While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

1

Micromachined silicon electrostatic chuck

An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

Anderson, R.A.; Seager, C.H.

1996-12-10T23:59:59.000Z

2

Electrostatically screened, voltage-controlled electrostatic chuck

Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

Klebanoff, Leonard Elliott (San Ramon, CA)

2001-01-01T23:59:59.000Z

3

Charles "Chuck" Farrar to receive DeMichele Award

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Farrar to receive DeMichele Award Charles "Chuck" Farrar to receive DeMichele Award The award is presented for demonstrated "exemplary service and support of promoting the science...

4

Searches for gravitational waves produced by coalescing black hole binaries with total masses $\\gtrsim25\\,$M$_\\odot$ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass $\\left( \\gtrsim25\\,\\mathrm{M}_\\odot \\right)$ parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown (IMR) of binary black holes with total mass between $25\\,$M$_\\odot$ and $100\\,$M$_\\odot$, we find sensitive volume improvements as high as $70_{\\pm 13}-109_{\\pm 11}$\\% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between $10\\,$M$_\\odot$ and $600\\,$M$_\\odot$, we find sensitive volume improvements as high as $61_{\\pm 4}-241_{\\pm 12}$\\% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.

Paul T. Baker; Sarah Caudill; Kari A. Hodge; Dipongkar Talukder; Collin Capano; Neil J. Cornish

2014-12-19T23:59:59.000Z

5

or mounted prior to the machining process taking place. Use the correct sized clamp or vise for the stockStandard Operating Procedure (SOP) Â Lathe Â· All stock must be properly secured in the lathe chuck the spindle work has the cup center imbedded; tail, stock and tool rests are securely clamped

Veiga, Pedro Manuel Barbosa

6

(full text from subscription database) May, Ernest R. "When Government Writes History." New Republic 23 ________________________________________________________ Book Zerby, Chuck. Devil's Details: A History of Footnotes. Montpelier: Invisible Cities Press, 2002 Article (full text from subscription database) Elliott, Stephen N., Nan Huai, and Andrew T. Roach

Kasman, Alex

7

........................................ . 6 Consumer Studies .................... ........... .. 11 EXPERIMENTAL PROCEDURE.......................................... .. 18 S a m p l i n g ..........................................................18 Foods L a b o r a t o r y... u r c e ............. ............... .............. .. 57 Table Page 8. Mean Squares for Influence of Animals Upon Eating Accept? ability of Left and Right Loin Steaks and Chuck Roasts . . . . 58 9. Mean Squares for Influence of Families Upon...

King, G. T. (General Tye)

1958-01-01T23:59:59.000Z

8

Lecture notes for a 'Part III' course 'Black Holes' given in DAMTP, Cambridge. The course covers some of the developments in Black Hole physics of the 1960s and 1970s.

P. K. Townsend

1997-07-04T23:59:59.000Z

9

White holes and eternal black holes

We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

Stephen D. H. Hsu

2011-11-16T23:59:59.000Z

10

The authors present a new technique for the design of approximation algorithms that can be viewed as a generalization of randomized rounding. They derive new or improved approximation guarantees for a class of generalized congestion problems such as multicast congestion, multiple TSP etc. Their main mathematical tool is a structural decomposition theorem related to the integrality gap of a relaxation.

CARR,ROBERT D.; VEMPALA,SANTOSH

2000-01-25T23:59:59.000Z

11

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.

David Kubiznak; Robert B. Mann

2014-04-08T23:59:59.000Z

12

Relativistic Random Phase Approximation At Finite Temperature

The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

Niu, Y. F. [State Key Laboratory for Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); Paar, N.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Meng, J. [State Key Laboratory for Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

2009-08-26T23:59:59.000Z

13

We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.

Xerxes D. Arsiwalla; Erik P. Verlinde

2009-02-02T23:59:59.000Z

14

This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping horizon which manifests temporally as separate horizons.

Sean A. Hayward

2009-02-28T23:59:59.000Z

15

We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

Valeri P. Frolov; Andrei V. Frolov

2014-12-30T23:59:59.000Z

16

The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency ...

Fontana, Peter R.; Srivastava, Rajendra P.

1973-06-01T23:59:59.000Z

17

Charged Schrodinger black holes

We construct charged and rotating asymptotically Schrödinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

Adams, Allan

18

Helical superconducting black holes

We construct novel static, asymptotically $AdS_5$ black hole solutions with Bianchi VII$_0$ symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have vanishing entropy and approach domain wall solutions that reveal homogenous, non-isotropic dual ground states with emergent scaling symmetry.

Aristomenis Donos; Jerome P. Gauntlett

2012-05-17T23:59:59.000Z

19

Two techniques for computing black hole entropy in generally covariant gravity theories including arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge approach introduced recently, and a field redefinition method developed in this paper. Wald's results are extended by establishing that his local geometric expression for the black hole entropy gives the same result when evaluated on an arbitrary cross-section of a Killing horizon (rather than just the bifurcation surface). Further, we show that his expression for the entropy is not affected by ambiguities which arise in the Noether construction. Using the Noether charge expression, the entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. Further, it is shown that the Killing horizon and surface gravity of a stationary black hole metric are invariant under field redefinitions of the metric of the form $\\bar{g}_{ab}\\equiv g_{ab} + \\Delta_{ab}$, where $\\Delta_{ab}$ is a tensor field constructed out of stationary fields. Using this result, a technique is developed for evaluating the black hole entropy in a given theory in terms of that of another theory related by field redefinitions. Remarkably, it is established that certain perturbative, first order, results obtained with this method are in fact {\\it exact}. The possible significance of these results for the problem of finding the statistical origin of black hole entropy is discussed.}

Ted Jacobson; Gungwon Kang; Robert C. Myers

1994-01-03T23:59:59.000Z

20

ar X iv :h ep -p h/ 05 11 12 8v 3 6 A pr 2 00 6 Black Holes at Accelerators Bryan Webber Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK In theories with large extra dimensions and TeV-scale gravity, black holes... 2000 3000 Missing ET (GeV) Ar bi tra ry S ca le p p ? QCD SUSY 5 TeV BH (n=6) 5 TeV BH (n=2) (PT > 600 GeV) (SUGRA point 5) Figure 10: Missing transverse energy for various processes at the LHC. 4.2. Event Characteristics Turning from single...

Webber, Bryan R

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

21

Random solutions of random problems...are not just random

Let I(n,m) denote a uniformly random instance of some constraint satisfaction problem CSP with n variables and m constraints. Assume that the density r=m/n is small enough so that with high probability I(n,m) has a solution, and consider the experiment of first choosing an instance I=I(n,m) at random, and then sampling a random solution sigma of I (if one exists). For many CSPs (e.g., k-SAT, k-NAE, or k-coloring), this experiment appears difficult both to implement and to analyze; in fact, for a large range of r, no efficient algorithm is known to even compute a single solution of I. In the present paper we show that for many CSPs the above experiment is essentially equivalent to first choosing a random assignment sigma to the n variables, and then drawing a random instance satisfied by sigma uniformly. In general, this second experiment is very easy to implement and amenable to a rigorous analysis. In fact, using this equivalence, we can analyze the solution space of random CSPs. Thus, we can achieve the lon...

Achlioptas, Dimitris

2008-01-01T23:59:59.000Z

22

Random walk in random environment: a dynamicist's approch

, equivalently: RW in a (quenched) disordered medium, or: Random walk in random environment (RWRE) Marco LenciRandom walk in random environment: a dynamicist's approch Marco Lenci Universit`a di Bologna RWRE #12;Random walk in random environment Random walk (RW): Point (particle, walker) travels on Zd

Liu, I-Shih

23

There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

2014-01-14T23:59:59.000Z

24

Black Hole Thermodynamics Today

A brief survey of the major themes and developments of black hole thermodynamics in the 1990's is given, followed by summaries of the talks on this subject at MG8 together with a bit of commentary, and closing with a look towards the future.

Ted Jacobson

1998-01-07T23:59:59.000Z

25

In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.

M. B. Altaie

2001-05-07T23:59:59.000Z

26

BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE

We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

Takahashi, Masaaki [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8542 (Japan); Takahashi, Rohta, E-mail: takahasi@phyas.aichi-edu.ac.j [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

2010-05-15T23:59:59.000Z

27

BGRR and HFBR Decommissioning Chuck Armitage

Operated 1950 Â 1968 Decommissioning actions completed: Â· Fuel removed (1972) Â· Primary air cooling fans in the pile Â the majority of the activity produces low energy beta radiation #12;7 Remote Graphite Removal Equipment #12;8 Remote Manipulator for Graphite Removal #12;9 Contamination Control Enclosure (CCE) #12

Homes, Christopher C.

28

Cooking with Beef Chuck Roast (Spanish)

Estados Unidos: asado de lomo y cuello de res), por Jenna Anding, Profesora Asociada y Extensionista Especialista en Nutrici?n, El Sistema Texas A&M. ambiente, puesto que aunque lo cocine puede causarle alguna enfermedad. Almacenamiento Mantenga la carne...?rvalo sobre un bollo. Producido por AgriLife Communications, El Sistema Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas AgriLife Extension Service est...

Anding, Jenna

2008-12-09T23:59:59.000Z

29

Supermassive black holes have generally been recognized as the most destructive force in nature. But in recent years, they have undergone a dramatic shift in paradigm. These objects may have been critical to the formation of structure in the early universe, spawning bursts of star formation and nucleating proto-galactic condensations. Possibly half of all the radiation produced after the Big Bang may be attributed to them, whose number is now known to exceed 300 million. The most accessible among them is situated at the Center of Our Galaxy. In the following pages, we will examine the evidence that has brought us to this point, and we will understand why many expect to actually image the event horizon of the Galaxy's central black hole within this decade.

Fulvio Melia

2007-05-10T23:59:59.000Z

30

It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

Clement, María E Gabach

2015-01-01T23:59:59.000Z

31

Black holes in massive gravity

We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...

Babichev, Eugeny

2015-01-01T23:59:59.000Z

32

According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

Gia Dvali; Cesar Gomez

2012-03-29T23:59:59.000Z

33

Two neutrino double $\\beta$ decay can create irremovable background even in high energy resolution detectors searching for neutrinoless double $\\beta$ decay due to random coincidence of $2\

D. M. Chernyak; F. A. Danevich; A. Giuliani; E. Olivieri; M. Tenconi; V. I. Tretyak

2013-01-17T23:59:59.000Z

34

Observational Evidence for Black Holes

Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly correlated with properties of their host galaxies, suggesting that these black holes, although extremely small in size, have a strong influence on the formation and evolution of entire galaxies. Spin parameters have recently been measured for a handful of black holes. Based on the data, there is an indication that the kinetic power of at least one class of relativistic jet ejected from accreting black holes may be correlated with black hole spin. If verified, it would suggest that these jets are powered by a generalized Penrose process mediated by magnetic fields.

Ramesh Narayan; Jeffrey E. McClintock

2014-07-20T23:59:59.000Z

35

Multicoloured Random Graphs: The Random Dynamics Program

The Random Dynamics program is a proposal to explain the origin of all symmetries, including Lorentz and gauge invariance without appeal to any fundamental invariance of the laws of nature, and to derive the known physical laws in such a way as to be almost unavoidable. C. D. Froggatt and H. B. Nielsen proposed in their book Origin of Symmetries, that symmetries and physical laws should arise naturally from some essentially random dynamics rather than being postulated to be exact. The most useful assumption of the program that can be made about the fundamental laws is taken to be that they are random and then to see how known physics like mechanics and relativity follow from them. It is believed that almost any model of these regularities would appear in some limit for example as energies become small. Almost all theories or models at the fundamental level could then explain known physics. We suggest how using the formalism and properties of random graphs might be useful in developing the theory, and point towards directions in which it can be more fully extended in future work.

Sam Tarzi

2014-07-15T23:59:59.000Z

36

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 MediaBrookhavenBlack Holes at

37

Random walks in random environment Tom Schmitz (MPI Leipzig)

Random walks in random environment Tom Schmitz (MPI Leipzig) The model of random walks in random environment (RWRE) originates from physical and biological sciences and describes a random motion in a disordered medium. We consider RWRE on the d-dimensional lattice. The jump probabil- ities are themselves

Thalmaier, Anton

38

Optical black holes and solitons

We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.

Shawn Westmoreland

2010-12-21T23:59:59.000Z

39

Entropy of Lovelock Black Holes

A general formula for the entropy of stationary black holes in Lovelock gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamiltonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon.

Ted Jacobson; Robert C. Myers

1993-05-06T23:59:59.000Z

40

I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.

R. B. Mann

1997-05-06T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

41

Bridges of Random Walks in a Random Environment

Feb 25, 2010 ... Bridges of Random Walks in a Random Environment. Jonathon Peterson. Cornell University. Department of Mathematics. Joint work with Nina ...

Jonathon Peterson

2010-02-19T23:59:59.000Z

42

Random testing can quickly generate many tests, is easy to implement, scales to large software applications, and reveals software errors. But it tends to generate many tests that are illegal or that exercise the same parts ...

Pacheco, Carlos, Ph.D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

43

Exponential Random Simplicial Complexes

Exponential random graph models have attracted significant research attention over the past decades. These models are maximum-entropy ensembles under the constraints that the expected values of a set of graph observables are equal to given values. Here we extend these maximum-entropy ensembles to random simplicial complexes, which are more adequate and versatile constructions to model complex systems in many applications. We show that many random simplicial complex models considered in the literature can be casted as maximum-entropy ensembles under certain constraints. We introduce and analyze the most general random simplicial complex ensemble $\\mathbf{\\Delta}$ with statistically independent simplices. Our analysis is simplified by the observation that any distribution $\\mathbb{P}(O)$ on any collection of objects $\\mathcal{O}=\\{O\\}$, including graphs and simplicial complexes, is maximum-entropy under the constraint that the expected value of $-\\ln \\mathbb{P}(O)$ is equal to the entropy of the distribution. W...

Zuev, Konstantin; Krioukov, Dmitri

2015-01-01T23:59:59.000Z

44

Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

James S. Graber

1999-08-10T23:59:59.000Z

45

Thermodynamics of regular black hole

We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2008-09-21T23:59:59.000Z

46

Black Hole Interior Mass Formula

We argue by explicit computations that, although the area product, horizon radii product, entropy product and \\emph {irreducible mass product} of the event horizon and Cauchy horizon are universal, the \\emph{surface gravity product}, \\emph{surface temperature product} and \\emph{Komar energy product} of the said horizons do not seem to be universal for Kerr-Newman (KN) black hole space-time. We show the black hole mass formula on the \\emph{Cauchy horizon} following the seminal work by Smarr\\cite{smarr} for the outer horizon. We also prescribed the \\emph{four} laws of black hole mechanics for the \\emph{inner horizon}. New definition of the extremal limit of a black hole is discussed.

Parthapratim Pradhan

2014-05-06T23:59:59.000Z

47

We study the Hawking process on lattices falling into static black holes. The motivation is to understand how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete time-translation symmetry we use analytical methods to establish that, for Killing frequency $\\omega$ and surface gravity $\\kappa$ satisfying $\\kappa\\ll\\omega^{1/3}\\ll 1$ in lattice units, the continuum Hawking spectrum is recovered. The low frequency outgoing modes arise from exotic ingoing modes with large proper wavevectors that "refract" off the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing frequency modes into low frequency outgoing modes.

Steven Corley; Ted Jacobson

1998-03-26T23:59:59.000Z

48

The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).

A. Brotas

2006-09-01T23:59:59.000Z

49

A discrete fractional random transform

We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.

Zhengjun Liu; Haifa Zhao; Shutian Liu

2006-05-20T23:59:59.000Z

50

Random Walks with Lookahead in Power Law Random Graphs

1 Random Walks with Lookahead in Power Law Random Graphs Milena Mihail Amin Saberi Prasad Tetali Georgia Institute of Technology Email: mihail, saberi¡ @cc.gatech.edu tetali@math.cc.gatech.edu Abstract

Mihail, Milena

51

Energy on black hole spacetimes

We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

Alejandro Corichi

2012-07-18T23:59:59.000Z

52

Device Independent Random Number Generation

Randomness is an invaluable resource in today's life with a broad use reaching from numerical simulations through randomized algorithms to cryptography. However, on the classical level no true randomness is available and even the use of simple quantum devices in a prepare-measure setting suffers from lack of stability and controllability. This gave rise to a group of quantum protocols that provide randomness certified by classical statistical tests -- Device Independent Quantum Random Number Generators. In this paper we review the most relevant results in this field, which allow the production of almost perfect randomness with help of quantum devices, supplemented with an arbitrary weak source of additional randomness. This is in fact the best one could hope for to achieve, as with no starting randomness (corresponding to no free will in a different concept) even a quantum world would have a fully deterministic description.

Mataj Pivoluska; Martin Plesch

2015-02-23T23:59:59.000Z

53

Hawking Emission and Black Hole Thermodynamics

A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

Don N. Page

2006-12-18T23:59:59.000Z

54

On the nature of black hole entropy

I argue that black hole entropy counts only those states of a black hole that can influence the outside, and attempt (with only partial success) to defend this claim against various objections, all but one coming from string theory. Implications for the nature of the Bekenstein bound are discussed, and in particular the case for a holographic principle is challenged. Finally, a generalization of black hole thermodynamics to "partial event horizons" in general spacetimes without black holes is proposed.

Ted Jacobson

2000-01-13T23:59:59.000Z

55

Random Selection for Drug Screening

Simple random sampling is generally the starting point for a random sampling process. This sampling technique ensures that each individual within a group (population) has an equal chance of being selected. There are a variety of ways to implement random sampling in a practical situation.

Center for Human Reliability Studies

2007-05-01T23:59:59.000Z

56

Time (hole?) machines John Byron Manchak

Time (hole?) machines John Byron Manchak Department of Philosophy, University of Washington, Box machines Hole machines Time travel General relativity a b s t r a c t Within the context of general relativity, we consider a type of "time machine" and introduce the related "hole machine". We review what

Manchak, John

57

High precision, rapid laser hole drilling

A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

2013-04-02T23:59:59.000Z

58

Absorption cross section in Lifshitz black hole

We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.

Taeyoon Moon; Yun Soo Myung

2012-10-05T23:59:59.000Z

59

Accelerated Randomized Benchmarking

Quantum information processing offers promising advances for a wide range of fields and applications, provided that we can efficiently assess the performance of the control applied in candidate systems. That is, we must be able to determine whether we have implemented a desired gate, and refine accordingly. Randomized benchmarking reduces the difficulty of this task by exploiting symmetries in quantum operations. Here, we bound the resources required for benchmarking and show that, with prior information, we can achieve several orders of magnitude better accuracy than in traditional approaches to benchmarking. Moreover, by building on state-of-the-art classical algorithms, we reach these accuracies with near-optimal resources. Our approach requires an order of magnitude less data to achieve the same accuracies and to provide online estimates of the errors in the reported fidelities. We also show that our approach is useful for physical devices by comparing to simulations. Our results thus enable the application of randomized benchmarking in new regimes, and dramatically reduce the experimental effort required to assess control fidelities in quantum systems. Finally, our work is based on open-source scientific libraries, and can readily be applied in systems of interest.

Christopher Granade; Christopher Ferrie; D. G. Cory

2014-04-21T23:59:59.000Z

60

SYSTEMS OF ONE-DIMENSIONAL RANDOM WALKS IN A COMMON RANDOM ENVIRONMENT

SYSTEMS OF ONE-DIMENSIONAL RANDOM WALKS IN A COMMON RANDOM ENVIRONMENT JONATHON PETERSON Abstract. We consider a system of independent one-dimensional random walks in a common random environment under-dimensional random walks in a common random environment. We modify the standard notion of random walks in random

Peterson, Jonathon

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

61

Black Hole Evaporation as a Nonequilibrium Process

When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.

Hiromi Saida

2008-11-11T23:59:59.000Z

62

Central Limit Theorem for Branching Random Walks in Random Environment

We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d \\ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.

Nobuo Yoshida

2007-12-05T23:59:59.000Z

63

Accelerating and rotating black holes

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

64

Down hole periodic seismic generator

A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

65

Black Hole Thermodynamics and Electromagnetism

We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

Burra G. Sidharth

2005-07-15T23:59:59.000Z

66

BSW process of the slowly evaporating charged black hole

In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

Liancheng Wang; Feng He; Xiangyun Fu

2015-02-09T23:59:59.000Z

67

Entanglement entropy of black holes

The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Sergey N. Solodukhin

2011-04-19T23:59:59.000Z

68

Quantum Geometry and Black Holes

We present an overall picture of the advances in the description of black hole physics from the perspective of loop quantum gravity. After an introduction that discusses the main conceptual issues we present some details about the classical and quantum geometry of isolated horizons and their quantum geometry and then use this scheme to give a natural definition of the entropy of black holes. The entropy computations can be neatly expressed in the form of combinatorial problems solvable with the help of methods based on number theory and the use of generating functions. The recovery of the Bekenstein-Hawking law and corrections to it is explained in some detail. After this, due attention is paid to the discussion of semiclassical issues. An important point in this respect is the proper interpretation of the horizon area as the energy that should appear in the statistical-mechanical treatment of the black hole model presented here. The chapter ends with a comparison between the microscopic and semiclassical app...

G., J Fernando Barbero

2015-01-01T23:59:59.000Z

69

Charged spinning black holes as particle accelerators

It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)

2010-11-15T23:59:59.000Z

70

Stretched Polymers in Random Environment

We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.

Dmitry Ioffe; Yvan Velenik

2011-03-01T23:59:59.000Z

71

Entanglement in Fock space of random QFT states

Entanglement in random states has turned into a useful approach to quantum thermalization and black hole physics. In this article, we refine and extend the `random unitaries framework' to quantum field theories (QFT), and to include conserved charges. We show that in QFT, the connection between typical states, reduced subsystems and thermal dynamics is more transparent within the Fock basis. We provide generic formulae for the typical reduced density matrices and entanglement entropies of any given subset of particles. To illustrate our methods, we apply the generic framework to the simplest but non trivial cases, a massless scalar field in two dimensions and its generalization to the case of N scalar fields, including the large N limit. We find the effective temperature, by matching the reduced dynamics to a Gibbs ensemble, and derive the equation of state of the QFT. The deviations from perfect thermality are shown to be of order 1/S instead of exp(-S), a result which might be relevant for black hole physic...

Magan, Javier M

2015-01-01T23:59:59.000Z

72

COMPUTING THE DRIFT OF RANDOM WALKS IN DEPENDENT RANDOM ENVIRONMENTS

new theory and methodology for the computation of the drift of the random walk for various depen- dent for RWREs was laid by Solomon [13], who proved conditions for recurrence/transience for one with independent random environments. The purpose of this paper is to develop theory and methodology

Kroese, Dirk P.

73

Packing Hamilton Cycles in Random and Pseudo-Random Hypergraphs

Packing Hamilton Cycles in Random and Pseudo-Random Hypergraphs Alan Frieze Michael Krivelevich February 16, 2011 Abstract We say that a k-uniform hypergraph C is a Hamilton cycle of type , for some 1 Hamilton cycles. A slightly weaker result is given for = k/2. We also provide sufficient conditions

Krivelevich, Michael

74

Dirac Quasinormal modes of MSW black holes

In this paper we study the Dirac quasinormal modes of an uncharged 2 + 1 black hole proposed by Mandal et. al and referred to as MSW black hole in this work. The quasi- normal mode is studied using WKB approximation method. The study shows that the imaginary part of quasinormal frequencies increases indicating that the oscillations are damping and hence the black hole is stable against Dirac perturbations.

Sebastian, Saneesh

2014-01-01T23:59:59.000Z

75

Dirac Quasinormal modes of MSW black holes

In this paper we study the Dirac quasinormal modes of an uncharged 2 + 1 black hole proposed by Mandal et. al and referred to as MSW black hole in this work. The quasi- normal mode is studied using WKB approximation method. The study shows that the imaginary part of quasinormal frequencies increases indicating that the oscillations are damping and hence the black hole is stable against Dirac perturbations.

Saneesh Sebastian; V. C. Kuriakose

2014-01-15T23:59:59.000Z

76

Black hole entropy: inside or out?

A trialogue. Ted, Don, and Carlo consider the nature of black hole entropy. Ted and Carlo support the idea that this entropy measures in some sense ``the number of black hole microstates that can communicate with the outside world.'' Don is critical of this approach, and discussion ensues, focusing on the question of whether the first law of black hole thermodynamics can be understood from a statistical mechanics point of view.

Ted Jacobson; Donald Marolf; Carlo Rovelli

2005-01-14T23:59:59.000Z

77

Spinning Black Holes as Particle Accelerators

It has recently been pointed out that particles falling freely from rest at infinity outside a Kerr black hole can in principle collide with arbitrarily high center of mass energy in the limiting case of maximal black hole spin. Here we aim to elucidate the mechanism for this fascinating result, and to point out its practical limitations, which imply that ultra-energetic collisions cannot occur near black holes in nature.

Ted Jacobson; Thomas P. Sotiriou

2010-01-21T23:59:59.000Z

78

Probing the Constituent Structure of Black Holes

We calculate the cross section for scattering processes between graviton emitters on the near side of a Schwarzschild surface and absorbers on its far side, that is black hole constituents. We show that these scatterings allow to directly extract structural observables such as the momentum distribution of black hole constituents. For this we employ a quantum bound state description originally developed in quantum chromodynamics and recently applied to general relativity that allows to consider black holes in a relativistic Hartree like framework.

Lukas Gruending; Stefan Hofmann; Sophia Müller; Tehseen Rug

2014-12-12T23:59:59.000Z

79

Electromagnetic Beams Overpass the Black Hole Horizon

We show that the electromagnetic excitations of the Kerr black hole have very strong back reaction on metric. In particular, the electromagnetic excitations aligned with the Kerr congruence form the light-like beams which overcome horizon, forming the holes in it, which allows matter to escape interior. So, there is no information lost inside the black hole. This effect is based exclusively on the analyticity of the algebraically special solutions.

Alexander Burinskii

2008-06-16T23:59:59.000Z

80

Remarks on Renormalization of Black Hole Entropy

We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.

Sang Pyo Kim; Sung Ku Kim; Kwang-Sup Soh; Jae Hyung Yee

1996-07-07T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

81

Absorption cross section of RN black hole

The behavior of a charged scalar field in the RN black hole space time is studied using WKB approximation. In the present work it is assumed that matter waves can get reflected from the event horizon. Using this effect, the Hawking temperature and the absorption cross section for RN black hole placed in a charged scalar field are calculated. The absorption cross section $\\sigma _{abs}$ is found to be inversely proportional to square of the Hawking temperature of the black hole.

Sini R.; V. C. Kuriakose

2007-08-23T23:59:59.000Z

82

Black holes with massive graviton hair

No-hair theorems exclude the existence of nontrivial scalar and massive vector hair outside four-dimensional, static, asymptotically flat black-hole spacetimes. We show, by explicitly building nonlinear solutions, that black holes can support massive graviton hair in theories of massive gravity. These hairy solutions are, most likely, the generic end state of the recently discovered monopole instability of Schwarzschild black holes in massive graviton theories.

Richard Brito; Vitor Cardoso; Paolo Pani

2013-09-03T23:59:59.000Z

83

Bounded Randomness Paul Brodhead1

kmng@ntu.edu.sg Abstract. We introduce some new variations of the notions of being Martin-LÂ¨of random effective betting, effective regularities or effective compression. Exactly what we mean here by "effective to calibrate no- tions of randomness by varying the notion of effectivity. For example, classical Martin

Ng, Keng Meng "Selwyn"

84

Random Curves by Conformal Welding

We construct a conformally invariant random family of closed curves in the plane by welding of random homeomorphisms of the unit circle given in terms of the exponential of Gaussian Free Field. We conjecture that our curves are locally related to SLE$(\\kappa)$ for $\\kappa<4$.

Astala, K; Kupiainen, A; Saksman, E

2009-01-01T23:59:59.000Z

85

Random Curves by Conformal Welding

We construct a conformally invariant random family of closed curves in the plane by welding of random homeomorphisms of the unit circle given in terms of the exponential of Gaussian Free Field. We conjecture that our curves are locally related to SLE$(\\kappa)$ for $\\kappa<4$.

K. Astala; P. Jones; A. Kupiainen; E. Saksman

2009-12-17T23:59:59.000Z

86

Better Randomness with Single Photons

Randomness is one of the most important resources in modern information science, since encryption founds upon the trust in random numbers. Since it is impossible to prove if an existing random bit string is truly random, it is relevant that they be generated in a trust worthy process. This requires specialized hardware for random numbers, for example a die or a tossed coin. But when all input parameters are known, their outcome might still be predicted. A quantum mechanical superposition allows for provably true random bit generation. In the past decade many quantum random number generators (QRNGs) were realized. A photonic implementation is described as a photon which impinges on a beam splitter, but such a protocol is rarely realized with non-classical light or anti-bunched single photons. Instead, laser sources or light emitting diodes are used. Here we analyze the difference in generating a true random bit string with a laser and with anti-bunched light. We show that a single photon source provides more r...

Oberreiter, Lukas

2014-01-01T23:59:59.000Z

87

Destroying black holes with test bodies

If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

Ted Jacobson; Thomas P. Sotiriou

2010-06-09T23:59:59.000Z

88

Mineral Test Hole Regulatory Act (Tennessee)

Broader source: Energy.gov [DOE]

The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator,...

89

Lower Dimensional Black Holes: Inside and Out

I survey the physics of black holes in two and three spacetime dimensions, with special attention given to an understanding of their exterior and interior properties.

R. B. Mann

1995-01-27T23:59:59.000Z

90

Black Holes: from Speculations to Observations

This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.

Thomas W. Baumgarte

2006-04-13T23:59:59.000Z

91

We show that scalar hair can be added to rotating, vacuum black holes of general relativity. These hairy black holes (HBHs) clarify a lingering question concerning gravitational solitons: if a black hole can be added at the centre of a boson star, as it typically can for other solitons. We argue that it can, but only if it is spinning. The existence of such HBHs is related to the Kerr superradiant instability triggered by a massive scalar field. This connection leads to the following conjecture: a (hairless) black hole which is afflicted by the superradiant instability of a given field must allow hairy generalizations with that field.

Herdeiro, Carlos A R

2014-01-01T23:59:59.000Z

92

Coherent instabilities in random lasers

A numerical study is presented of random lasers as a function of the pumping rate above the threshold for lasing. Depending on the leakiness of the system resonances, which is typically larger in random lasers compared to conventional lasers, we observe that the stationary lasing regime becomes unstable above a second threshold. Coherent instabilities are observed as self pulsation at a single frequency of the output intensity, population inversion, as well as the atomic polarization. We find these Rabi oscillations have the same frequency everywhere in the random laser despite the fact that the field intensity strongly depends on the spatial location.

Andreasen, Jonathan; Sebbah, Patrick; Vanneste, Christian [Laboratoire de Physique de la Matiere Condensee, CNRS UMR 6622, Universite de Nice-Sophia Antipolis, Parc Valrose, F-06108, Nice Cedex 02 (France)

2011-08-15T23:59:59.000Z

93

Energy conservation for dynamical black holes

An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role for dynamical black holes which the stationary Killing vector plays for stationary black holes. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy-supply and work terms, as in the first law of thermodynamics. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation, with a similar form to the so-called first law for stationary black holes.

Sean A. Hayward

2004-08-03T23:59:59.000Z

94

Quantum Entropy of Charged Rotating Black Holes

I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.

R. B. Mann

1996-07-10T23:59:59.000Z

95

Black holes cannot support conformal scalar hair

It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.

T. Zannias

1994-09-14T23:59:59.000Z

96

Topological Black Holes in Quantum Gravity

We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.

J. Kowalski-Glikman; D. Nowak-Szczepaniak

2000-07-31T23:59:59.000Z

97

Phosphine Oxide Based Electron Transporting and Hole Blocking...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Phosphine Oxide Based Electron Transporting and Hole Blocking...

98

T-623: HP Business Availability Center Input Validation Hole...

Broader source: Energy.gov (indexed) [DOE]

3: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site...

99

Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

100

Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

holes Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGradientHolesAtWaunitaHotSpringsGeothermalArea(Zacharakis,1981)&oldid762...

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

101

Black hole and holographic dark energy

We discuss the connection between black hole and holographic dark energy. We examine the issue of the equation of state (EOS) for holographic energy density as a candidate for the dark energy carefully. This is closely related to the EOS for black hole, because the holographic dark energy comes from the black hole energy density. In order to derive the EOS of a black hole, we may use its dual (quantum) systems. Finally, a regular black hole without the singularity is introduced to describe an accelerating universe inside the cosmological horizon. Inspired by this, we show that the holographic energy density with the cosmological horizon as the IR cutoff leads to the dark energy-dominated universe with $\\omega_{\\rm \\Lambda}=-1$.

Yun Soo Myung

2007-04-11T23:59:59.000Z

102

Black Hole Thermodynamics Based on Unitary Evolutions

In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ cannot be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's "first law" cannot be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

Feng, Yu-Lei

2015-01-01T23:59:59.000Z

103

An electromagnetic black hole made of metamaterials

Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

Cheng, Qiang

2009-01-01T23:59:59.000Z

104

Black holes in Asymptotically Safe Gravity

Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.

Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca

2015-01-01T23:59:59.000Z

105

Black Hole Superradiance in Dynamical Spacetime

We study the superradiant scattering of gravitational waves by a nearly extremal black hole (dimensionless spin $a=0.99$) by numerically solving the full Einstein field equations, thus including backreaction effects. This allows us to study the dynamics of the black hole as it loses energy and angular momentum during the scattering process. To explore the nonlinear phase of the interaction, we consider gravitational wave packets with initial energies up to $10%$ of the mass of the black hole. We find that as the incident wave energy increases, the amplification of the scattered waves, as well as the energy extraction efficiency from the black hole, is reduced. During the interaction the apparent horizon geometry undergoes sizable nonaxisymmetric oscillations. The largest amplitude excitations occur when the peak frequency of the incident wave packet is above where superradiance occurs, but close to the dominant quasinormal mode frequency of the black hole.

William E. East; Fethi M. Ramazano?lu; Frans Pretorius

2014-03-14T23:59:59.000Z

106

Random Selection for Drug Screening

Sampling is the process of choosing some members out of a group or population. Probablity sampling, or random sampling, is the process of selecting members by chance with a known probability of each individual being chosen.

Center for Human Reliability Studies

2007-05-01T23:59:59.000Z

107

RANDOM WALK IN RANDOM ENVIRONMENT IN A TWO-DIMENSIONAL STRATIFIED MEDIUM WITH ORIENTATIONS

RANDOM WALK IN RANDOM ENVIRONMENT IN A TWO-DIMENSIONAL STRATIFIED MEDIUM WITH ORIENTATIONS ALEXIS oriented lattices, random walk in random environment, random walk in random scenery, functional limit-00634636,version2-24Nov2012 #12;RWRE IN A STRATIFIED ORIENTED MEDIUM 2 We denote by E and E

Paris-Sud XI, UniversitÃ© de

108

STOCHASTIC VARIABILITY IN X-RAY EMISSION FROM THE BLACK HOLE BINARY GRS 1915+105

We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic timescales, for each observation based on multiple 2500 s continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.

Polyakov, Yuriy S. [USPolyResearch, Ashland, PA 17921 (United States); Neilsen, Joseph [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Timashev, Serge F., E-mail: ypolyakov@uspolyresearch.com [Karpov Institute of Physical Chemistry, Moscow 103064 (Russian Federation)

2012-06-15T23:59:59.000Z

109

Localization for Branching Random Walks in Random Environment

We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d \\ge 3$ and the environment is "not too random", then, the total population grows as fast as its expectation with strictly positive probability. If,on the other hand, $d \\le 2$, or the environment is ``random enough", then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of "replica overlap". We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.

Yueyun Hu; Nobuo Yoshida

2007-12-05T23:59:59.000Z

110

Thermodynamics of Dyonic Lifshitz Black Holes

Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.

Tobias Zingg

2011-07-15T23:59:59.000Z

111

Some remarks on black hole thermodynamics

Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

R. Y. Chiao

2011-02-04T23:59:59.000Z

112

Spectroscopy and Thermodynamics of MSW Black Hole

We study the thermodynamics and spectroscopy of a 2+1 dimensional black hole pro- posed by Mandal et. al1 . We put the background space time in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc are obtained. The adiabatic invariant for the black hole is found out and quantized using Bohr-Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be h bar

Sebastian, Saneesh

2013-01-01T23:59:59.000Z

113

Spectroscopy and Thermodynamics of MSW Black Hole

We study the thermodynamics and spectroscopy of a 2+1 dimensional black hole pro- posed by Mandal et. al1 . We put the background space time in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc are obtained. The adiabatic invariant for the black hole is found out and quantized using Bohr-Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be h bar

Saneesh Sebastian; V. C. Kuriakose

2013-09-02T23:59:59.000Z

114

Slim Holes for Small Power Plants

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

115

Black hole hair in higher dimensions

We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires this kind of matter has an equation of state (\\omega\\equiv p_r/\\rho=-1/(1+2kn), k,n\\in \\mathbb{N}), which seems to be independent of D. However, when we associate this with specific models, some interesting limits on space could be found: (i)(D=2+2kn) while the black hole is surrounded by cosmic strings; (ii)the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D=4 is special.

Chao Cao; Yi-Xin Chen; Jian-Long Li

2008-04-02T23:59:59.000Z

116

Black hole evolution: I. Supernova-regulated black hole growth

The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of an archetypical group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled...

Dubois, Yohan; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

2015-01-01T23:59:59.000Z

117

Thermodynamics of Schwarzschild-de Sitter black hole: thermal stability of Nariai black hole

We study thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization, and does not favor the Bousso-Hawking normalization.

Yun Soo Myung

2008-03-28T23:59:59.000Z

118

Phase transitions and Geometrothermodynamics of Regular black holes

In this paper we study the thermodynamics and state space geometry of regular black hole solutions such as Bardeen black hole, Ay\\'{o}n-Beato and Garc\\'{i}a black hole, Hayward black hole and Berej-Matyjasek-Trynieki-Wornowicz black hole. We find that all these black holes show second order thermodynamic phase transitions(SOTPT) by observing discontinuities in heat capacity-entropy graphs as well as the cusp type double point in free energy-temperature graph. Using the formulation of geometrothermodynamics we again find the singularities in the heat capacity of the black holes by calculating the curvature scalar of the Legendre invariant metric.

R. Tharanath; Jishnu Suresh; V. C. Kuriakose

2014-06-16T23:59:59.000Z

119

Anosov maps with rectangular holes. Nonergodic cases.

Ingenier'ia. Universidad de la Rep'ublica C.C. 30, Montevideo, Uruguay EÂmail: roma@fing.edu.uy; Fax: (598 Partially supported by CONICYT (Uruguay). 1 #12; Running head: Anosov maps with rectangular holes Address

120

Radioactive hot cell access hole decontamination machine

Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

Simpson, William E. (Richland, WA)

1982-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

121

Hole Coupling Resonator for Free Electron Lasers

3. Total round-trip power loss, coupling efficiency and themicron. Total round-trip power loss and coupling efficiencythe total fractional power loss per round trip, the hole

Xie, M.

2011-01-01T23:59:59.000Z

122

Energy of 4-Dimensional Black Hole, etc

In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.

Dmitriy Palatnik

2011-07-18T23:59:59.000Z

123

Topological Black Holes -- Outside Looking In

I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.

R. B. Mann

1997-09-15T23:59:59.000Z

124

Tucker Wireline Open Hole Wireline Logging

The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic, and Density-Porosity.

Milliken, M.

2002-05-23T23:59:59.000Z

125

Horizon Operator Approach to Black Hole Quantization

The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\

G. 't Hooft

1994-02-21T23:59:59.000Z

126

Towards Black Hole Entropy in Shape Dynamics

Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.

Gabriel Herczeg; Vasudev Shyam

2014-10-21T23:59:59.000Z

127

Random-walk in Beta-distributed random environment

We introduce an exactly-solvable model of random walk in random environment that we call the Beta RWRE. This is a random walk in $\\mathbb{Z}$ which performs nearest neighbour jumps with transition probabilities drawn according to the Beta distribution. We also describe a related directed polymer model, which is a limit of the $q$-Hahn interacting particle system. Using a Fredholm determinant representation for the quenched probability distribution function of the walker's position, we are able to prove second order cube-root scale corrections to the large deviation principle satisfied by the walker's position, with convergence to the Tracy-Widom distribution. We also show that this limit theorem can be interpreted in terms of the maximum of strongly correlated random variables: the positions of independent walkers in the same environment. The zero-temperature counterpart of the Beta RWRE can be studied in a parallel way. We also prove a Tracy-Widom limit theorem for this model.

Guillaume Barraquand; Ivan Corwin

2015-03-26T23:59:59.000Z

128

Mutiny at the white-hole district

The white-hole sector of Kruskal's solution is almost never used in physical applications. However, it might contain the solution to many of the problems associated with gravitational collapse and evaporation. This essay tries to draw attention to some bouncing geometries that make a democratic use of the black- and white-hole sectors. We will argue that these types of behaviour could be perfectly natural in some approaches to the next physical level beyond classical general relativity.

Carlos Barceló; Raúl Carballo-Rubio; Luis J. Garay

2014-07-05T23:59:59.000Z

129

Notes on Black Hole Fluctuations and Backreaction

In these notes we prepare the ground for a systematic investigation into the issues of black hole fluctuations and backreaction by discussing the formulation of the problem, commenting on possible advantages and shortcomings of existing works, and introducing our own approach via a stochastic semiclassical theory of gravity based on the Einstein-Langevin equation and the fluctuation-dissipation relation for a self-consistent description of metric fluctuations and dissipative dynamics of the black hole with backreaction of its Hawking radiance.

B. L. Hu; Alpan Raval; Sukanya Sinha

1999-01-05T23:59:59.000Z

130

Thermodynamics and evaporation of the noncommutative black hole

We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2007-01-21T23:59:59.000Z

131

Defense Secretary Chuck Hagel visits Sandia | National Nuclear Security

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear Security |

132

Solar Wind Forecasting with Coronal Holes

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

133

RANDOM WALK IN RANDOM ENVIRONMENT IN A TWO-DIMENSIONAL STRATIFIED MEDIUM WITH ORIENTATIONS

RANDOM WALK IN RANDOM ENVIRONMENT IN A TWO-DIMENSIONAL STRATIFIED MEDIUM WITH ORIENTATIONS ALEXIS walk in random environment, random walk in random scenery, functional limit theorem, transience. This research was supported by the french ANR project MEMEMO2. 1 #12;RWRE IN A STRATIFIED ORIENTED MEDIUM 2 Our

PÃ¨ne, FranÃ§oise

134

Random Walks and Electrical Networks Electrical Network Calculations in Random Walks in

Random Walks and Electrical Networks Electrical Network Calculations in Random Walks in Random 2/4/2008 1 / 23 #12;Random Walks and Electrical Networks Much of this talk is based on the book Random Walks and Electric Networks by Peter G. Doyle and J. Laurie Snell. Free download available at http

Peterson, Jonathon

135

We show that there is a classical metric satisfying the Einstein equations outside a finite spacetime region where matter collapses into a black hole and then emerges from a white hole. We compute this metric explicitly. We show how quantum theory determines the (long) time for the process to happen. A black hole can thus quantum-tunnel into a white hole. For this to happen, quantum gravity should affect the metric also in a small region outside the horizon: we show that contrary to what is commonly assumed, this is not forbidden by causality or by the semiclassical approximation, because quantum effects can pile up over a long time. This scenario alters radically the discussion on the black hole information puzzle.

Hal M. Haggard; Carlo Rovelli

2014-07-06T23:59:59.000Z

136

Perturbative String Thermodynamics near Black Hole Horizons

We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.

Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov

2014-10-29T23:59:59.000Z

137

The Environmental Impact of Supermassive Black Holes

The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.

Abraham Loeb

2004-08-10T23:59:59.000Z

138

Investigating Dark Energy with Black Hole Binaries

The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

Laura Mersini-Houghton; Adam Kelleher

2009-06-08T23:59:59.000Z

139

Black Holes with Flavors of Quantum Hair?

We show that black holes can posses a long-range quantum hair of super-massive tensor fields, which can be detected by Aharonov-Bohm tabletop interference experiments, in which a quantum-hairy black hole, or a remnant particle, passes through the loop of a magnetic solenoid. The long distance effect does not decouple for an arbitrarily high mass of the hair-providing field. Because Kaluza-Klein and String theories contain infinite number of massive tensor fields, we study black holes with quantum Kaluza-Klein hair. We show that in five dimensions such a black hole can be interpreted as a string of `combed' generalized magnetic monopoles, with their fluxes confined along it. For the compactification on a translation-invariant circle, this substructure uncovers hidden flux conservation and quantization of the monopole charges, which constrain the quantum hair of the resulting four-dimensional black hole. For the spin-2 quantum hair this result is somewhat unexpected, since the constituent `magnetic' charges have no `electric' counterparts. Nevertheless, the information about their quantization is encoded in singularity.

Gia Dvali

2006-07-20T23:59:59.000Z

140

Holographic superconductor in the exact hairy black hole

We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

Yun Soo Myung; Chanyong Park

2011-09-13T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

141

Large deviations for random walks in a random environment on a strip

Feb 28, 2013 ... We consider a random walk in a random environment (RWRE) on the strip ... For a fixed environment ?, we can define the RWRE starting at (x, ...

2013-02-28T23:59:59.000Z

142

Review of Probability Random Variable

at close 4) Height of wheel going over a rocky road #12;3 Random Variable Non-examples 1) `Heads' or `Tails' on coin 2) Red or Black ball from urn But we can make these into RV's Basic Idea Â don't know Â· Temperature Â· Wheel height #12;5 Given Continuous RV X... What is the probability that X = x0 ? Oddity : P

Fowler, Mark

143

Particle-hole symmetry parameters for nuclei

Two parameters, nu and zeta, motivated by particle-hole symmetry are introduced. These parameters are determined using the number of proton (or neutron) particles and holes counted from neighboring shell closures. The new parameters can be used to evaluate particle-hole and proton-neutron symmetries of adopted B(E2) values, which indicate that both symmetries are approximate for A>100. The combined symmetries motivate empirical fits of binding energies and the energy ratio E(4_1^+)/E(2_1^+). A global binding energy fit consisting of a traditional liquid droplet and one new shell term, comprised of a function of nu and zeta, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV.

Ian Bentley

2015-03-10T23:59:59.000Z

144

Turbodrilling in the hot-hole environment

Historically, geothermal and other types of hot-hole drilling have presented what seemed to be insurmountable barriers to efficient and extended use of downhole drilling motors, particularly those containing elastomeric bearing or motor components. Typical temperatures of 350 to 700/sup 0/F (177 to 371/sup 0/C) damage the elastomers and create other operating problems, reducing the life of the motors and their ability to drill efficiently. Recent innovations in turbodrill design have opened heretofore unrealized potentials and have allowed, for the first time, extended downhole drilling time in hot-hole conditions. The unique feature of this turbodrill is the lack of any elastomers or other temperature-sensitive materials. Its capabilities are matched closely to the requirements of drilling in elevated-temperature environments. The bearing assembly can withstand conditions encountered in typical geothermal formations and provides the performance necessary to stay in the hole. The result is increased rate of penetration (ROP) and more economical drilling.

Herbert, P.

1982-10-01T23:59:59.000Z

145

Neutrino Majorana Mass from Black Hole

We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

Yosuke Uehara

2002-05-25T23:59:59.000Z

146

Black Hole Chromosphere at the LHC

If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.

Luis Anchordoqui; Haim Goldberg

2003-02-26T23:59:59.000Z

147

Black Hole Complementarity in Gravity's Rainbow

We calculate the required energy for duplication of information in the context of black hole complementarity in the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit given by the conventional result for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could be not allowed below a certain critical value of the rainbow parameter; however, it could be possible above the critical value of the rainbow parameter, so that the consistent formulation in the rainbow Schwarzschild black hole requires additional constraints or any other resolutions for the latter case.

Gim, Yongwan

2015-01-01T23:59:59.000Z

148

Extremal limits and black hole entropy

Taking the extremal limit of a non-extremal Reissner-Nordstr\\"om black hole (by externally varying the mass or charge), the region between the inner and outer event horizons experiences an interesting fate -- while this region is absent in the extremal case, it does not disappear in the extremal limit but rather approaches a patch of $AdS_2\\times S^2$. In other words, the approach to extremality is not continuous, as the non-extremal Reissner-Nordstr\\"om solution splits into two spacetimes at extremality: an extremal black hole and a disconnected $AdS$ space. We suggest that the unusual nature of this limit may help in understanding the entropy of extremal black holes.

Sean M. Carroll; Matthew C. Johnson; Lisa Randall

2009-01-08T23:59:59.000Z

149

Semi-device-independent randomness expansion with partially free random sources

By proposing device-independent protocols, S. Pironio et al. [Nature 464, 1021-1024 (2010)] and R. Colbeck et al. [Nature Physics 8, 450-453 (2012)] proved that new randomness can be generated by using perfectly free random sources or partially free ones as seed. Subsequently, Li et al. [Phys. Rev. A 84, 034301 (2011)] studied this topic in the framework of semi-device-independent and proved that new randomness can be obtained from perfectly free random sources. Here we discuss whether and how partially free random sources bring us new randomness in semi-device-independent scenario. We propose a semi-device-independent randomness expansion protocol with partially free random sources, and obtain the condition that the partially free random sources should satisfy to generate new randomness. In the process of analysis, we acquire a new 2-dimensional quantum witness. Furthermore, we get the analytic relationship between the generated randomness and the 2-dimensional quantum witness violation.

Yu-Qian Zhou; Hong-Wei Li; Yu-Kun Wang; Dan-Dan Li; Fei Gao; Qiao-Yan Wen

2015-03-30T23:59:59.000Z

150

High speed optical quantum random number generation

.3351 (2009). 6. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, "Ultrahigh-speed random number generation

Weinfurter, Harald

151

CHARYBDIS: A Black Hole Event Generator

CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte Carlo programs like HERWIG and PYTHIA which then perform the parton evolution and hadronization. The event generator includes the extra-dimensional `grey-body' effects as well as the change in the temperature of the black hole as the decay progresses. Various options for modelling the Planck-scale terminal decay are provided.

C. M. Harris; P. Richardson; B. R. Webber

2003-07-24T23:59:59.000Z

152

Might black holes reveal their inner secrets?

Black holes harbor a spacetime singularity of infinite curvature, where classical spacetime physics breaks down, and current theory cannot predict what will happen. However, the singularity is invisible from the outside because strong gravity traps all signals, even light, behind an event horizon. In this essay we discuss whether it might be possible to destroy the horizon, if a body is tossed into the black hole so as to make it spin faster and/or have more charge than a certain limit. It turns out that one could expose a "naked" singularity if effects of the body's own gravity can be neglected. We suspect however that such neglect is unjustified.

Ted Jacobson; Thomas P. Sotiriou

2010-06-09T23:59:59.000Z

153

BLACK HOLE ENTROPY IN HIGHER CURVATURE GRAVITY

We discuss some recent results on black hole thermodynamics within the context of effective gravitational actions including higher-curvature interactions. Wald's derivation of the First Law demonstrates that black hole entropy can always be expressed as a local geometric density integrated over a space-like cross-section of the horizon. In certain cases, it can also be shown that these entropy expressions satisfy a Second Law. One such simple example is considered from the class of higher curvature theories where the Lagrangian consists of a polynomial in the Ricci scalar.

TED JACOBSON; GUNGWON KANG; ROBERT C. MYERS

1995-02-27T23:59:59.000Z

154

How red is a quantum black hole?

Radiating black holes pose a number of puzzles for semiclassical and quantum gravity. These include the transplanckian problem -- the nearly infinite energies of Hawking particles created near the horizon, and the final state of evaporation. A definitive resolution of these questions likely requires robust inputs from quantum gravity. We argue that one such input is a quantum bound on curvature. We show how this leads to an upper limit on the redshift of a Hawking emitted particle, to a maximum temperature for a black hole, and to the prediction of a Planck scale remnant.

Viqar Husain; Oliver Winkler

2005-05-30T23:59:59.000Z

155

Tachyon Perturbation on Two Dimensional Black Hole

We study the black hole geometry in the presence of tachyonic perturbations, and solve for the form of allowed tachyonic hair in the presence of back reaction, and for the form of the metric under the assumption that only the metric is perturbed but not the dilaton. We evaluate the Kretschmann scalar and argue that the horizon becomes singular in the presence of tachyons, implying that the black hole has turned into a naked singularity. A form of the allowed tachyon potential emerges as a requirement of self-consistency of our solution.

Aniket Basu

2014-07-03T23:59:59.000Z

156

Chaotic Information Processing by Extremal Black Holes

We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.

Axenides, Minos; Nicolis, Stam

2015-01-01T23:59:59.000Z

157

Invertibility of random matrices M. Rudelson

Invertibility of random matrices M. Rudelson We will discuss several recent developments related to invertibility and spectral properties of large random matrices. Consider an n Ã? n matrix, whose values are independent identically distributed random variables. The invertibility questions can be roughly divided

Weinberger, Hans

158

Random Matrix Theory, Numerical Computation and Applications

a precursor to a book on Random Matrix Theory that will be forthcoming. We reserve the right to reuseRandom Matrix Theory, Numerical Computation and Applications Alan Edelman, Brian D. Sutton new approaches to theory. We illustrate by describing such random matrix techniques as the stochastic

Edelman, Alan

159

Random Fractal Measures via the Contraction Method

Random Fractal Measures via the Contraction Method John E. Hutchinson Australian National mapping method to prove various existence and uniqueness properties of (selfÂsimilar) random fractal in order to establish a.s. exponential convergence to the unique random fractal measure. The arguments used

RÃ¼schendorf, Ludger

160

Topological black holes in Horava-Lifshitz gravity

We find topological (charged) black holes whose horizon has an arbitrary constant scalar curvature 2k in Horava-Lifshitz theory. Without loss of generality, one may take k=1, 0, and -1. The black hole solution is asymptotically anti-de Sitter with a nonstandard asymptotic behavior. Using the Hamiltonian approach, we define a finite mass associated with the solution. We discuss the thermodynamics of the topological black holes and find that the black hole entropy has a logarithmic term in addition to an area term. We find a duality in Hawking temperature between topological black holes in Horava-Lifshitz theory and Einstein's general relativity: the temperature behaviors of black holes with k=1, 0, and -1 in Horava-Lifshitz theory are, respectively, dual to those of topological black holes with k=-1, 0, and 1 in Einstein's general relativity. The topological black holes in Horava-Lifshitz theory are thermodynamically stable.

Cai Ronggen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China) and Kavli Institute for Theoretical Physics China (KITPC), Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Cao Liming [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan)

2009-07-15T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

161

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion...

Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Abstract Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory...

162

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...

163

Dynamics of galaxy cores and supermassive black holes

Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties; collisionless and collisional equilibria; loss-cone dynamics; and dynamics of binary and multiple supermassive black holes.

David Merritt

2006-05-02T23:59:59.000Z

164

Steady and unsteady calibration of multi-hole probes

This thesis presents the development of a data crographics. reduction algorithm for multi-hole pressure probes. The algorithm has been developed for the reduction of calibration data from miniature non-nulling multi-hole probes in compressible...

Johansen, Espen S

1998-01-01T23:59:59.000Z

165

Can the fluctuations of a black hole be treated thermodynamically?

Since the temperature of a typical Schwarzschild black hole is very low, some doubts are raised about whether the fluctuations of the black hole can be treated thermodynamically. It is shown that this is not the case: the thermodynamic fluctuations of a black hole are considerably larger than the corresponding quantum fluctuations. Moreover the ratio of the mean square thermodynamic fluctuation to the corresponding quantum fluctuation can be interpreted as a number of the effective constituents of a black hole.

Kostyantyn Ropotenko

2008-03-31T23:59:59.000Z

166

A Note on Black Hole Temperature and Entropy

We propose intuitive derivations of the Hawking temperature and the Bekenstein-Hawking entropy of a Schwarzschild black hole.

P. R. Silva

2006-05-09T23:59:59.000Z

167

Black holes in Born-Infeld extended new massive gravity

In this paper we find different types of black holes for the Born-Infeld extended new massive gravity. Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the entropy, angular momentum and mass of the black holes. We also find the central charges for the conformal field theory duals.

Ghodsi, Ahmad; Yekta, Davood Mahdavian [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

168

Particles and scalar waves in noncommutative charged black hole spacetime

In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

Bhar, Piyali; Biswas, Ritabrata; Mondal, U F

2015-01-01T23:59:59.000Z

169

Entropy and Area of Black Holes in Loop Quantum Gravity

Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

I. B. Khriplovich

2002-03-31T23:59:59.000Z

170

Local Limit Theorems for Random Walks in a 1D Random Environment

Local Limit Theorems for Random Walks in a 1D Random Environment D. Dolgopyat and I. Goldsheid Abstract. We consider random walks (RW) in a one-dimensional i.i.d. random environment with jumps to the nearest neighbours. For almost all environments, we prove a quenched Local Limit Theorem (LLT

Dolgopyat, Dmitry

171

Are black holes with hair a normal state of matter?

Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

Nieuwenhuizen, Th. M. [Institute for Theoretical Physics, Science Park 904, P. O. Box 94485, 1090 GL Amsterdam (Netherlands)

2011-03-28T23:59:59.000Z

172

A Link Between Black Holes and the Golden Ratio

We consider a variational formalism to describe black holes solution in higher dimensions. Our procedure clarifies the arbitrariness of the radius parameter and, in particular, the meaning of the event horizon of a black hole. Moreover, our formalism enables us to find a surprising link between black holes and the golden ratio.

J. A. Nieto

2011-06-02T23:59:59.000Z

173

On Space-Time Singularities, Holes, and Extensions

On Space-Time Singularities, Holes, and Extensions John Byron Manchak*y Here, we clarify the relationship among three space-time conditions of interest: geodesic completeness, hole. In what follows, we consider three space-time conditions of interest: geodesic completeness, hole

Manchak, John

174

ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes

ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life

Iliffe, Thomas M.

175

Black Holes and Sub-millimeter Dimensions

Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

1998-01-01T23:59:59.000Z

176

Black Holes in Einstein-Aether Theory

We study black hole solutions in general relativity coupled to a unit timelike vector field dubbed the "aether". To be causally isolated a black hole interior must trap matter fields as well as all aether and metric modes. The theory possesses spin-0, spin-1, and spin-2 modes whose speeds depend on four coupling coefficients. We find that the full three-parameter family of local spherically symmetric static solutions is always regular at a metric horizon, but only a two-parameter subset is regular at a spin-0 horizon. Asymptotic flatness imposes another condition, leaving a one-parameter family of regular black holes. These solutions are compared to the Schwarzschild solution using numerical integration for a special class of coupling coefficients. They are very close to Schwarzschild outside the horizon for a wide range of couplings, and have a spacelike singularity inside, but differ inside quantitatively. Some quantities constructed from the metric and aether oscillate in the interior as the singularity is approached. The aether is at rest at spatial infinity and flows into the black hole, but differs significantly from the the 4-velocity of freely-falling geodesics.

Christopher Eling; Ted Jacobson

2010-03-28T23:59:59.000Z

177

A Mechanism for Coronal Hole Jets

Bald patches are magnetic topologies in which the magnetic field is concave up over part of a photospheric polarity inversion line. A bald patch topology is believed to be the essential ingredient for filament channels and is often found in extrapolations of the observed photospheric field. Using an analytic source-surface model to calculate the magnetic topology of a small bipolar region embedded in a global magnetic dipole field, we demonstrate that although common in closed-field regions close to the solar equator, bald patches are unlikely to occur in the open-field topology of a coronal hole. Our results give rise to the following question: What happens to a bald patch topology when the surrounding field lines open up? This would be the case when a bald patch moves into a coronal hole, or when a coronal hole forms in an area that encompasses a bald patch. Our magnetostatic models show that, in this case, the bald patch topology almost invariably transforms into a null point topology with a spine and a fan. We argue that the time-dependent evolution of this scenario will be very dynamic since the change from a bald patch to null point topology cannot occur via a simple ideal evolution in the corona. We discuss the implications of these findings for recent Hinode XRT observations of coronal hole jets and give an outline of planned time-dependent 3D MHD simulations to fully assess this scenario.

D. A. N. Mueller; S. K. Antiochos

2008-04-24T23:59:59.000Z

178

Geodesic study of a charged black hole

The behavior of the timelike and null geodesics of charged E. Ay$\\acute{o}$n-Beato and A. Garcia (ABG) black hole are investigated. For circular and radial geodesics, we investigate all the possible motions by plotting the effective potentials for different parameters. In conclusion, we have shown that there is no phenomenon of \\textit{superradiance} in this case.

Mehedi Kalam; Nur Farhad; Sk. Monowar Hossein

2013-03-17T23:59:59.000Z

179

Limits on New Physics from Black Holes

Black holes emit high energy particles which induce a finite density potential for any scalar field $\\phi$ coupling to the emitted quanta. Due to energetic considerations, $\\phi$ evolves locally to minimize the effective masses of the outgoing states. In theories where $\\phi$ resides at a metastable minimum, this effect can drive $\\phi$ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to $\\phi$. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking.

Clifford Cheung; Stefan Leichenauer

2014-08-02T23:59:59.000Z

180

Schwarzschild black hole in dark energy background

In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-09-27T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

181

Supermassive Black Hole Binaries: The Search Continues

Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

Tamara Bogdanovic

2014-06-19T23:59:59.000Z

182

Deep-hole drilling Fruit Flies & Zebrafish

surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish BjÃ¶rk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

Li, Yi

183

Brief review on higher spin black holes

We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

Alfredo Perez; David Tempo; Ricardo Troncoso

2014-05-12T23:59:59.000Z

184

Remote down-hole well telemetry

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

185

The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

Gambacurta, D.; Grasso, M.; Catara, F. [GANIL,CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Dipartimento di Fisica e Astronomia dell'Universita di and INFN Catania (Italy)

2012-10-20T23:59:59.000Z

186

Geodesics and Geodesic Deviation in static Charged Black Holes

The radial motion along null geodesics in static charged black hole space-times, in particular, the Reissner-Nordstr\\"om and stringy charged black holes are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space-times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space-time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner-Nordstr\\"om black holes.

Ragab M. Gad

2010-03-03T23:59:59.000Z

187

Entropy spectra of single horizon black holes in two dimensions

The Hod conjecture proposes that the asymptotic quasinormal frequencies determine the entropy quantum of a black hole. Considering the Maggiore modification of this conjecture we calculate the entropy spectra of general, single horizon, asymptotically flat black holes in two-dimensional dilaton gravity. We also compute the entropy quanta of the two-dimensional Witten and AdS(2) black holes. Using the results for the entropy quanta of these two-dimensional black holes we discuss whether the produced values are generic. Finally we extend the results on the entropy spectra of other black holes.

A. Lopez-Ortega

2011-12-29T23:59:59.000Z

188

Quantum spectrum and statistic entropy of black hole

Taking the horizon surface of the black hole as a compact membrane and solving the oscillation equation of this membrane by Klein-Gordon equation, we derive the frequencies of oscillation modes of the horizon surface, which are proportional to the radiation temperature of the black hole. However, the frequencies of oscillation modes are not equidistant. Using the distribution of obtained frequencies of oscillation mode we compute the statistic entropy of the black hole and obtain that the statistic entropy of the black hole is proportional to the area of the horizon. Therefore, it is proven that the quantum statistic entropy of the black hole is consistent with Bekenstein-Hawking entropy.

Zhao Ren; Li Huaifan; Zhang Shengli

2006-10-16T23:59:59.000Z

189

Improved methods for simulating nearly extremal binary black holes

Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass $m$ and spin $S$ exceeding the Bowen-York limit of $S/m^2=0.93$. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has $S/m^2=0.99$. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have $S/m^2=0.994$, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).

Mark A. Scheel; Matthew Giesler; Daniel A. Hemberger; Geoffrey Lovelace; Kevin Kuper; Michael Boyle; Bela Szilagyi; Lawrence E. Kidder

2014-12-04T23:59:59.000Z

190

Acoustic clouds: standing sound waves around a black hole analogue

Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

2015-01-28T23:59:59.000Z

191

Acoustic clouds: standing sound waves around a black hole analogue

Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

2014-01-01T23:59:59.000Z

192

Randomness and Earth climate variability

Paleo-Sciences including palaeoclimatology and palaeoecology have accumulated numerous records related to climatic changes. The researchers have usually tried to identify periodic and quasi-periodic processes in these paleoscientific records. In this paper, we show that this analysis is incomplete. As follows from our results, random processes, namely processes with a single-time-constant (noise with a Lorentzian noise spectrum), play a very important and, perhaps, a decisive role in numerous natural phenomena. For several of very important natural phenomena the characteristic time constants are very similar and equal to (5-8)x10^3 years. However, this value is not universal. For example, the spectral density fluctuations of the atmospheric radiocarbon 14C are characterized by a Lorentzian with time constant 300 years. The frequency dependence of spectral density fluctuations for benthic 18O records contains two Lorentzians with time constans 8000 years and > 105 years.

Levinshtein, Michael E; Dmitriev, Alexander P; Shmakov, Pavel M

2015-01-01T23:59:59.000Z

193

The hydraulic jump as a white hole

In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

G. E. Volovik

2005-10-21T23:59:59.000Z

194

Rholography, Black Holes and Scherk-Schwarz

We present both the macroscopic and microscopic description of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter \\rho. We find that the corresponding (0,4) (or (4,4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, \\rho-algebras and holography leads us to name our construction "Rholography".

Nava Gaddam; Alessandra Gnecchi; Stefan Vandoren; Oscar Varela

2014-12-23T23:59:59.000Z

195

Black Hole Entropy and Induced Gravity

In this short essay we review the arguments showing that black hole entropy is, at least in part, ``entanglement entropy", i.e., missing information contained in correlations between quantum field fluctuations inside and outside the event horizon. Although the entanglement entropy depends upon the matter field content of the theory, it turns out that so does the Bekenstein-Hawking entropy $A/4\\hbar G_{ren}$, in precisely the same way, because the effective gravitational constant $G_{ren}$ is renormalized by the very same quantum fluctuations. It appears most satisfactory if the entire gravitational action is ``induced", in the manner suggested by Sakharov, since then the black hole entropy is purebred entanglement entropy, rather than being hybrid with bare gravitational entropy (whatever that might be.)

Ted Jacobson

1994-04-19T23:59:59.000Z

196

Geometric description of BTZ black holes thermodynamics

We study the properties of the space of thermodynamic equilibrium states of the Ba\\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a $2-$dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

Hernando Quevedo; Alberto Sanchez

2008-11-15T23:59:59.000Z

197

Laser stabilization using spectral hole burning

We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.

L. Rippe; B. Julsgaard; A. Walther; S. Kröll

2006-11-05T23:59:59.000Z

198

Quantized black holes, their spectrum and radiation

Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. In the special case of loop quantum gravity, the value of the Barbero-Immirzi parameter is found. The discrete spectrum of thermal radiation of a black hole fits the Wien profile. The natural widths of the lines are much smaller than the distances between them. The total intensity of the thermal radiation is estimated. If the density of quantized primordial black holes is close to the present upper limit on the dark-matter density in our Solar system, the sensitivity of modern detectors is close to that necessary for detecting this radiation.

Khriplovich, I. B. [Budker Institute of Nuclear Physics (Russian Federation)], E-mail: khriplovich@inp.nsk.su

2008-04-15T23:59:59.000Z

199

A fluctuation theorem in a random environment

A simple class of chaotic systems in a random environment is considered and the fluctuation theorem is extended under the assumption of reversibility.

F. Bonetto; G. Gallavotti; G. Gentile

2006-04-29T23:59:59.000Z

200

How Can Random Noise Help Us. Global Transports from Thermal Fluctuations. Aaron N. K. Yip. Department of Mathematics. Purdue University. 0. 1. 2. 3. 4. 5. 6.

2009-03-18T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

201

The Theory of Random Laser Systems

Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge.

Xunya Jiang

2002-06-27T23:59:59.000Z

202

Logarithmic Opinion Pools for Conditional Random Fields

Since their recent introduction, conditional random fields (CRFs) have been successfully applied to a multitude of structured labelling tasks in many different domains. Examples include natural language processing ...

Smith, Andrew

2007-06-26T23:59:59.000Z

203

The high energy emission from black holes

The origin of the high energy emission (X-rays and gamma-rays) from black holes is still a matter of debate. We present new evidence that hard X-ray emission in the low/hard state may not be dominated by thermal Comptonization. We present an alternative scenario for the origin of the high energy emission that is well suited to explain the high energy emission from GRO J1655-40.

M. D. Caballero-Garcia; J. M. Miller; E. Kuulkers

2007-11-06T23:59:59.000Z

204

Refined Black Hole Ensembles and Topological Strings

We formulate a refined version of the Ooguri-Strominger-Vafa (OSV) conjecture. The OSV conjecture that Z_{BH} = |Z_{top}|^2 relates the BPS black hole partition function to the topological string partition function Z_{top}. In the refined conjecture, Z_{BH} is the partition function of BPS black holes counted with spin, or more precisely the protected spin character. Z_{top} becomes the partition function of the refined topological string, which is itself an index. Both the original and the refined conjecture are examples of large N duality in the 't Hooft sense. The refined conjecture applies to non-compact Calabi-Yau manifolds only, so the black holes are really BPS particles with large entropy, of order N^2. The refined OSV conjecture states that the refined BPS partition function has a large N dual which is captured by the refined topological string. We provide evidence that the conjecture holds by studying local Calabi-Yau threefolds consisting of line bundles over a genus g Riemann surface. We show that the refined topological string partition function on these geometries is computed by a two-dimensional TQFT. We also study the refined black hole partition function arising from N D4 branes on the Calabi-Yau, and argue that it reduces to a (q,t)-deformed version of two-dimensional SU(N) Yang-Mills. Finally, we show that in the large N limit this theory factorizes to the square of the refined topological string in accordance with the refined OSV conjecture.

Mina Aganagic; Kevin Schaeffer

2012-10-05T23:59:59.000Z

205

Comparing quantum black holes and naked singularities

There are models of gravitational collapse in classical general relativity which admit the formation of naked singularities as well as black holes. These include fluid models as well as models with scalar fields as matter. Even if fluid models were to be regarded as unphysical in their matter content, the remaining class of models (based on scalar fields) generically admit the formation of visible regions of finite but arbitrarily high curvature. Hence it is of interest to ask, from the point of view of astrophysics, as to what a stellar collapse leading to a naked singularity (or to a visible region of very high curvature) will look like, to a far away observer. The emission of energy during such a process may be divided into three phases - (i) the classical phase, during which matter and gravity can both be treated according to the laws of classical physics, (ii) the semiclassical phase, when gravity is treated classically but matter behaves as a quantum field, and (iii) the quantum gravitational phase. In this review, we first give a summary of the status of naked singularities in classical relativity, and then report some recent results comparing the semiclassical phase of black holes with the semiclassical phase of spherical collapse leading to a naked singularity. In particular, we ask how the quantum particle creation during the collapse leading to a naked singularity compares with the Hawking radiation from a star collapsing to form a black hole. It turns out that there is a fundamental difference between the two cases. A spherical naked star emits only about one Planck energy during its semiclassical phase, and the further evolution can only be determined by the laws of quantum gravity. This contrasts with the semiclassical evaporation of a black hole.

T. P. Singh

2000-12-21T23:59:59.000Z

206

Hole cleaning requirements with seabed returns

size and fluid density. The least important were rotary speed, feed concentration, annulus size, and drillpipe eccentricity. They also reported that, in Newtonian fluids, transport efficiency improves with increasing viscosity; however, they noted... is set; therefore, no marine riser can be utilized. The coring occurs up to 3000 ft below the seafloor with the bit cutting an 11. 438 in. hole. The rig pumps have a maximum output of 600 gpm under normal coring operations with untreated seawater...

Nordt, David Paul

1988-01-01T23:59:59.000Z

207

Electromagnetic wave scattering by Schwarzschild black holes

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

208

Dark jets in solar coronal holes

A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hours by the EUV Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8-10. Line-of-sight velocity maps derived from the coronal Fe XII $\\lambda$195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 A filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun-coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed line-of-sight speeds increasing along the jet axis fr...

Young, Peter R

2015-01-01T23:59:59.000Z

209

Light Loop Echoes and Blinking Black Holes

Radiation emitted near a black hole reaches the observer by multiple paths; and when this radiation varies in time, the time-delays between the various paths generate a "blinking" effect in the observed light curve L(t) or its auto-correlation function xi(T)= . For the particularly important "face-on" configuration (in which the hole is viewed roughly along its spin axis, while the emission comes roughly from its equatorial plane -- e.g. from the inner edge of its accretion disk, or from the violent flash of a nearby/infalling star) we calculate the blinking in detail by computing the time delay Delta t_{j}(r,a) and magnification mu_{j}(r,a) of the jth path (j=1,2,3,...), relative to the primary path (j=0), as a function of the emission radius r and black hole spin 0

210

Quantization of rotating linear dilaton black holes

In this paper, we firstly prove that the adiabatic invariant quantity, which is commonly used in the literature for quantizing the rotating black holes (BHs) is fallacious. We then show how its corrected form should be. The main purpose of this paper is to study the quantization of 4-dimensional rotating linear dilaton black hole (RLDBH) spacetime describing with an action, which emerges in the Einstein-Maxwell-Dilaton-Axion (EMDA) theory. The RLDBH spacetime has a non-asymptotically flat (NAF) geometry. They reduces to the linear dilaton black hole (LDBH) metric when vanishing its rotation parameter $a$. While studying its scalar perturbations, it is shown that the Schr\\"odinger-like wave equation around the event horizon reduces to a confluent hypergeometric differential equation. Then the associated complex frequencies of the quasinormal modes (QNMs) are computed. By using those QNMs in the true definition of the rotational adiabatic invariant quantity, we obtain the quantum spectra of entropy/area for the RLDBH. It is found out that both spectra are discrete and equidistant. Besides, we reveal that the quantum spectra do not depend on $a$ in spite of the QNMs are modulated by it.

I. Sakalli

2014-06-19T23:59:59.000Z

211

Spectral hole burning for stopping light

We propose a protocol for storage and retrieval of photon wave packets in a {lambda}-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid-state systems at low temperature, such as rare-earth ion-doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy are carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground-state Raman coherence by using brief {pi} pulses. The protocol exhibits some resemblance with the well-known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters, and theoretically examine the recovery efficiency.

Lauro, R.; Chaneliere, T.; Le Goueet, J.-L. [Laboratoire Aime Cotton, CNRS UPR3321, Universite Paris Sud, Batiment 505, Campus Universitaire, 91405 Orsay (France)

2009-05-15T23:59:59.000Z

212

Kerr black holes with scalar hair

We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M,J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^2>1, quadrupole moment larger than J^2/M and larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (...

Herdeiro, Carlos A R

2014-01-01T23:59:59.000Z

213

Hamilton Cycles Containing Randomly Selected Edges in Random Regular Graphs \\Lambda

Hamilton Cycles Containing Randomly Selected Edges in Random Regular Graphs \\Lambda R. W. Robinson oriented root edges have been randomly specified for the cycle to contain. The Hamilton cycle must be orientable to agree with all of the orientations on the j root edges. It is shown that the requisite Hamilton

Robinson, Robert W.

214

RANDOM WALK IN DETERMINISTICALLY CHANGING ENVIRONMENT

RANDOM WALK IN DETERMINISTICALLY CHANGING ENVIRONMENT DMITRY DOLGOPYAT AND CARLANGELO LIVERANI Abstract. We consider a random walk with transition probabilities weakly dependent on an environment of the environment the walk satisfies the CLT. 1. Introduction The continuing interest in the limit properties

Liverani, Carlangelo

215

The XY Spin Chain Random Block Operators

The XY Spin Chain Random Block Operators Proof of Main Result Open Questions Localization for Random Block Operators Related to the XY Spin Chain Jacob W. Chapman Division of Science Southern Wesleyan University Central, SC Joint work with GÂ¨unter Stolz UAB NSF-CBMS Conference on Quantum Spin

Jung, Paul

216

Introduction to Network Science 1 Random Models

Introduction to Network Science 1 Random Models #12;Introduction to Network Science 2 mean degree in a graph with exactly m edges Taylor series reminder: #12;Introduction to Network Science 3 In contrast to the degree distribution in random model ... #12;Introduction to Network Science 4 In contrast to the degree

Safro, Ilya

217

Randomized Parallel Algorithms in Optimization Stephen Wright

Randomized Parallel Algorithms in Optimization Stephen Wright University of Wisconsin-Madison July 2013 Wright (UW-Madison) Random Parallel Optimization July 2013 1 / 52 #12;Collaborators @ UW-Madison Victor Bittorf Ji Liu Ben Recht ( Berkeley) Chris RÂ´e ( Stanford) Krishna Sridhar Wright (UW

218

Articles which include chevron film cooling holes, and related processes

An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

Bunker, Ronald Scott; Lacy, Benjamin Paul

2014-12-09T23:59:59.000Z

219

Method and apparatus of assessing down-hole drilling conditions

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

220

Black holes in extra dimensions can decay on the bulk

In the extra dimensional theories, with TeV scale Plank constant, black holes may be produced in the Large Hadron Collider experiments. We have argued that in the d-dimensional black hole, the intrinsically 4-dimensional brane fields do not see the same geometry at the horizon, as in a 4-dimensional space-time. Kaluza-Klein modes invades the brane and surroundings and the brane fields can be considered as a thermal system at the temperature of the black hole. From energy and entropy consideration, we show that whether or not a six-dimensional black hole will decay by emitting Kaluza-Klein modes or the standard model particles, will depend on the length scale of the extra dimensions as well as on the mass of the black hole. For higher dimensional black holes, Kaluza-Klein modes will dominate the decay.

A. K. Chaudhuri

2003-01-08T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

221

Scattering of Sound Waves by a Canonical Acoustic Hole

This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wavefronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.

Sam R. Dolan; Ednilton S. Oliveira; Luís C. B. Crispino

2009-04-06T23:59:59.000Z

222

A toroidal black hole for the AGN phenomenon

A new approach to the study of the AGN phenomenon is proposed, in which the nucleus activity is related to the metric of the inner massive black hole. The possibility of a Toroidal Black Hole (TBH), in contrast to the usual Spherical Black Hole (SBH), is discussed as a powerful tool in understanding AGN related phenomena, such as the energetics, the production of jets and the acceleration of particles, the shape of the magnetic field and the lifetime of nucleus activity.

Fulvio Pompilio; S. M. Harun-or-Rashid; Matts Roos

2000-08-30T23:59:59.000Z

223

KKW Analysis for the Dyadosphere of a Charged Black Hole

The Keski-Vakkuri, Kraus and Wilczek (KKW) analysis is used to compute the temperature and entropy in the dyadosphere of a charged black hole solution. For our purpose we choose the dyadosphere region of the Reissner-Nordstrom black hole solution. Our results show that the expressions of the temperature and entropy in the dyadosphere of this charged black hole are not the Hawking temperature and the Bekenstein-Hawking entropy, respectively.

I. Radinschi

2005-11-28T23:59:59.000Z

224

Brownian Motion of Black Holes in Dense Nuclei

We evaluate the Brownian motion of a massive particle ("black hole") at the center of a galaxy using N-body simulations. Our galaxy models have power-law central density cusps like those observed at the centers of elliptical galaxies. The simulations show that the black hole achieves a steady-state kinetic energy that is substantially different than would be predicted based on the properties of the galaxy model in the absence of the black hole. The reason appears to be that the black hole responds to stars whose velocities have themselves been raised by the presence of the black hole. Over a wide range of density slopes and black hole masses, the black hole's mean kinetic energy is equal to what would be predicted under the assumption that it is in energy equipartition with stars lying within a distance ~r_h/2 from it, where r_h is the black hole's influence radius. The dependence of the Brownian velocity on black hole mass is approximately ~ 1/M^{1/(3-gamma)} with gamma the power-law index of the stellar density profile, rho~1/r^gamma. This is less steep than the 1/M dependence predicted in a model where the effect of the black hole on the stellar velocities is ignored. The influence of a stellar mass spectrum on the black hole's Brownian motion is also evaluated and found to be consistent with predictions from Chandrasekhar's theory. We use these results to derive a probability function for the mass of the Milky Way black hole based on a measurement of its proper motion velocity. Interesting constraints on M will require a velocity resolution exceeding 0.5 km/s.

David Merritt; Peter Berczik; Frederik Laun

2006-10-18T23:59:59.000Z

225

Optoelectronic device with nanoparticle embedded hole injection/transport layer

An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

2012-01-03T23:59:59.000Z

226

Classical and Quantum Properties of Liouville Black Holes

Black hole spacetimes can arise when a Liouville field is coupled to two- dimensional gravity. Exact solutions are obtained both classically and when quantum corrections due to back reaction effects are included. The black hole temperature depends upon the mass and the thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process.

R. B. Mann

1994-04-25T23:59:59.000Z

227

A Quantum Material Model of Static Schwarzschild Black Holes

A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.

S. -T. Sung

1997-03-16T23:59:59.000Z

228

Black Holes as Conformal Field Theories on Horizons

We show that any nonextreme black hole can be described by a state with $L_0=E_R$ in a $D=2$ chiral conformal field theory with central charge $c=12E_R$ where $E_R$ is the dimensionless Rindler energy of the black hole. The theory lives in the very near horizon region, i.e. around the origin of Rindler space. Black hole hair is the momentum along the Euclidean dimensionless Rindler time direction. As evidence, we show that $D$--dimensional Schwarzschild black holes and $D=2$ dilatonic ones that are obtained from them by spherical reduction are described by the same conformal field theory states.

Halyo, Edi

2015-01-01T23:59:59.000Z

229

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

discoveries to the attention of the geothermal community. Exploration holes at Tungsten Mountain and McGuiness Hills (Spencer Hot Springs?) in 2004 and 2005 encountered hot...

230

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

231

Primordial black hole evolution in tensor-scalar cosmology

A perturbative analysis shows that black holes do not remember the value of the scalar field $\\phi$ at the time they formed if $\\phi$ changes in tensor-scalar cosmology. Moreover, even when the black hole mass in the Einstein frame is approximately unaffected by the changing of $\\phi$, in the Jordan-Fierz frame the mass increases. This mass increase requires a reanalysis of the evaporation of primordial black holes in tensor-scalar cosmology. It also implies that there could have been a significant magnification of the (Jordan-Fierz frame) mass of primordial black holes.

Ted Jacobson

1999-09-06T23:59:59.000Z

232

Ion holes in the hydrodynamic regime in ultracold neutral plasmas

We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma.

McQuillen, P.; Castro, J.; Strickler, T.; Bradshaw, S. J.; Killian, T. C. [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

2013-04-15T23:59:59.000Z

233

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

of core holes were drilled from 1984 to 1988 as a part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal...

234

Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...

235

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

236

Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

237

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

238

Small Hairy Black Holes in Global AdS Spacetime

We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS `box'. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order `phase transition' between the RNAdS black hole and the hairy black hole phases.

Pallab Basu; Jyotirmoy Bhattacharya; Sayantani Bhattacharyya; R. Loganayagam; Shiraz Minwalla; V. Umesh

2010-05-16T23:59:59.000Z

239

Core Lithology State of Hawail Scientific Observation Hole 2...

Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Core Lithology State of Hawail Scientific Observation Hole 2 Kilauea Volcano, Hawaii...

240

Core Lithology State of Hawaii Scientific Observation Hole 4...

Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Core Lithology State of Hawaii Scientific Observation Hole 4 Kilauea Volcano, Hawaii...

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

241

Absorption of scalars by extremal black holes in string theory

We show that the low frequency absorption cross section of minimally coupled massless scalar fields by extremal spherically symmetric black holes in d dimensions in the presence of string-theoretical alpha' corrections is equal to the horizon area. Classically one has the relation sigma=4GS between the absorption cross section and the black hole entropy. We discuss the validity of such relation in the presence of alpha' corrections for extremal black holes, both nonsupersymmetric and supersymmetric. The examples we consider seem to indicate that this relation is verified in the presence of alpha' corrections for supersymmetric black holes, but not for nonsupersymmetric ones.

Filipe Moura

2014-06-13T23:59:59.000Z

242

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated...

243

Location Of Hole And Electron Traps On Nanocrystalline Anatase...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission...

244

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...

245

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

246

Hydrodynamic model for electron-hole plasma in graphene

We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

2012-01-03T23:59:59.000Z

247

Ultrafast Core-Hole Induced Dynamics in Water

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential...

248

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

249

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Thermal...

250

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993)...

251

Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration...

252

Extremal charged rotating dilaton black holes in odd dimensions

Employing higher-order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

Allahverdizadeh, Masoud; Kunz, Jutta; Navarro-Lerida, Francisco [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503 D-26111 Oldenburg (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Ciencias Fisicas Universidad Complutense de Madrid, E-28040 Madrid (Spain)

2010-09-15T23:59:59.000Z

253

Extremal Charged Rotating Dilaton Black Holes in Odd Dimensions

Employing higher order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

Masoud Allahverdizadeh; Jutta Kunz; Francisco Navarro-Lerida

2010-07-24T23:59:59.000Z

254

Density matrix of black hole radiation

Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective field-theory perspective, are much less suppressed and grow monotonically in time. In this case, the R\\'enyi entropy for the outgoing radiation is shown to grow linearly at early times; but this growth slows down and the entropy eventually starts to decrease at the Page time. In addition to comparing models, we emphasize the distinction between the state of the radiation emitted from a black hole, which is highly quantum, and that of the radiation emitted from a typical classical black body at the same temperature.

Lasma Alberte; Ram Brustein; Andrei Khmelnitsky; A. J. M. Medved

2015-02-09T23:59:59.000Z

255

Entropy: From Black Holes to Ordinary Systems

Several results of black holes thermodynamics can be considered as firmly founded and formulated in a very general manner. From this starting point we analyse in which way these results may give us the opportunity to gain a better understanding in the thermodynamics of ordinary systems for which a pre-relativistic description is sufficient. First, we investigated the possibility to introduce an alternative definition of the entropy basically related to a local definition of the order in a spacetime model rather than a counting of microstates. We show that such an alternative approach exists and leads to the traditional results provided an equilibrium condition is assumed. This condition introduces a relation between a time interval and the reverse of the temperature. We show that such a relation extensively used in the black hole theory, mainly as a mathematical trick, has a very general and physical meaning here; in particular its derivation is not related to the existence of a canonical density matrix. Our dynamical approach of thermodynamic equilibrium allows us to establish a relation between action and entropy and we show that an identical relation exists in the case of black holes. The derivation of such a relation seems impossible in the Gibbs ensemble approach of statistical thermodynamics. From these results we suggest that the definition of entropy in terms of order in spacetime should be more general that the Boltzmann one based on a counting of microstates. Finally we point out that these results are obtained by reversing the traditional route going from the Schr\\"{o}dinger equation to statistical thermodynamics.

J. P. Badiali

2005-05-11T23:59:59.000Z

256

Formation of subhorizon black holes from preheating

We study the production of primordial black holes (PBHs) during the preheating stage that follows a chaotic inflationary phase. The scalar fields present in the process are evolved numerically using a modified version of the HLATTICE code. From the output of the numerical simulation, we compute the probability distribution of curvature fluctuations, paying particular attention to sub-horizon scales. We find that in some specific models these modes grow to large amplitudes developing highly non-Gaussian probability distributions. We then calculate PBH abundances using the standard Press-Schechter criterion and find that overproduction of PBHs is likely in some regions of the chaotic preheating parameter space.

E. Torres-Lomas; Juan Carlos Hidalgo; Karim A. Malik; L. Arturo Ureña-López

2014-04-29T23:59:59.000Z

257

Conformal Invariance of Black Hole Temperature

It is shown that the surface gravity and temperature of a stationary black hole are invariant under conformal transformations of the metric that are the identity at infinity. More precisely, we find a conformal invariant definition of the surface gravity of a conformal Killing horizon that agrees with the usual definition(s) for a true Killing horizon and is proportional to the temperature as defined by Hawking radiation. This result is reconciled with the intimate relation between the trace anomaly and the Hawking effect, despite the {\\it non}invariance of the trace anomaly under conformal transformations.

Ted Jacobson; Gungwon Kang

1993-07-06T23:59:59.000Z

258

Black Hole Thermodynamics and Lorentz Symmetry

Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

Ted Jacobson; Aron C. Wall

2010-02-04T23:59:59.000Z

259

The effects of fastener hole defects

) August 1991 ABSTRACT The Effects of Fastener Hole Defects. (August 1991) Scot D. Andrews, B. S. , Texas A8rM University Chair of Advisory Committee: Dr. Orden O. Ochoa The influence of drilling-induced defects, such as delamination, on the fatigue... ambient and elevated temperature wet conditions. Specimens were tested in a bearing tension frame to static failure in order to measure the failure load and to calculate pin bearing stress. From static test results, a fatigue load was selected as 66...

Andrews, Scot D.

1991-01-01T23:59:59.000Z

260

Geodesic Study of Regular Hayward Black Hole

This paper is devoted to study the geodesic structure of regular Hayward black hole. The timelike and null geodesic have been studied explicitly for radial and non-radial motion. For timelike and null geodesic in radial motion there exists analytical solution, while for non-radial motion the effective potential has been plotted, which investigates the position and turning points of the particle. It has been found that massive particle moving along timelike geodesics path are dragged towards the BH and continues move around BH in particular orbits.

G. Abbas; U. Sabiullah

2014-06-03T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

261

CHARYBDIS: A Black hole event generator.

model of black hole production and decay which can be interfaced to existing Monte Carlo programs using the Les Houches accord [4]. The major new theoretical input to the generator is the inclusion of the recently calculated ‘grey-body’ factors for black... ? TH geometric arguments show that ?l,m? ? (?rh)2 in any number of dimensions, which means that at high energies the shape of the spectrum is like that of a black body. However the low energy behaviour of the grey-body factors is spin-dependent and also...

Harris, Chris M; Richardson, P; Webber, Bryan R

262

Down-hole periodic seismic generator

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

263

Category:Slim Holes | Open Energy Information

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAddSRML Map Files Jump to:WASlim Holes

264

E-Print Network 3.0 - alkyl-chain-length-independent hole mobility...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E... March 2006 Abstract The effects of low hole mobilities in the intrinsic layer of pin solar cells... larger than hole values. The models reveal that a low hole ... Source:...

265

Spin interference of holes in silicon nanosandwiches

Spin-dependent transport of holes is studied in silicon nanosandwiches on an n-Si (100) surface which are represented by ultranarrow p-Si quantum wells confined by {delta}-barriers heavily doped with boron. The measurement data of the longitudinal and Hall voltages as functions of the top gate voltage without an external magnetic field show the presence of edge conduction channels in the silicon nanosandwiches. An increase in the stabilized source-drain current within the range 0.25-5 nA subsequently exhibits the longitudinal conductance value 4e{sup 2}/h, caused by the contribution of the multiple Andreev reflection, the value 0.7(2e{sup 2}/h) corresponding to the known quantum conductance staircase feature, and displays Aharonov-Casher oscillations, which are indicative of the spin polarization of holes in the edge channels. In addition, at a low stabilized source-drain current, due to spin polarization, a nonzero Hall voltage is detected which is dependent on the top gate voltage; i. e., the quantum spin Hall effect is observed. The measured longitudinal I-V characteristics demonstrate Fiske steps and a negative differential resistance caused by the generation of electromagnetic radiation as a result of the Josephson effect. The results obtained are explained within a model of topological edge states which are a system of superconducting channels containing quantum point contacts transformable to single Josephson junctions at an increasing stabilized source-drain current.

Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Danilovskii, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mashkov, V. A. [St. Petersburg State Polytechnical University (Russian Federation)

2012-01-15T23:59:59.000Z

266

In the context of f(R) theories of gravity, we address the problem of finding static and spherically symmetric black hole solutions. Several aspects of constant curvature solutions with and without electric charge are discussed. We also study the general case (without imposing constant curvature). Following a perturbative approach around the Einstein-Hilbert action, it is found that only solutions of the Schwarzschild-(anti) de Sitter type are present up to second order in perturbations. Explicit expressions for the effective cosmological constant are obtained in terms of the f(R) function. Finally, we have considered the thermodynamics of black holes in anti-de Sitter space-time and found that this kind of solution can only exist provided the theory satisfies R{sub 0}+f(R{sub 0})<0. Interestingly, this expression is related to the condition which guarantees the positivity of the effective Newton's constant in this type of theories. In addition, it also ensures that the thermodynamical properties in f(R) gravities are qualitatively similar to those of standard general relativity.

Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L. [Departamento de Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid (Spain)

2009-12-15T23:59:59.000Z

267

Primordial black holes as biased tracers

Primordial black holes (PBHs) are theoretical black holes which may be formed during the radiation dominant era and, basically, caused by the gravitational collapse of radiational overdensities. It has been well known that in the context of the structure formation in our Universe such collapsed objects, e.g., halos/galaxies, could be considered as bias tracers of underlying matter fluctuations and the halo/galaxy bias has been studied well. Employing a peak-background split picture which is known to be a useful tool to discuss the halo bias, we consider the large scale clustering behavior of the PBH and propose an almost mass-independent constraint to the scenario that dark matters (DMs) consist of PBHs. We consider the case where the statistics of the primordial curvature perturbations is almost Gaussian, but with small local-type non-Gaussianity. If PBHs account for the DM abundance, such a large scale clustering of PBHs behaves as nothing but the matter isocurvature perturbation and constrained strictly by...

Tada, Yuichiro

2015-01-01T23:59:59.000Z

268

Asymptotically Lifshitz brane-world black holes

We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.

Ranjbar, Arash, E-mail: a_ranjbar@sbu.ac.ir; Sepangi, Hamid Reza, E-mail: hr-sepangi@sbu.ac.ir; Shahidi, Shahab, E-mail: s_shahidi@sbu.ac.ir

2012-12-15T23:59:59.000Z

269

Black holes can have curly hair

We study equilibrium conditions between a static, spherically symmetric black hole and classical matter in terms of the radial pressure to density ratio p_r/\\rho = w(u), where u is the radial coordinate. It is shown that such an equilibrium is possible in two cases: (i) the well-known case w\\to -1 as $u\\to u_h (the horizon), i.e., "vacuum" matter, for which \\rho(u_h) can be nonzero; (ii) w \\to -1/(1+2k) and \\rho \\sim (u-u_h)^k as u\\to u_h, where k>0 is a positive integer (w=-1/3 in the generic case k=1). A non-interacting mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic fluid with w = -1/3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is presented.

K. A. Bronnikov; O. B. Zaslavskii

2008-05-29T23:59:59.000Z

270

Non-Rayleigh scattering by a randomly oriented elongated scatterer

The echo statistics of a randomly rough, randomly oriented prolate spheroid that is randomly located in a beampattern are investigated from physics-based principles both analytically and by Monte Carlo methods. This is a ...

Bhatia, Saurav

2012-01-01T23:59:59.000Z

271

We study thermodynamic quantities of an acoustic black hole and its thermodynamic stability in a cavity based on the generalized uncertainty principle. It can be shown that there is a minimal black hole which can be a stable remnant after black hole evaporation. Moreover, the behavior of the free energy shows that the large black hole is stable too. Therefore, the acoustic black hole can decay into the remnant or the large black hole.

Wontae Kim; Edwin J. Son; Myungseok Yoon

2008-01-09T23:59:59.000Z

272

MOMENT ASYMPTOTICS FOR MULTITYPE BRANCHING RANDOM WALKS

of Montenegro 29 October, 2013 Abstract. We study a discrete time multitype branching random walk on a finite of Montenegro, Cetinjska 2, 81 000 Podgorica, Montenegro, ozrens@t-com.me AMS 2010 Subject Classification: 60J80

KÃ¶nig, Wolfgang

273

MOMENT ASYMPTOTICS FOR MULTITYPE BRANCHING RANDOM WALKS

of Montenegro 29 October, 2013 Abstract. We study a discrete time multitype branching random walk on a #28;nite of Montenegro, Cetinjska 2, 81 000 Podgorica, Montenegro, ozrens@t-com.me AMS 2010 Subject Classi#28;cation: 60J

KÃ¶nig, Wolfgang

274

Chaotic generation of pseudo-random numbers

Generation of repeatable pseudo-random sequences with chaotic analog electronics is not feasible using standard circuit topologies. Component variation caused by imperfect fabrication causes the same divergence of output sequences as does varying...

Dornbusch, Andrew Wesley

1999-01-01T23:59:59.000Z

275

Weak multiplicativity for random quantum channels

It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p>1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p>1, given a random quantum channel N (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of n copies of N decays exponentially with n. The proof is based on relaxing the maximum output infinity-norm of N to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.

Montanaro, Ashley

2011-01-01T23:59:59.000Z

276

Random Walks and Electrical Networks Electrical Network

Feb 4, 2008 ... Random Walks and Electrical Networks. Hitting Probabilities and Voltage. Voltage. Connect a 1V battery to nodes a and b. ix,y is the current ...

Jonathon Peterson

2008-01-30T23:59:59.000Z

277

RNG: A Practitioner's Overview Random Number Generation

RNG: A Practitioner's Overview Random Number Generation A Practitioner's Overview Prof. Michael and Monte Carlo Methods Pseudorandom number generation Types of pseudorandom numbers Properties of these pseudorandom numbers Parallelization of pseudorandom number generators New directions for SPRNG Quasirandom

Mascagni, Michael

278

Nonrotating black hole in a post-Newtonian tidal environment

We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

Stephanne Taylor; Eric Poisson

2008-09-11T23:59:59.000Z

279

Accelerating and rotating black holes J. B. Griffiths1

Accelerating and rotating black holes J. B. Griffiths1 and J. PodolskÂ´y2 1Department Abstract An exact solution of Einstein's equations which represents a pair of accelerating and rotating which explicitly contains the known special cases for either rotating or accelerating black holes

280

Large rotating AdS black holes from fluid mechanics

We use the AdS/CFT correspondence to argue that large rotating black holes in global AdS(D) spaces are dual to stationary solutions of the relativistic Navier-Stokes equations on S**(D-2). Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dynamical description applies to large non-extremal black holes as well as a class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, string theory on AdS(5) x S**5 and M theory on AdS(4) x S**7 and AdS(7) x S**4.

Sayantani Bhattacharyya; Subhaneil Lahiri; R. Loganayagam; Shiraz Minwalla

2008-07-25T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

281

Proton Hole States of Nb,95,97,99

-lying proton hole states in the Nb isotopes is from the study of Ohnuma and Yntema. ' Our recent study of hole state analogs of Nb levels in the Mo iso- topes' revealed a dramatic drop in analog state strength, particularly for / =1 states as one pro...

Bindal, P. K.; Youngblood, David H.; Kozub, R. L.

1974-01-01T23:59:59.000Z

282

Analysis of spherically symmetric black holes in Braneworld models

Research on black holes and their physical proprieties has been active on last 90 years. With the appearance of the String Theory and the Braneworld models as alternative descriptions of our Universe, the interest on black holes, in these context, increased. In this work we studied black holes in Braneworld models. A class of spherically symmetric black holes is investigaded as well its stability under general perturbations. Thermodynamic proprieties and quasi-normal modes are discussed. The black holes studied are the SM (zero mass) and CFM solutions, obtained by Casadio {\\it et al.} and Bronnikov {\\it et al.}. The geometry of bulk is unknown. However the Campbell-Magaard Theorem guarantees the existence of a 5-dimensional solution in the bulk whose projection on the brane is the class of black holes considered. They are stable under scalar perturbations. Quasi-normal modes were observed in both models. The tail behavior of the perturbations is the same. The entropy upper bound of a body absorved by the black holes studied was calculated. This limit turned out to be independent of the black hole parameters.

A. B. Pavan

2010-05-25T23:59:59.000Z

283

Pair Production of Topological anti de Sitter Black Holes

The pair creation of black holes with event horizons of non-trivial topology is described. The spacetimes are all limiting cases of the cosmological $C$ metric. They are generalizations of the $(2+1)$ dimensional black hole and have asymptotically anti de Sitter behaviour. Domain walls instantons can mediate their pair creation for a wide range of mass and charge.

R. B. Mann

1996-07-28T23:59:59.000Z

284

Filing Holes in Complex Surfaces Using Volumetric Diffusion

Method for Building Complex Models From range Images, '96) Applies line of sight constraints based components Complex hole geometry Construction of an arbitrary mesh can result in non-manifold surfaceFiling Holes in Complex Surfaces Using Volumetric Diffusion J. Davis, S. Marschner, M. Garr and M

Kazhdan, Michael

285

Synchronous Black Hole Search in Directed Graphs Adrian Kosowski

Synchronous Black Hole Search in Directed Graphs Adrian Kosowski Alfredo Navarra Cristina M called black hole nodes, and once a robot enters in one of them, it is destroyed. The goal is to find supported by the Italian CNR Short-Term Mobility Program. A. Kosowski was supported Polish Ministry Grant N

Paris-Sud XI, UniversitÃ© de

286

Modified Black Hole with Polar Jet and Vortex

There are many models relating an accretion disk of Black Hole to jet outflow. The herein heuristic model describes the continuation of an external accretion disk to an internal accretion disk for less than Black Hole horizon, and subsequent polar jet outflow along polar axis out of polar vortex wherein the event horizon is no longer descriptive.

T. Tmmalm

2001-12-06T23:59:59.000Z

287

Electromagnetic extraction of energy from Kerr black holes

We elucidate the `right' process for energy extraction from Kerr black holes through `FFDE' magnetospheres, free from causality violation. It is shown that the magnetosphere of a Kerr black hole possesses the double-structure, consisting of the inner and outer magnetospheres with the pair-creation gap between them and with respective unipolar batteries at the inner and outer surfaces of the gap.

Isao Okamoto

2005-06-14T23:59:59.000Z

288

Structure and Mass Absorption of Hypothetical Terrestrial Black Holes

The prospect of mini black holes, either primordial or in planned experiments at the Large Hadron Collider, interacting with the earth motivate us to examine how they may be detected and the scope of their impact on the earth. We propose that the more massive of these objects may gravitationally bind matter without significant absorption. Since the wave functions of gravitationally bound atoms orbiting a black hole are analogous to those of electrons around a nucleus, we call such an object the Gravitationally Equivalent of an Atom (GEA). Mini black holes are expected to lose mass through quantum evaporation, which has become well accepted on purely theoretical grounds. Since all attempts to directly observe x-rays from an evaporating black hole have failed, we examine the possibility of the inverse test: search for extant mini black holes by looking for emissions from matter bound in a GEA. If quantum evaporation does not occur, then miniature black holes left over from the early universe may be stable, contribute to dark matter, and in principle be detectable through emissions associated with the bound matter. We show that small black holes-with masses below \\sim10^12 kg-can bind matter without readily absorbing it into the black hole but the emissions are too weak to be detected from earth.

A. P. VanDevender; J. Pace VanDevender

2011-05-02T23:59:59.000Z

289

Instabilities of (near) extremal rotating black holes in higher dimensions

Recently, Durkee and Reall have conjectured a criterion for linear instability of rotating, extremal, asymptotically Minkowskian black holes in $d\\ge 4$ dimensions, such as the Myers-Perry black holes. They considered a certain elliptic operator, $\\cal A$, acting on symmetric traceless tensors intrinsic to the horizon. Based in part on numerical evidence, they suggested that if the lowest eigenvalue, $\\lambda$, of this operator is less than the critical value $-1/4$ ( called "effective BF-bound"), then the black hole is linearly unstable. In this paper, we prove their conjecture. Our proof uses a combination of methods such as (i) the "canonical energy method" of Hollands-Wald, (ii) algebraically special properties of the near horizon geometries associated with the black hole, and (iii) the structure of the (linearized) constraint equations. Our method of proof is also applicable to rotating, extremal asymptotically Anti-deSitter black holes. In that case, our methods show that "all" such black holes are unstable. Although we explicitly discuss in this paper only extremal black holes, we argue that our methods can be generalized straightforwardly to obtain the same results for "near" extremal black holes.

Stefan Hollands; Akihiro Ishibashi

2014-08-04T23:59:59.000Z

290

E-Print Network 3.0 - access hole parameters Sample Search Results

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

small warping parabolic heavy hole model with the quasi... -elastic approximation in acoustic phonon scattering, it is shown that the hole scattering length is indepen- dent...

291

Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors...

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) 2009 DOE Hydrogen Program and Vehicle...

292

Experimental Signature for Black Hole Production in Neutrino Air Showers

The existence of extra degrees of freedom beyond the electroweak scale may allow the formation of black holes in nearly horizontal neutrino air showers. In this paper we examine the average properties of the light descendants of these black holes. Our analysis indicates that black hole decay gives rise to deeply penetrating showers with an electromagnetic component which differs substantially from that in conventional neutrino interactions, allowing a good characterization of the phenomenon against background. Naturally occurring black holes in horizontal neutrino showers could be detected and studied with the Auger air shower array. Since the expected black hole production rate at Auger is $> 1$ event/year, this cosmic ray observatory could be potentially powerful in probing models with extra dimensions and TeV-scale gravity.

Luis Anchordoqui; Haim Goldberg

2001-10-15T23:59:59.000Z

293

Quasinormal modes of test fields around regular black holes

We study scalar, electromagnetic and gravitational test fields in the Hayward, Bardeen and Ay\\'{o}n-Beato-Garc\\'{i}a regular black hole spacetimes and demonstrate that the test fields are stable in all these spacetimes. Using the sixth order WKB approximation of the linear "axial" perturbative scheme, we determine dependence of the quasinormal mode (QNM) frequencies on the characteristic parameters of the test fields and the spacetime charge parameters of the regular black holes. We give also the greybody factors, namely the transmission and reflection coefficients of scattered scalar, electromagnetic and gravitational waves. We show that damping of the QNMs in regular black hole spacetimes is suppressed in comparison to the case of Schwarzschild black holes, and increasing charge parameter of the regular black holes increases reflection and decreases transmission factor of incident waves for each of the test fields.

Bobir Toshmatov; Ahmadjon Abdujabbarov; Zden?k Stuchlík; Bobomurat Ahmedov

2015-03-19T23:59:59.000Z

294

Implications of a viscosity bound on black hole accretion

Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10^{12}K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures.

Aninda Sinha; Banibrata Mukhopadhyay

2012-02-13T23:59:59.000Z

295

Hypervelocity binary stars: smoking gun of massive binary black holes

The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

Youjun Lu; Qingjuan Yu; D. N. C. Lin

2007-07-22T23:59:59.000Z

296

Black Hole Hair Removal: Non-linear Analysis

BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

Dileep P. Jatkar; Ashoke Sen; Yogesh K. Srivastava

2009-07-03T23:59:59.000Z

297

activity monitor randomized: Topics by E-print Network

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

restricted randomization procedures and then apply this technique to approximate the joint distribution of sequentially computed conditional randomization tests. We also...

298

The average number of distinct sites visited by a random walker on random graphs

We study the linear large $n$ behavior of the average number of distinct sites $S(n)$ visited by a random walker after $n$ steps on a large random graph. An expression for the graph topology dependent prefactor $B$ in $S(n) = Bn$ is proposed. We use generating function techniques to relate this prefactor to the graph adjacency matrix and then devise message-passing equations to calculate its value. Numerical simulations are performed to evaluate the agreement between the message passing predictions and random walk simulations on random graphs. Scaling with system size and average graph connectivity are also analysed.

De Bacco, Caterina; Sollich, Peter

2015-01-01T23:59:59.000Z

299

Random selection as a confidence building tool

Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. The first concern can be addressed by performing the measurements within the host facility using instruments under the host's control. Because the data output in this measurement scenario is also under host control, it is difficult for the monitoring party to have confidence in that data. One technique for addressing this difficulty is random selection. The concept of random selection can be thought of as four steps: (1) The host presents several 'identical' copies of a component or system to the monitor. (2) One (or more) of these copies is randomly chosen by the monitors for use in the measurement system. (3) Similarly, one or more is randomly chosen to be validated further at a later date in a monitor-controlled facility. (4) Because the two components or systems are identical, validation of the 'validation copy' is equivalent to validation of the measurement system. This procedure sounds straightforward, but effective application may be quite difficult. Although random selection is often viewed as a panacea for confidence building, the amount of confidence generated depends on the monitor's continuity of knowledge for both validation and measurement systems. In this presentation, we will discuss the random selection technique, as well as where and how this technique might be applied to generate maximum confidence. In addition, we will discuss the role of modular measurement-system design in facilitating random selection and describe a simple modular measurement system incorporating six small {sup 3}He neutron detectors and a single high-purity germanium gamma detector.

Macarthur, Duncan W [Los Alamos National Laboratory; Hauck, Danielle [Los Alamos National Laboratory; Langner, Diana [Los Alamos National Laboratory; Thron, Jonathan [Los Alamos National Laboratory; Smith, Morag [Los Alamos National Laboratory; Williams, Richard [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

300

Exploring the randomness of Directed Acyclic Networks

The feed-forward relationship naturally observed in time-dependent processes and in a diverse number of real systems -such as some food-webs and electronic and neural wiring- can be described in terms of so-called directed acyclic graphs (DAGs). An important ingredient of the analysis of such networks is a proper comparison of their observed architecture against an ensemble of randomized graphs, thereby quantifying the {\\em randomness} of the real systems with respect to suitable null models. This approximation is particularly relevant when the finite size and/or large connectivity of real systems make inadequate a comparison with the predictions obtained from the so-called {\\em configuration model}. In this paper we analyze four methods of DAG randomization as defined by the desired combination of topological invariants (directed and undirected degree sequence and component distributions) aimed to be preserved. A highly ordered DAG, called \\textit{snake}-graph and a Erd\\:os-R\\'enyi DAG were used to validate the performance of the algorithms. Finally, three real case studies, namely, the \\textit{C. elegans} cell lineage network, a PhD student-advisor network and the Milgram's citation network were analyzed using each randomization method. Results show how the interpretation of degree-degree relations in DAGs respect to their randomized ensembles depend on the topological invariants imposed. In general, real DAGs provide disordered values, lower than the expected by chance when the directedness of the links is not preserved in the randomization process. Conversely, if the direction of the links is conserved throughout the randomization process, disorder indicators are close to the obtained from the null-model ensemble, although some deviations are observed.

Joaquín Goñi; Bernat Corominas-Murtra; Ricard V. Solé; Carlos Rodríguez-Caso

2010-06-11T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

301

Modeling the black hole excision problem

We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.

Szilagyi, B.; Winicour, J. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany); Kreiss, H.-O. [Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany); NADA, Royal Institute of Technology, 10044 Stockholm (Sweden)

2005-05-15T23:59:59.000Z

302

Generalized uncertainty principle and black hole thermodynamics

We study the Schwarzschild and Reissner-Nordstr\\"{o}m black hole thermodynamics using the simplest form of the generalized uncertainty principle (GUP) proposed in the literature. The expressions for the mass-temperature relation, heat capacity and entropy are obtained in both cases from which the critical and remnant masses are computed. Our results are exact and reveal that these masses are identical and larger than the so called singular mass for which the thermodynamics quantities become ill-defined. The expression for the entropy reveals the well known area theorem in terms of the horizon area in both cases upto leading order corrections from GUP. The area theorem written in terms of a new variable which can be interpreted as the reduced horizon area arises only when the computation is carried out to the next higher order correction from GUP.

Sunandan Gangopadhyay; Abhijit Dutta; Anirban Saha

2014-01-08T23:59:59.000Z

303

Polymeric Quantization and Black Hole Thermodynamics

Polymer quantization is a non-standard representation of the quantum mechanics that inspired by loop quantum gravity. To study the associated statistical mechanics, one needs to find microstates' energies which are eigenvalues of the Hamiltonian operator in the polymer framework. But, this is not an easy task at all since the Hamiltonian takes a nonlinear form in polymer picture. In this paper, we introduce a semiclassical method in which it is not necessary to solve the eigenvalue problem. Instead, we work with the classical Hamiltonian function and the deformed density of states in the polymeric phase space. Implementing this method, we obtain the canonical partition function for the polymerized systems and we show that our results are in good agreement with those arising from full quantum considerations. Using the partition function, we study the thermodynamics of quantum Schwarzschild black hole and we obtain corrections to the Bekenstein-Hawking entropy due to loop quantum gravity effects.

M. A. Gorji; Kourosh Nozari; B. Vakili

2014-05-18T23:59:59.000Z

304

The Galactic Center Black Hole Laboratory

The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*) shows flare emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flare amplitudes are dominated by a single state power law, with the low states in SgrA* limited by confusion through the unresolved stellar background. There are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO is one of them. Its nature is unclear. It may be comparable to similar stellar dusty sources in the region or may consist predominantly of gas and dust. In this case a particularly enhanced accretion activity onto SgrA* may be expected in the near future. Here the interpretation of recent data and ongoing observations are discussed.

Eckart, A; Valencia-S., M; Straubmeier, C; Zensus, J A; Karas, V; Kunneriath, D; Alberdi, A; Sabha, N; Schödel, R; Puetzfeld, D

2015-01-01T23:59:59.000Z

305

Pinatubo fails to deepen the ozone hole

When the Philippine volcano Pinatubo exploded last year, pumping the upper atmosphere full of find debris, researchers foresaw yet another assault on the stratosphere's beleaguered ozone layer. Some calculations of the effects of volcanic debris implied that as much as 25% to 30% of the ozone shield over temperature latitudes might be eaten away by the volcanic haze - five times the observed loss over the past decade. Early measurements didn't bear out that concern, but researchers weren't prepared to call off the alarm until the verdict came in from the most vulnerable part of the planet's ozone layer, the frigid stratosphere over Antarctica. Although the hole was more extensive than ever before, probably because of unusual weather patterns, total ozone bottomed out well above the record set last year - even a tad above the low levels seen in 1987, 1989, and 1990.

Kerr, R.A.

1992-10-15T23:59:59.000Z

306

Horizon dynamics of distorted rotating black holes

We present numerical simulations of a Kerr black hole perturbed by a pulse of ingoing gravitational radiation. For strong perturbations we find up to five concentric marginally outer trapped surfaces. These trapped surfaces appear and disappear in pairs, so that the total number of such surfaces at any given time is odd. The world tubes traced out by the marginally outer trapped surfaces are found to be spacelike during the highly dynamical regime, approaching a null hypersurface at early and late times. We analyze the structure of these marginally trapped tubes in the context of the dynamical horizon formalism, computing the expansion of outgoing and incoming null geodesics, as well as evaluating the dynamical horizon flux law and the angular momentum flux law. Finally, we compute the event horizon. The event horizon is well-behaved and approaches the apparent horizon before and after the highly dynamical regime. No new generators enter the event horizon during the simulation.

Tony Chu; Harald P. Pfeiffer; Michael I. Cohen

2011-04-28T23:59:59.000Z

307

Nonphotochemical hole burning and dispersive kinetics in amorphous solids

Results covering burn intensities in the nW to {mu}W/cm{sup 2} range, of dispersive hole growth kinetics are reported for Oxazine 720 in glycerol glasses and polyvinyl alcohol polymer films and their deuterated analogues. A theoretical model which employs a distribution function for the hole burning rate constant based upon a Gaussian distribution for the tunnel parameter is shown to accurately describe the kinetic data. This model incorporates the linear electron-phonon coupling. A method for calculating the nonphotochemical quantum yield is presented which utilizes the Gaussian distribution of tunnel parameters. The quantum yield calculation can be extended to determine a quantum yield as a function of hole depth. The effect of spontaneous hole filling is shown to be insignificant over the burn intensity range studied. Average relaxation rates for hole burning are {approximately}8 orders of magnitude greater than for hole filling. The dispersive kinetics of hole burning are observed to be independent over the temperature range of these experiments, 1.6 to 7.0 K. 6 refs., 20 figs., 1 tab.

Kenney, M.J.

1990-09-21T23:59:59.000Z

308

Simulating merging binary black holes with nearly extremal spins

Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.

Lovelace, Geoffrey [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States); Scheel, Mark A.; Szilagyi, Bela [Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125 (United States)

2011-01-15T23:59:59.000Z

309

Acoustic white holes in flowing atomic Bose-Einstein condensates

We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.

Carlos Mayoral; Alessio Recati; Alessandro Fabbri; Renaud Parentani; Roberto Balbinot; Iacopo Carusotto

2010-09-30T23:59:59.000Z

310

Higgs Boson Production from Black Holes at the LHC

If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where \\sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions d\\sigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that d\\sigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where d\\sigma/dp_T decreases so we suggest that the measurement of an increase in d\\sigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.

Gouranga C. Nayak; J. Smith

2006-06-09T23:59:59.000Z

311

Optical transitions of holes in uniaxially compressed germanium

Spontaneous emission and photoconductivity of germanium with gallium impurity are studied for determining the energy spectrum of hole states in this material in which radiation can be induced as a result of transitions of holes between these states. Holes were excited by electric field pulses with a strength up to 12 kV/cm at T = 4.2 K under uniaxial compression of samples up to 12 kbar. It has been found that hole emission spectra for transitions between resonant and local states of the impurity have a structure identical to the photoconductivity and absorption spectra. Transitions from resonance states, which are associated with the heavy hole subband, have not been detected. It has been found that in an electric field lower than 100 V/cm, a compressed crystal emits as a result of transitions of heavy holes. In a strong electric field (1-3 kV/cm), emission is observed in the energy range up to 140 meV, and transitions with emission of TA and LO phonons appear in such a field. The emission spectra under pressures of 0 and 12 kbar differ insignificantly. Hence, it follows that the contributions from heavy and light holes in a strong electric field are indistinguishable.

Pokrovskii, Ya. E., E-mail: yaep@cplire.ru; Khvalkovskii, N. A. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)] [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)

2013-10-15T23:59:59.000Z

312

Black Holes with Primary Hair in gauged N=8 Supergravity

In this paper, we analyze the static solutions for the $U(1)^{4}$ consistent truncation of the maximally supersymmetric gauged supergravity in four dimensions. Using a new parametrization of the known solutions it is shown that for fixed charges there exist three possible black hole configurations according to the pattern of symmetry breaking of the (scalars sector of the) Lagrangian. Namely a black hole without scalar fields, a black hole with a primary hair and a black hole with a secondary hair respectively. This is the first, exact, example of a black hole with a primary scalar hair, where both the black hole and the scalar fields are regular on and outside the horizon. The configurations with secondary and primary hair can be interpreted as a spontaneous symmetry breaking of discrete permutation and reflection symmetries of the action. It is shown that there exist a triple point in the thermodynamic phase space where the three solution coexist. The corresponding phase transitions are discussed and the free energies are written explicitly as function of the thermodynamic coordinates in the uncharged case. In the charged case the free energies of the primary hair and the hairless black hole are also given as functions of the thermodynamic coordinates.

Andres Anabalon; Fabrizio Canfora; Alex Giacomini; Julio Oliva

2012-03-29T23:59:59.000Z

313

No-hair theorem for Black Holes in Astrophysical Environments

According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.

Gürlebeck, Norman

2015-01-01T23:59:59.000Z

314

RENEWAL THEOREMS FOR RANDOM WALKS IN RANDOM SCENERY NADINE GUILLOTIN-PLANTARD AND FRANOISE PNE

RENEWAL THEOREMS FOR RANDOM WALKS IN RANDOM SCENERY NADINE GUILLOTIN-PLANTARD AND FRANÃ?OISE PÃ?NE)n is recurrent) where h is some complex-valued function defined on R or Z. 1. Introduction Renewal theorems variables, renewal theorems were proved by ErdÃ¶s, Feller and Pollard [11], Blackwell [1, 2], Breiman [6

Paris-Sud XI, UniversitÃ© de

315

LARGE DEVIATIONS FOR THE LOCAL TIMES OF A RANDOM WALK AMONG RANDOM CONDUCTANCES

.1) This operator is symmetric and generates the continuous-time random walk (X t ) t#[0,#) in Z d , the random walk AND TILMAN WOLFF In some recent publications (see, e.g., [BD10]), the above walk is called variable-speed times of the walk. The speed and the rate function of our principle are explicit in terms of the lower

KÃ¶nig, Wolfgang

316

Collective Modes in a Superfluid Neutron Gas within the Quasiparticle Random-Phase Approximation

We study collective excitations in a superfluid neutron gas at zero temperature within the quasiparticle random phase approximation. The particle-hole residual interaction is obtained from a Skyrme functional, while a separable interaction is used in the pairing channel which gives a realistic density dependence of the pairing gap. In accordance with the Goldstone theorem, we find an ungapped collective mode (analogous to the Bogoliubov-Anderson mode). At low momentum, its dispersion relation is approximately linear and its slope coincides with the hydrodynamic speed of sound calculated with the Skyrme equation of state. The response functions are compared with those obtained within the Landau approximation. We also compute the contribution of the collective mode to the specific heat of the neutron gas, which is relevant for the thermodynamic properties of the inner crust of neutron stars.

Noël Martin; Michael Urban

2015-01-05T23:59:59.000Z

317

Scalar emission in a rotating Gödel black hole

We study the absorption probability and Hawking radiation of the scalar field in the rotating G\\"{o}del black hole in minimal five-dimensional gauged supergravity. We find that G\\"{o}del parameter $j$ imprints in the greybody factor and Hawking radiation. It plays a different role from the angular momentum of the black hole in the Hawking radiation and super-radiance. These information can help us know more about rotating G\\"{o}del black holes in minimal five-dimensional gauged supergravity.

Songbai Chen; Bin Wang; Jiliang Jing

2008-08-23T23:59:59.000Z

318

Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space

We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.

Kourosh Nozari; Behnaz Fazlpour

2007-01-14T23:59:59.000Z

319

Inferring black hole charge from backscattered electromagnetic radiation

We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

2014-09-16T23:59:59.000Z

320

String black hole: Can it be a particle accelerator ?

In this paper we have studied the possibility of the center-of-mass energy of two particles colliding near the horizon of a static charged black hole in string theory. Various cases corresponding to the electric charge and the angular momentum of the particles were considered. The studies were done for the general black hole as well as for the extreme black hole. There were two scenarios where the center-of-mass energy reach very large values if the appropriate properties of the particles are chosen.

Sharmanthie Fernando

2014-08-21T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

321

Accretion onto a black hole in a string cloud background

We examine the accretion process onto the black hole with a string cloud background, where the horizon of the black hole has an enlarged radius $r_H=2 M/(1-\\alpha)$, due to the string cloud parameter $\\alpha\\; (0 \\leq \\alpha cloud parameter $\\alpha$. We also find the gas compression ratios and temperature profiles below the accretion radius and at the event horizon. It is shown that the mass accretion rate, for both the relativistic and the non-relativistic fluid by a black hole in the string cloud model, increases with increase in $\\alpha$.

Apratim Ganguly; Sushant G. Ghosh; Sunil D. Maharaj

2014-09-28T23:59:59.000Z

322

Phenomenological Description of the Interior of the Schwarzschild Black Hole

We discuss a sufficiently large 4-dimensional Schwarzschild black hole which is in equilibrium with a heat bath. In other words, we consider a black hole which has grown up from a small one in the heat bath adiabatically. We express the metric of the interior of the black hole in terms of two functions: One is the intensity of the Hawking radiation, and the other is the ratio between the radiation energy and the pressure in the radial direction. Especially in the case of conformal matters we check that it is a self-consistent solution of the semi-classical Einstein equation, $G_{\\mu\

Hikaru Kawai; Yuki Yokokura

2014-09-19T23:59:59.000Z

323

Black holes and the absorption rate of cosmological scalar fields

We study the absorption of a massless scalar field by a static black hole. Using the continuity equation that arises from the Klein-Gordon equation, it is possible to define a normalized absorption rate $\\Gamma(t)$ for the scalar field as it falls into the black hole. It is found that the absorption mainly depends upon the characteristics wavelengths involved in the physical system: the mean wavenumber and the width of the wave packet, but that it is insensitive to the scalar field's strength. By taking a limiting procedure, we determine the minimum absorption fraction of the scalar field's mass by the black hole, which is around 50%.

L. Arturo Urena-Lopez; Lizbeth M. Fernandez

2011-07-15T23:59:59.000Z

324

Hawking Radiation by Kerr Black Holes and Conformal Symmetry

The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

Agullo, Ivan; Parker, Leonard [Physics Department, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States); Navarro-Salas, Jose [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC. Facultad de Fisica, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Olmo, Gonzalo J. [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain)

2010-11-19T23:59:59.000Z

325

Non-invertible transformations and spatiotemporal randomness

We generalize the exact solution to the Bernoulli shift map. Under certain conditions, the generalized functions can produce unpredictable dynamics. We use the properties of the generalized functions to show that certain dynamical systems can generate random dynamics. For instance, the chaotic Chua's circuit coupled to a circuit with a non-invertible I-V characteristic can generate unpredictable dynamics. In general, a nonperiodic time-series with truncated exponential behavior can be converted into unpredictable dynamics using non-invertible transformations. Using a new theoretical framework for chaos and randomness, we investigate some classes of coupled map lattices. We show that, in some cases, these systems can produce completely unpredictable dynamics. In a similar fashion, we explain why some wellknown spatiotemporal systems have been found to produce very complex dynamics in numerical simulations. We discuss real physical systems that can generate random dynamics.

J. A. Gonzalez; A. J. Moreno; L. E. Guerrero

2006-02-12T23:59:59.000Z

326

Quantum random-walk search algorithm

Quantum random walks on graphs have been shown to display many interesting properties, including exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we present a quantum search algorithm based on the quantum random-walk architecture that provides such a speedup. It will be shown that this algorithm performs an oracle search on a database of N items with O({radical}(N)) calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum random-walk formulation has considerable flexibility, presenting interesting opportunities for development of other, possibly novel quantum algorithms.

Shenvi, Neil; Whaley, K. Birgitta [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Kempe, Julia [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Computer Science Division, EECS, University of California, Berkeley, California 94720 (United States); CNRS-LRI, UMR 8623, Universite de Paris-Sud, 91405 Orsay (France)

2003-05-01T23:59:59.000Z

327

Efficient broadcast on random geometric graphs

A Randon Geometric Graph (RGG) is constructed by distributing n nodes uniformly at random in the unit square and connecting two nodes if their Euclidean distance is at most r, for some prescribed r. They analyze the following randomized broadcast algorithm on RGGs. At the beginning, there is only one informed node. Then in each round, each informed node chooses a neighbor uniformly at random and informs it. They prove that this algorithm informs every node in the largest component of a RGG in {Omicron}({radical}n/r) rounds with high probability. This holds for any value of r larger than the critical value for the emergence of a giant component. In particular, the result implies that the diameter of the giant component is {Theta}({radical}n/r).

Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [INTERNATIONAL COMPUTER SCI.; Sauerwald, Thomas [INTERNATIONAL COMPUTER SCI.

2009-01-01T23:59:59.000Z

328

Modified discrete random walk with absorption

We obtain expected number of arrivals, probability of arrival, absorption probabilities and expected time before absorption for a modified discrete random walk on the (sub)set of integers. In a [pqrs] random walk the particle can move one step forward or backward, stay for a moment in the same state or it can be absorbed immediately in the current state. M[pqrs] is a modified version, where probabilities on both sides of a multiple function barrier M are of different [pqrs] type.

Theo van Uem

2009-03-02T23:59:59.000Z

329

During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.

Helmick, C.; Koczan, S.; Pettitt, R.

1982-04-01T23:59:59.000Z

330

Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

We report strong heavy hole-light hole mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k{center_dot}p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.

Belhadj, T.; Amand, T.; Kunz, S.; Marie, X.; Urbaszek, B. [INSA-CNRS-UPS, LPCNO, Universite de Toulouse, 135 Av. Rangueil, 31077 Toulouse (France); Kunold, A. [INSA-CNRS-UPS, LPCNO, Universite de Toulouse, 135 Av. Rangueil, 31077 Toulouse (France); Departamento de Ciencias Basicas, UAM-A, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Simon, C.-M. [INSA-CNRS-UPS, LPCNO, Universite de Toulouse, 135 Av. Rangueil, 31077 Toulouse (France); CNRS-UPS, LCAR, IRSAMC, Universite de Toulouse, 31062 Toulouse (France); Kuroda, T.; Abbarchi, M.; Mano, T.; Sakoda, K. [National Institute for Material Science, Namiki 1-1, Tsukuba 305-0044 (Japan)

2010-08-02T23:59:59.000Z

331

Supermassive Black Holes at the Center of Galaxies

This was my final paper for the AST 308 Galaxies class at Michigan State University. Using many sources I was able to compile a moderate amount of information concerning the evidence for, and the formation of Supermassive Black Holes.

Christopher J. Greenwood

2005-12-13T23:59:59.000Z

332

Could there be a hole in type Ia supernovae?

Highlight: The Physics of Supernovae. Pro- ceedings of the EThere Be A Hole In Type l a Supernovae? Daniel Kasen, Peterscenario, Type l a Supernovae (SNe la) arise from a white

Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

2004-01-01T23:59:59.000Z

333

Quantum Emission from Two-Dimensional Black Holes

We investigate Hawking radiation from two-dimensional dilatonic black holes using standard quantization techniques. In the background of a collapsing black hole solution the Bogoliubov coefficients can be exactly determined. In the regime after the black hole has settled down to an `equilibrium' state but before the backreaction becomes important these give the known result of a thermal distribution of Hawking radiation at temperature lambda/(2pi). The density matrix is computed in this regime and shown to be purely thermal. Similar techniques can be used to derive the stress tensor. The resulting expression agrees with the derivation based on the conformal anomaly and can be used to incorporate the backreaction. Corrections to the thermal density matrix are also examined, and it is argued that to leading order in perturbation theory the effect of the backreaction is to modify the Bogoliubov transformation, but not in a way that restores information lost to the black holes.

Steven B. Giddings; W. M. Nelson

2009-11-27T23:59:59.000Z

334

The Energy for 2+1 Dimensional Black Hole Solutions

The energy distributions of four 2+1 dimensional black hole solutions were obtained by using the Einstein and M{\\o}ller energy-momentum complexes. while $r \\to \\infty$, the energy distributions of these four solutions become divergence.

I-Ching Yang; Irina Radinschi

2006-11-05T23:59:59.000Z

335

Nonphotochemical hole burning and dispersive kinetics in amorphous solids.

??Results of an extensive study, covering burn intensities in the nW to {dollar}?{dollar}W/cm{dollar}2{dollar} range, of dispersive hole growth kinetics are reported for Oxazine 720 in… (more)

Kenney, Michael Joseph

1990-01-01T23:59:59.000Z

336

Lovelock black holes in a string cloud background

We present an exact static, spherically symmetric black hole solution to the third order Lovelock gravity with a string cloud background in seven dimensions for the special case when the second and third order Lovelock coefficients are related via $\\tilde{\\alpha}^2_2=3\\tilde{\\alpha}_3\\;(\\equiv\\alpha^2)$. Further, we examine thermodynamic properties of this black hole to obtain exact expressions for mass, temperature, entropy and also perform the thermodynamic stability analysis. We see that a string cloud background makes a profound influence on horizon structure, thermodynamic properties and the stability of black holes. Interestingly, the entropy of the black hole is unaffected due to a string cloud background. However, the critical solution for thermodynamic stability is being affected by a string cloud background.

Tae-Hun Lee; Dharmanand Baboolal; Sushant G. Ghosh

2014-09-12T23:59:59.000Z

337

General solutions for thermopiezoelectrics with various holes under thermal loading

induced by thermal loads. The loads may be uniform remote heat Â¯ow, point heat source and temperature elastic plate with an hole of various shapes subjected to remote uniform mechanical loading. For plane

Qin, Qinghua

338

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

339

Temperatures, heat flow, and water chemistry from drill holes...

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

340

Neural network calibration for miniature multi-hole pressure probes

A robust and accurate neural network based algorithm phics. for the calibration of miniature multi-hole pressure probes has been developed and a detailed description of its features and use is presented. The code that was developed was intended...

Vijayagopal, Rajesh

1998-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

341

Search for gravitational waves from intermediate mass binary black holes

We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100–450??M? and with the component mass ratios between 1?1 ...

Barsotti, Lisa

342

Black holes and the quark-gluon plasma

I discuss the possibility that the quark-gluon plasma at strong coupling admits a description in terms of a black hole in asymptotically anti-de Sitter space.

George Siopsis

2009-01-26T23:59:59.000Z

343

Inertial blob-hole symmetry breaking in magnetised plasma filaments

Symmetry breaking between the propagation velocities of magnetised plasma filaments with large positive (blob) and negative (hole) amplitudes, as implied by a dimensional analysis scaling, is studied with global ("full-n") non-Boussinesq gyrofluid computations, which include finite inertia effects through nonlinear polarisation. Interchange blobs on a flat density background have higher inertia and propagate more slowly than holes. In the presence of a large enough density gradient, the effect is reversed: blobs accelerate down the gradient and holes are slowed in their propagation up the gradient. Drift wave blobs spread their initial vorticity rapidly into a fully developed turbulent state, whereas primary holes can remain coherent for many eddy turnover times. The results bear implications for plasma edge zonal flow evolution and tokamak scrape-off-layer transport.

Kendl, Alexander

2015-01-01T23:59:59.000Z

344

Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

DOE-funding Unknown Exploration Basis Known shallow hot spot in Animas Valley Notes Four thermal gradient holes were authorized to be drilled by AMEX, but no results were...

345

Vortex hair on AdS black holes

We analyse vortex hair for charged rotating asymptotically AdS black holes in the abelian Higgs model. We give analytical and numerical arguments to show how the vortex interacts with the horizon of the black hole, and how the solution extends to the boundary. The solution is very close to the corresponding asymptotically flat vortex, once one transforms to a frame that is non-rotating at the boundary. We show that there is a Meissner effect for extremal black holes, with the vortex flux being expelled from sufficiently small black holes. The phase transition is shown to be first order in the presence of rotation, but second order without rotation. We comment on applications to holography.

Gregory, Ruth; Kubiznak, David; Mann, Robert B; Wills, Danielle

2014-01-01T23:59:59.000Z

346

On the Quantum-Corrected Black Hole Thermodynamics

Bekenstein-Hawking Black hole thermodynamics should be corrected to incorporate quantum gravitational effects. Generalized Uncertainty Principle(GUP) provides a perturbational framework to perform such modifications. In this paper we consider the most general form of GUP to find black holes thermodynamics in microcanonical ensemble. Our calculation shows that there is no logarithmic pre-factor in perturbational expansion of entropy. This feature will solve part of controversies in literatures regarding existence or vanishing of this pre-factor.

Kourosh Nozari; S. Hamid Mehdipour

2006-01-15T23:59:59.000Z

347

Renormalization and black hole entropy in Loop Quantum Gravity

Microscopic state counting for a black hole in Loop Quantum Gravity yields a result proportional to horizon area, and inversely proportional to Newton's constant and the Immirzi parameter. It is argued here that before this result can be compared to the Bekenstein-Hawking entropy of a macroscopic black hole, the scale dependence of both Newton's constant and the area must be accounted for. The two entropies could then agree for any value of the Immirzi parameter, if a certain renormalization property holds.

Ted Jacobson

2007-08-25T23:59:59.000Z

348

Black holes and Hawking radiation in spacetime and its analogues

These notes introduce the fundamentals of black hole geometry, the thermality of the vacuum, and the Hawking effect, in spacetime and its analogues. Stimulated emission of Hawking radiation, the trans-Planckian question, short wavelength dispersion, and white hole radiation in the setting of analogue models are also discussed. No prior knowledge of differential geometry, general relativity, or quantum field theory in curved spacetime is assumed.

Ted Jacobson

2012-12-31T23:59:59.000Z

349

On the energy of Ho?ava-Lifshitz black holes

In this paper we calculate the energy distribution of the Mu-in Park, Kehagias-Sfetsos (KS) and L\\"u, Mei and Pope (LMP) black holes in the Ho\\v{r}ava-Lifshitz theory of gravity. These black hole solutions correspond to the standard Einstein-Hilbert action in the infrared limit. For our calculations we use the Einstein and M{\\o}ller prescriptions. Various limiting and particular cases are also discussed.

I. Radinschi; F. Rahaman; A. Banerjee

2011-02-10T23:59:59.000Z

350

Embeddings of the black holes in a flat space

We study the explicit embeddings of static black holes. We obtain two new minimal embeddings of the Schwarzchild-de Sitter metric which smoothly cover both horizons of this metric. The lines of time for these embeddings are more complicated than hyperbolas. Also we shortly discuss the possibility of using non-hyperbolic embeddings for calculation of the black hole Hawking temperature in the Deser and Levin approach.

A. A. Sheykin; D. A. Grad; S. A. Paston

2014-01-30T23:59:59.000Z

351

Electromagnetic quasinormal modes of D-dimensional black holes

Using the monodromy method we calculate the asymptotic quasinormal (QN) frequencies of an electromagnetic field moving in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes ($D\\geq 4$). For the D-dimensional Schwarzschild anti-de Sitter (SadS) black hole we also compute these frequencies with a similar method. Moreover, we calculate the electromagnetic normal modes of the D-dimensional anti-de Sitter (AdS) spacetime.

A. López-Ortega

2006-11-02T23:59:59.000Z

352

Statistical Physics of 3D Hairy Black Holes

We investigate the statistical behaviors of 3D hairy black holes in the presence of a scalar field. The present study is made in terms of two relevant parameters: rotation parameter a and B parameter related to the scalar field. More precisely, we compute various statistical quantities including the partition function for non-charged and charged black hole solutions. Using a partition function calculation, we show that the probability is independent of a and B parameters.

A. Belhaj; M. Chabab; H. EL Moumni; K. Masmar; M. B. Sedra

2014-12-29T23:59:59.000Z

353

Particle acceleration by Majumdar-Papapetrou di-hole

We explore the multi-black hole spacetimes from the perspective of the ultra-high energy particle collisions. Such a discussion is limited to the spacetimes containing a single black hole so far. We deal with the Majumdar-Papapetrou solution representing a system consisting of two identical black holes in the equilibrium. In order to identify the conditions suitable for the process of high energy collisions, we consider particles confined to move on the equatorial plane towards the axis of symmetry with the zero angular momentum. We consider collision between the particles moving in opposite directions at the location midway between the black holes on the axis. We show that the center of mass energy of collision between the particles increases with the decrease in the separation between the black holes and shows divergence in the limit where the separation goes to zero. We estimate the size of the region close to the central point on the equatorial plane where it would be possible to have high energy collisions and show that this region has a reasonably large spatial extent. We further explore the process of high energy collisions with the general geodesics with arbitrary angular momentum on the equatorial plane away from the central point. Although in this paper we deal with theMajumdar-Papapetrou spacetime which serves as a toy example representing multiple black holes, we speculate on the possibility that the ultra-high energy collisions would also occur in the more general setting like colliding black holes, when distance between the black holes is extremely small, which can in principle be verified in the numerical relativity simulations.

Mandar Patil; Pankaj S. Joshi

2014-09-03T23:59:59.000Z

354

Topological aspect of black hole with Skyrme hair

Based on the $\\phi$-mapping topological current theory, we show that the presence of the black hole leaves fractional baryon charge outside the horizon in the Einstein-Skyrme theory. A topological current is derived from the Einstein-Skyrme system, which corresponds to the monopoles around the black hole. The branch process (splitting, merging and intersection) is simply discussed during the evolution of the monopoles.

Yi-Shi Duan; Xin-Hui Zhang; Li Zhao

2007-03-19T23:59:59.000Z

355

Towards a characterization of fields leading to black hole hair

In the present work, it is shown that an asymptotically flat spherical black hole can have a nontrivial signature of any field for an exterior observer if the energy momentum tensor of the corresponding field is either tracefree or if the trace falls off at least as rapidly as inverse cube of the radial distance. In the absence of a general No Hair Theorem, this result can provide a characterization of the fields leading to black hole hair.

Narayan Banerjee; Somasri Sen

2013-07-05T23:59:59.000Z

356

Derandomizing from Random Strings Harry Buhrman

Derandomizing from Random Strings Harry Buhrman CWI and University of Amsterdam buhrman c log n, R=c log n K , itself a strings of length nc , is complex enough to figure as a hard an alternative proof of the existence of an r.e. set A, due to Barzdin [4], such that for all time bounds t

Fortnow, Lance

357

Diffusive limit for the random Lorentz gas

We review some recent results concerning the derivation of the diffusion equation and the validation of Fick's law for the microscopic model given by the random Lorentz Gas. These results are achieved by using a linear kinetic equation as an intermediate level of description between our original mechanical system and the diffusion equation.

Alessia Nota

2014-10-14T23:59:59.000Z

358

Thermodynamic properties of asymptotically Reissner–Nordström black holes

Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariant metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.

Hendi, S.H., E-mail: hendi@shirazu.ac.ir

2014-07-15T23:59:59.000Z

359

Could there be a hole in type Ia supernovae?

In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

2004-04-23T23:59:59.000Z

360

Hawking Radiation of a Charged Black Hole in Quantum Gravity

We study black hole radiation of a Reissner-Nordstrom black hole with an electric charge in the framework of quantum gravity. Based on a canonical quantization for a spherically symmetric geometry, under physically plausible assumptions, we solve the Wheeler-De Witt equation in the regions not only between the outer apparent horizon and the spatial infinity but also between the spacetime singularity and the inner apparent horizon, and then show that the mass loss rate of an evaporating black hole due to thermal radiation agrees with the semiclassical result when we choose an integration constant properly by physical reasoning. Furthermore, we also solve the Wheeler-De Witt equation in the region between the inner Cauchy horizon and the outer apparent horizon, and show that the mass loss rate of an evaporating black hole has the same expression. The present study is the natural generalization of the case of a Schwarzschild black hole to that of a charged Reissner-Nordstrom black hole.

Ichiro Oda

2015-03-18T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

361

Black Hole Remnants and the Information Loss Paradox

Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a "remnant" has remained unpopular and is often dismissed due to some "undesired properties" of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate information loss and the firewall paradox. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.

Pisin Chen; Yen Chin Ong; Dong-han Yeom

2015-01-30T23:59:59.000Z

362

Hawking Radiation of a Charged Black Hole in Quantum Gravity

We study black hole radiation of a Reissner-Nordstrom black hole with an electric charge in the framework of quantum gravity. Based on a canonical quantization for a spherically symmetric geometry, under physically plausible assumptions, we solve the Wheeler-De Witt equation in the regions not only between the outer apparent horizon and the spatial infinity but also between the spacetime singularity and the inner apparent horizon, and then show that the mass loss rate of an evaporating black hole due to thermal radiation agrees with the semiclassical result when we choose an integration constant properly by physical reasoning. Furthermore, we also solve the Wheeler-De Witt equation in the region between the inner Cauchy horizon and the outer apparent horizon, and show that the mass loss rate of an evaporating black hole has the same expression. The present study is the natural generalization of the case of a Schwarzschild black hole to that of a charged Reissner-Nordstrom black hole.

Oda, Ichiro

2015-01-01T23:59:59.000Z

363

Nearly extremal apparent horizons in simulations of merging black holes

The spin angular momentum $S$ of an isolated Kerr black hole is bounded by the surface area $A$ of its apparent horizon: $8\\pi S \\le A$, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses $M$ and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to $S/M^2 = 0.994$. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality $8\\pi S extremality by computing the smallest value that Booth and Fairhurst's extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al. (2008), we construct quasiequilibrium binary-black-hole initial data with "overspun" marginally trapped surfaces with $8\\pi S > A$ and for which our lower bound on their Booth-Fairhurst extremality exceeds unity. These superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with $8\\pi Sextremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole. (Abstract abbreviated.)

Geoffrey Lovelace; Mark A. Scheel; Robert Owen; Matthew Giesler; Reza Katebi; Bela Szilagyi; Tony Chu; Nicholas Demos; Daniel A. Hemberger; Lawrence E. Kidder; Harald P. Pfeiffer; Nousha Afshari

2014-11-26T23:59:59.000Z

364

Black Hole Solutions in $R^2$ Gravity

We find static spherically symmetric solutions of scale invariant $R^2$ gravity. The latter has been shown to be equivalent to General Relativity with a positive cosmological constant and a scalar mode. Therefore, one expects that solutions of the $R^2$ theory will be identical to that of Einstein theory. Indeed, we find that the solutions of $R^2$ gravity are in one-to-one correspondence with solutions of General Relativity in the case of non-vanishing Ricci scalar. However, scalar-flat $R=0$ solutions are global minima of the $R^2$ action and they cannot in general be mapped to solutions of the Einstein theory. As we will discuss, the $R=0$ solutions arise in Einstein gravity as solutions in the tensionless, strong coupling limit $M_P\\rightarrow 0$. As a further result, there is no corresponding Birkhoff theorem and the Schwarzschild black hole is by no means unique in this framework. In fact, $R^2$ gravity has a rich structure of vacuum static spherically symmetric solutions partially uncovered here. We al...

Kehagias, Alex; Lust, Dieter; Riotto, Antonio

2015-01-01T23:59:59.000Z

365

MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

Volonteri, Marta [Institut d'Astrophysique de Paris, 98bis Bd. Arago, F-75014 Paris (France); Ciotti, Luca [Dipartimento di Fisica e Astronomia, Universita di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

2013-05-01T23:59:59.000Z

366

Falling through the black hole horizon

We consider the fate of a small classical object, a "stick", as it falls through the horizon of a large black hole (BH). Classically, the equivalence principle dictates that the stick is affected by small tidal forces, and Hawking's quantum-mechanical model of BH evaporation makes essentially the same prediction. If, on the other hand, the BH horizon is surrounded by a "firewall", the stick will be consumed as it falls through. We have recently extended Hawking's model by taking into account the quantum fluctuations of the geometry and the classical back-reaction of the emitted particles. Here, we calculate the strain exerted on the falling stick for our model. The strain depends on the near-horizon state of the Hawking pairs. We find that, after the Page time when the state of the pairs deviates significantly from maximal entanglement (as required by unitarity), the induced strain in our semiclassical model is still parametrically small. This is because the number of the disentangled pairs is parametrically ...

Brustein, Ram

2015-01-01T23:59:59.000Z

367

Black Hole Instabilities and Exponential Growth

Recently, a general analysis has been given of the stability with respect to axisymmetric perturbations of stationary-axisymmetric black holes and black branes in vacuum general relativity in arbitrary dimensions. It was shown that positivity of canonical energy on an appropriate space of perturbations is necessary and sufficient for stability. However, the notions of both "stability" and "instability" in this result are significantly weaker than one would like to obtain. In this paper, we prove that if a perturbation of the form $\\pounds_t \\delta g$---with $\\delta g$ a solution to the linearized Einstein equation---has negative canonical energy, then that perturbation must, in fact, grow exponentially in time. The key idea is to make use of the $t$- or ($t$-$\\phi$)-reflection isometry, $i$, of the background spacetime and decompose the initial data for perturbations into their odd and even parts under $i$. We then write the canonical energy as $\\mathscr E\\ = \\mathscr K + \\mathscr U$, where $\\mathscr K$ and $...

Prabhu, Kartik

2015-01-01T23:59:59.000Z

368

Black holes, cuspy atmospheres, and galaxy formation

In cuspy atmospheres, jets driven by supermassive black holes (BHs) offset radiative cooling. The jets fire episodically, but often enough that the cuspy atmosphere does not move very far towards a cooling catastrophe in the intervals of jet inactivity. The ability of energy released on the sub-parsec scale of the BH to balance cooling on scales of several tens of kiloparsecs arises through a combination of the temperature sensitivity of the accretion rate and the way in which the radius of jet disruption varies with ambient density. Accretion of hot gas does not significantly increase BH masses, which are determined by periods of rapid BH growth and star formation when cold gas is briefly abundant at the galactic centre. Hot gas does not accumulate in shallow potential wells. As the Universe ages, deeper wells form, and eventually hot gas accumulates. This gas soon prevents the formation of further stars, since jets powered by the BH prevent it from cooling, and it mops up most cold infalling gas before many stars can form. Thus BHs set the upper limit to the masses of galaxies. The formation of low-mass galaxies is inhibited by a combination of photo-heating and supernova-driven galactic winds. Working in tandem these mechanisms can probably explain the profound difference between the galaxy luminosity function and the mass function of dark halos expected in the cold dark matter cosmology.

James Binney

2004-07-12T23:59:59.000Z

369

Randomization and the Gross-Pitaevskii hierarchy

We study the Gross-Pitaevskii hierarchy on the spatial domain $\\mathbb{T}^3$. By using an appropriate randomization of the Fourier coefficients in the collision operator, we prove an averaged form of the main estimate which is used in order to contract the Duhamel terms that occur in the study of the hierarchy. In the averaged estimate, we do not need to integrate in the time variable. An averaged spacetime estimate for this range of regularity exponents then follows as a direct corollary. The range of regularity exponents that we obtain is $\\alpha>\\frac{3}{4}$. It was shown in our previous joint work with Gressman that the range $\\alpha>1$ is sharp in the corresponding deterministic spacetime estimate. This is in contrast to the non-periodic setting, which was studied by Klainerman and Machedon, in which the spacetime estimate is known to hold whenever $\\alpha \\geq 1$. The goal of our paper is to extend the range of $\\alpha$ in this class of estimates in a \\emph{probabilistic sense}. We use the new estimate and the ideas from its proof in order to study randomized forms of the Gross-Pitaevskii hierarchy. More precisely, we consider hierarchies similar to the Gross-Pitaevskii hierarchy, but in which the collision operator has been randomized. For these hierarchies, we show convergence to zero in low regularity Sobolev spaces of Duhamel expansions of fixed deterministic density matrices. We believe that the study of the randomized collision operators could be the first step in the understanding of a nonlinear form of randomization.

Vedran Sohinger; Gigliola Staffilani

2014-07-25T23:59:59.000Z

370

Mott law as lower bound for a random walk in a random environment

We consider a random walk on the support of a stationary simple point process on $R^d$, $d\\geq 2$ which satisfies a mixing condition w.r.t.the translations or has a strictly positive density uniformly on large enough cubes. Furthermore the point process is furnished with independent random bounded energy marks. The transition rates of the random walk decay exponentially in the jump distances and depend on the energies through a factor of the Boltzmann-type. This is an effective model for the phonon-induced hopping of electrons in disordered solids within the regime of strong Anderson localization. We show that the rescaled random walk converges to a Brownian motion whose diffusion coefficient is bounded below by Mott's law for the variable range hopping conductivity at zero frequency. The proof of the lower bound involves estimates for the supercritical regime of an associated site percolation problem.

A. Faggionato; H. Schulz-Baldes; D. Spehner

2006-04-18T23:59:59.000Z

371

Ejection of hypervelocity stars by the (binary) black hole(s) in the Galactic center

We study three processes that eject hypervelocity (>10^3 km/s) stars from the Galactic center: (i) close encounters of two single stars; (ii) tidal breakup of binary stars by the central black hole, as originally proposed by Hills; and (iii) three-body interactions between a star and a binary black hole (BBH). Mechanism (i) expels hypervelocity stars to the solar radius at a negligible rate, ~10^{-11}/yr. Mechanism (ii) expels hypervelocity stars at a rate ~ 10^{-5}(\\eta/0.1)/yr, where \\eta is the fraction of stars in binaries with semimajor axis a_b<~0.3 AU. For solar-mass stars, the corresponding number of hypervelocity stars within the solar radius R_0=8 kpc is ~60(\\eta/0.1)(a_b/0.1 AU)^{1/2}. For mechanism (iii), Sgr A^* is assumed to be one component of a BBH. We constrain the allowed parameter space (semimajor axis, mass ratio) of the BBH. In the allowed region (for example, semimajor axis of 0.5x10^{-3} pc and mass ratio of 0.01), the rate of ejecting hypervelocity stars can be as large as ~10^{-4}/yr and the expected number of hypervelocity stars within the solar radius can be as large as ~10^3. Hypervelocity stars may be detectable by the next generation of large-scale optical surveys.

Qingjuan Yu; Scott Tremaine

2003-09-03T23:59:59.000Z

372

The U.S. Department of Energy (DOE) is responsible for disposing of transuranic waste in the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. As part of that responsibility, DOE must comply with the U.S. Environmental Protection Agency's (EPA) radiation protection standards in Title 40 Code of Federal Regulations (CFR), Parts 191 and 194. This paper addresses compliance with the criteria of 40 CFR Section 194.24(d) and 194.24(f) that require DOE to either provide a waste loading scheme for the WIPP repository or to assume random emplacement in the mandated performance and compliance assessments. The DOE established a position on waste loading schemes during the process of obtaining the EPA's initial Certification in 1998. The justification for utilizing a random waste emplacement distribution within the WIPP repository was provided to the EPA. During the EPA rulemaking process for the initial certification, the EPA questioned DOE on whether waste would be loaded randomly as modeled in long-term performance assessment (PA) and the impact, if any, of nonrandom loading. In response, DOE conducted an impact assessment for non-random waste loading. The results of this assessment supported the contention that it does not matter whether random or non-random waste loading is assumed for the PA. The EPA determined that a waste loading plan was unnecessary because DOE had assumed random waste loading and evaluated the potential consequences of non-random loading for a very high activity waste stream. In other words, the EPA determined that DOE was not required to provide a waste loading scheme because compliance is not affected by the actual distribution of waste containers in the WIPP.

Casey, S. C.; Patterson, R. L.; Gross, M.; Lickliter, K.; Stein, J. S.

2003-02-25T23:59:59.000Z

373

Discovering the QCD Axion with Black Holes and Gravitational Waves

Advanced LIGO will be the first experiment to detect gravitational waves. Through superradiance of stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above the GUT scale. When an axion's Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole, forming a "gravitational atom." Through the superradiance process, the number of axions occupying the bound levels grows exponentially, extracting energy and angular momentum from the black hole. Axions transitioning between levels of the gravitational atom and axions annihilating to gravitons produce observable gravitational wave signals. The signals are long-lasting, monochromatic, and can be distinguished from ordinary astrophysical sources. We estimate up to O(1) transition events at aLIGO for an axion between 10^-11 and 10^-10 eV and up to 10^4 annihilation events for an axion between 10^-13 and 10^-11 eV. In the event of a null search, aLIGO can constrain the axion mass as a function of the formation rate of rapidly spinning black holes. Axion annihilations are also promising for much lighter masses at future lower-frequency gravitational wave observatories, where we expect as many as $10^5$ events. Our projections for aLIGO are robust against perturbations from the black hole environment and account for our updated exclusion on the QCD axion of 6 * 10^-13 eV < ma < 2 * 10^-11 eV suggested by stellar black hole spin measurements.

Asimina Arvanitaki; Masha Baryakhtar; Xinlu Huang

2014-12-15T23:59:59.000Z

374

Instruction sets for Parallel Random Access Machines

The computational powers of time-bounded Parallel Random Access Machines (PRAMs) with different instruction sets are compared. A basic PRAM can perform the following operations in unit-time: addition, subtraction, Boolean operations, comparisons, and indirect addressing. Multiple processors may concurrently read and concurrently write a single cell. This thesis establishes that the class of languages accepted in polynomial time on a PRAM(*, {up arrow}, {down arrow}) contains the class of languages accepted in exponential time on a nondeterministic Turing machine (NEXPTIME) and is contained in the class of languages accepted in exponential space on a Turing machine. Efficient simulations are presented of PRAMs with enhanced instruction sets by sequential RAMs with the same instruction sets; also simulations of probabilistic PRAMs by deterministic PRAMs, using parallelism to replace randomness. Also given are simulations of PRAM(op)s by PRAMs, where both the simulated machine and the simulating machine are exclusive-read, exclusive-write machines.

Trahan, J.L.

1988-01-01T23:59:59.000Z

375

From Boltzmann to random matrices and beyond

These expository notes propose to follow, across fields, some aspects of the concept of entropy. Starting from the work of Boltzmann in the kinetic theory of gases, various universes are visited, including Markov processes and their Helmholtz free energy, the Shannon monotonicity problem in the central limit theorem, the Voiculescu free probability theory and the free central limit theorem, random walks on regular trees, the circular law for the complex Ginibre ensemble of random matrices, and finally the asymptotic analysis of mean-field particle systems in arbitrary dimension, confined by an external field and experiencing singular pair repulsion. The text is written in an informal style driven by energy and entropy. It aims to be recreative and to provide to the curious readers entry points in the literature, and connections across boundaries.

Djalil Chafaï

2014-07-03T23:59:59.000Z

376

Optimal quantum control using randomized benchmarking

We present a method for optimizing quantum control in experimental systems, using a subset of randomized benchmarking measurements to rapidly infer error. This is demonstrated to improve single- and two-qubit gates, minimize gate bleedthrough, where a gate mechanism can cause errors on subsequent gates, and identify control crosstalk in superconducting qubits. This method is able to correct parameters to where control errors no longer dominate, and is suitable for automated and closed-loop optimization of experimental systems.

J. Kelly; R. Barends; B. Campbell; Y. Chen; Z. Chen; B. Chiaro; A. Dunsworth; A. G. Fowler; I. -C. Hoi; E. Jeffrey; A. Megrant; J. Mutus; C. Neill; P. J. J. O`Malley; C. Quintana; P. Roushan; D. Sank; A. Vainsencher; J. Wenner; T. C. White; A. N. Cleland; John M. Martinis

2014-03-01T23:59:59.000Z

377

Chopped random-basis quantum optimization

In this work we describe in detail the "Chopped RAndom Basis" (CRAB) optimal control technique recently introduced to optimize t-DMRG simulations [arXiv:1003.3750]. Here we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.

Tommaso Caneva; Tommaso Calarco; Simone Montangero

2011-08-22T23:59:59.000Z

378

Some Properties of the Random Universe

What is the role of the constants of nature in physical theory? I hypothesize that the observable universe, u0, constitutes a Universal Turing Machine (UTM) constrained by algorithmically random logical tape parameters defining its material properties (a physical UTM). The finite non-zero empirical values of Planck's constant, h, and other constants of nature exemplify those logical parameters. Their algorithmic randomness is necessary and sufficient for the consistent operation of a physical UTM. At any given time, ti, these constants correspond to the first n random halt digits, Omega-n, of Chaitin's Halting Probability, Omega. Planck's equation E=hv and Boltzmann's relation S=kLogW are shown to apply to the operation of a physical UTM. The genomic evolution of u0 in constants of nature space (CON space) from an undecidable state in u0's Planck era to its current ordered condition occurs through the algorithmically random, symmetry-breaking addition of new constants to the laws by which u0 operates -- a process called logical tunneling. The temperature of u0 for t<=tp is shown to be T=0K. The energy dissipated when a physical UTM clears its memory after each computation is proposed as a candidate for cold dark matter (CDM) and is calculated to comprise 87.5% of the cosmological matter content, Omega-M, of u0. This result concurs with current astronomical estimates that 87.1% of the matter content of u0 consists of CDM. The energy incorporated in u0 through the process of logical tunneling from undecidable states of the complete Universe, E, to decidable states of u0 is suggested as a candidate for the unexplained "dark energy", Omega-X, hypothesized to drive the accelerating cosmological expansion of space and believed to constitute 66% of the critical mass, Omega-0, of the observable universe.

Anthony E. Scoville

2013-07-24T23:59:59.000Z

379

Random Matrix Theory and its Innovative Applications

values or eigenvalues of random matrices. (Usually it is enough to know the quarter circle law, the semi normal, then the eigen- values of the Wishart matrix AT A/m in the limit as m/n = r and m,n are almost. In one exam- ple (Figure 7), Popoff et al. [20] use the fact that the distribution of the singular values

Edelman, Alan

380

Electrokinetic transport in microchannels with random roughness

We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson?Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows.

Wang, Moran [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

381

Random complex dynamics and devil's coliseums

We investigate the random dynamics of polynomial maps on the Riemann sphere and the dynamics of semigroups of polynomial maps on the Riemann sphere. In particular, the dynamics of a semigroup $G$ of polynomials whose planar postcritical set is bounded and the associated random dynamics are studied. In general, the Julia set of such a $G$ may be disconnected. We show that if $G$ is such a semigroup, then regarding the associated random dynamics, the chaos of the averaged system disappears in the $C^{0}$ sense, and the function $T_{\\infty}$ of probability of tending to $\\infty$ is continuous on the Riemann sphere and varies only on the Julia set of $G$. Moreover, the function $T_{\\infty}$ has a kind of monotonicity. It turns out that $T_{\\infty}$ is a complex analogue of the devil's staircase, and we call $T_{\\infty}$ a "devil's coliseum." We investigate the details of $T_{\\infty}$ when $G$ is generated by two polynomials. In this case, $T_{\\infty}$ varies precisely on the Julia set of $G$, which is a thin frac...

Sumi, Hiroki

2011-01-01T23:59:59.000Z

382

An apparatus for selecting at random one item of N items on the average comprising counter and reset elements for counting repeatedly between zero and N, a number selected by the user, a circuit for activating and deactivating the counter, a comparator to determine if the counter stopped at a count of zero, an output to indicate an item has been selected when the count is zero or not selected if the count is not zero. Randomness is provided by having the counter cycle very often while varying the relatively longer duration between activation and deactivation of the count. The passive circuit components of the activating/deactivating circuit and those of the counter are selected for the sensitivity of their response to variations in temperature and other physical characteristics of the environment so that the response time of the circuitry varies. Additionally, the items themselves, which may be people, may vary in shape or the time they press a pushbutton, so that, for example, an ultrasonic beam broken by the item or person passing through it will add to the duration of the count and thus to the randomness of the selection.

Kronberg, J.W.

1993-04-20T23:59:59.000Z

383

Asymptotic properties of a bold random walk

In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance ever reached from the starting point (home). The behavior of the walker is at variance with respect to the simple symmetric random walk (SSRW) only when she is at this maximum distance, where, having the choice to move either farther or closer, she decides with different probabilities. If the probability of a forward step is higher then the probability of a backward step, the walker is bold and her behavior turns out to be super-diffusive, otherwise she is timorous and her behavior turns out to be sub-diffusive. The scaling behavior vary continuously from sub-diffusive (timorous) to super-diffusive (bold) according to a single parameter $\\gamma \\in R$. We investigate here the asymptotic properties of the bold case in the non ballistic region $\\gamma \\in [0,1/2]$, a problem which was left partially unsolved in \\cite{S}. The exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate martingales of the random walk and its hitting times.

Maurizio Serva

2014-06-13T23:59:59.000Z

384

activated random walkers: Topics by E-print Network

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dupic 2013-11-04 15 Transition to Localization of Biased Walkers in a Randomly Absorbing Enviroment Condensed Matter (arXiv) Summary: We study biased random walkers on lattices...

385

Nearly extremal apparent horizons in simulations of merging black holes

The spin angular momentum $S$ of an isolated Kerr black hole is bounded by the surface area $A$ of its apparent horizon: $8\\pi S \\le A$, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses $M$ and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to $S/M^2 = 0.994$. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality $8\\pi S A$ and for which our lower bound on their Booth-Fairhurst extremality exceeds unity. These superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with $8\\pi Shole. (Abstract abbreviated.)

Geoffrey Lovelace; Mark A. Scheel; Robert Owen; Matthew Giesler; Reza Katebi; Bela Szilagyi; Tony Chu; Nicholas Demos; Daniel A. Hemberger; Lawrence E. Kidder; Harald P. Pfeiffer; Nousha Afshari

2015-02-27T23:59:59.000Z

386

Curing black hole singularities with local scale invariance

We show that Weyl-invariant dilaton gravity provides a description of black holes without classical spacetime singularities. Singularities appear due to ill-behavior of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are: (1) singularities signal a phase transition from broken to unbroken phase of Weyl symmetry, (2) instead of a singularity there is a "baby-universe" inside a black hole, (3) there is a critical mass after which reducing mass makes black hole larger as viewed by outside observers, (4) if a black hole could be connected with white hole through the "singularity", this would require breakdown of (classical) geometric description. The singularity of Schwarzschild BH solution is non-generic and so it it dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information-loss puzzle. The theory we use is basically a completion of General Relativity, containing neither additional physical excitations nor higher-derivative terms, but requires physical scalar field such as Higgs field of Standard Model. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around regular classical solutions (without singularities) normally provides a much better starting point.

Predrag Dominis Prester

2014-02-27T23:59:59.000Z

387

Black holes with gravitational hair in higher dimensions

A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Banados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.

Anabalon, Andres [Departamento de Ciencias Facultad de Artes Liberales, Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Vina Del Mar (Chile); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1 D-14476 Golm (Germany); Canfora, Fabrizio [Centro de Estudios Cientificos (CECS), Casilla 1469 Valdivia (Chile); Giacomini, Alex; Oliva, Julio [Instituto de Ciencias Fisicas y Matematicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile)

2011-10-15T23:59:59.000Z

388

The Rotating Dyonic Black Holes Of Kaluza-Klein Theory

The most general electrically and magnetically charged rotating black hole solutions of 5 dimensional \\KK\\ theory are given in an explicit form. Various classical quantities associated with the black holes are derived. In particular, one finds the very surprising result that the gyromagnetic and gyroelectric ratios can become {\\tenit arbitrarily large}. The thermodynamic quantities of the black holes are calculated and a Smarr-type formula is obtained leading to a generalized first law of black hole thermodynamics. The properties of the extreme solutions are investigated and it is shown how they naturally separate into two classes. The extreme solutions in one class are found to have two unusual properties: (i). Their event horizons have zero angular velocity and yet they have non-zero ADM angular momentum. (ii). In certain circumstances it is possible to add angular momentum to these extreme solutions without changing the mass or charges and yet still maintain an extreme solution. Regarding the extreme black holes as elementary particles, their stability is discussed and it is found that they are stable provided they have sufficient angular momentum.

Dean Rasheed

1995-05-06T23:59:59.000Z

389

Higher harmonics increase LISA's mass reach for supermassive black holes

Current expectations on the signal to noise ratios and masses of supermassive black holes which the Laser Interferometer Space Antenna (LISA) can observe are based on using in matched filtering only the dominant harmonic of the inspiral waveform at twice the orbital frequency. Other harmonics will affect the signal-to-noise ratio of systems currently believed to be observable by LISA. More significantly, inclusion of other harmonics in our matched filters would mean that more massive systems that were previously thought to be {\\it not} visible in LISA should be detectable with reasonable SNRs. Our estimates show that we should be able to significantly increase the mass reach of LISA and observe the more commonly occurring supermassive black holes of masses $\\sim 10^8M_\\odot.$ More specifically, with the inclusion of all known harmonics LISA will be able to observe even supermassive black hole coalescences with total mass $\\sim 10^8 M_\\odot (10^9M_\\odot)$ (and mass-ratio 0.1) for a low frequency cut-off of $10^{-4}{\\rm Hz}$ $(10^{-5}{\\rm Hz})$ with an SNR up to $\\sim 60$ $(\\sim 30)$ at a distance of 3 Gpc. This is important from the astrophysical viewpoint since observational evidence for the existence of black holes in this mass range is quite strong and binaries containing such supermassive black holes will be inaccessible to LISA if one uses as detection templates only the dominant harmonic.

K. G. Arun; Bala R. Iyer; B. S. Sathyaprakash; Siddhartha Sinha

2007-06-05T23:59:59.000Z

390

Slant hole completion test (1991) sidetrack ``as built`` report

During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.

Myal, F.R.

1992-05-01T23:59:59.000Z

391

Slant hole completion test (1991) sidetrack as built'' report

During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.

Myal, F.R.

1992-05-01T23:59:59.000Z

392

Entropy spectrum of the D-dimensional massless topological black hole

There are exact solutions to Einstein's equations with negative cosmological constant that represent black holes whose event horizons are manifolds of negative curvature, the so-called topological black holes. Among these solutions there is one, the massless topological black hole, whose mass is equal to zero. Hod proposes that in the semiclassical limit the asymptotic quasinormal frequencies determine the entropy spectrum of the black holes. Taking into account this proposal, we calculate the entropy spectrum of the massless topological black hole and we compare with the results on the entropy spectra of other topological black holes.

A. Lopez-Ortega

2010-06-28T23:59:59.000Z

393

On the rank of random matrices C. Cooper

Random Matrices Over Finite Fields, J. Blomer, R. Karp and E. Welzl, [BKW], pose the following question

Cooper, Colin

394

Persistence of Random Walk Records E. Ben-Naim1

phenomenol- ogy [35, 36]. For a sequence of uncorrelated random vari- ables, the probability that all records

Ben-Naim, Eli

395

Microhole Coiled Tubing Bottom Hole Assemblies

The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. The equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.

Don Macune

2008-06-30T23:59:59.000Z

396

Random packing of hyperspheres and Marsaglia's Parking Lot Test

Random packing of hyperspheres and Marsaglia's Parking Lot Test Stefan C. Agapie and Paula A York 10021 September 30, 2009 Abstract Many studies of randomly packed hyperspheres in multiple box until some randomly loosely packed density is achieved. Then either a compression algorithm

Whitlock, Paula

397

NON-PERTURBATIVE APPROACH TO RANDOM WALK IN MARKOVIAN ENVIRONMENT.

NON-PERTURBATIVE APPROACH TO RANDOM WALK IN MARKOVIAN ENVIRONMENT. DMITRY DOLGOPYAT AND CARLANGELO LIVERANI Abstract. We prove the CLT for a random walk in a dynamical environment where the states of the environment at different sites are independent Markov chains. 1. Introduction The study of random walk

Liverani, Carlangelo

398

Random Selection with an Adversarial Majority Ronen Gradwohl

the problem of random selection, where p players follow a protocol to jointly select a random element to jointly make a random choice from a universe of size n. They follow some protocol, and if all parties play selection is a very useful building block for distributed algorithms and cryptographic protocols, because

Zuckerman, David

399

Conformal Deformation from Normal to Hermitian Random Matrix Ensembles

We investigate the eigenvalues statistics of ensembles of normal random matrices when their order N tends to infinite. In the model the eigenvalues have uniform density within a region determined by a simple analytic polynomial curve. We study the conformal deformations of normal random ensembles to Hermitian random ensembles and give sufficient conditions for the latter to be a Wigner ensemble.

Alexei M. Veneziani; Tiago Pereira; Domingos H. U. Marchetti

2009-09-04T23:59:59.000Z

400

On the Connectivities of Subcritical Random Cluster Models

On the Connectivities of Subcritical Random Cluster Models M. Campanino (Bologna) D. Ioffe (Haifa) Y. Velenik (Geneva) M. Campanino, D. Ioffe, Y. Velenik On the Connectivities of Subcritical Random Introduction The random cluster model Main assumption The sets U and K 2 Results Results for subcritical models

Velenik, Yvan

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

401

Massive Black Hole Science with eLISA

The evolving Laser Interferometer Space Antenna (eLISA) will revolutionize our understanding of the formation and evolution of massive black holes along cosmic history by probing massive black hole binaries in the $10^3-10^7$ solar mass range out to redshift $z\\gtrsim 10$. High signal-to-noise ratio detections of $\\sim 10-100$ binary coalescences per year will allow accurate measurements of the parameters of individual binaries (such as their masses, spins and luminosity distance), and a deep understanding of the underlying cosmic massive black hole parent population. This wealth of unprecedented information can lead to breakthroughs in many areas of physics, including astrophysics, cosmology and fundamental physics. We review the current status of the field, recent progress and future challenges.

Enrico Barausse; Jillian Bellovary; Emanuele Berti; Kelly Holley-Bockelmann; Brian Farris; Bangalore Sathyaprakash; Alberto Sesana

2015-01-09T23:59:59.000Z

402

Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant

We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.

Yuichi Sekiwa

2006-04-10T23:59:59.000Z

403

Hoffmann-Infeld Black Hole Solutions in Lovelock Gravity

Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld non-linear electrodynamics. It is shown that some of these solutions present a double peak behavior of the temperature as a function of the horizon radius. This feature implies that the evaporation process, though drastic for a period, leads to an eternal black hole remnant. Moreover, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc. are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity.

Matias Aiello; Rafael Ferraro; Gaston Giribet

2005-05-19T23:59:59.000Z

404

Simulations of binary black hole mergers using spectral methods

Several improvements in numerical methods and gauge choice are presented that make it possible now to perform simulations of the merger and ringdown phases of 'generic' binary black hole evolutions using the pseudospectral evolution code SpEC. These improvements include the use of a new damped-wave gauge condition, a new grid structure with appropriate filtering that improves stability, and better adaptivity in conforming the grid structures to the shapes and sizes of the black holes. Simulations illustrating the success of these new methods are presented for a variety of binary black hole systems. These include fairly generic systems with unequal masses (up to 2 ratio 1 mass ratios), and spins (with magnitudes up to 0.4M{sup 2}) pointing in various directions.

Szilagyi, Bela; Lindblom, Lee; Scheel, Mark A. [Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125 (United States)

2009-12-15T23:59:59.000Z

405

Regular Black Hole Metric with Three Constants of Motion

According to the no-hair theorem, astrophysical black holes are uniquely characterized by their masses and spins and are described by the Kerr metric. Several parametric spacetimes which deviate from the Kerr metric have been proposed in order to test this theorem with observations of black holes in both the electromagnetic and gravitational-wave spectra. Such metrics often contain naked singularities or closed timelike curves in the vicinity of the compact objects that can limit the applicability of the metrics to compact objects that do not spin rapidly, and generally admit only two constants of motion. The existence of a third constant, however, can facilitate the calculation of observables, because the equations of motion can be written in first-order form. In this paper, I design a Kerr-like black hole metric which is regular everywhere outside of the event horizon, possesses three independent constants of motion, and depends nonlinearly on four free functions that parameterize potential deviations from ...

Johannsen, Tim

2015-01-01T23:59:59.000Z

406

Modeling feedback from stars and black holes in galaxy mergers

We describe techniques for incorporating feedback from star formation and black hole accretion into simulations of isolated and merging galaxies. At present, the details of these processes cannot be resolved in simulations on galactic scales. Our basic approach therefore involves forming coarse-grained representations of the properties of the interstellar medium and black hole accretion starting from basic physical assumptions, so that the impact of these effects can be included on resolved scales. We illustrate our method using a multiphase description of star-forming gas. Feedback from star formation pressurises highly overdense gas, altering its effective equation of state. We show that this allows the construction of stable galaxy models with much larger gas fractions than possible in earlier numerical work. We extend the model by including a treatment of gas accretion onto central supermassive black holes in galaxies. Assuming thermal coupling of a small fraction of the bolometric luminosity of accreting...

Springel, V; Hernquist, L; Springel, Volker; Matteo, Tiziana Di; Hernquist, Lars

2004-01-01T23:59:59.000Z

407

"Kerrr" black hole: the Lord of the String

Kerrr in the title is not a typo. The third "r" stands for "regular", in the sense of pathology-free, rotating black hole. We exhibit a long search-for, exact, Kerr-like, solution of the Einstein equations with novel features: i) no curvature ring singularity; ii) no "anti-gravity" universe with causality violating timelike closed world-lines; iii) no "super-luminal" matter disk. The ring singularity is replaced by a classical, circular, rotating string with Planck tension representing the inner engine driving the rotation of all the surrounding matter. The resulting geometry is regular and smoothly interpolates among inner Minkowski space, borderline deSitter and outer Kerr universe. The key ingredient to cure all unphysical features of the ordinary Kerr black hole is the choice of a "noncommutative geometry inspired" matter source as the input for the Einstein equations, in analogy with spherically symmetric black holes described in earlier works.

Smailagic, Anais

2010-01-01T23:59:59.000Z

408

Holographic superconductors with Horava-Lifshitz black holes

We discuss the phase transition of planar black holes in Horava-Lifshitz gravity by introducing a Maxwell field and a complex scalar field. We calculate the condensate of the charged operators in the dual conformal field theories when the mass square of the complex scalar field is m{sup 2}=-2/L{sup 2} and m{sup 2}=0, respectively. We compute the electrical conductivity of the Horava-Lifshitz superconductor in the probe approximation. In particular, it is found that there exists a spike in the conductivity for the case of the operator with scaling dimension one. These results are quite similar to those in the case of Schwarzschild-AdS black holes, which demonstrates that the holographic superconductivity is a robust phenomenon associated with asymptotic AdS black holes.

Cai Ronggen; Zhang Haiqing [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China)

2010-03-15T23:59:59.000Z

409

Classical stability of black holes under massless Dirac perturbations

In a D-dimensional maximally symmetric spacetime we simplify the massless Dirac equation to two decoupled wavelike equations with effective potentials. Furthermore in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes we note that for the massless Dirac field moving in the region exterior to the event horizon at least one of the effective potentials is not positive definite. Therefore the classical stability of these black holes against this field is not guaranteed. Here with the help of the S-deformation method, we state their classical stability against the massless Dirac field, extend these results to maximally symmetric black holes, and comment on the applicability of our results to establish the stability with respect to other classical fields.

A. Lopez-Ortega

2012-11-08T23:59:59.000Z

410

On Black Hole Masses and Radio Loudness in AGN

The distribution of radio to optical fluxes in AGN is bimodal. The physical origin for this bimodality is not understood. In this Letter I describe observational evidence, based on the Boroson & Green PG quasar sample, that the radio loudness bimodality is strongly related to the black hole mass (M_BH). Nearly all PG quasars with M_BH>10^9M_sun are radio loud, while quasars with M_BH<3x10^8M_sun are practically all radio quiet. This result is consistent with the dependence of quasar host galaxy morphology on radio loudness. There is no simple physical explanation for this result, but it may provide a clue on how jets are formed near massive black holes. The radio loudness--black hole mass relationship suggests that the properties of various types of AGN may be largely set by three basic parameters, M_BH, L/L_Eddington, and inclination angle.

Ari Laor

2000-09-13T23:59:59.000Z

411

Black/White hole radiation from dispersive theories

We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Application to four dimensional black holes and Bose-Einstein condensates are in preparation.

Jean Macher; Renaud Parentani

2009-06-02T23:59:59.000Z

412

Cloud of strings for radiating black holes in Lovelock gravity

We present exact spherically symmetric null dust solutions in the third order Lovelock gravity with a string cloud background in arbitrary $N$ dimensions,. This represents radiating black holes and generalizes the well known Vaidya solution to Lovelock gravity with a string cloud in the background. We also discuss the energy conditions and horizon structures, and explicitly bring out the effect of the string clouds on the horizon structure of black hole solutions for the higher dimensional general relativity and Einstein-Gauss-Bonnet theories. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms and/or background string clouds completely changes the structure of the horizon and this may lead to a naked singularity. We recover known spherically symmetric radiating models as well as static black holes in the appropriate limits.

Sushant G. Ghosh; Sunil D. Maharaj

2014-09-28T23:59:59.000Z

413

Holographic Superconductors with Ho?ava-Lifshitz Black Holes

We discuss the phase transition of planar black holes in Ho\\v{r}ava-Lifshitz gravity by introducing a Maxwell field and a complex scalar field. We calculate the condensates of the charged operators in the dual CFTs when the mass square of the complex scalar filed is $m^2=-2/L^2$ and $m^2=0$, respectively. We compute the electrical conductivity of the \\hl superconductor in the probe approximation. In particular, it is found that there exists a spike in the conductivity for the case of the operator with scaling dimension one. These results are quite similar to those in the case of Schwarzschild-AdS black holes, which demonstrates that the holographic superconductivity is a robust phenomenon associated with asymptotic AdS black holes.

Rong-Gen Cai; Hai-Qing Zhang

2009-12-03T23:59:59.000Z

414

Supercurrent: Vector Hair for an AdS Black Hole

In arXiv:0803.3295 [hep-th] a holographic black hole solution is discussed which exhibits a superconductor like transition. In the superconducting phase the black holes show infinite DC conductivity. This gives rise to the possibility of deforming the solutions by turning on a time independent current (supercurrent), without any electric field. This type of deformation does not exist for normal (non-superconducting) black holes, due to the no-hair theorems. In this paper we have studied such a supercurrent solution and the associated phase diagram. Interestingly, we have found a "special point" (critical point) in the phase diagram where the second order superconducting phase transition becomes first order. Supercurrent in superconducting materials is a well studied phenomenon in condensed matter systems. We have found some qualitative agreement with known results.

Pallab Basu; Anindya Mukherjee; Hsien-Hang Shieh

2008-09-26T23:59:59.000Z

415

Black hole feedback in the luminous quasar PDS 456

The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband X-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10^46 ergs per second is enough to provide the feedback required by models of black hole and host galaxy co-evolution.

Nardini, E; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J

2015-01-01T23:59:59.000Z

416

The Mixed Phase of Charged AdS Black holes

We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma~(QGP) and hadron gas in the fixed chemical potential and density ensemble respectively. In the nuclei and heavy ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condensate and evaporate into the hadron gas as the fireball expands.

Piyabut Burikham; Chatchai Promsiri

2015-01-20T23:59:59.000Z

417

Binary Black Holes in Quasi-Stationary Circular Orbits

We propose a method of determining solutions to the constraint equations of General Relativity approximately describing binary black holes in quasi-stationary circular orbits. Black holes with arbitrary linear momenta are constructed in the manner suggested by Brandt and Brugmann. The quasi-stationary circular orbits are determined by local minima in the ADM mass in a manner similar to Baumgarte and Cook; however, rather than fixing the area of the apparent horizon, we fix the value of the bare masses of the holes. We numerically generate an evolutionary sequence of quasi-stationary circular orbits up to and including the innermost stable circular orbit. We compare our results with post-Newtonian expectations as well as the results of Cook and Baumgarte. We also generate additional numerical results describing the dynamics of the geometry due to the emission of gravitational radiation.

Brian D. Baker

2002-05-18T23:59:59.000Z

418

Quantum hair and the string-black hole correspondence

We consider a thought experiment in which an energetic massless string probes a "stringhole" (a heavy string lying on the correspondence curve between strings and black holes) at large enough impact parameter for the regime to be under theoretical control. The corresponding, explicitly unitary, $S$-matrix turns out to be perturbatively sensitive to the microstate of the stringhole: in particular, at leading order in $l_s/b$, it depends on a projection of the stringhole's Lorentz-contracted quadrupole moment. The string-black hole correspondence is therefore violated if one assumes quantum hair to be exponentially suppressed as a function of black-hole entropy. Implications for the information paradox are briefly discussed.

Gabriele Veneziano

2013-03-28T23:59:59.000Z

419

Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence

In this paper we investigate the thermodynamics of the inner horizon and its implication on the holographic description of the black hole. We focus on the black holes with two physical horizons. Under reasonable assumption, we prove that the first law of thermodynamics of the outer horizon always indicates that of the inner horizon. As a result, the fact that the area product being mass-independent is equivalent to the relation $T_+S_+=T_-S_-$, with $T_\\pm$ and $S_\\pm$ being the Hawking temperatures and the entropies of the outer and inner horizon respectively. We find that the mass-independence of area product breaks down in general Myers-Perry black holes with spacetime dimension $d\\geq6$ and Kerr-AdS black holes with $d\\geq4$. Moreover we discuss the implication of the first laws of the outer and inner horizons on the thermodynamics of the right- and left-moving sectors of dual CFT in Kerr/CFT correspondence. We show that once the relation $T_+S_+=T_-S_-$ is satisfied, the central charges of two sectors must be same. Furthermore from the thermodynamics relations, we read the dimensionless temperatures of microscopic CFT, which are in exact agreement with the ones obtained from hidden conformal symmetry in the low frequency scattering off the black holes, and then determine the central charges. This method works well in well-known cases in Kerr/CFT correspondence, and reproduce successfully the holographic pictures for 4D Kerr-Newman and 5D Kerr black holes. We go on to predict the central charges and temperatures of a possible holographic CFT description dual to 5D doubly rotating black ring.

Bin Chen; Shen-xiu Liu; Jia-ju Zhang

2012-11-02T23:59:59.000Z

420

Charged black holes in expanding Einstein-de Sitter universes

Inspired in a previous work by McClure and Dyer (Classical Quantum Gravity 23, 1971 (2006)), we analyze some solutions of the Einstein-Maxwell equations which were originally written to describe charged black holes in cosmological backgrounds. A detailed analysis of the electromagnetic sources for a sufficiently general metric is performed, and then we focus on deriving the electromagnetic four-current as well as the conserved electric charge of each metric. The charged McVittie solution is revisited and a brief study of its causal structure is performed, showing that it may represent a charged black hole in an expanding universe, with the black hole horizon being formed at infinite late times. Charged versions of solutions originally put forward by Vaidya (Vd) and Sultana and Dyer (SD) are also analyzed. It is shown that the charged Sultana-Dyer metric requires a global electric current, besides a central (pointlike) electric charge. With the aim of comparing to the charged McVittie metric, new charged solutions of Vd and SD type are considered. In these cases, the original mass and charge parameters are replaced by particular functions of the cosmological time. In the new generalized charged Vaidya metric the black hole horizon never forms, whereas in the new generalized Sultana-Dyer case both the Cauchy and the black hole horizons develop at infinite late times. A charged version of the Thakurta metric is also studied here. It is also a new solution. As in the charged Sultana-Dyer case, the natural source of the electromagnetic field is a central electric charge with an additional global electric current. The global structure is briefly studied and it is verified that the corresponding spacetime may represent a charged black hole in a cosmological background. All the solutions present initial singularities as found in the McVittie metric.

Manuela G. Rodrigues; Vilson T. Zanchin

2015-02-02T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

421

The lifetime problem of evaporating black holes: mutiny or resignation

It is logically possible that regularly evaporating black holes exist in nature. In fact, the prevalent theoretical view is that these are indeed the real objects behind the curtain in astrophysical scenarios. There are several proposals for regularizing the classical singularity of black holes so that their formation and evaporation do not lead to information-loss problems. One characteristic is shared by most of these proposals: these regularly evaporating black holes present long-lived trapping horizons, with absolutely enormous evaporation lifetimes in whatever measure. Guided by the discomfort with these enormous and thus inaccessible lifetimes, we elaborate here on an alternative regularization of the classical singularity, previously proposed by the authors in an emergent gravity framework, which leads to a completely different scenario. In our scheme the collapse of a stellar object would result in a genuine time-symmetric bounce, which in geometrical terms amounts to the connection of a black-hole geometry with a white-hole geometry in a regular manner. The two most differential characteristics of this proposal are: i) the complete bouncing geometry is a solution of standard classical general relativity everywhere except in a transient region that necessarily extends beyond the gravitational radius associated with the total mass of the collapsing object; and ii) the duration of the bounce as seen by external observers is very brief (fractions of milliseconds for neutron-star-like collapses). This scenario motivates the search for new forms of stellar equilibrium different from black holes. In a brief epilogue we compare our proposal with a similar geometrical setting recently proposed by Haggard and Rovelli.

Carlos Barceló; Raúl Carballo-Rubio; Luis J. Garay; Gil Jannes

2015-02-09T23:59:59.000Z

422

Isolated Horizons: A Generalization of Black Hole Mechanics

A set of boundary conditions defining a non-rotating isolated horizon are given in Einstein-Maxwell theory. A space-time representing a black hole which itself is in equilibrium but whose exterior contains radiation admits such a horizon . Physically motivated, (quasi-)local definitions of the mass and surface gravity of an isolated horizon are introduced. Although these definitions do not refer to infinity, the quantities assume their standard values in Reissner-Nordstrom solutions. Finally, using these definitions, the zeroth and first laws of black hole mechanics are established for isolated horizons.

Abhay Ashtekar; Christopher Beetle; Stephen Fairhurst

1998-12-18T23:59:59.000Z

423

Exploring higher dimensional black holes at the large hadron collider.

of extra dimensions. Throughout, we have used the ATLAS fast simulation software [20] to give a description of a typical detector and we have used the full simulation [21] to verify the main results. 2. Black hole production and decay In the black hole... evolution from present energies is questionable. Also, comparison to Standard Model pro- cesses in the trans-Planckian regime would be difficult since perturbative physics would be suppressed. 4.2 The first stages of decay CHARYBDIS does not model...

Harris, Chris M; Palmer, M J; Parker, Michael A; Richardson, P

424

Thermodynamics of Schrödinger black holes with hyperscaling violation

In this work, we follow Kim and Yamada (JHEP1107 (2011) 120) and utilize AdS in light-cone frame to derive thermodynamic and transport properties of two kinds of Schr\\"{o}dinger black holes with hyperscaling violation. In that case, we show entropy and temperature are depend on $\\theta$. In $\\theta=0$ we see our results are agree with the work of Kim and Yamada. We also construct R-charged black hole with hyperscaling violation and obtain thermodynamics and transport properties.

J. Sadeghi; B. Pourhassan; F. Pourasadollah

2012-11-06T23:59:59.000Z

425

Improvement of tap holes at Wakayama No. 5 blast furnace

The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1995-12-01T23:59:59.000Z

426

Dirac monopoles on Kerr black holes: comparing gauges

We update our previous work on the description of twisted configurations for complex massless scalar field on the Kerr black holes as the sections of complex line bundles over the Kerr black hole topology. From physical point of view the appearance of twisted configurations is linked with the natural presence of Dirac monopoles that arise as connections in the above line bundles. We consider their description in the gauge inequivalent to the one studied previously and discuss a row of new features appearing in this gauge.

Yu. P. Goncharov

1998-11-17T23:59:59.000Z

427

Over-spinning a black hole with a test body

It has long been known that a maximally spinning black hole can not be over-spun by tossing in a test body. Here we show that if instead the black hole starts out with below maximal spin, then indeed over-spinning can be achieved when adding either orbital or spin angular momentum. We find that requirements on the size and internal structure of the test body can be met as well. Our analysis neglects radiative and self-force effects,which may prevent the over-spinning.

Ted Jacobson; Thomas P. Sotiriou

2009-12-01T23:59:59.000Z

428

Semiclassical Decay of Near-Extremal Black Holes

Decay of a near-extremal black hole down to the extremal state is studied in the background field approximation to determine the fate of injected matter and Hawking pairs. By examining the behavior of light rays and solutions to the wave equation it is concluded that the singularity at the origin is irrelevant. Furthermore, there is most likely an instability of the event horizon arising from the accumulation of injected matter and Hawking partners there. The possible role of this instability in reconciling the D-brane and black hole pictures of the decay process is discussed.

Ted Jacobson

1998-03-26T23:59:59.000Z

429

Black hole entanglement entropy and the renormalization group

We investigate the contributions of quantum fields to black hole entropy by using a cutoff scale at which the theory is described with a Wilsonian effective action. For both free and interacting fields, the total black hole entropy can be partitioned into a contribution derived from the gravitational effective action and a contribution from quantum fluctuations below the cutoff scale. In general the latter includes a quantum contribution to the Noether charge. We analyze whether it is appropriate to identify the rest with horizon entanglement entropy, and find several complications for this interpretation, which are especially problematic for interacting fields.

Ted Jacobson; Alejandro Satz

2013-03-21T23:59:59.000Z

430

Particle Radiation From Gibbons-Maeda Black Hole

This paper investigates the particle radiation from Gibbons-Maeda black hole. Taking into account the self-gravitation of the particle, we calculate the tunnelling rate of the massless particle across the horizon, then we promote the work to the radiation of the charged particle. The calculations prove that the rate of tunnelling equals precisely the exponent of the difference of the black hole entropy before and after emission and the radiation spectrum deviates from exact thermal. The conclusion supports the viewpoint of information conservation.

Heng-Zhong Fang; Jian-Yang Zhu

2006-11-02T23:59:59.000Z

431

Electromagnetic quasinormal modes of D-dimensional black holes II

By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes its quasinormal frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the known results for the gravitational perturbations propagating in the same background. Moreover we exactly compute the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for charged D-dimensional Nariai spacetime we exactly calculate the QN frequencies of the coupled electromagnetic and gravitational perturbations.

A. López-Ortega

2007-06-20T23:59:59.000Z

432

Black holes and black strings in plane waves

We investigate the construction of black holes and black strings in vacuum plane wave spacetimes using the method of matched asymptotic expansions. We find solutions of the linearised equations of motion in the asymptotic region for a general source on a plane wave background. We observe that these solutions do not satisfy our previously defined conditions for being asymptotically plane wave. Hence, the space of asymptotically plane wave solutions is restricted. We consider the solution in the near region, treating the plane wave as a perturbation of a black object, and find that there is a regular black string solution but no regular black hole solution.

Julian Le Witt; Simon F. Ross

2009-10-30T23:59:59.000Z

433

Construction of a Penrose Diagram for an Accreting Black Hole

A Penrose diagram is constructed for a spatially coherent black hole that accretes at stepwise steady rates as measured by a distant observer from an initial state described by a metric of Minkowski form. Coordinate lines are computationally derived, and radial light-like trajectories verify the viability of the diagram. Coordinate dependencies of significant features, such as the horizon and radial mass scale, are clearly demonstrated on the diagram. The onset of a singularity at the origin is shown to open a new region in space-time that contains the interior of the black hole.

Beth A. Brown; James Lindesay

2008-11-04T23:59:59.000Z

434

Stationary black-hole binaries: A non-existence proof

We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. Based on the solution of a boundary problem for disconnected (Killing) horizons and the resulting violation of characteristic black hole properties, we present a non-existence proof for the equilibrium configuration in question. From a mathematical point of view, this result is a further example for the efficiency of the inverse ("scattering") method in non-linear theories.

Gernot Neugebauer; Jörg Hennig

2014-06-23T23:59:59.000Z

435

Supermassive Black Holes and the Evolution of Galaxies

Black holes, an extreme consequence of the mathematics of General Relativity, have long been suspected of being the prime movers of quasars, which emit more energy than any other objects in the Universe. Recent evidence indicates that supermassive black holes, which are probably quasar remnants, reside at the centers of most galaxies. As our knowledge of the demographics of these relics of a violent earlier Universe improve, we see tantalizing clues that they participated intimately in the formation of galaxies and have strongly influenced their present-day structure.

D. Richstone; E. A. Ajhar; R. Bender; G. Bower; A. Dressler; S. M. Faber; A. V. Filippenko; K. Gebhardt; R. Green; L. C. Ho; J. Kormendy; T. Lauer; J. Magorrian; S. Tremaine

1998-10-23T23:59:59.000Z

436

Energy Associated with Schwarzschild Black Hole in a Magnetic Universe

In this paper we obtain the energy distribution associated with the Ernst space-time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.

S. S. Xulu

2000-01-29T23:59:59.000Z

437

Black Hole Collisions, Analytic Continuation, and Cosmic Censorship

Exact solutions of the Einstein-Maxwell equations that describe moving black holes in a cosmological setting are discussed with the aim of discovering the global structure and testing cosmic censorship. Continuation beyond the horizons present in these solutions is necessary in order to identify the global structure. Therefore the possibilities and methods of analytic extension of geometries are briefly reviewed. The global structure of the Reissner-Nordstr\\"om-de Sitter geometry is found by these methods. When several black holes are present, the exact solution is no longer everywhere analytic, but less smooth extensions satisfying the Einstein equations everywhere are possible. Some of these provide counterexamples to cosmic censorship.

Dieter R. Brill

1995-03-27T23:59:59.000Z

438

Low-temperature random matrix theory at the soft edge

“Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, ? is identified with inverse temperature, and low temperatures are achieved through the limit ? ? ?. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-? Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-? random matrix theory.

Edelman, Alan [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Persson, Per-Olof [Department of Mathematics, University of California, Berkeley, California 94720 (United States); Sutton, Brian D. [Department of Mathematics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

2014-06-15T23:59:59.000Z

439

Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data

According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole ...

Zucker, Michael E.

440

Insulation failure assessment under random energization overvoltages

This paper offers a new simple approach to the evaluation of the risk of failure of external insulation in view of their known probabilistic nature. This is applied to EHV transmission systems subjected to energization overvoltages. The randomness, both in the applied stresses and insulation`s withstand characteristics are numerically simulated and then integrated to assess the risk of failure. Overvoltage control methods are accounted for, such as the use of pre-insertion breaker resistors, series capacitive compensation, and the installation of shunt reactors.

Mahdy, A.M.; Anis, H.I. [Cairo Univ. (Egypt)] [Cairo Univ. (Egypt); El-Morshedy, A. [Faculty of Science for Girls, Dammam (Saudi Arabia)] [Faculty of Science for Girls, Dammam (Saudi Arabia)

1996-03-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

441

Randomly charged polymers in porous environment

We study the conformational properties of charged polymers in a solvent in the presence of structural obstacles correlated according to a power law $\\sim x^{-a}$. We work within the continuous representation of a model of linear chain considered as a random sequence of charges $q_i=\\pm q_0$. Such a model captures the properties of polyampholytes -- heteropolymers comprising both positively and negatively charged monomers. We apply the direct polymer renormalization scheme and analyze the scaling behavior of charged polymers up to the first order of an $\\epsilon=6-d$, $\\delta=4-a$-expansion.

V. Blavatska; C. von Ferber

2013-11-22T23:59:59.000Z

442

Statistical regimes of random laser fluctuations

Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a simplified model which includes the population of the medium demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.

Lepri, Stefano [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Cavalieri, Stefano [Dipartimento di Fisica, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); European Laboratory for Non-linear Spectroscopy, via N. Carrara 1, I-50019 Sesto Fiorentino (Italy); Oppo, Gian-Luca [SUPA and Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, Scotland (United Kingdom); Wiersma, Diederik S. [European Laboratory for Non-linear Spectroscopy, via N. Carrara 1, I-50019 Sesto Fiorentino (Italy); BEC-INFM Center, I-38050 Povo, Trento (Italy)

2007-06-15T23:59:59.000Z

443

Open quantum systems and Random Matrix Theory

A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\\Delta_3(L)$ statistic, width distribution and level spacing are examined as a function of the strength of this coupling. A super-radiant transition is observed, and it is seen that as it is formed, the level spacing and $\\Delta_3(L)$ statistic exhibit the signatures of missed levels.

Declan Mulhall

2015-01-09T23:59:59.000Z

444

We study the dynamics of holes and defects in the 1D complex Ginzburg--Landau equation in ordered and chaotic cases. Ordered hole--defect dynamics occurs when an unstable hole invades a plane wave state and periodically nucleates defects from which new holes are born. The results of a detailed numerical study of these periodic states are incorporated into a simple analytic description of isolated "edge" holes. Extending this description, we obtain a minimal model for general hole--defect dynamics. We show that interactions between the holes and a self--disordered background are essential for the occurrence of spatiotemporal chaos in hole--defect states.

Martin van Hecke; Martin Howard

2001-01-15T23:59:59.000Z

445

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

446

Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

2013-11-19T23:59:59.000Z

447

Multidimensional Random Polymers : A Renewal Approach

In these lecture notes, which are based on the mini-course given at 2013 Prague School on Mathematical Statistical Physics, we discuss ballistic phase of quenched and annealed stretched polymers in random environment on ${\\mathbb Z}^d$ with an emphasis on the natural renormalized renewal structures which appear in such models. In the ballistic regime an irreducible decomposition of typical polymers leads to an effectiverandom walk reinterpretation of the latter. In the annealed casethe Ornstein-Zernike theory based on this approach paves the way to an essentially complete control on the level of local limit results and invariance principles. In the quenched case, the renewal structure maps the model of stretched polymers into an effective model of directed polymers. As a result one is able to use techniques and ideas developed in the context of directed polymers in order to address issues like strong disorder in low dimensions and weak disorder in higher dimensions. Among the topics addressed: Thermodynamics of quenched and annealed models, multi-dimensional renewal theory (under Cramer's condition), renormalization and effective random walk structure of annealed polymers, very weak disorder in dimensions $d\\geq 4$ and strong disorder in dimensions $d=1,2$.

Dmitry Ioffe

2014-11-30T23:59:59.000Z

448

Random unitary maps for quantum state reconstruction

We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U{sub 0}. We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension {>=}d-2 out of the total dimension d{sup 2}-1. We determine the conditions on U{sub 0} such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.

Merkel, Seth T. [Institute for Quantum Computing, Waterloo, Ontario N2L 3G1 (Canada); Riofrio, Carlos A.; Deutsch, Ivan H. [Center for Quantum Information and Control (CQuIC), Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, 87131 (United States); Flammia, Steven T. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)

2010-03-15T23:59:59.000Z

449

Separable states improve protocols with restricted randomness

It is known from Bell's theorem that quantum predictions for some entangled states cannot be mimicked using local hidden variable (LHV) models. From a computer science perspective, LHV models may be interpreted as classical computers operating on a potentially infinite number of correlated bits originating from a common source. As such, Bell inequality violations achieved through entangled states are able to characterise the quantum advantage of certain tasks, so long as the task itself imposes no restriction on the availability of correlated bits. However, if the number of shared bits is limited, additional constraints are placed on the possible LHV models and separable, i.e. disentangled, states may become a useful resource. Bell violations are therefore no longer necessary to achieve a quantum advantage. Here we show that in particular, separable states may improve the so-called random access codes, which is a class of communication problems where one party tries to read a portion of the data held by another distant party in presence of finite shared randomness and limited classical communication. We also show how the bias of classical bits can be used to avoid wrong answers in order to achieve the optimal classical protocol and how the advantage of quantum protocols is linked to quantum discord.

T. K. Chuan; T. Paterek

2014-10-07T23:59:59.000Z

450

Dark Energy Accretion onto a Black Hole in an Expanding Universe

By using the solution describing a black hole embedded in the FLRW universe, we obtain the evolving equation of the black hole mass expressed in terms of the cosmological parameters. The evolving equation indicates that in the phantom dark energy universe the black hole mass becomes zero before the Big Rip is reached.

Cheng-Yi Sun

2009-03-14T23:59:59.000Z

451

Entropy bound of a charged object and electrostatic self-energy in black holes

Without pretending to any rigour, we find a general expression of the electrostatic self-energy in static black holes with spherical symmetry. We determine the entropy bound of a charged object by assuming the existence of thermodynamics for these black holes. By combining these two results, we show that the entropy bound does not depend on the considered black hole.

B. Linet

1999-11-30T23:59:59.000Z

452

Holography, Gauge-gravity Connection and Black Hole Entropy Parthasarathi Majumdar,

;Created with pptalk Slide 2 Black holes : Extreme gravitation at work what lies beyond the `hori- zon' observationally unknown Inaccessibility apprehensions Turn to theory Black Holes from Newton's law ? Dark stars faster than c ? #12;Created with pptalk Slide 2 Black holes : Extreme gravitation at work what lies

453

Absorption of planar massless scalar waves by Bardeen regular black holes

Accretion of fields by black holes is a subject of great interest in physics. It is known that accretion plays a fundamental role in active galactic nuclei and in the evolution of black holes. Accretion of fundamental fields is often related to the study of absorption cross section. Basically all black holes for which absorption of fields has been studied so far present singularities. However, even within general relativity, it is possible to construct regular black holes: objects with event horizons but without singularities. Many physically motivated regular black hole solutions have been proposed in the past years, demanding the understanding of their absorption properties. We study the absorption of planar massless scalar waves by Bardeen regular black holes. We compare the absorption cross section of Bardeen and Reissner--Nordstr\\"om black holes, showing that the former always have a bigger absorption cross section for fixed values of the field frequency and of the normalized black hole charge. We also show that it is possible for a Bardeen black hole to have the same high-frequency absorption cross section of a Reissner--Nordstr\\"om black hole. Our results suggest that, in mid-to-high-frequency regimes, regular black holes can have compatible properties with black holes with singularities, as far as absorption is concerned.

Caio F. B. Macedo; Luís C. B. Crispino

2014-09-09T23:59:59.000Z

454

Fun With Plasma Turbulence, From Fusion Energy to Black Holes

) & in astrophysics Â· Summarize status of fusion energy research Â· Cross-validation: statistical techniques useful Energy is Essentially Unchanged since 1980 Cumulative Funding 0 5000 10000 15000 20000 25000 30000 35000Fun With Plasma Turbulence, From Fusion Energy to Black Holes Greg Hammett Miller Visiting Research

Hammett, Greg

455

Bulk emission of scalars by a rotating black hole

We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane. We present accurate bulk-to-brane emission ratios for a range of scenarios.

M. Casals; S. R. Dolan; P. Kanti; E. Winstanley

2008-07-17T23:59:59.000Z

456

Comment on "Formation of Holes in Alkanethiol Monolayers on Gold"

microscopy (STM) images of al- kanethiolate monolayers on gold, one type of defect appears which does concentration.1 Fifth, the evolution of the holes appears to cease once the self-assembled monolayer (SAM) has the surface. They are not usually found very near existing step defects, and time-resolved STM images

Myrick, Michael Lenn

457

Gravitational Self-Energy and Black Holes in Newtonian Physics

A definition of a Newtonian black hole is possible which incorporates the mass-energy equivalence from special relativity. However, exploiting a double spherical shell model, it will be shown that the ensuing gravitational self-energy and mass renormalization prevent the formation of such an object.

G. Dillon

2013-02-15T23:59:59.000Z

458

Measuring the Black Hole Spin in Sgr A*

The polarized mm/sub-mm radiation from Sgr A* is apparently produced by a Keplerian structure whose peak emission occurs within several Schwarzschild radii (r_S=2GM/c^2) of the black hole. The Chandra X-ray counterpart, if confirmed, is presumably the self-Comptonized component from this region. In this paper, we suggest that sub-mm timing observations could yield a signal corresponding to the period P_0 of the marginally stable orbit, and therefore point directly to the black hole's spin a. Sgr A*'s mass is now known to be (2.6\\pm 0.2)\\times 10^6 M_\\odot (an unusually accurate value for supermassive black hole candidates), for which 2.7 min

Fulvio Melia; Benjamin C. Bromley; Siming Liu; Christopher; K. Walker

2001-05-11T23:59:59.000Z

459

Increase of Black Hole Entropy in Higher Curvature Gravity

We examine the Zeroth Law and the Second Law of black hole thermodynamics within the context of effective gravitational actions including higher curvature interactions. We show that entropy can never decrease for quasi-stationary processes in which a black hole accretes positive energy matter, independent of the details of the gravitational action. Within a class of higher curvature theories where the Lagrangian consists of a polynomial in the Ricci scalar, we use a conformally equivalent theory to establish that stationary black hole solutions with a Killing horizon satisfy the Zeroth Law, and that the Second Law holds in general for any dynamical process. We also introduce a new method for establishing the Second Law based on a generalization of the area theorem, which may prove useful for a wider class of Lagrangians. Finally, we show how one can infer the form of the black hole entropy, at least for the Ricci polynomial theories, by integrating the changes of mass and angular momentum in a quasistationary accretion process.

Ted Jacobson; Gungwon Kang; Robert C. Myers

1995-03-11T23:59:59.000Z

460

Radiation interference from sources rotating around Schwarzschild black holes

We investigate the influence of the spacetime curvature on the interference of the radiation emitted by an ensemble of scalar sources in circular motion around a Schwarzschild black hole. We pay particular attention to the transition from the radiating to the non-radiating regime as the number of sources increases.

Raissa F. P. Mendes; George E. A. Matsas

2011-10-04T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

461

No Scalar Hair Theorem for a Charged Spherical Black Hole

This paper consolidates noscalar hair theorem for a charged spherically symmetric black hole in four dimension in general relativity as well as in all scalar tensor theories, both minimally and nonminimally coupled, when the effective Newtonian constant of gravity is positive. However, there is an exception when the matter field itself is coupled to the scalar field, such as in dilaton gravity.

N. Banerjee; S. Sen

1998-08-11T23:59:59.000Z

462

Accelerating black holes in anti-de Sitter universe

A physical interpretation of the C-metric with a negative cosmological constant $\\Lambda$ is suggested. Using a convenient coordinate system it is demonstrated that this class of exact solutions of Einstein's equations describes uniformly accelerating (possibly charged) black holes in anti-de Sitter universe. Main differences from the analogous de Sitter case are emphasised.

J. Podolsky

2002-02-11T23:59:59.000Z

463

Conserved Charges and Thermodynamics of the Spinning Goedel Black Hole

We compute the mass, angular momenta, and charge of the Goedel-type rotating black hole solution to five-dimensional minimal supergravity. A generalized Smarr formula is derived, and the first law of thermodynamics is verified. The computation rests on a new approach to conserved charges in gauge theories that allows for their computation at finite radius.

Barnich, Glenn; Compere, Geoffrey [Physique Theorique et Mathematique, Universite Libre de Bruxelles, and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Brussels (Belgium)

2005-07-15T23:59:59.000Z

464

Tips for implementing multigrid methods on domains containing holes

As part of our development of a computer code to perform 3D `constrained evolution' of Einstein's equations in 3+1 form, we discuss issues regarding the efficient solution of elliptic equations on domains containing holes (i.e., excised regions), via the multigrid method. We consider as a test case the Poisson equation with a nonlinear term added, as a means of illustrating the principles involved, and move to a "real world" 3-dimensional problem which is the solution of the conformally flat Hamiltonian constraint with Dirichlet and Robin boundary conditions. Using our vertex-centered multigrid code, we demonstrate globally second-order-accurate solutions of elliptic equations over domains containing holes, in two and three spatial dimensions. Keys to the success of this method are the choice of the restriction operator near the holes and definition of the location of the inner boundary. In some cases (e.g. two holes in two dimensions), more and more smoothing may be required as the mesh spacing decreases to zero; however for the resolutions currently of interest to many numerical relativists, it is feasible to maintain second order convergence by concentrating smoothing (spatially) where it is needed most. This paper, and our publicly available source code, are intended to serve as semi-pedagogical guides for those who may wish to implement similar schemes.

Scott H. Hawley; Richard A. Matzner

2003-11-18T23:59:59.000Z

465

Reissner-Nordstrom black hole in dark energy background

In this paper we propose a stationary solution of Einstein's field equations describing Reissner-Nordstrom black hole in dark energy background. It is to be regarded as the Reissner-Nordstrom black hole is embedded into the dark energy solution producing Reissner-Nordstrom-dark energy black hole. We find that the space-time geometry of Reissner-Nordstrom-dark energy solution is Petrov type $D$ in the classification of space-times. It is also shown that the embedded space-time possesses an energy-momentum tensor of the electromagnetic field interacting with the dark energy having negative pressure. We find the energy-momentum tensor for dark energy violates the the strong energy condition due to the negative pressure, whereas that of the electromagnetic field obeys the strong energy condition. It is shown that the time-like vector field for an observer in the Reissner-Nordstrom-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity of the horizons for the embedded dark energy black hole. The characteristic properties of relativistic dark energy based on the de Sitter solution is discussed in an appendix.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-11-29T23:59:59.000Z

466

Primordial black holes from temporally enhanced curvature perturbation

Scalar field with generalized kinetic interactions metamorphoses depending on its field value, ranging from cosmological constant to stiff matter. We show that such a scalar field can give rise to temporal enhancement of the curvature perturbation in the primordial Universe, leading to efficient production of primordial black holes while the enhancement persists. If the inflation energy scale is high, those mini-black holes evaporate by the Hawking radiation much before Big Bang nucleosynthesis and the effective reheating of the Universe is achieved by the black hole evaporation. Dominance of PBHs and the reheating by their evaporation modify the expansion history of the primordial Universe. This results in a characteristic feature of the spectrum of primordial tensor modes in the DECIGO frequency band, opening an interesting possibility of testing PBH reheating scenario by measuring the primordial tensor modes. If the inflation energy scale is low, the PBH mass can be much larger than the solar mass. In this case, PBH is an interesting candidate for seeds for supermassive black holes residing in present galaxies.

Teruaki Suyama; Yi-Peng Wu; Jun'ichi Yokoyama

2014-06-02T23:59:59.000Z

467

Big-hole drilling - the state of the art

The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete.

Lackey, M.D.

1983-01-01T23:59:59.000Z

468

Dynamically self-regular quantum harmonic black holes

The recently proposed UV self-complete quantum gravity program is a new and very interesting way to envision Planckian/trans-Planckian physics. in this new framework, high energy scattering is dominated by the creation of micro black holes, and it is experimentally impossible to probe distances shorter than the horizon radius. In this letter we present a model which realizes this idea through the creation of self-regular quantum black holes admitting a minimal size extremal configuration. Their radius provides a dynamically generated minimal length acting as a universal short-distance cut-off. We propose a quantisation scheme for this new kind of microscopic objects based on a Bohr-like approach, which does not require a detailed knowledge of quantum gravity. The resulting black hole quantum picture resembles the energy spectrum of a quantum harmonic oscillator. The mass of the extremal configuration plays the role of zero-point energy. Large quantum number re-establish the classical black hole description. F...

Spallucci, Euro

2015-01-01T23:59:59.000Z

469

A Mechanism for Detecting Gray Hole Attacks on Synchrophasor Data

in smart grids [1]. Phasor measurement unit (PMU) or synchrophasor data serves to facilitate a number. This paper addresses the problem of securing PMU data against packet dropping or gray hole attacks in the network on PMU data can easily lead to the loss of observability of the system and render useless a number

Sikdar, Biplab

470

THE FORMATION AND EVOLUTION OF THE FIRST MASSIVE BLACK HOLES

@astron.berkeley.edu Abstract The first massive astrophysical black holes likely formed at high redshifts (z > 10 (Eddington) luminosity, and converts mass to radiation with an efficiency of = Mc2 /LEdd 10%) and using to link the evolution of quasars with that of dark matter halos condensing in a cold dark matter (CDM

Wurtele, Jonathan

471

No hair theorems for stationary axisymmetric black holes

We present a non-perturbative proof of the no hair theorems corresponding to scalar and Proca fields for stationary axisymmetric de Sitter black hole spacetimes. Our method also applies to asymptotically flat and under a reasonable assumption, to asymptotically anti-de Sitter spacetimes.

Sourav Bhattacharya; Amitabha Lahiri

2011-05-20T23:59:59.000Z

472

FAST MULTI-CLASS IMAGE ANNOTATION WITH RANDOM SUBWINDOWS AND MULTIPLE OUTPUT RANDOMIZED TREES

of Electrical Engineering and Computer Science 2Bioinformatics and Modeling - GIGA-R University of Li`ege, Sart annotation, machine learning, decision trees, extremely randomized trees, structured outputs Abstract significantly outperforms the basic method and shows good performances with respect to the state

Wehenkel, Louis

473

Phantom energy accretion onto a black hole in Horava Lifshitz gravity

In this Letter, we examine the phantom energy accretion onto a Kehagias-Sfetsos black hole in Ho$\\check{r}$ava Lifshitz gravity. To discuss the accretion process onto the black hole, the equations of phantom flow near the black hole have been derived. It is found that mass of the black hole decreases because of phantom accretion. We discuss the conditions for critical accretion. Graphically, it has been found that the critical accretion phenomena is possible for different values of parameters. The results for the Schwarzschild black hole can be recovered in the limiting case.

G. Abbas

2013-03-27T23:59:59.000Z

474

The bremsstrahlung spectrum for the electric dipole which nonradially falls into a black hole

The electromagnetic bremsstrahlung spectrum for the dipole which falling by a spiral orbit into the Schwarzschild black hole was found. The characteristic features in this electromagnetic spectrum can be used for determine of the black hole mass by the new way. This new way (if implemented) provides higher accuracy in determining of the black hole mass. Also these features in the spectrum can be used for determine of the certain characteristics in the black hole magnetosphere or in the accretion disk characteristics around the black hole. It is also shown that the asymptotic behavior of this spectrum (at high frequencies) is practically independent from the impact parameter of the falling dipole.

Shatskiy, Alexander; Malinovsky, Alexandr

2015-01-01T23:59:59.000Z

475

Stellar and Intermediate-Mass Black Holes in the Milky Way and Nearby Galaxies

With the advent of high resolution X-ray telescopes, the ability to identify extragalactic black holes has greatly enhanced our understanding of massive compact objects, as we are no longer limited to the rather meager Milky Way black hole population. The greatly increased numbers have opened up opportunities to find new modes of compact object accretion and potentially long-sought evidence for intermediate-mass black holes. In this lecture series, the current state of knowledge of stellar- and intermediate-mass black holes is reviewed, particularly in regards to black hole populations in external galaxies.

Irwin, Jimmy [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States)

2010-08-09T23:59:59.000Z

476

Croatian Black Hole School 2010 lecture notes on IMBHs in GCs

Black holes are fascinating objects. As a class of solutions to the Einstein equations they have been studied a great deal, yielding a wealth of theoretical results. But do they really exist? What do astronomers really mean when they claim to have observational evidence of their existence? To answer these questions, I will focus on a particular range of black-hole masses, approximately from 100 to 10000 solar masses. Black holes of this size are named Intermediate Mass Black Holes (IMBHs) and their existence is still heavily disputed, so they will be perfect for illustrating the observational challenges faced by a black hole hunter

Mario Pasquato

2010-08-26T23:59:59.000Z

477

Optimized quantum random-walk search algorithms

Shenvi, Kempe and Whaley's quantum random-walk search (SKW) algorithm [Phys. Rev. A 67, 052307 (2003)] is known to require $O(\\sqrt N)$ number of oracle queries to find the marked element, where $N$ is the size of the search space. The overall time complexity of the SKW algorithm differs from the best achievable on a quantum computer only by a constant factor. We present improvements to the SKW algorithm which yield significant increase in success probability, and an improvement on query complexity such that the theoretical limit of a search algorithm succeeding with probability close to one is reached. We point out which improvement can be applied if there is more than one marked element to find.

V. Potocek; A. Gabris; T. Kiss; I. Jex

2008-12-12T23:59:59.000Z

478

Conservation Laws of Random Matrix Theory

This paper presents an overview of the derivation and significance of recently derived conservation laws for the matrix moments of Hermitean random matrices with dominant exponential weights that may be either even or odd. This is based on a detailed asymptotic analysis of the partition function for these unitary ensembles and their scaling limits. As a particular application we derive closed form expressions for the coefficients of the genus expansion for the associated free energy in a particular class of dominant even weights. These coefficients are generating functions for enumerating g-maps, related to graphical combinatorics on Riemann surfaces. This generalizes and resolves a 30+ year old conjecture in the physics literature related to quantum gravity.

Nicholas M. Ercolani

2012-03-28T23:59:59.000Z

479

Adiabatic quantum computing for random satisfiability problems

The discrete formulation of adiabatic quantum computing is compared with other search methods, classical and quantum, for random satisfiability (SAT) problems. With the number of steps growing only as the cube of the number of variables, the adiabatic method gives solution probabilities close to 1 for problem sizes feasible to evaluate via simulation on current computers. However, for these sizes the minimum energy gaps of most instances are fairly large, so the good performance scaling seen for small problems may not reflect asymptotic behavior where costs are dominated by tiny gaps. Moreover, the resulting search costs are much higher than for other methods. Variants of the quantum algorithm that do not match the adiabatic limit give lower costs, on average, and slower growth than the conventional GSAT heuristic method.

Hogg, Tad [HP Labs, Palo Alto, California 94304 (United States)

2003-02-01T23:59:59.000Z

480

Driven synchronization in random networks of oscillators

Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and resolve how the structure and emergence of such states depends on the underlying network topology for simple random networks with a given degree distribution. We provide a partial bifurcation analysis, centering on the appearance of a Takens-Bogdanov-Cusp singularity, which broadly separates homogeneous and heterogeneous network behavior in a weak coupling limit, and from which the number, stability and appearance of dr...

Hindes, Jason

2015-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

481

Hydrodynamical random walker with chemotactic memory

A three-dimensional hydrodynamical model for a micro random walker is combined with the idea of chemotactic signaling network of E. coli. Diffusion exponents, orientational correlation functions and their dependence on the geometrical and dynamical parameters of the system are analyzed numerically. Because of the chemotactic memory, the walker shows superdiffusing displacements in all directions with the largest diffusion exponent for a direction along the food gradient. Mean square displacements and orientational correlation functions show that the chemotactic memory washes out all the signatures due to the geometrical asymmetry of the walker and statistical properties are asymmetric only with respect to the direction of food gradient. For different values of the memory time, the Chemotactic index (CI) is also calculated.

H. Mohammady; B. Esckandariun; A. Najafi

2014-10-01T23:59:59.000Z

482

Characterizing asymptotically anti-de Sitter black holes with abundant stable gauge field hair

In the light of the "no-hair" conjecture, we revisit stable black holes in su(N) Einstein-Yang-Mills theory with a negative cosmological constant. These black holes are endowed with copious amounts of gauge field hair, and we address the question of whether these black holes can be uniquely characterized by their mass and a set of global non-Abelian charges defined far from the black hole. For the su(3) case, we present numerical evidence that stable black hole configurations are fixed by their mass and two non-Abelian charges. For general N, we argue that the mass and N-1 non-Abelian charges are sufficient to characterize large stable black holes, in keeping with the spirit of the "no-hair" conjecture, at least in the limit of very large magnitude cosmological constant and for a subspace containing stable black holes (and possibly some unstable ones as well).

Ben L. Shepherd; Elizabeth Winstanley

2012-06-25T23:59:59.000Z

483

A Class of Randomized Primal-Dual Algorithms for Distributed ...

1553–1557, Bucharest, Romania, 27-31 Aug. 2012. [49] P. Richtárik and M. Takác. Iteration complexity of randomized block-coordinate descent methods for.

2014-10-25T23:59:59.000Z

484

18.366 Random Walks and Diffusion, Spring 2005

Discrete and continuum modeling of diffusion processes in physics, chemistry, and economics. Topics include central limit theorems, continuous-time random walks, Levy flights, correlations, extreme events, mixing, ...

Bazant, Martin Z.

485

Generalised Wigner surmise for 2x2 random matrices

We present new analytical results concerning the spectral distributions for 2x2 random real symmetric matrices which generalise the Wigner surmise.

P. Chau Huu-Tai; N. A. Smirnova; P. Van Isacker

2002-03-16T23:59:59.000Z

486

Generating Random Graphs with Large Girth Mohsen Bayati

Generating Random Graphs with Large Girth Mohsen Bayati Andrea Montanari Amin Saberi Abstract We for Computational and Mathematical Engineering, Stanford University; saberi@stanford.edu. knowledge

Montanari, Annamaria

487

A Randomized Rounding Approach to the Traveling Salesman Problem

A Randomized Rounding Approach to the Traveling Salesman Problem Shayan Oveis Gharan Amin Saberi. Department of Management Science and Engineering, Stanford University. Email:saberi@stanford.edu School

Saberi, Amin

488

Evidence for Non-Random Hydrophobicity Structures in Protein Chains

The question of whether proteins originate from random sequences of amino acids is addressed. A statistical analysis is performed in terms of blocked and random walk values formed by binary hydrophobic assignments of the amino acids along the protein chains. Theoretical expectations of these variables from random distributions of hydrophobicities are compared with those obtained from functional proteins. The results, which are based upon proteins in the SWISS-PROT data base, convincingly show that the amino acid sequences in proteins differ from what is expected from random sequences in a statistical significant way. By performing Fourier transforms on the random walks one obtains additional evidence for non-randomness of the distributions. We have also analyzed results from a synthetic model containing only two amino-acid types, hydrophobic and hydrophilic. With reasonable criteria on good folding properties in terms of thermodynamical and kinetic behavior, sequences that fold well are isolated. Performing the same statistical analysis on the sequences that fold well indicates similar deviations from randomness as for the functional proteins. The deviations from randomness can be interpreted as originating from anticorrelations in terms of an Ising spin model for the hydrophobicities. Our results, which differ from previous investigations using other methods, might have impact on how permissive with respect to sequence specificity the protein folding process is -- only sequences with non-random hydrophobicity distributions fold well. Other distributions give rise to energy landscapes with poor folding properties and hence did not survive the evolution.

Anders Irbäck; Carsten Peterson; Frank Potthast

1996-10-15T23:59:59.000Z

489

Random matrices with external source and KP $?$ functions

In this paper we prove that the partition function in the random matrix model with external source is a KP $\\tau$ function.

Dong Wang

2009-03-29T23:59:59.000Z

490

Low energy properties of the random displacement model

We study low-energy properties of the random displacement model, a random Schr\\"odinger operator describing an electron in a randomly deformed lattice. All periodic displacement configurations which minimize the bottom of the spectrum are characterized. While this configuration is essentially unique for dimension greater than one, there are infinitely many different minimizing configurations in the one-dimensional case. The latter leads to unusual low energy asymptotics for the integrated density of states of the one-dimensional random displacement model. For symmetric Bernoulli-distributed displacements it has a $1/\\log^2$-singularity at the bottom of the spectrum. In particular, it is not H\\"older-continuous.

Jeff Baker; Michael Loss; Günter Stolz

2008-08-05T23:59:59.000Z

491

Embedding quantum and random optics in a larger field theory

Introducing creation and annihilation operators for negative frequency components extends the algebra of smeared local observables of quantum optics to include an associated classical random field optics.

Peter Morgan

2008-06-09T23:59:59.000Z

492

Instability of black hole formation in gravitational collapse

We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational collapse of a massive matter cloud, and examine its stability under the introduction of small tangential stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from a black hole final state to a naked singularity. This shows instability of black hole formation in collapse and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are discussed.

Joshi, Pankaj S.; Malafarina, Daniele [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

2011-01-15T23:59:59.000Z

493

On the Origin of the Outgoing Black Hole Modes

The question of how to account for the outgoing black hole modes without drawing upon a transplanckian reservoir at the horizon is addressed. It is argued that the outgoing modes must arise via conversion from ingoing modes. It is further argued that the back-reaction must be included to avoid the conclusion that particle creation cannot occur in a strictly stationary background. The process of ``mode conversion" is known in plasma physics by this name and in condensed matter physics as ``Andreev reflection" or ``branch conversion". It is illustrated here in a linear Lorentz non-invariant model introduced by Unruh. The role of interactions and a physical short distance cutoff is then examined in the sonic black hole formed with Helium-II.

Ted Jacobson

1996-01-25T23:59:59.000Z

494

Mergers of Supermassive Black Holes in Astrophysical Environments

Modeling the late inspiral and merger of supermassive black holes is central to understanding accretion processes and the conditions under which electromagnetic emission accompanies gravitational waves. We use fully general relativistic, hydrodynamics simulations to investigate how electromagnetic signatures correlate with black hole spins, mass ratios, and the gaseous environment in this final phase of binary evolution. In all scenarios, we find some form of characteristic electromagnetic variability whose pattern depends on the spins and binary mass ratios. Binaries in hot accretion flows exhibit a flare followed by a sudden drop in luminosity associated with the plunge and merger, as well as quasi-periodic oscillations correlated with the gravitational waves during the inspiral. Conversely, circumbinary disk systems are characterized by a low luminosity of variable emission, suggesting challenging prospects for their detection.

Tanja Bode; Tamara Bogdanovic; Roland Haas; James Healy; Pablo Laguna; Deirdre Shoemaker

2011-10-12T23:59:59.000Z

495

Supermassive black holes (SMBH) and formation of galaxies

The recently confirmed correlation between the mass of SMBH and bulges of galaxies (and their central velocity dispersion), suggest a common formation scenario for galaxies and their central black holes. Common fueling can be invoked through internal dynamical processes, external accretion, and hierarchical merging of structures. The success of recent theories is reviewed, as the self-regulated growth of both bulges and SMBHs, the predicted AGN statistics, when activity is triggered by accretion and mergers, the predicted frequency of binary SMBH and consequences. In particular, the SMBH growth problem can now be revised, invoking intermediate-mass black holes (IMBH) as BH seeds in the early universe. As a by-product, the merger of binary SMBHs help to heat and destroy central stellar cusps. Remaining problems are mentioned.

F. Combes

2003-07-31T23:59:59.000Z

496

Numerical Modeling of Charged Black Holes with Massive Dilaton

In this paper the static, spherically symmetric and electrically charged black hole solutions in Einstein-Born-Infeld gravity with massive dilaton are investigated numerically. The Continuous Analog of Newton Method (CANM) is used to solve the corresponding nonlinear multipoint boundary value problems (BVPs). The linearized BVPs are solved numerically by means of collocation scheme of fourth order. A special class of solutions are the extremal ones. We show that the extremal horizons within the framework of the model satisfy some nonlinear system of algebraic equations. Depending on the charge $q$ and dilaton mass $\\gamma$, the black holes can have no more than three horizons. This allows us to construct some Hermite polynomial of third order. Its real roots describe the number, the type and other characteristics of the horizons.

T. L. Boyadjiev; P. P. Fiziev

2003-11-28T23:59:59.000Z

497

Black hole solutions in 5D Horava-Lifshitz gravity

We study the full spectrum of spherically symmetric solutions in the five-dimensional nonprojectable Horava-Lifshitz type gravity theories. For appropriate ranges of the coupling parameters, we have found several classes of solutions which are characterized by an AdS{sub 5}, dS{sub 5}, or flat large distance asymptotic behavior, plus the standard 1/r{sup 2} tail of the usual five-dimensional Schwarzschild black holes. In addition we have found solutions with an unconventional short or large distance behavior, and, for a special range of the coupling parameters, solutions which coincide with black hole solutions of conventional relativistic five-dimensional Gauss-Bonnet gravity.

Koutsoumbas, George; Papantonopoulos, Eletherios; Pasipoularides, Pavlos; Tsoukalas, Minas

2010-06-15T23:59:59.000Z

498

Statistical constraints on binary black hole inspiral dynamics

We perform a statistical analysis of the binary black hole problem in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

Chad R. Galley; Frank Herrmann; John Silberholz; Manuel Tiglio; Gustavo Guerberoff

2010-05-30T23:59:59.000Z

499

Black Hole Fluctuations and Backreaction in Stochastic Gravity

We present a framework for analyzing black hole backreaction from the point of view of quantum open systems using influence functional formalism. We focus on the model of a black hole described by a radially perturbed quasi-static metric and Hawking radiation by a conformally coupled massless quantum scalar field. It is shown that the closed-time-path (CTP) effective action yields a non-local dissipation term as well as a stochastic noise term in the equation of motion, the Einstein-Langevin equation. Once the thermal Green's function in a Schwarzschild background becomes available to the required accuracy the strategy described here can be applied to obtain concrete results on backreaction. We also present an alternative derivation of the CTP effective action in terms of the Bogolyubov coefficients, thus making a connection with the interpretation of the noise term as measuring the difference in particle production in alternative histories.

Sukanya Sinha; Alpan Raval; B. L. Hu

2002-10-04T23:59:59.000Z

500

The Mixed Phase of Charged AdS Black holes

We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma~(QGP) and hadron gas in the fixed chemical potential and density ensemble respectively. In the nuclei and heavy ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condensate and evaporate into the hadron gas as the fireball expands.

Piyabut Burikham; Chatchai Promsiri

2014-08-12T23:59:59.000Z

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Website Policies and Important Links

Search capabilities provided by DOE/OSTI