is located ln south-central mason County, southwest of the town of' %aeon, Rock units of Uppex O'brien, Lower Ordovician, and Quaternary age sre found in the area, Ihe...

  12. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples...

  13. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  14. Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  15. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or...

  16. Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County, Nevada

    E-Print Network [OSTI]

    Ahmad, Sajjad

    1 Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County..................................................................................................................................... 4 Piedmont Geomorphology and Related Flood Hazards..................... 6 The Field Area

  17. INTERPRETATION OF GRAVITY SURVEYS IN GRASS AND BUENA VISTA VALLEYS, NEVADA

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01

    resistivity, and seismic interpretations along selectedboth gra- vity and seismic interpretations at several pointsValley. Gravity and seismic interpretations also give The

  18. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  19. Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program

    Broader source: Energy.gov [DOE]

    Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

  20. Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky...

    Open Energy Info (EERE)

    Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling...

  1. Wabash Valley Power Association (28 Member Cooperatives)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  2. Range Searching in Categorical Data: Colored Range Searching on Grid

    E-Print Network [OSTI]

    Agarwal, Pankaj K.

    , gsat @cs.duke.edu ¾ AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Park, NJ 07932. muthu each stock has a category that is the industry sector it belongs to, and we consider a range

  3. Numerical Modeling of Transient Basin and Range Extensional Geothermal...

    Open Energy Info (EERE)

    fromthe valley floor) separated by a thick sequence (about4 km) of clastic sediments derived from the adjacentranges, and a relatively permeable, high angle faultthat functions...

  4. CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada

    SciTech Connect (OSTI)

    Bergfeld, D.; Goff, F. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Janik, C.J. [Geological Survey, Menlo Park, CA (United States); Johnson, S.D. [Oxbow Power Services, Reno, NV (United States)

    1998-12-31

    A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

  5. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    SciTech Connect (OSTI)

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  6. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  7. Workers at EM’s West Valley Site Surpass 1 Million Hours without Lost-Time Accident

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM’s cleanup contractor at the West Valley Demonstration Project (WVDP) recently marked 1 million work hours without a lost-time accident or illness.

  8. Predicting the Effects of Climate Change on the Size and Frequency of Floods in the Sacramento-San Joaquin Valley

    E-Print Network [OSTI]

    Das, Tapash

    2011-01-01

    Conference, September 2010, Sacramento, Calif. Das T. ,and Frequency of Floods in the Sacramento-San Joaquin ValleySierra Nevada and the Sacramento-San Joaquin Valley. These

  9. Towards a new high technology development in the Silicon Valley : a 21st century urban design vision

    E-Print Network [OSTI]

    Pang, Jonathan K. (Jonathan Kam)

    1988-01-01

    Santa Clara Valley, perhaps better known as the Silicon Valley, is currently facing many problems and uncertainties. The explosion of the high technology industry has changed the regional scene faster than anyone could ...

  10. Citrus Varieties for the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

    1941-01-01

    TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict~!baa! % khhani~al Callep oof TsM~: Co.... Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none of these are of com- mercial importance...

  11. Sun Valley to Morgan Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the EntireOpenSumpter,Energy Group LLCCoop,Valley

  12. DOE - Office of Legacy Management -- Tennessee Valley Authority - AL 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OHStar CutterTennessee Valley

  13. Hunting Valley, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdon County, NewHunting Valley, Ohio:

  14. Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergyGabbs Valley Area (DOE

  15. Hydrothermal Alteration Mineral Studies in Long Valley, In- Proceedings of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergyGabbs Valley Areathe

  16. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon:CorpGreenburgh,1347943°, -82.820974°Valley

  17. Fountain Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump to: navigation,County,FountainValley,

  18. Duncan Valley Elec Coop, Inc (New Mexico) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal ResourcesEnergyDumont, NewDuncan Valley

  19. South Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston, Texas:588958°,River,Toms River,Valley,

  20. Middle Valley, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickeyWest Energy JumpValley, Tennessee:

  1. Missouri Valley Renewable Energy MOVRE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectric Coop, Inc Jump to:Valley Renewable

  2. Long Valley, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranch Capital Jump to:AuthorityValley,

  3. Maple Valley, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5TransportManitouChange | OpenMapPark,Ridge,Valley,

  4. Pine Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehem Biomass Facility Jump to: navigation,Valley,

  5. Bridger Valley Elec Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJerseyEconomyBridger Valley Elec Assn, Inc

  6. Chariton Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing World Technologies JumpChaplin,Valley Elec

  7. Chippewa Valley Ethanol Company CVEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa Valley Electric Coop

  8. Ark Valley Elec Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,Summaries |AreteAriane EnvironmentArk Valley

  9. Lower Valley Energy Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific DevelopingLower Valley Energy Inc Place:

  10. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltos delValley El Pwr Assn Jump to:

  11. Red River Valley Coop Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent content in EnergyRed River Valley

  12. Guadalupe Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydroLegalAltoOlho DaguaSolantisGryphonValley

  13. Licking Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place: RhodeLichuanValley

  14. San Joaquin Valley Clean Energy Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon DevelopmentValley Clean Energy Organization

  15. South Utah Valley Electric Service District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin JumpOpen Energy InformationValley Electric

  16. Sulphur Springs Valley E C Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategicStoriesSuezSprings Valley E C

  17. Suwannee Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMember CorpSunviePty Ltd JumpIncSustainxValley

  18. Tallahatchie Valley E P A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI P RuralTaigaValley E P A Jump to:

  19. Tennessee Valley Authority (North Carolina) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority

  20. Village of Little Valley, New York (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) Jump to:New YorkInformation Valley, New York

  1. Spring Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop JumpValley Jump

  2. Squaw Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley, California:

  3. Squirrel Mountain Valley, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley,

  4. Valley Rural Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:Valley Rural Electric Coop

  5. Avra Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal RegionAvra Valley, Arizona: Energy

  6. Canadian Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: Energy ResourcesNew York:CamptonCan IIncValley

  7. Canton Valley, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty, Tennessee:Valley, Connecticut:

  8. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy Resources Jump to:NewValley Elec

  9. File:LongValley Strat.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonasterwind crossword.pdfInvitation-EnglishLongValley

  10. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source Historypub [ICO]Indian Valley Hot Springs

  11. Mid Valley Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysvilleMicrogravity-Hybrid MicrogravitySize HomeValley Landfill

  12. Moapa Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View New Pages RecentMithunCoValley,

  13. Arkansas Valley Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil and Gas Commission Jump to:Valley

  14. Bear Valley Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc Jump to:Baywood-LosCreekValley

  15. Yazoo Valley Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPupingYanyuanValley Elec Power

  16. Concho Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,InformationConcho Valley Elec

  17. Castro Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota: EnergyValley,

  18. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPanEnergyValley, Arizona:

  19. West Valley Demonstration Project Transportation Emergency Management Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Air SealingDepartmentWest CoastWest Valley

  20. NON-STRUCTURAL FLOOD MANAGEMENT SOLUTIONS FOR THE LOWER FRASER VALLEY,

    E-Print Network [OSTI]

    NON-STRUCTURAL FLOOD MANAGEMENT SOLUTIONS FOR THE LOWER FRASER VALLEY, BRITISH COLUMBIA by Tamsin of Project: Non-Structural Flood Management Solutions for the Lower Fraser Valley, British Columbia Examining storage capacity flood hazard reduction has traditionally been achieved using engineered structures

  1. Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks

    E-Print Network [OSTI]

    Amelung, Falk

    Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks. The analysis reveals areas of rapid deformation caused by mining and agricultural activities in the Crescent), Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks

  2. Riparian Valley Oak (Quercus lobata) Forest Restoration on the Middle Sacramento

    E-Print Network [OSTI]

    Riparian Valley Oak (Quercus lobata) Forest Restoration on the Middle Sacramento River, California1 horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all that affect valley oaks on the Sacramento River floodplain will require additional study and more detailed

  3. Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California

    E-Print Network [OSTI]

    Fialko, Yuri

    Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California Yuri associated with currently active crustal magma bodies in Socorro, New Mexico, and Long Valley, California induced by magma migration are also important for forecasting local volcanic and seismic hazards. A prime

  4. Groundwater-controlled valley networks and the decline of surface runoff on early Mars

    E-Print Network [OSTI]

    Harrison, Keith

    Groundwater-controlled valley networks and the decline of surface runoff on early Mars Keith P was dominated by valley networks created through a combination of groundwater processes and surface runoff evolution characterized by a weakening of surface runoff, leaving groundwater processes as the dominant

  5. Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge

    E-Print Network [OSTI]

    Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

  6. Low velocity zone under Long Valley as determined from teleseismic events

    E-Print Network [OSTI]

    Steeples, Don W.; Lyer, H. M.

    1976-02-10

    A temporary seismograph station network was used to estimate teleseismic P wave residuals in the vicinity of Long Valley geothermal area, California. Relative P wave delays of 0.3 s persist at stations in the west central part of the Long Valley...

  7. Technical Services Contract Awarded for West Valley Demonstration Project Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

  8. Sex-related dispersion of breeding deer mice in the Kananaskis Valley, Alberta XUHUAXIAAND JOHNS. MILLAR

    E-Print Network [OSTI]

    Xia, Xuhua

    Sex-related dispersion of breeding deer mice in the Kananaskis Valley, Alberta XUHUAXIAAND JOHNS September 17, 1985 XIA,X., andJ. S. MILLAR.1986. Sex-relateddispersionof breeding deermice in the KananaskisValley, Alberta, during the breeding seasons of 1982and 1983provided data used to analyse sex

  9. Comparison of Two Models for Identifying Low Gradient, Unconfined Streams and Valley Bottom Extent

    E-Print Network [OSTI]

    In Support of Stream Temperature Modeling Associated with Fire Effects USDA Forest Service, Rocky Mountain, bedrock controlled channels. In order to test the influence of valley confinement on stream temperature, we developed an in-house algorithm to delineate wide, flat valley bottoms using DEM data as input. We

  10. Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated by observations

    E-Print Network [OSTI]

    Ehleringer, Jim

    Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated within Salt Lake Valley, Utah, USA. The model was forced by observed winds, soundingderived mixing depths, and ecosystem type. The model was validated using hourly CO2 mole fractions measured at five sites in the urban

  11. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley impact crop produc- tion in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for 50

  12. A GIS Nonpoint Source Pollution Model for the Las Vegas Valley Marcelo Reginato* and Thomas Piechota*

    E-Print Network [OSTI]

    Piechota, Thomas C.

    of the Las Vegas Valley basin. The nonpoint source pollution from urban runoff has direct water quality the model are compared to waste water treatment loads for 2000 and 2001. The Model Total monthly and annual1 A GIS Nonpoint Source Pollution Model for the Las Vegas Valley Marcelo Reginato* and Thomas

  13. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    geothermal resource, such as the Imperial Valley, desalinationgeothermal sources, greenhouse heating, heating and steam cleaning animal quarters, and aqua- culture. Desalination -

  14. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    SciTech Connect (OSTI)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  15. A cleaning energy area conception on Fenhe river valley

    SciTech Connect (OSTI)

    Guan, C. [Shanxi Environmental Protection Bureau (China)

    1997-12-31

    Fenhe river valley has a dense population, abundant resources and coal mining, coke making, metallurgy industry concentration. Therefore, it is a seriously pollute area. The paper puts forward a concept of building up a clean energy area through process improvement and change of energy structure to realize ecological economy. The analysis shows that the indigenous method used for coking produces serious pollution, the resource cannot be used comprehensively, the regular machinery coke has a high investment in capital construction, but not much economic benefit. All are disadvantages for health and sustainable economic development. Also, this paper describes a LJ-95 machinery coke oven which has lower investment, higher product quality, less pollution, and higher economical benefit. LJ-95 coke oven will be the technical basis for construction of a clean energy area. The clean energy area concept for the Fenhe river valley consists of a coal gas pipeline network during the first phase and building electricity generation using steam turbines in the second phase.

  16. PACIFIC SOUTHWEST Forest and Range

    E-Print Network [OSTI]

    of forest stands is valuable for studies of the physical environment. Energy balance research centers on howPACIFIC SOUTHWEST Forest and Range Experiment Station FOREST SERVICE U.S. DEPARTMENT in relation to climatic and stand variables USDA FOREST SERVICE RESEARCH PAPER PSW- 71 /1971 #12;CONTENTS

  17. Forest and Range Experiment Station

    E-Print Network [OSTI]

    wider range of suppliers. As working circles beyond the size of a single National Forest have recently. Alternatives for expansion of working circles must be assessed in light of present Forest Service timber management policy and the impacts of timber supply. These alternates include (a) combination of National

  18. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  19. THE FREQUENCY OF LOW-MASS EXOPLANETS. II. THE 'PERIOD VALLEY'

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; O'Toole, Simon J.; Jones, H. R. A.; Butler, R. P.; Carter, B. D.

    2010-10-20

    Radial-velocity planet search campaigns are now beginning to detect low-mass 'Super-Earth' planets, with minimum masses M sin i{approx}< 10 M{sub +}. Using two independently developed methods, we have derived detection limits from nearly four years of the highest-precision data on 24 bright, stable stars from the Anglo-Australian Planet Search. Both methods are more conservative than a human analyzing an individual observed data set, as is demonstrated by the fact that both techniques would detect the radial-velocity signals announced as exoplanets for the 61 Vir system in 50% of trials. There are modest differences between the methods which can be recognized as arising from particular criteria that they adopt. What both processes deliver is a quantitative selection process such that one can use them to draw quantitative conclusions about planetary frequency and orbital parameter distribution from a given data set. Averaging over all 24 stars, in the period range P< 300 days and the eccentricity range 0.0 < e < 0.6, we could detect 99% of planets with velocity amplitudes K{approx}> 7.1 m s{sup -1}. For the best stars in the sample, we are able to detect or exclude planets with K{approx}> 3 m s{sup -1}, corresponding to minimum masses of 8 M{sub +} (P = 5 days) or 17 M{sub +} (P = 50 days). Our results indicate that the observed 'period valley', a lack of giant planets (M > 100 M{sub +}) with periods between 10 and 100 days, is indeed real. However, for planets in the mass range 10-100 M{sub +}, our results suggest that the deficit of such planets may be a result of selection effects.

  20. Range determination for scannerless imaging

    DOE Patents [OSTI]

    Muguira, Maritza Rosa (Albuquerque, NM); Sackos, John Theodore (Albuquerque, NM); Bradley, Bart Davis (Albuquerque, NM); Nellums, Robert (Albuquerque, NM)

    2000-01-01

    A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.

  1. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  2. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  3. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; McCurdy, Greg; Campbell, Scott

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

  4. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    SciTech Connect (OSTI)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  5. Valley pair qubits in double quantum dots of gapped graphene

    E-Print Network [OSTI]

    G. Y. Wu; N. -Y. Lue; L. Chang

    2011-07-03

    The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

  6. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  7. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  8. Extended-range tiltable micromirror

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM); Wiens, Gloria J. (Newberry, FL); Bronson, Jessica R. (Gainesville, FL)

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  9. Range Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFU Elektronik GmbHRahusRamkyRange Fuels Jump

  10. Range Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎Wind Farm Jump to:Randsburg,Range

  11. Live Fire Range Environmental Assessment

    SciTech Connect (OSTI)

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect (OSTI)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  13. Episodic potassic alteration of Ordovician tuffs in the Upper Mississippi Valley

    SciTech Connect (OSTI)

    Lee, M.; Hay, R.L.; Kolata, D.R.

    1985-01-01

    Tuffs of middle and late Ordovician age are altered to mixed-layer illite-smectite (I/S) and to K-feldspar in the Upper Mississippi Valley in northeast Iowa, southeast Minnesota, and southwest Wisconsin. Some and perhaps much of the I/S replaces previously feldspathized tuff, as shown by field and petrographic relationships. Samples for K-Ar dating were collected over a 200 km southeast-northwest traverse. Dates from authigenic K-feldspar are early Devonian and range from 397 +/- 13 to 406 +/- 18, averaging 400 m.y. in three samples, including a middle Ordovician tuff in Iowa and Minnesota and a late Ordovician tuff in Minnesota. Ages of illite layers in I/S are late Devonian and early Mississippian and range from 356 +/- 16 to 371 +/- 17, averaging 366 m.y. in 5 samples including 4 from two middle Ordovician tuffs in Minnesota and Iowa and the late Ordovician tuff in Minnesota. Oxygen-isotopic composition of the K-feldspar and I/S shows that the two minerals crystallized under different conditions and probably reflect introduction of waters of varying chemistry and temperature. K-feldspar very likely crystallized under higher temperatures and possibly lower salinity than the I/S. Introduction of these pore waters may have been caused by groundwater movements resulting from recharge in distal areas undergoing tectonic uplift. K-feldspar alteration was concurrent with early Devonian uplift on the Northeast Missouri Arch and possibly the Transcontinental Arch. Age of the illite layers corresponds to movements on the Sangamon Arch and possibly the Wisconsin Arch.

  14. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  15. Thrust faulting in Temblor Range, Kern County, California

    SciTech Connect (OSTI)

    Simonson, R.R.

    1991-02-01

    Surface and subsurface studies confirm the presence of overthrusting in the Temblor Range between Gonyer Canyon and Recruit Pass. In the subsurface, three wells have penetrated the Cree fault, the Hudbay Cree' No. 1 (7,300 ft), the Frantzen Oil Company Cree' No. 1 (5,865 ft) and the Arco Cree Fee' 1A well (5,915 ft). Below the fault, 25 to 35{degree} of westerly dips on the west flank of the sub-thrust Phelps anticline are encountered. The McDonald section below the fault is comprised of siliceous fractured shale which contains live oil and gas showings. A drill-stem test of the interval from 8,247 to 8,510 ft in the Frantzen well resulted in a recovery of 1,200 ft clean 34{degree} oil and 40 MCF per day gas. The shut in pressure was 3,430 lb, which is a normal hydrostatic pressure common to the producing structures in the southern San Joaquin Valley. The equivalent of this interval has produced over 7,000 bbl of oil in the Arco Cree' 1A well. The Arco Cree Fee' No. 1A well crossed the axis of the Phelps Anticline as indicated by good dipmeter and bottomed in Lower Zemorrian at 14,512 ft total depth. This well was not drilled deep enough to reach the Point of Rocks Sand and did not test the gas showings in the lower Miocene section. In the Gonyer Canyon area, subsurface evidence indicated conditions are similar to those in the Cree area because a large structure is present below a thrust fault. It is believed that significant accumulations will be found beneath thrust faults in the eastern part of the Temblor Range where conditions are similar to those that were instrumental in forming fields such as the Elk Hills, B. V. Hills, Belgian Anticline and others.

  16. The Santa Clara Valley R & D Dillema: The Real Estate Industry and High Tech Growth

    E-Print Network [OSTI]

    Kroll, Cynthia A.; Kimball, Linda M.

    1986-01-01

    Absorption . 57 VI. Evolving High Tech Demand for Space:Silicon Valley Job Growth within High Tech Sectors .. 64 TheOccupational Composition of High Tech Employment. 71 Santa

  17. Financing the "Valley of Death" : an evaluation of incentive schemes for global health businesses

    E-Print Network [OSTI]

    Miller, Brian L. K

    2009-01-01

    Many early-stage biotech companies face a significant funding gap when trying to develop a new drug from preclinical development to a proof of concept clinical trial. This funding gap is sometimes referred to as the "valley ...

  18. Impacts of Irrigation on Citrus in the Lower Rio Grande Valley 

    E-Print Network [OSTI]

    Enciso, Juan; Sauls, Julian W.; Wiedenfeld, Robert P.; Nelson, Shad D.

    2008-07-11

    such as ECH 2 O ? probes from Decagon Devices, Inc., of Pullman, Wash., and EnviroSCAN ? soil moisture sensors from Sentek Sensor Technologies, Australia. During 2004, two Valley farmers installed EnviroSCAN sensors, which relayed soil moisture...

  19. Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chelsea Lancelle

    2013-09-10

    Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

  20. Project Reports for Scotts Valley Band of Pomo Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Scotts Valley Band of Pomo Indians in Lakeport, California, will establish a Tribal Multi-County Weatherization Energy Program to provide training, outreach, and education on energy assistance and conservation to low-income families.

  1. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  2. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  3. Builders Challenge High Performance Builder Spotlight: Yavapai College, Chino Valley, Arizona

    SciTech Connect (OSTI)

    2009-12-22

    Building America Builders Challenge fact sheet on Yavapai College of Chino Valley, Arizona. These college students built a Building America Builders Challenge house that achieved the remarkably low HERS score of -3 and achieved a tight building envelope.

  4. Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chelsea Lancelle

    Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

  5. Workers at EM's West Valley Site Surpass 1 Million Hours without...

    Broader source: Energy.gov (indexed) [DOE]

    West Valley Accomplishments: Year in Review BWCS employees from all departments of the DUF6 project at the Portsmouth site come together to mark five years without a lost-time...

  6. A Study of Institutional Factors Affecting Water Resource Development in the Lower Rio Grande Valley, Texas 

    E-Print Network [OSTI]

    Trock, W. L.; Casbeer, T. J.

    1969-01-01

    Despite numerous studies of and plans for the use of land and water resources of the lower Rio Grande Valley for efficient agricultural production, development has lagged and the production potential has not been realized. ...

  7. Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...

    Open Energy Info (EERE)

    The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  8. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations

    E-Print Network [OSTI]

    Panday, Arnico K.

    During the dry season of 2004–2005 we carried out field measurements of air pollution and meteorology in the Kathmandu Valley, Nepal, a bowl-shaped urban basin in the Himalayan foothills of Nepal. We measured the trace ...

  9. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    Open Energy Info (EERE)

    manifested in the chemical analysis of fluid samples that show no evidence of formation fluids in the well.The hydraulic conductivity of the lowermost section of the Long Valley...

  10. Control on (234 U) in lake water: A study in the Dry Valleys

    E-Print Network [OSTI]

    Henderson, Gideon

    .V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply of 234 U is therefore limited by decay of 238 U, suggesting that the two uranium

  11. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Broader source: Energy.gov (indexed) [DOE]

    August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern Counties, California August 3, 2011 EA-1840: Finding of No...

  12. A comparative study of condominium and single family house price appreciation in the Salt Lake Valley

    E-Print Network [OSTI]

    Billings, John D. (John David), 1971-

    2003-01-01

    This study examines whether the form of ownership affects the appreciation rate of housing units. The specific test conducted is whether condominiums and single family homes in the Salt Lake Valley have appreciated at the ...

  13. Harlequin Duck Histrionicus histrionicus distribution and stonefly nymph availability in the Maligne Valley

    E-Print Network [OSTI]

    Harlequin Duck Histrionicus histrionicus distribution and stonefly nymph availability and stonefly (Plecoptera) nymph availability in the Maligne Valley watershed, Jasper National Park, Canada the two sites with high nymph availability (MLO and Lower Maligne) than the site with low nymph

  14. Temporal Trends in Hatchery Releases of Fall-Run Chinook Salmon in California's Central Valley

    E-Print Network [OSTI]

    Huber, Eric R.; Carlson, Stephanie M.

    2015-01-01

    in Central Valley rivers, many fall-run Chinook salmon nowrun Chinook salmon, Oncorhynchus tshawytscha, to yearlings at Feather Riverrun Chinook salmon breed and rear in low-elevation mainstem rivers (

  15. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09

    Definitions of the extent of the Loess Hills of the Missouri River valley have become smaller over the last century. The reduced extent of the Hills, as represented in both promotional and scientific literature, no longer accurately reflects...

  16. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    SciTech Connect (OSTI)

    Birdwell, Kevin R [ORNL

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

  17. Regional And Local Trends In Helium Isotopes, Basin And Range...

    Open Energy Info (EERE)

    localized zones of deep mantle melting or deep permeable pathways (faults) with high vertical fluid flow rates. A detailed study of one of the He-spikes (Dixie Valley and the...

  18. Contemporary Strain Rates in the Northern Basin and Range Province...

    Open Energy Info (EERE)

    we use GPS velocities to estimate the average relative motions of the Colorado Plateau (CP), the Sierra Nevada-Great Valley (SNGV) microplate, and a narrow north-south elongate...

  19. Engineering geologic feasibility of lignite mining in alluvial valleys by hydraulic dredging methods 

    E-Print Network [OSTI]

    Cason, Cynthia Lynn

    1982-01-01

    Stability . Sediment Volume Changes Conventional Lignite Mining Technology Dragline Bucket wheel Excavator . ALLUVIAL VALLEY SEDIMENTS Environment of Deposition Engineering Geology of Alluvial Valley Sediments Disadvantages of Applying Conventional... on samples with varying percentages of sand 54 33 Ultimate percent swell v. highwall height for varying percentages of sand in the overburden spoil . . . . . . . 55 34 Area lignite surface mining with a walking dragline and truck/shovel operations...

  20. An engineering geologic impact analysis of hydraulic dredging for lignite in Texas alluvial valleys 

    E-Print Network [OSTI]

    Nolan, Erich Donald Luis

    1985-01-01

    percent, or 4. 7 billion tons of the state's lignite is present in alluvial valleys. Due to frequent surface-water flooding and shallow ground-water tables, mining in the floodplain environment by the dragline-shovel-haul truck method would... in an alluvial valley would pose a constant problem. In fact, present surface mining techniques utilizing the dragline-shovel- haul truck method could not. operate in the floodplain environment without large scale, expensive surface water and ground water...

  1. Geoarchaeology in the Current River Valley, Ozark National Scenic Riverways, Southeast Missouri

    E-Print Network [OSTI]

    Dempsey, Erin Caitlin

    2012-08-31

    valley landform sediment assemblage…………………. 24 3.1 Pre-Clovis sites and their ages, issues with acceptance, and references……………….. 44 4.1 Quantification of horizon properties for calculating horizon morphology index (HDI) values... in the Current River valley with the goal of locating pre-Clovis deposits (Mandel 2009; Ray and Mandel 2010). The research presented in this dissertation was designed to supplement ODYSSEY’s work. In this dissertation, I determined the geologic potential...

  2. Aerial Photography At Dixie Valley Geothermal Area (Wesnousky...

    Open Energy Info (EERE)

    Field And Other Geothermal Fields Of The Basin And Range David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  3. Graphene quantum dots for valley-based quantum computing: A feasibility study

    E-Print Network [OSTI]

    G. Y. Wu; N. -Y. Lue; L. Chang

    2011-04-21

    At the center of quantum computing1 realization is the physical implementation of qubits - two-state quantum information units. The rise of graphene2 has opened a new door to the implementation. Because graphene electrons simulate two-dimensional relativistic particles with two degenerate and independent energy valleys,3 a novel degree of freedom (d.o.f.), namely, the valley state of an electron, emerges as a new information carrier.4 Here, we expand the Loss-DiVincenzo quantum dot (QD) approach in electron spin qubits,5,6 and investigate the feasibility of double QD (DQD) structures in gapful graphene as "valley qubits", with the logic 0 / 1 states represented by the "valley" singlet / triplet pair. This generalization is characterized by 1) valley relaxation time ~ O(ms), and 2) electric qubit manipulation on the time scale ~ ns, based on the 1st-order "relativistic effect" unique in graphene. A potential for valley-based quantum computing is present.

  4. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  5. Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley

    E-Print Network [OSTI]

    Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

    2009-01-01

    Public Policy, and the Sacramento Valley. University ofTechnologies Ltd. 2008. Sacramento River ecological flowsRestoration Program. Sacramento (CA). 72 p. Available from:

  6. Stevens and earlier miocene turbidite sandstones, southern San Joaquin Valley, California

    SciTech Connect (OSTI)

    Webb, G.W.

    1981-03-01

    A thick marine turbidite succession, dominantly coarse sandstone, underlies the southern part of the San Joaquin Valley. Sands are pebbly to fine grained, commonly poorly sorted, quartzose to arkosic, and are interbedded with dark shales bearing deep-water foraminifers. Graded bedding is common and, with the depths of 2000 to 6000 ft (610 to 1830 m) implied by the fauna, is taken to indicate a turbidity-current origin for most of the sands. The upper, middle, and lower Miocene turbidite section was revealed by extensive coring at Paloma, and is similar to the more widespread and oil and gas productive upper Miocene Stevens sandstone. The central-basin Stevens was deposited as channel sands on deep-sea fans derived from several discrete troughs or canyons on the eastern and southeastern margin of the basin prior to their burial by prograding Santa Margarita sand. Sand channels and lobes in the Bakersfield arch area were controlled locally by compaction structures. The rising Paloma anticline deflected Stevens sands for a time and the very last sands were guided also by incipient folds on the outer Bakersfield arch. Coarse Stevens conglomerates and sands shed from the emergent Temblor Range were deflected by the Buena Vista Hills, Elk Hills, and other anticlinal shoals and were deposited in intervening gaps as thick oil-productive channel sands. They merge with sands from the east side in flowing axially into the distal northwestern basin. Facies recognized in the subsurface include a meander-channel facies developed in the prograded muddy slope area upstream from the massive braided-sand facies.

  7. Structure of The Dixie Valley Geothermal System, a "Typical"...

    Open Energy Info (EERE)

    Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  8. Reflection Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  9. Ground Gravity Survey At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    be described in Blackwell et al. (2010)." References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  10. Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  11. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    vein structure associated with ore deposits. References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  12. Aerial Photography At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  13. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    W. Wisian, David D. Blackwell (2004) Numerical Modeling Of Basin And Range Geothermal Systems Additional References Retrieved from "http:en.openei.orgwindex.php?titleModel...

  14. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  15. Lead exposure at uncovered outdoor firing ranges

    SciTech Connect (OSTI)

    Goldberg, R.L.; Hicks, A.M.; O'Leary, L.M.; London, S. (University of Southern California School of Medicine, Los Angeles (USA))

    1991-06-01

    Excessive lead exposure in shooting instructors at indoor firing ranges and covered outdoor firing ranges has been documented. The City of Los Angeles assessed exposure of its full-time shooting instructors at uncovered outdoor ranges via air monitoring and blood lead-level measurements. Results of these tests revealed that significant lead exposure and absorption can occur at outdoor firing ranges. The use of copper-jacketed ammunition may decrease air lead levels and decrease lead absorption by range instructors.

  16. South Belridge fields, Borderland basin, U. S. , San Joaquin Valley

    SciTech Connect (OSTI)

    Miller, D.D. (Mobil Exploration and Producing U.S., Inc., Denver, CO (United States)); McPherson, J.G. (Mobil Research and Development Corp., Dallas, TX (United States))

    1991-03-01

    South Belridge is a giant field in the west San Joaquin Valley, Kern County. Cumulative field production is approximately 700 MMBO and 220 BCFG, with remaining recoverable reserves of approximately 500 MMBO. The daily production is nearly 180 MBO from over 6100 active wells. The focus of current field development and production is the shallow Tulare reservoir. Additional probable diatomite reserves have been conservatively estimated at 550 MMBO and 550 BCFG. South Belridge field has two principal reservoir horizons; the Mio-Pliocene Belridge diatomite of the upper Monterey Formation, and the overlying Plio-Pleistocene Tulare Formation. The field lies on the crest of a large southeast-plunging anticline, sub-parallel to the nearby San Andreas fault system. The reservoir trap in both the Tulare and diatomite reservoir horizons is a combination of structure, stratigraphic factors, and tar seals; the presumed source for the oil is the deeper Monterey Formation. The diatomite reservoir produces light oil (20-32{degree} API gravity) form deep-marine diatomite and diatomaceous shales with extremely high porosity (average 60%) and low permeability (average 1 md). In contrast, the shallow ({lt}1000 ft (305 m) deep) overlying Tulare reservoir produces heavy oil (13-14{degree} API gravity) from unconsolidated, arkosic, fluviodeltaic sands of high porosity (average 35%) and permeability (average 3000 md). The depositional model is that of a generally prograding fluviodeltaic system sourced in the nearby basin-margin highlands. More than 6000 closely spaced, shallow wells are the key to steamflood production from hundreds of layered and laterally discontinuous reservoir sands which create laterally and vertically discontinuous reservoir flow units.

  17. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    E-Print Network [OSTI]

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-01-01

    Silicon Valley with the I-Grid ® System Prepared for Imre Gyuk Energy StorageSilicon Valley with the I-Grid System Acknowledgments The authors thank Imre Gyuk, DOE Energy Storage

  18. Potential impacts of climate change on tropospheric ozone in California: A preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley

    E-Print Network [OSTI]

    Taha, Haider

    2001-01-01

    1700 PDT, July 13) in the Sacramento Valley, for cases CCMA1700 PDT, July 13) in the Sacramento Valley, for cases HCMBoard (CARB) 1995. “Sacramento Area Modeling Analysis for

  19. An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Harlingen Irrigation District Cameron County No. 1 

    E-Print Network [OSTI]

    Wolfe, Clint D.; Stubbs, Megan J.; Rister, M. Edward; Sturdivant, Allen W.; Lacewell, Ronald D.; Pennington, Ellen L.; Rogers, Callie S.

    2007-01-01

    Population expansion and water shortfalls have placed the Texas Lower Rio Grande Valley (Valley) center stage in water publicity. The unique characteristics and lack of public knowledge on how irrigation districts divert and convey water from...

  20. Valley-dependent spin polarization and long-lived electron spins in germanium

    SciTech Connect (OSTI)

    Giorgioni, Anna Vitiello, Elisa; Grilli, Emanuele; Guzzi, Mario; Pezzoli, Fabio

    2014-10-13

    Spin orientation and relaxation of conduction band electrons in bulk Ge are addressed by studying the steady-state circular polarization of the indirect gap photoluminescence (PL) at low temperatures. This provides a direct experimental proof of recently predicted spin-dependent selection rules for phonon-mediated optical transitions in Ge. In addition, we observe valley-dependent circularly polarized emission, and map the concomitant redistribution of electron spins within the multi-valley conduction band of Ge by gaining simultaneous access to the circular dichroism of light emitted across the direct and the indirect gap transitions. Finally, the lifetime of L-valley electrons is measured by means of decay curves of the indirect gap PL emission, yielding spin relaxation times in the order of hundreds of ns.

  1. Electric field induced spin and valley polarization within a magnetically confined silicene channel

    SciTech Connect (OSTI)

    Liu, Yiman; Zhou, Xiaoying; Zhou, Ma; Zhou, Guanghui; Long, Meng-Qiu

    2014-12-28

    We study the electronic structure and transport properties of Dirac electrons along a channel created by an exchange field through the proximity of ferromagnets on a silicene sheet. The multiple total internal reflection induces localized states in the channel, which behaves like an electron waveguide. An effect of spin- and valley-filtering originating from the coupling between valley and spin degrees is predicted for such a structure. Interestingly, this feature can be tuned significantly by locally applying electric and exchange fields simultaneously. The parameter condition for observing fully spin- and valley-polarized current is obtained. These findings may be observable in todays' experimental technique and useful for spintronic and valleytronic applications based on silicene.

  2. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect (OSTI)

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  3. Nuclear Physics Long Range Plan | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Long Range Plan June 26, 2014 For a couple of years now, we have been waiting to get started on the next nuclear physics long range plan (LRP). What does that mean?...

  4. Viking Range: Order (2014-CE-23014)

    Broader source: Energy.gov [DOE]

    DOE ordered Viking Range, LLC to pay a $8,000 civil penalty after finding Viking Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  5. American Range: Order (2014-CE-23006)

    Broader source: Energy.gov [DOE]

    DOE ordered American Range Corporation to pay a $8,000 civil penalty after finding American Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  6. The Influence of Local Winds on the Spatial Distribution of Air Pollutants in an Alpine Valley Acknowledgements

    E-Print Network [OSTI]

    Gohm, Alexander

    The Influence of Local Winds on the Spatial Distribution of Air Pollutants in an Alpine Valley January 2006: (a) time series of various meteorological and air-pollution parameters (see axes labels (ABL) of the Inn Valley, Austria, during episodes of high air pollution (Fig. 1a). A dataset

  7. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  8. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect (OSTI)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K. [and others

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  9. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  10. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    for noble gas abundances and their helium isotropic compositions. It was found that the geothermal fluids range from 0.70 to 0.76 Ra, and approximately 7.5% of the total helium...

  11. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    estimated temperatures ranging from 240 to 273C, then flow laterally to the east and mix with cool groundwater that infiltrate and recharge the system along ring fractures and...

  12. California Red Scale and its Control in the Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Clark, S. W. (Sherman Wood); Friend, W. H. (William Heartsill)

    1932-01-01

    appli contl agail insec Th of tl pend; insect The California Red Scale is capable of doing such serious damage to citrus trees in the Lower Rio Grande Valley that its control, is one of the major problems of citrus fruit production... in this region. Environmental conditions are apparently so favorable for the de- velopment and multiplication of this insect that it is probably more active in the Valley than in any of the other citrus-producing areas of the United States. Infested host...

  13. Observations of Gap Flow in the Wipp Valley on 20 October 1999: Evidence of Subsidence TOMISLAV MARIC AND DALE R. DURRAN

    E-Print Network [OSTI]

    Frierson, Dargan

    Observations of Gap Flow in the Wipp Valley on 20 October 1999: Evidence of Subsidence TOMISLAV-foehn event that occurred on 20 October 1999 in the Wipp Valley is constructed. Down- stream of the gap observations of the above- surface flow in a narrow gap were finally obtained in the Wipp valley (Wipptal

  14. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.

  15. A Systematic Regional Trend in Helium Isotopes Across the NorthernBasin and Range Province, Western North America

    SciTech Connect (OSTI)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-03-22

    An extensive study of helium isotopes in fluids collectedfrom surface springs, fumaroles and wells across the northern Basin andRange Province reveals a systematic trend of decreasing 3He/4He ratiosfrom west to east. The western margin of the Basin and Range ischaracterized by mantle-like ratios (6-8 Ra) associated with active orrecently active crustal magma systems (e.g. Coso, Long Valley, Steamboat,and the Cascade volcanic complex). Moving towards the east, the ratiosdecline systematically to a background value of ~;0.1 Ra. The regionaltrend is consistent with extensive mantle melting concentrated along thewestern margin and is coincident with an east-to-west increase in themagnitude of northwest strain. The increase in shear strain enhancescrustal permeability resulting in high vertical fluid flow rates thatpreserve the high helium isotope ratios at the surface. Superimposed onthe regional trend are "helium spikes", local anomalies in the heliumisotope composition. These "spikes" reflect either local zones of mantlemelting or locally enhanced crustal permeability. In the case of theDixie Valley hydrothermal system, it appears to be a combination ofboth.

  16. Tonopah Test Range capabilities: technical manual

    SciTech Connect (OSTI)

    Manhart, R.L.

    1982-11-01

    This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

  17. Controlling the intracellular fate of cytosolic pathogens A PhD studentship based in the Section of Microbiology, Imperial College London.

    E-Print Network [OSTI]

    Controlling the intracellular fate of cytosolic pathogens A PhD studentship based in the Section College London is seeking applications for a PhD studentship for October 2012 entry under the supervision courses for PhD students in a range of transferable skills. This, along with the wealth of scientific

  18. 140 P. L. WALKER,JR.,J. I?. RAICSZAWSKIAND G. R. IMPERIAL Vol. 63 surface area (0.8 m."g.) as compared to that of the

    E-Print Network [OSTI]

    surface areas of the carbons show tl maxiinurn in the teni- perature range of ea. 500 to 576'. The atomic C-H ratio of the cnrboiis is found to increase monoton- ically with increasing formation- linity, surface area and C-H ratio. The properties of the carbon are found to be affected by the amount

  19. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  20. Supraglacial and proglacial valleys on Amazonian Mars Caleb I. Fassett a,*, James L. Dickson a

    E-Print Network [OSTI]

    Marchant, David R.

    . Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of glacial features based on both crater counts and strati- graphic constraints. The small scale