National Library of Energy BETA

Sample records for range geothermal system

  1. Numerical Modeling Of Basin And Range Geothermal Systems | Open...

    Open Energy Info (EERE)

    for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal...

  2. Characteristics of Basin and Range Geothermal Systems with Fluid...

    Open Energy Info (EERE)

    of 150-200C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap...

  3. Geothermal Resource Analysis And Structure Of Basin And Range...

    Open Energy Info (EERE)

    And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  4. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  5. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Info (EERE)

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  6. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  7. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  8. Nevada Test And Training Range Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Nevada Test And Training Range Geothermal Area Contents 1 Area Overview...

  9. Fallon Test Ranges Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information...

  10. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) ...

  11. Geothermal Literature Review At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  12. Nevada Test And Training Range Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Nevada Test And Training Range Geothermal Area (Redirected from Nevada Test And Training Range Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Nevada Test And...

  13. Blind Geothermal System | Open Energy Information

    Open Energy Info (EERE)

    Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a...

  14. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  15. China Lake South Range Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65,...

  16. Micro-Earthquake At Northwest Basin and Range Geothermal Region...

    Open Energy Info (EERE)

    Micro-Earthquake At Northwest Basin and Range Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At...

  17. Modeling of geothermal systems

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  18. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: A novel 2D VSP imaging technology and patented processing techniques will be used to create accurate, high-resolution reflection images of a classic Basin and Range fault system in a fraction of previous compute times.

  19. National Geothermal Data System (NGDS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of the National Geothermal Data System (NGDS), a platform for sharing geothermal technical data.

  20. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  1. National Geothermal Data System (NGDS) Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Data System (NGDS) Initiative National Geothermal Data System (NGDS) Initiative Geothermal energy in the subsurface is better understood through data visualization, as ...

  2. track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal Technologies Office portfolio presented fifty three technical project presentations on enhanced geothermal systems

  3. Systems Engineering; 2010 Geothermal Technology Program Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies ...

  4. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National Geothermal Data...

  5. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an​d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  6. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration Activity...

  7. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    SciTech Connect (OSTI)

    Ellis, Richard K.

    2013-01-01

    The Humboldt House-Rye Patch geothermal resource area (HH-RP) comprises approximately 12,000 acres along and west of the Humboldt Range, adjacent to the Rye Patch Reservoir (Figure 1). A Federal Geothermal Unit covers essentially all of the known shallow thermal anomaly at the site, and the Operator, Presco Energy, is in the process of completing wellfield development adjacent to the Rye Patch binary plant, a nominal 17-megawatt system in the southern Unit area (Figure 1). DOE award EE0002840, made under the auspices of the Geothermal Technologies Program, was originally approved in January of 2010, and used a VSP profiling technology to improve seismic imaging in the Basin and Range. Phase I field activities were conducted in the 3rd quarter of 2010, and both the Phase I report and a supplemental report were completed in March and April of 2011. Two targets were identified for tests of upflow structures, both using existing wellbores, originally the 51-21 and 52-28, in the Rye Patch wellfield. The Phase II validation was approved by DOE in May of 2011.

  8. OIT geothermal system improvements

    SciTech Connect (OSTI)

    Lienau, P.J.

    1996-08-01

    Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

  9. National Geothermal Data System - DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation | Department of Energy - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngds_gdr_general_presentation.pdf (2.17 MB) More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" Guidelines for Provision and Interchange of

  10. Dixie Valley - Geothermal Development in the Basin and Range...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie...

  11. Integrated Chemical Geothermometry System for Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemical Geothermometry System for Geothermal Exploration Integrated Chemical Geothermometry System for Geothermal Exploration DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracers_spycher_integrated_chemical.pdf (272.32 KB) More Documents & Publications Integrated Chemical Geothermometry System for Geothermal Exploration

  12. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  13. Enhanced Geothermal Systems Roadmap Workshops | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshops Enhanced Geothermal Systems Roadmap Workshops June 21, 2011 - 2:50pm Addthis Enhanced Geothermal Systems (EGS) are engineered or enhanced reservoirs created to...

  14. National Geothermal Data System Architecture Design, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System Architecture Design, Testing and Maintenance Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and ...

  15. American Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Austin, Texas Sector: Geothermal energy Product: Installer of geothermal heating and cooling technologies, also has a patented water to air heat pump system....

  16. Northern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Geothermal Area Raft River Geothermal Area Railroad Valley Geothermal Area Red River Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Sharkey Hot...

  17. Enhanced Geothermal Systems (EGS)- the Future of Geothermal Energy

    Broader source: Energy.gov [DOE]

    While the amount of conventional hydrothermal power worldwide has reached nearly 12 gigawatts, exponentially more geothermal resources can be accessed through next-generation technologies known as enhanced geothermal systems (EGS).

  18. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  19. track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional drilling and pressurized water to capture energy from resources that were once considered unrecoverable. Collaborative projects in this program seek to improve innovative technologies and speed commercial-scale deployment. The Energy Department pursues research in transformative science and

  20. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  1. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  2. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. Enhanced Geothermal Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Enhanced Geothermal Systems Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects. Newberry Volcano EGS Demonstration, Susan Petty, AltaRock Energy, Inc. Southwest Alaska Regional Geothermal Energy Project, Gary Friedmann, Naknek Electric Association New York Canyon Simulation, Bernard Raemy, Terra-Gen Power, LLC

  4. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal System (EGS) Fact Sheet Overview of Enhanced Geothermal Systems. PDF icon egsbasics.pdf More Documents &...

  5. Enhanced Geothermal Systems Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Webinar Enhanced Geothermal Systems Webinar The following presentations are from a Webinar conducted on July 15, 2009, that was hosted by the Geothermal Resources Council (GRC) and sponsored by the American Public Power Association, National Rural Electric Cooperative Associate, Western Area Power Administration, and U.S. Department of Energy Geothermal Technologies Office. The Webinar covered topics including federal enhanced geothermal systems (EGS) activities and

  6. Computerized international geothermal information systems

    SciTech Connect (OSTI)

    Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

    1980-03-01

    The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

  7. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells ...

  8. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells ...

  9. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range...

  10. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced ...

  11. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 ...

  12. Geographic Information Systems- Tools For Geotherm Exploration...

    Open Energy Info (EERE)

    Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Abstract Geographic information...

  13. An Evaluation of Enhanced Geothermal Systems Technology

    SciTech Connect (OSTI)

    Jelacic, Allan; Fortuna, Raymond; LaSala, Raymond; Nathwani, Jay; Nix, Gerald; Visser, Charles; Green, Bruce; Renner, Joel; Blankenship, Douglas; Kennedy, Mack; Bruton, Carol

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  14. Geographic Information System At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Exploration Activity...

  15. Boise geothermal district heating system

    SciTech Connect (OSTI)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  16. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  17. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash &...

  18. Geographic Information System At Nevada Test And Training Range...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada...

  19. Conceptual Models of Geothermal Systems - Introduction | Open...

    Open Energy Info (EERE)

    of any type of geothermal system is a clear definition and understanding of the nature and characteristics of the system in question. This is best achieved through the...

  20. National Geothermal Data System Design and Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System Design and Testing Principal Investigator Harold Blackman ... Other NGDS projects deal with system data development and population Our Project ...

  1. Away from the Range Front: Intra-Basin Geothermal Exploration...

    Open Energy Info (EERE)

    rock mechanical technologies from mining, geotechnical, and academic practice but novel to geothermal exploration, to locate blind geothermal resource upflow along faults...

  2. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  3. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energys Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  4. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  5. How an Enhanced Geothermal System Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems, offer great potential for dramatically expanding the use of geothermal energy. Present geothermal power generation comes from hydrothermal reservoirs, and is somewhat limited in geographic application to specific ideal places in the western U.S. This represents the 'low-hanging fruit' of geothermal energy potential. EGS

  6. track 1: systems analysis | geothermal 2015 peer review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy systems analysis | geothermal 2015 peer review track 1: systems analysis | geothermal 2015 peer review At the 2015 Peer Review in May, the Energy Department's Geothermal Technologies Office (GTO) introduced nine Energy Department-funded Systems Analysis projects for review. Research teams pursue and evaluate vital geothermal technical data that can help to locate geothermal reservoirs, target drilling, and tap geothermal systems for energy production. Innovative geothermal tools and

  7. Enhanced Geothermal Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The AltaRock Energy EGS demonstration project at Newberry Volcano, Oregon, leverages DOE funds to demonstrate engineered geothermal systems in a green field setting. Source:...

  8. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg Dictionary.png Enhanced Geothermal...

  9. DOE Announces Webinars on the National Geothermal Data System, Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy Benefits for Tribal Communities, and More | Department of Energy the National Geothermal Data System, Energy Efficiency and Renewable Energy Benefits for Tribal Communities, and More DOE Announces Webinars on the National Geothermal Data System, Energy Efficiency and Renewable Energy Benefits for Tribal Communities, and More January 24, 2014 - 10:01am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency

  10. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water ...

  11. Numerical Modelling of Geothermal Systems a Short Introduction...

    Open Energy Info (EERE)

    Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short...

  12. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a ...

  13. Active Geothermal Systems And Associated Gold Deposits In The...

    Open Energy Info (EERE)

    Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Active Geothermal Systems...

  14. Engineered Geothermal Systems Energy Return On Energy Investment...

    Office of Scientific and Technical Information (OSTI)

    Engineered Geothermal Systems Energy Return On Energy Investment Citation Details In-Document Search Title: Engineered Geothermal Systems Energy Return On Energy Investment You ...

  15. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report | Department of Energy California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_010_walters.pdf (182.53 KB) More Documents & Publications Concept Testing and Development at the Raft

  16. Systems Engineering; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_004_lowry.pdf (192.71 KB) More Documents & Publications Geothermal Electricity Technology Evaluation Model (GETEM) Development; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer

  17. Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal wells in order to install a closed-loop geothermal heating and cooling system. ... The district geothermal system is designed to be scalable, so that more buildings can be ...

  18. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    br Brophy br Model br Moeck br Beardsmore br Type br Volume br Geothermal br Region Mean br Reservoir br Temp br Mean br Capacity Abraham Hot Springs Geothermal Area Northern Basin...

  19. Enhanced Geothermal Systems Subprogram Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Subprogram Overview Enhanced Geothermal Systems Subprogram Overview This overview of GTP's Enhanced Geothermal Systems subprogram was given at the GTP Program Peer Review on May 18, 2010. overview_egs.pdf (681.23 KB) More Documents & Publications Stanford Geothermal Workshop - Geothermal Technologies Office Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  20. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced ...

  1. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  2. Classification of Geothermal Systems: A Possible Scheme | Open...

    Open Energy Info (EERE)

    of Geothermal Systems: A Possible Scheme Abstract Abstract unavailable. Author Subir K. Sanyal Conference Thirtieth Workshop on Geothermal Reservoir Engineering; Stanford,...

  3. Development of a plan to implement enhanced geothermal system...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end,...

  4. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Dixie Valley Geothermal Area (Nash & D., 1997)...

  5. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, ... of Research The Northwest Geysers EGS Demonstration Project has the goal of enhancing the ...

  6. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_022_queen.pdf (195.2 KB) More Documents & Publications Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer

  7. Creation of an Enhanced Geothermal System through Hydraulic and Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_009_rose.pdf (190.77 KB) More Documents & Publications Concept Testing and

  8. National Geothermal Data System: Transforming the Discovery, Access, and

    Office of Scientific and Technical Information (OSTI)

    Analytics of Data for Geothermal Exploration (Conference) | SciTech Connect Conference: National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Citation Details In-Document Search Title: National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California

  9. Enhanced Geothermal Systems Subprogram Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baker Hughes Oilfield Operations Inc. Texas Engineering Experiment Station Impact ... NakNek Electric Association ARRA NakNek, Alaska Raft River, ID Source: US Geothermal ...

  10. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  11. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect (OSTI)

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  12. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_031_horne.pdf (209.56 KB) More Documents & Publications Three-dimensional Modeling of Fracture Clusters in Geothermal

  13. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  14. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  15. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal Systems (EGS) are engineered reservoirs created to produce energy from geothermal resources that are otherwise not economical due to lack of water and/or permeability. EGS technology has the potential for accessing the earth's vast resources of heat located at depth to help meet the energy needs of the United States. Learn more about EGS from the Enhanced Geothermal Systems Fact Sheet below. Enhanced Geothermal Systems Fact Sheet

  16. Development of Enhanced Geothermal Systems Technologies Workshops |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development of Enhanced Geothermal Systems Technologies Workshops Development of Enhanced Geothermal Systems Technologies Workshops The following documents are from a series of four workshops held in 2007 that were intended to motivate facilitated discussion on technology gaps related to reservoir management and operations. The first presentation evaluated the assumptions set forth in the report by the Massachusetts Institute of Technology (MIT) titled The Future of

  17. Enhanced Geothermal Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Enhanced Geothermal Systems EGS-2-pager8-1 1.17.28 PM.jpg Steps to Develop Power Production at an EGS Site Step 1: Identify/Characterize a Site Develop a geologic model of a potential site via surface, geologic, geophysical, and remote sensing exploration. Assess the temperature gradient, permeability, in-situ stress directions of the resource, rock mechanical properties, and whether fluid is present. Determine if the necessary characteristics to create an EGS

  18. Energy Returned On Investment of Engineered Geothermal Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy Returned On Investment of Engineered Geothermal Systems Energy Returned On Investment of Engineered Geothermal Systems Project objective: Determine the Energy Returned on Investment (EROI) for electric power production of Engineered Geothermal Systems (EGS). analysis_mansure_eroi_egs.pdf (414.64 KB) More Documents & Publications GEOTHERMAL POWER GENERATION PLANT Development of an Improved Cement for Geothermal Wells Carbonation Mechanism of Reservoir Rock by

  19. Integrated Enhanced Geothermal Systems (EGS) research and development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Enhanced Geothermal Systems (EGS) research and development Integrated Enhanced Geothermal Systems (EGS) research and development February 21, 2014 - 2:59pm Addthis Open Date: 02/21/2014 Close Date: 04/30/2014 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0000842 Summary: Through this Funding Opportunity Announcement (FOA), the Geothermal Technologies Office's (GTO) Enhanced Geothermal Systems (EGS) Subprogram

  20. Away from the Range Front- Intra-Basin Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project highlights: Escalate mechanical and structural methods to build on; Push-core may optimize shallow drilling; & Over-coring stress measurement may reveal local stress.

  1. Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    The National Geothermal Data System is online open-source platform that facilitates the discovery and use of geothermal data. It will help address one of the greatest barriers to development and deployment of this promising clean energy source.

  2. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  3. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  4. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A ...

  5. Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report | Department of Energy Systems for EGS; 2010 Geothermal Technology Program Peer Review Report Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_026_normann.pdf (193.57 KB) More Documents & Publications Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report

  6. Town of Pagosa Springs geothermal heating system

    SciTech Connect (OSTI)

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  7. DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle® mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

  8. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    SciTech Connect (OSTI)

    Allison, Lee; Richard, Stephen; Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  9. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  10. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    SciTech Connect (OSTI)

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  11. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  12. National Geothermal Data System Architecture Design, Testing and Maintenance

    Broader source: Energy.gov [DOE]

    Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition, management, maintenance, and dissemination of geothermal and related data.

  13. GTP Adds Meeting on the National Geothermal Data System Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adds Meeting on the National Geothermal Data System Project to Peer Review GTP Adds Meeting on the National Geothermal Data System Project to Peer Review May 10, 2010 - 2:41pm...

  14. National Geothermal Data System Design and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Testing National Geothermal Data System Design and Testing National Geothermal Data System Design and Testing presentation at the April 2013 peer review meeting held in Denver, Colorado. ngds_peer2013.pdf (1.58 MB) More Documents & Publications AASG State Geological Survey How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" National Geothermal Data Systems Data Acquisition and Access

  15. EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions in Rural Community | Department of Energy Geothermal System Creates Jobs, Reduces Emissions in Rural Community EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community November 6, 2013 - 12:00am Addthis Utilizing funding from EERE and cost shares from other federal agencies, the City of West Union, Iowa, drilled geothermal wells in order to install a closed-loop geothermal heating and cooling system. The system is designed to serve 330,000

  16. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Massachusetts Institute of Technology (MIT). 2006. The future of geothermal energy. Cambridge, Massachusetts. Available: http:geothermal.inel.govpublications...

  17. Overview of the National Geothermal Data System (NGDS) and DOEs Geothermal Data Repository (GDR) node on the NGDS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Arlene F. Anderson Technology Manager Geothermal Technologies Office Overview of the National Geothermal Data System (NGDS) & Department of Energy's Geothermal Data Repository (GDR) node on the NGDS National Geothermal Data System (NGDS) User Interface NGDS is a catalog of documents and datasets that provide information about geothermal resources within the United States, including information from other parts of the world, used to:  Determine geothermal potential;  Guide exploration

  18. Ball State building massive geothermal system

    Broader source: Energy.gov [DOE]

    Ball State University is building America’s largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also “expand how America will define the use of geothermal technology on a district-wide scale,” and provide health benefits such as reducing asthma rates for Indiana residents, says Philip Sachtleben, Ball State’s associate vice president of governmental relations. The system will cool and heat nearly 50 buildings on Ball State’s Muncie, Ind., campus, replace four coal-burning boilers and span more than 600 acres. The switch to geothermal will save the university $2.2 million in fuel costs and cut its carbon footprint in half.

  19. Geothermal Energy Association Recognizes the National Geothermal Data System

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) announced today the winners of their 2014 GEA Honors, which recognizes companies, projects, and individuals who have demonstrated outstanding achievement in...

  20. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson ., Steingrmsson B., Sigmundsson F., Axelsson G., rmannsson H.,...

  1. DOE and Partners Test Enhanced Geothermal Systems Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada. EGS technology enhances the permeability of underground strata, typically by injecting water into the strata at high pressure. The concept was initially

  2. What is the National Geothermal Data System (NGDS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-03

    Overview of the National Geothermal Data System, a distributed, interoperable network of data repositories and state geological service providers from across the U.S. and the nation's leading academic geothermal centers.

  3. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  4. IEA-GIA ExCo - National Geothermal Data System and Online Tools

    Broader source: Energy.gov (indexed) [DOE]

    ... To advance remote temperature prediction ... Induced Seismicity in Enhanced Geothermal Systems Array Information Technology ... Geothermal Energy Conference * US Draft Induced ...

  5. National Geothermal Data System & Online Tools Presentation (IEA-GIA event)

    SciTech Connect (OSTI)

    Jay Nathwani

    2011-09-30

    Geothermal Technologies Program presentation by Jay Nathwani on the National Geothermal Data System, 9-30-2011.

  6. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Enhanced Geothermal Systems. egs_calpine_peer2013.pdf (3.1 MB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California EA-1733: Final Environmental Assessment Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

  7. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  8. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  9. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect (OSTI)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  10. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal DevelopmentThe Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  11. Three-Dimensional Geologic Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect (OSTI)

    Siler, Drew L; Mayhew, Brett; Faulds, James E

    2012-09-30

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94˚C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

  12. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  13. Sedimentary Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States...

  14. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal Geothermal Tara Camacho-Lopez 2016-03-16T19:31:15+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  15. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site....

  16. Geographic Information System At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site....

  17. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  18. Geothermal Heating and Cooling Systems Featured on NBC Nightly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York. Demand for these systems is growing; nationally, shipments of geothermal...

  19. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Blind...

  20. National Geothermal Data Systems Data Acquisition and Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and legacy data from ...

  1. Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field California by Mark Walters of Calpine and Patrick Dobson of Lawrence Berkeley National Laboratory for Engineered Geothermal Systems Demonstration Projects Track. Objective to create an Enhanced Geothermal System (EGS) by directly and systematically injecting low volumes of coldŽ water into NW Geysers high temperature zone (HTZ), similar to inadvertentlyŽ created EGS in the oldest Geysers production area to the southeast of the EGS demonstration area. Other objectives are to investigate how cold-water injection mechanically and chemically affects fractured high temperature rock systems; demonstrate the technology to monitor and validate stimulation and sustainability of such an EGS; and develop an EGS research field laboratory that can be used for testing EGS stimulation and monitoring technologies including new high temperature tools developed by others.

  2. National Geothermal Data Systems Data Acquisition and Access | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and legacy data from DOE-funded demonstration projects, the US Geological Survey, and other sources. analysis_snyder_ngds_data_acquisition.pdf (1.77 MB) More Documents & Publications National Geothermal Data System Architecture Design, Testing and Maintenance State Geological Survey Contributions to the National Geothermal Data

  3. Design and Implementation of Geothermal Energy Systems at West Chester

    Office of Scientific and Technical Information (OSTI)

    University (Technical Report) | SciTech Connect Design and Implementation of Geothermal Energy Systems at West Chester University Citation Details In-Document Search Title: Design and Implementation of Geothermal Energy Systems at West Chester University West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve

  4. Field Mapping At Northern Basin and Range Geothermal Region ...

    Open Energy Info (EERE)

    extension over broad areas of the northern Basin and Range. References Dumitru, T.; Miller, E.; Savage, C.; Gans, P.; Brown, R. (1 April 1993) Fission track evidence for...

  5. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Large Scale Geothermal Exchange System for Residential, Office...

    Open Energy Info (EERE)

    cool the project. To develop the geothermal exchange system, engineers at Madison-based Sustainable Engineering Group (SEG), collaborated with architects at Milwaukee-based...

  7. Reconnaissance geophysical studies of the geothermal system in...

    Open Energy Info (EERE)

    Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  8. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium...

  9. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Broader source: Energy.gov [DOE]

    Project Will Take Advantage of Abundant Water in Shallow Aquifer. Demonstrate Low Temperature GSHP System Design. Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits.

  10. Blind Geothermal System Exploration in Active Volcanic Environments...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical...

  11. Identification of a New Blind Geothermal System with Hyperspectral...

    Open Energy Info (EERE)

    a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search...

  12. Long Valley Caldera Geothermal and Magmatic Systems | Open Energy...

    Open Energy Info (EERE)

    Magmatic Systems Abstract Long Valley Caldera in eastern California has been explored for geothermal resources since the 1960s. Early shallow exploration wells (<300m) were located...

  13. Geographic Information System At Chena Geothermal Area (Holdmann...

    Open Energy Info (EERE)

    Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

  14. Creation of an Engineered Geothermal System through Hydraulic...

    Broader source: Energy.gov (indexed) [DOE]

    Project objectives: To create an Enhanced Geothermal System on the margin of the Cosofield through the hydraulic, thermal, andor chemical stimulation of one or more tight ...

  15. Understanding The Chena Hot Springs, Alaska, Geothermal System...

    Open Energy Info (EERE)

    The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. National Geothermal Data System Deployed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployed National Geothermal Data System Deployed In support of the Obama Administration's Open Data Policy, on May 28, 2014, the United States Department of Energy (DOE) announced ...

  17. Experience with the Development of Advanced Materials for Geothermal Systems

    SciTech Connect (OSTI)

    Sugama, T.; Butcher, T.; Ecker, L.

    2011-01-01

    This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

  18. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Project Summary. To study the transport and recovery of injected SiO2 nanoparticles ...

  19. A Brief Classification of Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library General: A Brief Classification of Geothermal Systems Author Paul Brophy Published GRC Annual Meeting, 2007 DOI Not Provided Check for DOI availability:...

  20. Structure of The Dixie Valley Geothermal System, a "Typical"...

    Open Energy Info (EERE)

    geothermal system have been debated for some time. The primary structural model ahs been a single fault with 54 dip. New data including a detailed gravity survey,...

  1. Final Report: Enhanced Geothermal Systems Technology Phase II...

    Open Energy Info (EERE)

    Systems Technology Phase II: Animas Valley, New Mexico Authors R.A. Cunniff and R.L. Bowers Published Lightning Dock Geothermal, Inc. Technical Report, 2003 DOI Not...

  2. Water Use in Enhanced Geothermal Systems (EGS): Geology of U...

    Office of Scientific and Technical Information (OSTI)

    Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies Citation Details In-Document Search Title: ...

  3. Enthalpy restoration in geothermal energy processing system

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  4. IEA-GIA ExCo - National Geothermal Data System and Online Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay...

  5. IEA-GIA ExCo - National Geothermal Data System and Online Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay ...

  6. Use of Tracers to Characterize Fractures in Engineered Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Use of Tracers to Characterize Fractures in Engineered Geothermal Systems Use of Tracers to Characterize Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic

  7. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems by Ernie Majer, James Nelson, Ann Robertson-Tait, Jean Savy, and Ivan Wong January 2012 | DOE/EE-0662 Cover Image Courtesy of Katie L. Boyle, Lawrence Berkeley National Laboratory i i Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Preface In June 2009, the New York Times published an article about the public fear of geothermal development causing earthquakes. The article

  8. Geothermal energy control system and method

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  9. AASG State Geothermal Data Repository for the National Geothermal Data System.

    Energy Science and Technology Software Center (OSTI)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  10. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" "The Future of Geothermal Energy" 3.0 3.1 3.2 "US DOE EERE Geothermal Technologies Program, Enhanced...

  11. An evaluation of enhanced geothermal systems technology

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    A review of the assumptions and conclusions of the DOE-sponsored 2006 MIT study on "The Future of Geothermal Energy" and an evaluation of relevant technology from the commercial geothermal industry.

  12. New Geothermal Data System Could Open Up Clean-Energy Reserves...

    Energy Savers [EERE]

    New Geothermal Data System Could Open Up Clean-Energy Reserves New Geothermal Data System Could Open Up Clean-Energy Reserves February 25, 2013 - 2:28pm Addthis New geothermal data...

  13. National Geothermal Data System Deployed to Serve Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    This data visualization shows how industry can model geologic features from free, open-source data through the National Geothermal Data System. In this fence diagram, Schlumberger utilized bottom hole temperatures from the National Geothermal Data Systems (NDGS) on-line platform to supplement subscription data temperatures used to create basin-wide 3D temperature models in Petrel Exploration and Production software.

  14. Geothermal energy control system and method

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  15. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While advanced EGS technologies are young and still under development, EGS has been ... of Technology (MIT). 2006. The future of geothermal energy. Cambridge, Massachusetts. ...

  16. National Geothermal Data System Architecture Design, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related information. * Partners - GeoHeat Center (Oregon Institute of Technology); Stanford Geothermal Program (Stanford Univ.); U.S. Geological Survey, Great Basin Center for...

  17. National Geothermal Data System (NGDS) Initiative | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Determine geothermal potential * Guide exploration and development * Make data-driven ... In addition, all DOE-funded projects are required to register their data in the NGDS, ...

  18. Geothermal system saving money at fire station | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    A geothermal heating and cooling system has enabled the substation to save taxpayers 15,000 annually when compared to a traditional system. The high temperature of the treatment...

  19. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne ...

  20. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect (OSTI)

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  1. Design, construction and evaluation of a simulated geothermal flow system

    SciTech Connect (OSTI)

    Mackanic, J.C.

    1980-07-28

    A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

  2. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren; Jelacic, Allan; Stillman, Greg; Hass, Eric

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  3. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  4. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  5. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  6. Geothermal Heating and Cooling Systems Featured on NBC Nightly News

    Broader source: Energy.gov [DOE]

    NBC Nightly News recently featured a story on geothermal heating and cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York.

  7. Geochemical characterization of geothermal systems in the Great...

    Open Energy Info (EERE)

    Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin...

  8. Co-Produced Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature...

  9. Enhanced Geothermal Systems: Comparing Water and CO2 as Heat...

    Office of Scientific and Technical Information (OSTI)

    ENHANCED GEOTHERMAL SYSTEMS (EGS): COMPARING WATER AND CO 2 AS HEAT TRANSMISSION FLUIDS ... with supercritical CO 2 instead of water as heat transmission fluid (D.W. Brown, 2000). ...

  10. Google.org Invests $10 Million in Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Google.org, the philanthropic arm of the search engine company, announced on August 19 that it is investing $10.25 million in Enhanced Geothermal Systems (EGS) technology.

  11. Geothermal System Saves Dollars, Makes Sense for Maryland Family

    Broader source: Energy.gov [DOE]

    Derwood, Maryland resident Chris Gearon shares how he used a tax credit from the Recovery Act to help upgrade the heating and cooling system in his home to a geothermal one helping him save money and energy.

  12. Evolution of a Mineralized Geothermal System, Valles Caldera...

    Open Energy Info (EERE)

    Journal Article: Evolution of a Mineralized Geothermal System, Valles Caldera, New Mexico Abstract The 20-km-diam Valles caldera formed at 1.13 Ma and had continuous...

  13. How to Utilize the National Geothermal Data System (NGDS) and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network with "Node-In-A-Box" How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" ngds-niab-webinar.pdf ...

  14. EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These grant funds will be used to close up their buildings-making them more energy efficient, as well as to offset the costs of hooking up to the geothermal system. All mini-grant ...

  15. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  16. Characterization of a geothermal system in the Upper Arkansas...

    Open Energy Info (EERE)

    of a geothermal system in the Upper Arkansas Valley Authors T. Blum, K. van Wijk, L. Liberty, M. Batzle, R. Krahenbuhl, A. Revil and R. Reynolds Conference Society of...

  17. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic Work in Geothermal Areas; Characterize Fractures/Faults. seismic_queen_seismic_fracture.pdf (1.38 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model Imaging,

  18. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  19. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, M.; Maghiar, T.

    1996-12-31

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  20. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect (OSTI)

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  1. State Geological Survey Contributions to the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Geological Survey Contributions to the National Geothermal Data System Principal Investigator M. Lee Allison Arizona Geological Survey Analysis, Data System and Education May 18, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. States providing data to NGDS 2 | US DOE Geothermal Program eere.energy.gov Overview RDC & QA Vision Data Compilation, Checking, Automation Review SOW Establish Regional Technical Centers PHASE 1: Data

  2. EA-1893: Canby Cascaded Geothermal Development System, Canby, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: This EA has been cancelled.

  3. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  4. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect (OSTI)

    Anderson, Ryan B; Faulds, James E

    2012-12-03

    Detailed geologic analyses have elucidated the kinematics, stress state, structural controls, and past surface activity of a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Reservation, western Nevada. The Emerson Pass area resides near the boundary of the Basin and Range and Walker Lane provinces and at the western edge of a broad left step or relay ramp between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The step-over provides a structurally favorable setting for deep circulation of meteoric fluids. Strata in the area are comprised of late Miocene to Pliocene sedimentary rocks and the middle Miocene Pyramid sequence mafic to intermediate volcanic rocks, all overlying Mesozoic metasedimentary and intrusive rocks. A thermal anomaly was discovered in Emerson Pass by use of 2-m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The 2-m temperature surveys define a north-south elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeast-striking normal fault. Although the active geothermal system is expressed solely as a soil heat anomaly, late Pleistocene travertine and tufa mounds, chalcedonic silica/calcite veins, and silica cemented Pleistocene lacustrine gravels indicate a robust geothermal system was active at the surface in the recent past. The geothermal system is controlled primarily by the broad step-over between two major range-bounding normal faults. In detail, the system likely results from enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and north-northeast-striking normal faults. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a west

  5. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems PI: Dr. Roland Gritto (Array IT) Presenter: Prof. Douglas Dreger (UC Berkeley) Project Officer: Lauren Boyd Total Project Funding: $1,455,251 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov * EGS operations rely on small-scale seismicity to delineate fracture extent, fracture type and pathways for water *

  6. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drilling and pressurized water to capture energy from ... science and engineering that the private sector ... (1.86 MB) Track3EGS3.6DeepSedimentarySystemsMoore-Al...

  7. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  8. Calc-silicate mineralization in active geothermal systems

    SciTech Connect (OSTI)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  9. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  10. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect (OSTI)

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  11. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  12. Ball State Completes Largest U.S. Ground-Source Geothermal System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ball State Completes Largest U.S. Ground-Source Geothermal System Ball State Completes Largest U.S. Ground-Source Geothermal System April 4, 2012 - 3:19pm Addthis Ball State ...

  13. National Geothermal Data System Demo 01-28-14 | Department of...

    Office of Environmental Management (EM)

    National Geothermal Data System Demo 01-28-14 ngds-webinar-azgs.pdf (3.02 MB) More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create ...

  14. First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy

    Broader source: Energy.gov [DOE]

    The Obama Administration's all-of-the-above energy strategy took a leap forward today with the Energy Department's announcement recognizing the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. This landmark accomplishment follows two other major DOE-funded technical achievements focused on demonstrating the commercial viability of EGS: The Calpine EGS demonstration at The Geysers in Middletown, California and the AltaRock project at Newberry Volcano near Bend, Oregon.

  15. Mathematical modeling of the behavior of geothermal systems under exploitation

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    1982-01-01

    Analytical and numerical methods have been used in this investigation to model the behavior of geothermal systems under exploitation. The work is divided into three parts: (1) development of a numerical code, (2) theoretical studies of geothermal systems, and (3) field applications. A new single-phase three-dimensional simulator, capable of solving heat and mass flow problems in a saturated, heterogeneous porous or fractured medium has been developed. The simulator uses the integrated finite difference method for formulating the governing equations and an efficient sparse solver for the solution of the linearized equations. In the theoretical studies, various reservoir engineering problems have been examined. These include (a) well-test analysis, (b) exploitation strategies, (c) injection into fractured rocks, and (d) fault-charged geothermal reservoirs.

  16. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect (OSTI)

    Anderson, Ryan B; Faulds, James E

    2013-10-27

    The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern end of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal fault

  17. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect (OSTI)

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  18. Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada

    SciTech Connect (OSTI)

    Anderson, Ryan B; Faulds, James E

    2012-09-30

    We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.

  19. GTP Adds Meeting on the National Geothermal Data System Project to Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    The design of the National Geothermal Data System (NGDS) was initiated in early fiscal year 2010 to address capturing and providing geothermal data to users -- researchers, industry, state and federal agencies, and the public.

  20. Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2005-01-19

    ''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability

  1. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  2. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mansure, Chip

    2012-01-01

    The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  3. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    SciTech Connect (OSTI)

    Richard,

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect (OSTI)

    William A. Challener

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its

  5. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984

    SciTech Connect (OSTI)

    Smith, K.

    1984-09-01

    This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

  6. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  7. New Geothermal Data System Could Open Up Clean-Energy Reserves

    Broader source: Energy.gov [DOE]

    New geothermal data could open up clean energy reserves nationwide. Scientific American reported that the National Geothermal Data System is helping to isolate geothermal prospects, with the goal of fully profiling geologic and geophysical aspects of these deep energy reserves, which will reduce costly investment by better targeting wells.

  8. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Type of Activity 2008 2009 Geothermal Heat Pump or System Design 17 17 Prototype Geothermal Heat Pump Development 12 13 Prototype Systems Geothermal Development 5 7 Wholesale ...

  9. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect (OSTI)

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  10. Geophysical Characterization of a Geothermal System Neal Hot...

    Open Energy Info (EERE)

    (Colwell, Et Al., 2012) Micro-Earthquake At Neal Hot Springs Geothermal Area (Nichols & Cole, 2010) Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London, 2011)...

  11. Overview Of The Lake City, California Geothermal System | Open...

    Open Energy Info (EERE)

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Areas (1) Lake City Hot...

  12. Hydrothermal model of the Momotombo geothermal system, Nicaragua

    SciTech Connect (OSTI)

    Verma, M.P.; Martinez, E.; Sanchez, M.; Miranda, K.; Gerardo, J.Y.; Araguas, L.

    1996-01-24

    The Momotombo geotherinal field is situated on the northern shore of Lake Managua at the foot of the active Momotombo volcano. The field has been producing electricity since 1983 and has an installed capacity of 70 MWe. The results of geological, geochemical and geophysical studies have been reported in various internal reports. The isotopic studies were funded by the International Atomic Energy Agency (IAEA), Vienna to develop a hydrothermal model of the geothermal system. The chemical and stable isotopic data (δ18O and δD) of the geothermal fluid suggest that the seasonal variation in the production characteristics of the wells is related to the rapid infiltration of local precipitation into the reservoir. The annual average composition of Na+, K+ and Mg2+ plotted on the Na- K-Mg triangular diagram presented by Giggenbach (1988) to identify the state of rock-water interaction in geothermal reservoirs, shows that the fluids of almost every well are shifting towards chemically immature water due to resenroir exploitation. This effect is prominent in wells Mt-2. Mt-12, Mt-22 and Mt-27. The local groundwaters including surface water from Lake Managua have much lower tritium concentrations than sonic of the geothermal well fluids, which have about 6 T.U. The high-tritium wells are located along a fault inferred froin a thermal anomaly. The tritium concentration is also higher in fluids from wells close to the lake. This could indicate that older local precipitation waters are stored in a deep layer within the lake and that they are infiltrating into the geothermal reservoir.

  13. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  14. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  15. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    SciTech Connect (OSTI)

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William; Eker, Erdinc; Baker, Reed; Augustine, Chad

    2015-09-02

    The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consisting of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide zonal

  16. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near

  17. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Broader source: Energy.gov [DOE]

    Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

  18. National Geothermal Data System State Submissions by Date (Appendix A-1-a)

    SciTech Connect (OSTI)

    Love, Diane

    2015-12-20

    This multipaged spreadsheet tracks submissions of all data records to the State Geological Survey Contributions to the National Geothermal Data System by state and by type.

  19. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid

    Broader source: Energy.gov [DOE]

    The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

  1. Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems

    Broader source: Energy.gov [DOE]

    Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mansure, Chip

    EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  3. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mansure, Chip

    2012-01-01

    EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  4. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  6. Engineered Geothermal Systems Energy Return On Energy Investment

    SciTech Connect (OSTI)

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use “efficiency” when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy – heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the “minimum” EROI an energy production system should have to be an asset rather than a liability.

  7. Estimating Well Costs for Enhanced Geothermal System Applications

    SciTech Connect (OSTI)

    K. K. Bloomfield; P. T. Laney

    2005-08-01

    The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

  8. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL/TP-5500-48765 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for

  9. IEA-GIA ExCo - National Geothermal Data System and Online Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay Nathwani at the September 30, 2011 IEA-GIA ExCo conference in London. gtp_iea-gia_presentation_nathwani_9-30-11.pdf (1.93 MB) More Documents & Publications International Partnership for Geothermal Technology - 2012 Peer Review Presentation Innovative Exploration Technologies Subprogram

  10. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.