Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hot Springs Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:RanchRanch

2

Hot Springs Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:Ranch

3

Fly Ranch Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux Power Incorporated Jump to:Fly Ranch

4

Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

5

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner...

6

Hudson Ranch Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer,Hubbardston, Massachusetts:Clean EnergyHudson Ranch

7

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Basalt K Eburru Geothermal Area Eburru Geothermal Area East African Rift System Kenya Rift Basalt Fukushima Geothermal Area Fukushima Geothermal Area Northeast Honshu Arc...

8

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

9

Clark Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic NationalElectric)Clarion-Goldfield School

10

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

11

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

12

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

13

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

14

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

SciTech Connect (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

15

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

16

Cuttings Analysis At International Geothermal Area, Philippines...  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area, Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique...

17

Abraham Hot Springs Geothermal Area Northern Basin and Range...  

Open Energy Info (EERE)

Range Geothermal Region Big Windy Hot Springs Geothermal Area Alaska Geothermal Region Bingham Caribou Geothermal Area Yellowstone Caldera Geothermal Region Birdsville...

18

Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

19

Geothermal resource evaluation of the Yuma area  

SciTech Connect (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

20

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot Springs Ranch

22

Cuttings Analysis At International Geothermal Area, Indonesia...  

Open Energy Info (EERE)

Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated...

23

Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Exploration...

24

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

25

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

26

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

27

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner, 2010) Exploration Activity...

28

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

29

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

30

Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

31

Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

32

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin:california JumpEnergyDivision Hot

33

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin:california JumpEnergyDivision

34

Cuttings Analysis At Bacca Ranch Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap MeetingInformation Bacca

35

Dann Ranch Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at NorthDaly International

36

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

37

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

38

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

39

Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...  

Open Energy Info (EERE)

Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

40

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

42

Aerial Photography At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

43

Analytical Modeling At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Analytical Modeling At Valles Caldera - Redondo Geothermal Area (White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

44

Geothermal Literature Review At White Mountains Area (Goff &...  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area...

45

Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

46

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

47

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

48

Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

49

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

50

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

51

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Thermal...

52

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

1976, "Blowout o f a Geothermal Well", California Geology,in Rocks from Two Geothermal Areas'' , -- P1 anetary ScienceMonitoring Ground Movement in Geothermal Areas", Hydraul ic

Til, C. J. Van

2012-01-01T23:59:59.000Z

53

Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell, Et Al., 1988) Exploration...

54

Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Exploration...

55

Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...  

Open Energy Info (EERE)

Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

56

Geothermometry At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

57

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

58

Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

59

Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

60

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al., 1979) Exploration...

62

Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity...

63

Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area (Scholl, Et Al., 1993) Exploration...

64

Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...  

Open Energy Info (EERE)

McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

65

Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby...  

Open Energy Info (EERE)

Grigsby & Tester, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,...

66

Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Geothermal Area...

67

Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

68

Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,...

69

Geographic Information System At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Getman, 2014) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014)...

70

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

71

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

72

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Shevenell, Et Al.,...

73

Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...  

Open Energy Info (EERE)

Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

74

Analytical Modeling At Lightning Dock Geothermal Area (Brook...  

Open Energy Info (EERE)

Modeling At Lightning Dock Geothermal Area (Brook, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Analytical Modeling At Lightning...

75

Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

76

Electrical Resistivity At Kilauea East Rift Geothermal Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Kilauea East Rift Geothermal Area (KELLER, Et Al., 1977) Exploration...

77

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

78

Surface Gas Sampling At International Geothermal Area Mexico...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At International Geothermal Area Mexico (Norman, Et Al., 2002) Exploration...

79

Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Exploration...

80

Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al., 1999) Exploration Activity Details Location...

82

Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al., 2010) Exploration Activity Details Location...

83

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...

84

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

85

Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration...

86

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies  

E-Print Network [OSTI]

- 1 - The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring-Dinger Geothermal Program Office, U. S. Navy, China Lake, CA 93555-6001 Keith.Richards-Dinge@navy.mil Keywords of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14

Foulger, G. R.

87

Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

of the geothermal area. Ultimately for potential development of EGS. Notes A CO2 soil gas flux survey was conducted in areas recognized as geothermal upflow zones within the...

88

Compound and Elemental Analysis At International Geothermal Area...  

Open Energy Info (EERE)

Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Compound and Elemental Analysis Activity Date Usefulness...

89

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

90

Geology of the McMillan Ranch in Mason, Texas: An Assessment of the Nature of Normal Faults in the Mason Area  

E-Print Network [OSTI]

fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Major Subject: Geology Geology of the McMillan Ranch in Mason, Texas; An Assessment of the Nature of Normal Faults... of Department, Andreas Kronenberg August 2011 Major Subject: Geology iii ABSTRACT Geology of the McMillan Ranch in Mason, Texas: An Assessment of the Nature of Normal Faults in the Mason Area. August 2011 Rebecca Anne Harper, B.S., Texas A...

Harper, Rebecca Anne

2011-10-21T23:59:59.000Z

91

Property:GeothermalArea | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresentsGeothermalArea Jump to: navigation,

92

Ohaaki Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy Resources JumpBuildingsOhaaki Geothermal Area

93

Olkaria Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine: EnergyOlkaria Geothermal Area

94

Larderello Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello Geothermal Area Jump to:

95

Los Azufres Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,Longwei SiliconLos Azufres Geothermal Area

96

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLake Geothermal Area

97

Mokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo,Energy Information Modoc HighMokai Geothermal Area

98

Banbury Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,AurantiaBanbury Geothermal Area Jump to:

99

Reykjanes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREIIReykjanes Geothermal Area Jump to:

100

Pamukoren Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:Pamukoren Geothermal Area Jump to:

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Area Jump to: navigation, search

102

1 INTRODUCTION The geothermal Bouillante area is located on the  

E-Print Network [OSTI]

1 INTRODUCTION The geothermal Bouillante area is located on the western coast of Basse and isotopic composition of the deep geothermal fluids using well and spring waters. The predictable nature the production stage and for future exploration drilling related to the development of the geothermal field. 2

Paris-Sud XI, Université de

103

Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area, Iceland: Variation of temperature  

E-Print Network [OSTI]

Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The likely measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up

Foulger, G. R.

104

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Evidence for Large-Scale Laramide Tectonic Inversion and a Mid-Tertiary Caldera Ring Fracture Zone at the Lightning Dock Geothermal System, New Mexico Additional References...

105

Attenuation structure of Coso geothermal area, California, from...  

Open Energy Info (EERE)

Coso geothermal area, California, from wave pulse widths Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Attenuation structure of Coso...

106

Geology and alteration of the Coso Geothermal Area, Inyo County...  

Open Energy Info (EERE)

California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Abstract Geology...

107

Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...  

Open Energy Info (EERE)

Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

108

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

109

Heat flow and microearthquake studies, Coso Geothermal Area,...  

Open Energy Info (EERE)

subsurface associated with the Coso Geothermal Area, is being transferred by a conductive heat transfer mechanism with a value of approximately 15 mucalcm2-sec. This is typical...

110

Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...  

Open Energy Info (EERE)

Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1999 - 2000 Usefulness not indicated DOE-funding Unknown...

111

Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie...  

Open Energy Info (EERE)

Details Location Kilauea East Rift Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1998 - 1998 Usefulness useful DOE-funding Unknown Exploration...

112

Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO...  

Open Energy Info (EERE)

Details Location Kilauea East Rift Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1974 - 1974 Usefulness useful DOE-funding Unknown Exploration...

113

Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1985 - 1985 Usefulness useful DOE-funding Unknown Exploration...

114

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

115

Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes See linked...

116

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Flow Test Activity Date 2002 - 2002 Usefulness not useful...

117

Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not...

118

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1992 Usefulness...

119

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1986 Usefulness not...

120

Geophysical Setting of the Blue Mountain Geothermal Area, North...  

Open Energy Info (EERE)

Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Jump to: navigation, search...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Literature Review At Lake City Hot Springs Area (Benoit...  

Open Energy Info (EERE)

Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding...

122

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Location Valles Caldera - Redondo Geothermal Area Exploration Technique Conceptual Model Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis This...

123

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

124

Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox...  

Open Energy Info (EERE)

can be a useful geochemical indicator for geothermal exploration when other water chemistry techniques are ambiguous. This research was useful for locating some areas which...

125

Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...  

Open Energy Info (EERE)

Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic...

126

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date - 2004 Usefulness not indicated...

127

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...  

Open Energy Info (EERE)

Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

128

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

129

Refraction Survey At North Brawley Geothermal Area (Fruis & Kohler...  

Open Energy Info (EERE)

(Fruis & Kohler, 1984) Exploration Activity Details Location North Brawley Geothermal Area Exploration Technique Refraction Survey Activity Date 1979 - 1979 Usefulness useful...

130

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

131

Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...  

Open Energy Info (EERE)

holes Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGradientHolesAtWaunitaHotSpringsGeothermalArea(Zacharakis,1981)&oldid762...

132

Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...  

Open Energy Info (EERE)

of the North Brawley, Heber, East Mesa, and Salton Sea Geothermal Areas. Notes Well logs, thermal gradient data, and magnetic data were correlated to form a better geologic...

133

EIS-0049: Geothermal Demonstration Program 50-MW Power Plant-Baca Ranch, Sandoval and Rio Arriba Counties, New Mexico  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) developed this EIS to evaluate the environmental impacts of joint funding by DOE and commercial partners of a 50-megawatt demonstration geothermal, power plant at the Baca Location in Sandoval County, New Mexico, including construction of the geothermal well field and transmission line.

134

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,George CountyMexicoFacility |Geothermal Area Jump

135

Astor Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio EnergyInstituteFunding JumpGeothermal Area Jump

136

Gumuskoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., ItGumuskoy Geothermal Area Jump to:

137

Bouillante Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar Energy Association Jump to:BotetourtHumboldt2Geothermal

138

Mcleod 88 Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland is a cityMcleod 88 Geothermal Area

139

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River,Shakes Springs Geothermal Area

140

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy LtdSnyderGeothermal Area

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in Carroll County,Manitoba HydroGeothermal Area

142

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area Jump to: navigation,

143

Fang Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°,Fallon NavalFang Geothermal Area

144

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg Bradley StudiosFernFernley Geothermal Area

145

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to:Jamestown,JeffersonGeothermal Area

146

Kilo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air Jump to: navigation,Kilo Geothermal Area

147

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

148

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...  

Open Energy Info (EERE)

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

149

Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....  

Open Energy Info (EERE)

Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...

150

Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...  

Open Energy Info (EERE)

Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Magnetics Activity...

151

Core Analysis At Blue Mountain Geothermal Area (U.S. Geological...  

Open Energy Info (EERE)

Blue Mountain Geothermal Area (U.S. Geological Survey, 2009) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Analysis Activity Date...

152

Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...  

Open Energy Info (EERE)

Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...

153

Representative well models for eight geothermal-resource areas  

SciTech Connect (OSTI)

Representative well models have been constructed for eight major geothermal-resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. The models were made for and have been used to evaluate the impacts of potential new technologies. The nature, construction, and validation of the models are presented.

Carson, C.C.; Lin, Y.T.; Livesay, B.J.

1983-02-01T23:59:59.000Z

154

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

155

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

156

Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

157

Finding Large Aperture Fractures in Geothermal Resource Areas...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component...

158

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA  

SciTech Connect (OSTI)

The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. ? Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. ? The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

Walters, Mark A.

2013-04-25T23:59:59.000Z

159

Conceptual Model of the Klamath Falls, Oregon Geothermal Area  

SciTech Connect (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. 1 tab., 8 figs., 21 refs.

Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

1987-01-20T23:59:59.000Z

160

Conceptual model of the Klamath Falls, Oregon geothermal area  

SciTech Connect (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed.

Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of the Geothermal Potential Within the BPA Marketing Area.  

SciTech Connect (OSTI)

The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 x 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.

Lund, John W.; Allen, Eliot D.

1980-07-01T23:59:59.000Z

162

Los Humeros Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,Longwei SiliconLos Azufres GeothermalLos

163

Canby Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide WindInformationHydrogenGeothermal

164

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder Jump to:IncGeothermal

165

Mori Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose,Stanley Capital Grp Inc JumpMori Geothermal

166

Mt Rainier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co Jump to:Rainier

167

Mt Rainier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co Jump

168

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanier

169

Mutnovskaya Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum|Texas: Energy Resources

170

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,Geothermal Project Jump to: navigation,

171

Riverside Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversityMedio,Riverhead, NewRiverside Geothermal

172

Fukushima Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier, North Dakota:Coach JumpFukushima Geothermal

173

Glass Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources Jump to:ConnecticutMountain Geothermal

174

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,

175

Planning the Ranch for Greater Profit: A Study of Physical and Economic Factors Affecting Organization and Management of Ranches in the Edwards Plateau Grazing Area.  

E-Print Network [OSTI]

." "Reconnoissance Soil Survey of South-Central Texas. Reconnoissance Soil Survey of West-Central Texas. 10 BULLETIN NO. 413, TEXAS AGRICULTURAL EXPERIMENT STATION Classification of the Land and Vegetation of the Area A classification of the lind of the area has... is the principal vegetation in the numerous narrow valleys and on thc lerel divides. Going from the south to the north and from east to west in the area the land gradually becomes less broken, with large areas of smooth grassland becoming more numerous...

Gabbard, L. P. (Letcher P.); Bonnen, C. A. (Clarence Alfred); Tate, J. N. (James Norman)

1930-01-01T23:59:59.000Z

176

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

Til, C. J. Van

2012-01-01T23:59:59.000Z

177

Beowawe Geothermal Area evaluation program. Final report  

SciTech Connect (OSTI)

Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

Iovenitti, J. L

1981-03-01T23:59:59.000Z

178

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: Energy ResourcesDesert HotGeothermal

179

East Mesa Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article isMcKeesport is a borough inGeothermal

180

Aqua Quieta Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy Information the ArmyInformationFocusQuieta Geothermal

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Paso Robles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada: Energy6 Name:|

182

Dulbi Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII Wind FarmSouthDulbi

183

Dunes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII Wind FarmSouthDulbiDunes

184

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

185

Hot Springs Cove Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to: navigation,

186

Hot Sulphur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area JumpOpen

187

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected fromGeothermal Area

188

Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

Robinson, S.; Pugsley, M.

1981-01-01T23:59:59.000Z

189

Geothermal resource area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

190

Selecting ground-motion models developed for induced seismicity in geothermal areas1 Benjamin Edwards1  

E-Print Network [OSTI]

: geothermal power, induced seismicity, ground-motion prediction, seismic hazard, spectral35 analysis3642 Landau (Germany) geothermal power plant in 2009, which caused macroseismic intensities up to V+,431 Selecting ground-motion models developed for induced seismicity in geothermal areas1 Benjamin

Paris-Sud XI, Université de

191

Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West Indies)  

E-Print Network [OSTI]

1 Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West, France 3. BRGM, Department of Geothermal Energy 3, Av. Claude Guillemin - 45060 Orléans Cedex 2, France Abstract The Bouillante geothermal field presently provides about 8% of the annual electricity needs

Paris-Sud XI, Université de

192

Geochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges  

E-Print Network [OSTI]

source of geothermal energy, is ulti- 0024-4937/$ - see front matter D 2005 Published by Elsevier BGeochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges Axel K Potsdam, Germany c Philippine Geothermal, Inc., Makati, Philippines Received 1 May 2004; accepted 25 May

193

Development Wells At Long Valley Caldera Geothermal Area (Holt...  

Open Energy Info (EERE)

Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects: Units II and III...

194

Compound and Elemental Analysis At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Unknown Exploration Basis The goal of this project was to create a database of rare earth elements found in exploration for geothermal resources. Notes Geothermal fluids from...

195

Geophysical investigations of certain Montana geothermal areas  

SciTech Connect (OSTI)

Selected hot springs areas of Montana have been investigated by a variety of geophysical techniques. Resistivity, gravity, seismic, and magnetic methods have been applied during investigations near the hot springs. Because the geology is extremely varied at the locations of the investigations, several geophysical techniques have usually been applied at each site.

Wideman, C.J. (Montana Bureau of Mines and Geology, Butte); Dye, L.; Halvorson, J.; McRae, M.; Ruscetta, C.A.; Foley, D. (eds.)

1981-05-01T23:59:59.000Z

196

3D Model of the San Emidio Geothermal Area  

SciTech Connect (OSTI)

The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30ş eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

James E. Faulds

2013-12-31T23:59:59.000Z

197

3D Model of the San Emidio Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30ş eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

James E. Faulds

198

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenInc Jump to:JumpNewGeothermal Area

199

Fluid Inclusion Analysis At Coso Geothermal Area (1996) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister Area (DOE

200

Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister Area

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister AreaInformation

202

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected from Maui Area) Jump

203

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic,(Redirected from Maui Area)

204

Range Condition: Key to Sustained Ranch Productivity  

E-Print Network [OSTI]

species composition is the criteria used to make this determination. Range condition is evaluated for each range site on a ranch. Range sites are areas with the potential for producing similar amounts and kinds of vegetation (for example, shallow hillside... site, deep upland site, draw site, etc.). Sites are determined by climatic, soil, topographic and vegetation features. A complete listing and description of all range sites on a ranch can be obtained from the Soil Conservation Service (SCS). Range...

McGinty, Allan; White, Larry D.

2000-04-25T23:59:59.000Z

205

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace, NorthHorvatic JumpOpenHot Lake Area)

206

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenInc JumpNew YorkNew pageJump to:

207

Cerro Prieto Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER esMidAmericanArea

208

Silver Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, NewSilicium deSilver Peak Area) Jump

209

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate Zone Subtype A.645565°,Jehin Co Ltd JumpOpenArea

210

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasinDeseret Generation &Area Jump

211

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy. ItTroy,Truckhaven Area) Jump

212

Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

- Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

Faulds, James E.

213

World Geothermal Congress, Melbourne, Australia, 19-25 April, 2015 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas  

E-Print Network [OSTI]

World Geothermal Congress, Melbourne, Australia, 19-25 April, 2015 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas Bruce Julian, Gillian Foulger, Andrew Sabin, Najwa Mhana Temporal geothermal areas, California, using three-dimensional local-earthquake tomography repeated on a year

Foulger, G. R.

214

Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas  

SciTech Connect (OSTI)

Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

Foley, D.; Dorscher, M.

1982-11-01T23:59:59.000Z

215

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open

216

Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information Mountain Geothermal Area

217

Dead Horse Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618b No revisionDeFrees FlumeWells Geothermal Area

218

Hot Sulphur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area JumpOpen Energy

219

Twenty-Nine Palms Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey: EnergyGeothermal Area Jump to:

220

Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) JumpOpenAl.,

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister

222

Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWisterInformation

223

Thermo Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHot Springs Geothermal Area Jump

224

Kelly Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverviewKanematsuKas Farms WindGeothermal Area Jump

225

Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

geothermal activity which could be linked to faults that serve as pathways for geothermal fluids. Notes This survey was conducted on the western flank of Blue Mountain. SP Profile...

226

Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands  

E-Print Network [OSTI]

#12;#12;#12;#12;Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands Ridge, MacDonald Ranch, and MacDonald Highlands. The purpose of this study was to · evaluate seismograph recorded in the Crystal Ridge, MacDonald Ranch, and MacDonald Highlands areas from 2/25/05 to 3

227

Geothermometry At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

DOE-funding Unknown Exploration Basis Geothermometry analysis was done on geothermal fluids from the first production well to estimate the reservoirs temperature at deeper...

228

Ground Magnetics At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

Date 2007 - 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity and Magnetic surveys were done as part of U.S. Geothermal's geophysical program for...

229

Finding Large Aperture Fractures in Geothermal Resource Areas...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with...

230

Geothermometry At Long Valley Caldera Geothermal Area (Mariner...  

Open Energy Info (EERE)

L. Sorey, Robert H. Mariner, Alfred H. Truesdell (1979) Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long Valley, California Michael...

231

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...  

Open Energy Info (EERE)

R.A. Cunniff, R.L. Bowers (2003) Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New Mexico Additional References Retrieved from "http:...

232

Reflection Survey At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

233

Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

234

Aerial Photography At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

235

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

the caldera in response to volcanic activity, large earthquakes, andor geothermal production. These U.S. Geological Survey temperature measurements, in addition to past...

236

Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a second binary geothermal power...

237

Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas  

SciTech Connect (OSTI)

Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well. The Boles and Franks model is compatible with a steady supply of original mixed-layer I/S during the depositional history of the McAllen Ranch area. The constant content with depth of calcite, quartz, and potassium feldspar indicates that limited material, if any, is supplied by the shales to surrounding sands. The ions generated by changes within the clay minerals are involved in further clay mineral reactions as outlined above. In addition, magnesium and iron are involved in forming chlorite within the shales.

Freed, R.L.

1980-01-01T23:59:59.000Z

238

White Ranch Wetlands Biological Survey  

E-Print Network [OSTI]

White Ranch Wetlands Biological Survey and Permanent Vegetation Monitoring Plots Prepared for: U Services Building Colorado State University Fort Collins, CO 80523 March 1998 #12;WHITE RANCH WETLANDS assessment of the White Ranch wetlands. In addition we set up permanent plots along transects to collect

239

Julian, B.R. and G.R. Foulger, Improved Methods for Mapping Permeability and Heat sources in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University,  

E-Print Network [OSTI]

Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering and Heat sources in Geothermal Areas using Microearthquake Data Bruce R. Julian§ U. S. Geological Survey

Foulger, G. R.

240

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report  

SciTech Connect (OSTI)

An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

1995-12-01T23:59:59.000Z

242

Geothermal resource areas database for monitoring the progress of development in the United States  

SciTech Connect (OSTI)

The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

1981-01-01T23:59:59.000Z

243

Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman...  

Open Energy Info (EERE)

Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

244

Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...  

Open Energy Info (EERE)

Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

245

Trace Element Analysis At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

246

Compound and Elemental Analysis At International Geothermal Area...  

Open Energy Info (EERE)

Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1)...

247

Aerial Photography At Dixie Valley Geothermal Area (Wesnousky...  

Open Energy Info (EERE)

Field And Other Geothermal Fields Of The Basin And Range David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

248

Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

be due to a geothermal system at depth. One of the anomalies was interpreted to be from fluids up to 200 degrees Celsius. References Fairbank Engineering Ltd (2003) Phase I...

249

Heat flow studies, Coso Geothermal Area, China Lake, California...  

Open Energy Info (EERE)

is useless for calculating the geothermal gradients. This is due to the effects of solar radiation at the surface of the earth. Authors Combs and J. Published Publisher Not...

250

Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

Faulds, James E.

251

A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS  

E-Print Network [OSTI]

Potential geopressured geothermal-related subsidence ratesto Potential Geopressured Geothermal-RelatedSubsidence Ratesmm). Potential geopressured geothermal-related rubaidence

Lee, L.M.

2010-01-01T23:59:59.000Z

252

Slip and Dilation Tendency Analysis of the Patua Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...

Faulds, James E.

253

3D Model of the Neal Hot Springs Geothermal Area  

SciTech Connect (OSTI)

The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

Faulds, James E.

2013-12-31T23:59:59.000Z

254

3D Model of the Neal Hot Springs Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

Faulds, James E.

255

Olene Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,Olene Gap GeothermalOlene

256

Geologic Map and GIS Data for the Patua Geothermal Area  

SciTech Connect (OSTI)

Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

Faulds, James E.

2011-10-31T23:59:59.000Z

257

Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector GeothermalRafter J Ranch,

258

Las Tres Virgenes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello Geothermal

259

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello GeothermalTresLassen

260

Gunun-Salak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., ItGumuskoy Geothermal

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Brockway Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard EnergyBrockway Hot Springs Geothermal

262

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanier

263

Pilger Estates Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: EnergyInformation

264

Poisson's ratio and porosity at Coso geothermal area, California | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp Jump

265

Bailey Bay Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBay Hot Springs Geothermal

266

Great Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands Renewable Energy LLCGray,Boiling Springs Geothermal

267

OpenEI Community - Waunita Hot Springs Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012Coast Utilities prepare

268

The Farm and Ranch Corporation.  

E-Print Network [OSTI]

rooc - ~ TA245.7 1873 0.1302 The Texas A&M University System Texas Agricultural Extension Service 8-1302 Director Daniel C. Pfannstiel College Station, Texas 77843 The Farm and Ranch Corporation Farm and Ranch Busin 0 nization... in Texas CONTENTS Alternative Forms of Business Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 Closely Held Farm Corporations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4...

Brints, Norman; Sartin, Marvin

1980-01-01T23:59:59.000Z

269

Area development plan of the geothermal potential in planning region 8, Roosevelt - Custer area  

SciTech Connect (OSTI)

Geothermal resource data, the Roosevelt-Custer Region development plan, and energy, economic, and institutional considerations are presented. Environmental considerations and water availability are discussed. (MHR)

Not Available

1980-07-01T23:59:59.000Z

270

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

271

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

272

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

273

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

274

A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS  

E-Print Network [OSTI]

eds. , Geopressured Geothermal Energy Conference, 2nd,Conference, Geopressured-Geothermal Energy, U.S. Gulf Coast,Geopressured-Geothermal Energy, U S . Gulf Coast, Baton

Lee, L.M.

2010-01-01T23:59:59.000Z

275

3D Model of the Tuscarora Geothermal Area  

SciTech Connect (OSTI)

The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

Faulds, James E.

2013-12-31T23:59:59.000Z

276

3D Model of the Tuscarora Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

Faulds, James E.

277

Conceptual Model At Dixie Valley Geothermal Area (Benoit, 1999) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpen EnergyEnergy

278

Conceptual Model At Dixie Valley Geothermal Area (Waibel, 1987) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpenOpenOpen

279

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information Mountain Geothermal

280

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal|227. ItHuachuca(Redirected

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (RedirectedInformation3166362°,Geothermal Facility

282

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (RedirectedInformation3166362°,Geothermal Facility

283

BerlĂ­n Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: Energy ResourcesBerkshire County isBerlĂ­n Geothermal

284

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanierMt St

285

Near Fish Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to: navigation,NavajoFish Bay Geothermal

286

San Francisco Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsung JumpInformationGeothermal

287

Owl Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesa IOvonic Battery CompanyOwl Creek

288

Paleomagnetic Measurements At Coso Geothermal Area (2006) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPT ResearchPacificPakiniPalcan

289

Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPT ResearchPacificPakiniPalcan2011)

290

Pilgrim Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: EnergyInformation(Redirected from Pilgrim

291

Port Moller Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp Jump PartnerPonder,Technologies Jump

292

Production Wells At Lightning Dock Geothermal Area (Cyrq Energy, 2014) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformationInformationOpen Energy

293

Progress Report on Electrical Resistivity Studies Coso Geothermal Area Inyo  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformationInformationOpenProeCounty

294

West Ukinrek Maar Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek Maar Geothermal

295

Radium Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot Springs Geothermal

296

Gila Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation MexicoLLC JumpAccess,53.Open EnergyGeothermal

297

Rowland Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°and Ready BiomassHot Springs Geothermal

298

Development Wells At Coso Geothermal Area (1985) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term Title AuthorEnergyCoso Geothermal

299

Dyke Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII WindDupont

300

Joseph Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCounty is aJoseph Hot Springs Geothermal

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformation Geothermal(Sasada,

302

Fluid Inclusion Analysis At Geysers Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint GeothermalInformation (1990)

303

Hot Spring On Umnak Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPot GeothermalOn

304

Hot Springs Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPot GeothermalOnBay

305

Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...  

Energy Savers [EERE]

were Calpine's dramatic improvement of reservoir pressure - and consequently, productivity of the wells - and the lowering of carbon dioxide concentrations and other...

306

Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in Illinois CO2SoftwareCalculating

307

Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformation Mccoy Geothermal Area (DOE

308

Grazing Systems for Profitable Ranching  

E-Print Network [OSTI]

Grazing management is essential to a successful ranching enterprise. Ranchers have several options, including continuous grazing, deferred rotation systems, and short duration grazing. Details about each system are included....

Hanselka, C. Wayne; Ragsdale, Bobby; Rector, Barron S.

2000-05-03T23:59:59.000Z

309

Farm and Ranch Personnel Management  

E-Print Network [OSTI]

People--human capital--are an important resource in making a farm or ranch business more competitive in today's business environment. This publication summarizes the ideas about modern personnel management that illustrate ways to attain a farm...

Bevers, Stan; McCorkle, Dean; Hanselka, Daniel

2009-05-01T23:59:59.000Z

310

Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980  

SciTech Connect (OSTI)

Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

1980-07-01T23:59:59.000Z

311

Remote sensing survey of the Coso geothermal area, Inyo county...  

Open Energy Info (EERE)

Naval Weapons Center, China Lake, Calif., is an area of granitic rock exposure and fracture-controlled explosion breccias and perlitic domes. Fumarolic and hot springs activity...

312

Reconnaissance of geothermal resources near US naval facilities in the San Diego area, California  

SciTech Connect (OSTI)

A reconnaissance study has found little evidence of potential geothermal resources useful at naval facilities in the greater San Diego metropolitan area. However, there is a zone of modest elevated water well temperatures and slightly elevated thermal gradients that may include the eastern portion of the Imperial Beach Naval Air Station south of San Diego Bay. An increase of 0.3/sup 0/ to 0.4/sup 0/F/100 ft over the regional thermal gradient of 1.56/sup 0/F/100 ft was conservatively calculated for this zone. The thermal gradient can be used to predict 150/sup 0/F temperatures at a depth of approximately 4000 ft. This zone of greatest potential for a viable geothermal resource lies within a negative gravity anomaly thought to be caused by a tensionally developed graben, approximately centered over the San Diego Bay. Water well production in this zone is good to high, with 300 gpm often quoted as common for wells in this area. The concentration of total dissolved solids (TDS) in the deeper wells in this zone is relatively high due to intrusion of sea water. Productive geothermal wells may have to be drilled to depths economically infeasible for development of the resource in the area of discussion.

Youngs, L.G.

1984-01-01T23:59:59.000Z

313

Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska  

SciTech Connect (OSTI)

The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

1990-10-01T23:59:59.000Z

314

Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...  

Open Energy Info (EERE)

areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Two seismic surveys were done, the first was a low frequency survey...

315

Self Potential At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

316

Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

317

Refraction Survey At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

318

Geothermometry At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

319

Field Mapping At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

320

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ground Magnetics At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

322

Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward...  

Open Energy Info (EERE)

Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

323

Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...  

Open Energy Info (EERE)

Unknown Notes "A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long...

324

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

review, 1977 outlook: Geothermal Energy Magazine, v.5, no.6,Oklahoma City, Oklahoma. Geothermal Energy, 1974, Heat mineKlamath Falls). ; Geothermal Energy, v.2, no.10, pp. 32-33.

Stark, M.

2011-01-01T23:59:59.000Z

325

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

1966, Energy and power of geothermal resources: Dept. o fTelluric exploration for geothermal anomalies i n Oregon:Bowen, R.G. , 1972, Geothermal o v k i e w s of t h e '

Stark, M.

2011-01-01T23:59:59.000Z

326

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

Karr, D.J. , 1977, Geothermal energy and water resources:review, 1977 outlook: Geothermal Energy Magazine, v.5, no.6,G. , 1966, Energy and power of geothermal resources: Dept. o

Stark, M.

2011-01-01T23:59:59.000Z

327

What's Happening in the Texas Farm and Ranch Land Market.  

E-Print Network [OSTI]

of the 1963 Texas land market activity is based on information JJ. obtained from 26 sample counties in 16 of the 17 type-of-farming area\\. In each sample county, specific data were obtained from warranty deed recortl\\ cri all bona fide sales containing 20... farm and ranch income has fluctuated. Results of the 196r land market study deviated from this pattern. Land prices continued to ~icr and volume of land sales increased, reversing its position from the trend of a constant decrease. Net farm and ranch...

Andrews, F. B.; Wooten, A. B.

1965-01-01T23:59:59.000Z

328

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

Cuyler, David

329

Breitenbush Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar EnergyBradbury,Brayton

330

Conceptual Model At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception Wind1)

331

Conceptual Model At Coso Geothermal Area (1990) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception

332

Conceptual Model At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception5) Jump

333

Conceptual Model At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception5)

334

Conceptual Model At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et

335

Conceptual Model At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, EtInformation

336

Conceptual Model At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,

337

Conceptual Model At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information 1) Jump to:

338

Conceptual Model At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information 1) Jump

339

Conceptual Model At Raft River Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information 1)

340

Conceptual Model At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conceptual Model At Salton Sea Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,InformationInformation

342

Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (Cunniff &

343

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

344

Little Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassiveMachineBalanceArea,Elm,

345

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee Mountain Area

346

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area

347

Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area ExplorationOpen Energy

348

Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area ExplorationOpen

349

Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area

350

Brady Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area Solar EnergyBradbury, California: It is classifiedBrady Hot

351

Mt Princeton Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediation of NIE) Jump to:Open Jump to:

352

Conceptual Model At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception5) Jump to:

353

Cuttings Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings Analysis At New River Area

354

Pressure Temperature Log At Roosevelt Hot Springs Geothermal Area (Faulder,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action Project JumpCoopMaui Area

355

Fluid Inclusion Analysis At Chena Geothermal Area (Kolker, 2008) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOEFlowood,5.53.

356

Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area

357

Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman &  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior AreaInformationOpen

358

Category:Geothermal Resource Areas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,Areas Jump to: navigation,

359

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP)Flow

360

Fenton Hill HDR Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg Bradley Studios Jump to:FenixArea Jump to:

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California  

SciTech Connect (OSTI)

With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region such as Heber and East Mesa. Sand porosity may remain higher in the eastern portion of the low resistivity zone. This is based on its location hydrologically downstream of the probable area of thermal upwelling, intense fracture development, and associated pore-filling hydrothermal mineral deposition to the west.

Layman Energy Associates, Inc.

2006-08-15T23:59:59.000Z

362

Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast  

SciTech Connect (OSTI)

Three areas in the Texas Gulf Coastal Plain were studied using electric logs and seismic-reflection data to interpret their depositional and structural history and to compare their potential as geopressured-geothermal reservoirs. The Cuero study area, on the lower Wilcox (upper Paleocene) growth-fault trend, is characterized by closely and evenly spaced, subparallel, down-to-the-basin growth faults, relatively small expansion ratios, and minor block rotation. Distributary-channel sandstones in the geopressured lower Wilcox Group of the South Cook fault block appear to be the best geothermal aquifers in the Cuero area. The Blessing study area, on the lower Frio (Oligocene) growth-fault trend, shows wider and more variable fault spacing and much greater expansion ratios and block rotation, particularly during early Frio time. Thick geopressured sandstone aquifers are laterally more extensive in the Blessing area than in the Cuero area. The Pleasant Bayou study area, like the Blessing area, is on the Frio growth-fault trand, and its early structural development was similar rapid movement of widely spaced faults resulted in large expansion ratios and major block rotation. However, a late-stage pattern of salt uplift and withdrawal complicated the structural style. Thick geopressured lower Frio sandstone aquifers are highly permeable and laterally extensive, as in the Blessing area. In all three areas, geopressured aquifers were created where early, rapid movement along down-to-the-basin growth faults juxtaposed shallow-water sands against older shales, probably deposited in slope environments. Major transgressions followed the deposition of reservoir sands and probably also influenced the hydraulic isolation that allowed the build up of abnormal pressures. 26 refs., 49 figs., 8 tabs.

Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

1983-01-01T23:59:59.000Z

363

Low temperature geothermal resource evaluation of the Moses Lake-Ritzville-Connell area, Washington  

SciTech Connect (OSTI)

The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given. A technique developed by Biggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG).

Widness, S.

1983-11-01T23:59:59.000Z

364

Multispectral Imaging At Dixie Valley Geothermal Area (Pal & Nash, 2003) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) JumpOpen Energy

365

Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformation Geothermal Area

366

Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump to:

367

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open Energy

368

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow Test

369

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow

370

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow6

371

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE

372

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergy

373

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergy

374

Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) Jump to:

375

Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan, 1996) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) Jump

376

Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report  

SciTech Connect (OSTI)

The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

1987-09-01T23:59:59.000Z

377

Trace-element geochemistry of gradient hole cuttings: Beowawe geothermal area, Nevada  

SciTech Connect (OSTI)

Multielement geochemical analysis of drill cuttings from 26 shallow temperature-gradient drill holes and of surface rock samples reveals trace element distributions developed within these rocks as a consequence of chemical interaction with thermal fluid within the Beowawe geothermal area. The presently discharging thermal fluids are dilute in all components except silica, suggesting that the residence time of these fluids within the thermal reservoir has been short and that chemical interaction with the reservoir rock minimal. Interaction between these dilute fluids and rocks within the system has resulted in the development of weak chemical signatures. The absence of stronger signatures in rocks associated with the present system suggests that fluids have had a similar dilute chemistry for some time. The spatial distribution of elements commonly associated with geothermal systems, such as As, Hg and Li, and neither laterally nor vertically continuous. This suggests that there is not now, nor has there been in the past, pervasive movement of thermal fluid throughout the sampled rock but, instead, that isolated chemical anomalies represent distinct fluid-flow chanels. Discontinuous As, Li and Hg concentrations near White Canyon to the east of the presently active surface features record the effects of chemical interaction of rocks with fluids chemically unlike the presently discharging fluids. The observed trace element distributions suggest that historically the Beowawe area has been the center of more than one hydrothermal event and that the near-surface portion of the present hot-water geothermal system is controlled by a single source fracture, the Malpais Fault, or an intersection of faults at the sinter terrace.

Christensen, O.D.

1980-12-01T23:59:59.000Z

378

Lamar Buffalo Ranch, Yellowstone National Park, Wyoming | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch...

379

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

s r e l a t e d t o geothermal power generation i n Oregon:G. , 1966, Energy and power of geothermal resources: Dept. ogeothermal rpospect, Klamath County, Oregon: Thermal Power

Stark, M.

2011-01-01T23:59:59.000Z

380

An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala  

SciTech Connect (OSTI)

Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

Heiken, G.; Duffield, W. (eds.)

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Low Temperature Geothermal Resource Evaluation of the Moses Lake-Ritzville-Connell Area, Washington  

SciTech Connect (OSTI)

The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. The regional piezometric surface and stratigraphic units dip towards the southwest. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given in table 2. Some of the BHT data in table 2 may vary from those previously reported by WSU. These discrepancies are the result of changes in the calibration method of the FT tool. A technique developed by Giggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG). Well data groups were selected on the premises of geographic proximity, position within the regional groundwater flow system, land slope azimuth, and land slope dip. Some data points have been excluded from the linear regression analysis on the basis of factors such as duplicate logging of the same hole, down-hole flow, holes not logged to total depth, and questionable FT tool responses.

Widness, Scott

1983-11-01T23:59:59.000Z

382

Alaska geothermal bibliography  

SciTech Connect (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

1987-05-01T23:59:59.000Z

383

Ranching and Rangeland Management  

E-Print Network [OSTI]

operations ­ Wyoming land: about 50% owned/regulated by the government ­ Reasonable Common interests of both · Solar Energy USFS - Pole Mountain Grazing · Before ­ Large numbers of stock on areas · Over utilization beneficiaries #12;2 USFS Grass/ Rangeland Conditions · Now ­ Better Utilization ­ Decreased Stock Numbers

Tate, Kenneth

384

Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...

Faulds, James E.

385

Linden Ranch | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to:LignoKemLincoln,Linden Ranch

386

Busch Ranch | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont. It fallsBusch Ranch

387

Structural evolution of three geopressured-geothermal areas in the Texas Gulf Coast  

SciTech Connect (OSTI)

Detailed analysis of geological and seismic data from several geopressured geothermal areas (Cuero, Blessing, Pleasant Bayou) reveals similarities in structural-stratigraphic relationships that form geopressured aquifers as well as differences in structural complexity and evolution that characterize the different areas. In these examples, geopressured sandstones are isolated on the updip side by downfaulting against shelf-slope shales, and on the downdip side by upfaulting against transgressive marine shales. Moreover, they are isolated above and below by thick sequences of transgressive shale or interbedded sandstone and shale. Prospective reservoirs are found where delatic and associated sandstones (distributary channel, delta front, barrie-strandplain) were deposited seaward of major growth faults and near the shelf margin. Structural development in these areas began with rapid movement of relatively straight to sinuous down-to-the basin growth faults with narrow to wide spacings and varying amounts of rollover. Later structural movement was characterized by continued but slower movement of most growth faults. In the Pleasant Bayou area, late salt diapirism superimposed a dome-and-withdrawal-basin pattern on the earlier growth-fault style.

Winker, C.D.; Morton, R.A.; Garcia, D.D.

1981-01-01T23:59:59.000Z

388

Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

Faulds, James E.

389

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

390

Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

Faulds, James E.

391

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

392

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network [OSTI]

site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

393

Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon  

SciTech Connect (OSTI)

Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

1980-09-01T23:59:59.000Z

394

Water Sampling At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

395

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

396

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

397

Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

398

Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area (Gardner, 2010) Exploration...

399

Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis  

Broader source: Energy.gov [DOE]

Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

400

Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

402

Perrin Ranch | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange CountyPennsylvania/Geothermal Name:Woodland

403

Farm and Ranch Business Management Functions  

E-Print Network [OSTI]

This publication discussess several management functions, including organization, staffing and direction and control. Suggested activities help managers learn how to implement these functions in their farm and ranch businesses....

McCorkle, Dean; Anderson, David P.

2009-02-04T23:59:59.000Z

404

HENDRY COUNTY CATTLEMEN'S ASSOCIATION YOUTH RANCH RODEO  

E-Print Network [OSTI]

HENDRY COUNTY CATTLEMEN'S ASSOCIATION YOUTH RANCH RODEO February 26, 2012 LaBelle Rodeo Grounds a meeting at 1:00pm prior to rodeo. 3. Arena dress code will be enforced. All contestants must wear cowboy

Watson, Craig A.

405

Incorporating game management into the ranching enterprise  

E-Print Network [OSTI]

Record of Study INCORPORATING GAME MANAGEMENT INTO THE RANCHING ENTERPRISE A PROFESSIONAL PAPER by MARY JUDITH EAGLESHAM Submitted to the College of Agriculture of Texas A & M University in partial fulfillment of the requirements... for the degree of MASTER OF AGRICULTURE August, 1986 Wildlife Science Department of Wildlife and Fisheries Sciences INCORPORATING GAME MANAGEMENT INTO THE RANCHING ENTERPRISE A Professional Paper by MARY JUDITH EAGLESHAM Approved as to style a Ja . I...

Eaglesham, Mary Judith

1986-01-01T23:59:59.000Z

406

Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Target Areas Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Coloradodo Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics Spatial Domain: Extent: Top: 4546251.530446 m Left: 151398.567298 m Right: 502919.587395 m Bottom: 4095100.068903 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01T23:59:59.000Z

407

Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation  

SciTech Connect (OSTI)

Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

1981-08-01T23:59:59.000Z

408

An Evaluation of the Effects of Geothermal Energy Development on Aquatic Biota in the Gysers Area of California  

E-Print Network [OSTI]

28. White, J . 1974. Geothermal energy i s not nonpolluting.required t o develop geothermal energy. American Water WorksOF THE EFFECTS OF GEOTHERMAL ENERGY DEVELOPMENT ON AQUATIC

Resh, Vincent H.; Flynn, Thomas S.; Lamberti, Gary A; McElravy, Eric

1979-01-01T23:59:59.000Z

409

Geothermal energy: a brief assessment  

SciTech Connect (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

410

Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute  

E-Print Network [OSTI]

Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute College of Agricultural Sustainability Institute Professor, Department of LAWR With input from Steve Kaffka, Ford Denison Sustainability Institute The Russell Ranch Sustainable Agriculture Facility is a unique 300-acre facility near

California at Davis, University of

411

Sandwiches Chicken Bacon Ranch Flatbread .............................3.99  

E-Print Network [OSTI]

.99 Seasoned chicken strips, bacon, cheddar cheese, tomatoes and ranch dressing on soft, warm flatbread Buffalo ............................................2.99 Cheddar cheese, green pepper, red onion, tomato, lettuce and ranch dressing Salads Wraps BLT cheese and ranch dressing in a soft flour tortilla Chicken Caesar Wrap

412

SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD  

E-Print Network [OSTI]

P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

Majer, E. L.

2011-01-01T23:59:59.000Z

413

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

414

Geothermal assessment of the MX deployment area in Nevada. Final report, April 1, 1981-April 30, 1982  

SciTech Connect (OSTI)

A preliminary geothermal resource assessment of the MX deployment area in Nevada focused on Coyote Spring Valley in southeastern Nevada. Initially, an extensive literature search was conducted and a bibliography consisting of 750 entries was compiled covering all aspects of geology pertaining to the study area. A structural study indicates that Coyote Spring Valley lies in a tectonically active area which is favorable for the discovery of geothermal resources. Hot water may be funneled to the near-surface along an extensive fracture and fault system which appears to underlie the valley, according to information gathered during the literature search and aerial photo survey. A total of 101 shallow temperature probes were emplanted in Coyote Spring Valley. Three anomalous temperature points all lying within the same vicinity were identified in the north-central portion of the valley near a fault. A soil-mercury study also identified one zone of anomalous mercury concentrations around the north end of the Arrow Canyon Range. A literature search covering regional fluid geochemistry indicated that the three fluid samples taken from Coyote Spring Valley have a higher concentration of Na + K. During field work, seven fluid samples were collected in Coyote Spring Valley which also appear to be derived from volcanic units due to the presence of Ca-Mg or Na-K carbonate-bicarbonate. A temperature gradient study of six test water wells indicates that only one geothermal well with a temperature of 35.5/sup 0/C (96/sup 0/F) exists in the central portion of the valley at the north end of Arrow Canyon Range near the zone of anomalous soil-mercury points. A cultural assessment of Coyote Spring Valley was performed prior to field work.

Trexler, D.T.; Bruce, J.L.; Cates, D.; Dolan, H.H.; Covington, C.H.

1982-06-01T23:59:59.000Z

415

Area- and site-specific geothermal leasing/permitting profiles; updated geothermal leasing/permitting performance assessment  

SciTech Connect (OSTI)

Sufficient discussion of the elements of the leasing and permitting programs is included to place the information developed in proper context. A table and process flow diagram developed previously which outline the steps in the non-competitive leasing process, is reprinted. Computer printout profiles are presented on 195 identifiable areas in the following states: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Sufficient information on the boundaries of these areas is contained in the report to permit identification of their general location on any map of the appropriate state which shows township and range locations.

Beeland, G.V.; Schumann, E.; Wieland, M.

1982-02-01T23:59:59.000Z

416

Deforestation and Cattle Ranching in the Brazilian Amazon: External Capital and Household Processes  

E-Print Network [OSTI]

Deforestation and Cattle Ranching in the Brazilian Amazon: External Capital and Household Processes decomposes recent deforestation in four study areas in the Brazilian Amazon into components associated deforestation with respect to the proximate causes of their farming systems, and the household drivers

Walker, Robert T.

417

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

418

The Impact of Injection on Seismicity at The Geyses, California Geothermal Field  

E-Print Network [OSTI]

The Geysers, California, geothermal area, U.S. Geol. Surv.seismicity at The Geysers geothermal reservoir, Californiaseismic image of a geothermal reservoir: The Geysers,

Majer, Ernest L.; Peterson, John E.

2008-01-01T23:59:59.000Z

419

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...

420

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, New York: EnergyAmerica and theDoniphanOpen

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data JumpWakullaWanxiang ElectricFacility |Facility | Open

422

Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner and ScheutenWaunita HotOpen|

423

Del Ranch (Hoch) Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been approvedMeasurements from 1988

424

Hyder Ranch Aquaculture Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9 JumpHycrete

425

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

426

Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979  

SciTech Connect (OSTI)

Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

1980-02-01T23:59:59.000Z

427

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

428

Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Redondo Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Compound and Elemental Analysis...

429

Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal...  

Open Energy Info (EERE)

Areas. Geothermics. () . Related Geothermal Exploration Activities Activities (5) Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Mercury Vapor At...

430

Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal...  

Open Energy Info (EERE)

Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal Area (Kauahikaua & Klein, 1978) Exploration Activity Details Location Kilauea East Rift Geothermal Area...

431

A gravity model for the Coso geothermal area, California | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple GeothermalHawaii | Open

432

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

433

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

434

Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production  

SciTech Connect (OSTI)

Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predicting reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.

Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

1981-01-01T23:59:59.000Z

435

3D Model of the McGinness Hills Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15ş eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

Faulds, James E.

436

3D Model of the McGinness Hills Geothermal Area  

SciTech Connect (OSTI)

The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15ş eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

Faulds, James E.

2013-12-31T23:59:59.000Z

437

Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas  

SciTech Connect (OSTI)

A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

1982-06-01T23:59:59.000Z

438

Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data  

SciTech Connect (OSTI)

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

Faulds, James E.

2013-12-31T23:59:59.000Z

439

Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

Faulds, James E.

440

Conceptual Model At Blue Mountain Geothermal Area (Casteel, Et Al., 2010) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEast Hanover,SpringsOpen

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEast

442

Conceptual Model At Dixie Valley Geothermal Area (Bell, Et Al., 1980) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpen Energy

443

Conceptual Model At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpen EnergyEnergy|

444

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpen

445

Conceptual Model At Dixie Valley Geothermal Area (Parchman, Et Al., 1981) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpenOpen Energy

446

Conceptual Model At Dixie Valley Geothermal Area (Reed, 2007) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpenOpen

447

Conceptual Model At Dixie Valley Geothermal Area (Thompson, Et Al., 1967) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpenOpenOpen Energy

448

Conceptual Model At Fenton Hill HDR Geothermal Area (Goff, Et Al., 1988) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermalEastOpenOpenOpenOpen

449

Stepout-Deepening Wells At Coso Geothermal Area (1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewNameGeothermalStennisInformation

450

Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouthInformationI GeothermalInformation

451

Pressure Temperature Log At Flint Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerdeGeodetically

452

Production Wells At Lightning Dock Geothermal Area (McCants, 1974) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformationInformationOpen

453

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: GeonomicsKLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.

Stark, M.

2011-01-01T23:59:59.000Z

454

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: Geonomics

Stark, M.

2011-01-01T23:59:59.000Z

455

Hydrogeologic Assessment of the 4-S Land and Cattle CompanyRanch  

SciTech Connect (OSTI)

Hydrogeological assessment of the 4-S Land and Cattle Company (4-S Ranch) was conducted using a combination of field investigations and a survey of available literature from nearby agricultural water districts and other entities. The 4-S Ranch has been able to meet most of its own water needs providing irrigated pasture for beef cattle by an active program of shallow groundwater pumping in these miconfined aquifer above the Corcoran Clay. Comparison of groundwater pumping on the 4-S Ranch property with groundwater pumping in the adjacent Merquin and Stevinson Water Districts shows great similarity in the well screened depths and the quality of the groundwater produced by the well fields. The pump yield for the eight active production wells on the 4-S property are comparable to the production and drainage wells in the adjacent water districts. Like these Districts the 4-S Ranch lies close to the Valley trough in a historic discharge area. The 4-S Ranch is unique in that it is bounded and bisected by several major water conveyance facilities including Bear Creek. Although the large number of potential recharge structures would suggest significant groundwater conjunctive use potential the major well field development has occurred along the length of the Eastside Canal. The Eastside Canal is known to be leaky above the ''A'' Clay the Canal passes through sandy areas and experiences significant groundwater seepage. This seepage can be intercepted by adjacent groundwater wells. Pumping adjacent to, and along the alignment of the Canal, may induce higher rates of seepage from the Eastside Canal. Groundwater quality below and adjacent to the Eastside Canal is very good, reflecting the origin of this diverted water from the Merced River. Most of the pumpage occurs in a depth interval between 30 ft and 130 ft. Safe yield estimates made using the available data show that the 4-S Ranch has sufficient resources to meet its own needs. Further exploitation of the groundwater will be limited if the leakage from the Eastside Bypass, Mariposa Bypass and Bear Creek are insufficient to replace the pumped water on an average annual basis. Should any future lining of the Eastside Canal occur, it would have a significant impact on the groundwater resource potential of the 4-S Ranch and impair the overall quality of the available water supply.

Quinn, Nigel W.T.

2006-04-10T23:59:59.000Z

456

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.of the Swan Lake-Yonna Valley area, Klamath County, Oregon:

Stark, M.

2011-01-01T23:59:59.000Z

457

Seismic monitoring of EGS tests at the Coso Geothermal area, California, using accurate MEQ locations and full moment tensors  

SciTech Connect (OSTI)

We studied high-resolution relative locations and full moment tensors of microearthquakes (MEQs) occurring before, during and following Enhanced Geothermal Systems (EGS) experiments in two wells at the Coso geothermal area, California. The objective was to map new fractures, determine the mode and sense of failure, and characterize the stress cycle associated with injection. New software developed for this work combines waveform crosscorrelation measurement of arrival times with relative relocation methods, and assesses confidence regions for moment tensors derived using linearprogramming methods. For moment tensor determination we also developed a convenient Graphical User Interface (GUI), to streamline the work. We used data from the U.S. Navy’s permanent network of three-component digital borehole seismometers and from 14 portable three-component digital instruments. The latter supplemented the permanent network during injection experiments in well 34A-9 in 2004 and well 34-9RD2 in 2005. In the experiment in well 34A-9, the co-injection earthquakes were more numerous, smaller, more explosive and had more horizontal motion, compared with the pre-injection earthquakes. In the experiment in well 34-9RD2 the relocated hypocenters reveal a well-defined planar structure, 700 m long and 600 m high in the depth range 0.8 to 1.4 km below sea level, striking N 20° E and dipping at 75° to the WNW. The moment tensors show that it corresponds to a mode I (opening) crack. For both wells, the perturbed stress state near the bottom of the well persisted for at least two months following the injection.

Foulger, G.R.; B.R. Julian, B.R.; F. Monastero

2008-04-01T23:59:59.000Z

458

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

459

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

460

Water Sampling At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982)...

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal Direct-Use — Minimizing Land Use and Impact  

Broader source: Energy.gov [DOE]

With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

462

Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et Al., 1984) Exploration...

463

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area...

464

Progress report on electrical resistivity studies, COSO Geothermal...  

Open Energy Info (EERE)

on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical...

465

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

466

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

467

Modeling-Computer Simulations At Kilauea East Rift Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Geothermal Area (Rudman & Epp, 1983) Exploration...

468

Tectonic & Structural Controls of Great Basin Geothermal Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV...

469

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1991)...

470

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Nishimura, Et Al., 1997)...

471

Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1988) Exploration...

472

Geothermal Energy Potential of South Bossier Parish, Louisiana.  

E-Print Network [OSTI]

??Northwestern Louisiana sits atop a geothermal anomaly that stretches across Eastern Texas and into Southern Arkansas. Geothermal gradients are observed in this area that are… (more)

D'Aquin, John Adam

2010-01-01T23:59:59.000Z

473

An internship on the Beaverhead Ranch in Southwest Montana  

E-Print Network [OSTI]

The Beaverhead Ranch is located in Southwest Montana and operates a 7,000 head cow-calf operation on 257,000 acres. This ranch has been in operation under the management of Koch Beef since 195 1, a subsidiary of Koch Industries in Wichita, KS. My...

Donnelly, George Arthur

1997-01-01T23:59:59.000Z

474

MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA  

E-Print Network [OSTI]

period seismic noise (T>30 sec) . . . 2.5 Geothermal ground226. Clacy, G.R.T. ? 1968, Geothermal ground noise amplitudestudies at the Cos0 geothermal area, China Lake, California:

Liaw, A.L.C.

2011-01-01T23:59:59.000Z

475

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network [OSTI]

13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

Lippmann, M.J.

2010-01-01T23:59:59.000Z

476

Quantitative analyses of plant remains from the NAN Ranch Ruin, Grant County, New Mexico  

E-Print Network [OSTI]

cottonwood, ponderosa pine (Pinus ponderosa Lawson), oak, unspecified pine, Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], boxelder, walnut, ash, and alder in macrobotanical samples from the NAN Ranch Ruin. Ponderosa pine and Douglas fir, typical... (N440/W510) consisted of 1.00 m2 stratigraphic blocks that were excavated in 10 cm levels. Late Pithouse midden deposits in the Southeast Midden area were 60 to 80 cm thick and contained ash lenses that Shafer (1991a:4,6) attributed to fire...

Rose, Carolyn June

2004-11-15T23:59:59.000Z

477

Spinning Spur Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbeltSpinning Spur Wind Ranch Jump

478

Geothermal Energy Association Recognizes the National Geothermal...  

Energy Savers [EERE]

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

479

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)  

SciTech Connect (OSTI)

Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2012-04-01T23:59:59.000Z

480

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "ranch geothermal area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowArea (DOE

482

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior AreaInformation Area

483

Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho  

SciTech Connect (OSTI)

Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

Arney, B.H.; Goff, F.

1982-05-01T23:59:59.000Z

484

Exploring for hydrocarbons in geothermally and hydrothermally complex areas -- a southern Nevada example  

SciTech Connect (OSTI)

Time-based isograd maps using conodont color alteration indices (CAI) have been compiled and interpreted for a large area in southern Nevada that includes Yucca Mountain, the Nevada Test Site, and the Nellis Air Force Bombing and Gunnery Range. These maps were produced to evaluate the controversy about possible important mineral and (or) energy resources near Yucca Mountain, the potential burial site for high-level nuclear waste. The hydrocarbon potential of the Yucca Mountain area has been likened to that of the Railroad and Pine Valley areas, 200 km to the northeast where 35 million barrels of oil have been produced from Paleozoic and lower Tertiary strata. In 1991, two companies with no previous drilling experience in Nevada drilled three oil exploration wells within 20 km of Yucca Mountain and within or close to the Timber Mountain caldera system. No shows of oil or gas were found in these wells. The deepest well was drilled to 5,000 feet and penetrated 2,200 feet of upper Tertiary valley-fill deposits and volcanic rocks overlying an overturned sequence of Upper Cambrian and Lower Ordovician rocks having conodonts with CAI values of 5. Our new conodont sampling, however, has targeted some thermally favorable areas for hydrocarbons east of Yucca mountain, but their maturation history suggests that the potential for oil is substantially lower than in the Railroad and Pine Valley areas. Cambrian through Triassic rocks in the vicinity of Yucca Mountain have experienced temperatures too high for oil to be preserved, except for a narrow zone (20 x 100 km) northeast of Yucca Mountain, where Mississippian through Triassic rocks are just within the upper limit of the oil generating window. Most of this zone, however, lies on Federal lands that are, for now, inaccessible for a variety of security and environmental reasons.

Harris, A.G.; Repetski, J.E. [Geological Survey, Reston, VA (United States); Grow, J.A. [Geological Survey, Denver, CO (United States)

1995-06-01T23:59:59.000Z

485

An internship on two experimental ranches  

E-Print Network [OSTI]

YER003 YER003 YER007 YER003 YER004 YER003 YER004 YER 003 17 M~aUnit VcC WeC WmB Ya no id river tanks Table 2 (cont'd. ) M~attitI3~sc 'ation VERNON SOILS WEYMOUTH CLAY LOAM 3-5'Yo WINTERS (WICHITA) LOAM 1-3/o WESTOLA VERY FINE... Y Ranch Soils Ilk Range Sites Ori 'nal percents e * M~aUnit Ba Ba Ba Bo Bo M~aUnit Dessrinttoa BADLAND KNOCO OTHER SOILS BADLAND KNOCO '/o 24 23 53 24 23 REDID none YER007 mixed none YER007 18 Table 3 (cont'd. ) M~aUnit ~a...

Donges, Randel D

1994-01-01T23:59:59.000Z

486

Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast  

SciTech Connect (OSTI)

Three areas in the Texas Gulf Coast region with different depositional settings, structural styles, and sandstone distribution were studied with well log and seismic data to evaluate some of the controls on subsurface conditions in geopressured aquifers. Structural and stratigraphic interpretations were made primarily on the basis of well log correlations. Seismic data confirm the log interpretations but also are useful in structure mapping at depths below well control.

Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

1981-10-01T23:59:59.000Z

487

Compound and Elemental Analysis At Zim's Hot Springs Geothermal Area (Wood,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al., 1992) |1988) |

488

Conceptual Model At Coso Geothermal Area (2005-2007) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception5) Jump

489

Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman & Landress,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformation Lahaina-Kaanapali Area1979) |

490

Gas Flux Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMaui Area (DOE

491

InSAR At Dixie Valley Geothermal Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert Peak Area (Laney, 2005) Jump

492

InSAR At North Brawley Geothermal Area (Eneva, Et Al., 2013) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigationDesert Peak Area (Laney,

493

Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22  

SciTech Connect (OSTI)

An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

1983-01-01T23:59:59.000Z

494

Using Options to Hedge Farm and Ranch Inputs  

E-Print Network [OSTI]

A call option is a pricing tool that helps producers manage the price risks associated with farm and ranch inputs. This publication offers a thorough explanation of the way call options work. It includes various strategies producers might use...

Anderson, David P.; McCorkle, Dean; Schwart Jr., Robert B.; O'Brien, Daniel

1999-09-29T23:59:59.000Z

495

A management plan for the Douthitt Ranch Sterling County, Texas  

E-Print Network [OSTI]

habitat improvement practices will provide increased habitat suitability for wildlife on the ranch. The objectives of habitat management are to maintain optimum cover while providing an abundance of food throughout the year and increased hunting...

Trail, Justin Neil

1996-01-01T23:59:59.000Z

496

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

SciTech Connect (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

497

Taking stock of renewables: NREL teaches farm and ranch appliations  

SciTech Connect (OSTI)

NREL workshop leaders find a receptive audience for renewable energy technologies among farmers and ranchers. As an exhibitor/participant in Denver`s National Western Stock Show, the National Renewable Energy Laboratory (NREL) of Golden, Colorado sponsored an educational workshop to demonstrate applications of solar and wind energy on the farm and ranch, offering a very non-traditional energy approach to people who pride themselves in tradition. This article describes solar and wind energy applications to farms and ranches.

Marsh, M.G. [NREL, Golden, CO (United States)

1996-09-01T23:59:59.000Z

498

Technology transfer report: feasibility study for the use of geothermal brine in the Ashdod area, Israel  

SciTech Connect (OSTI)

The hydrothermal potential of the Ashdod area, Israel, was evaluated to determine its suitability as the low grade energy source required to operate the Ashdod desalination plant. An estimated 1250 cubic meters per hour of 120/sup 0/C brine would be adequate to supply the hot water necessary for operating the desalination plant. Considerable interest in oil exploration in the Ashdod area resulted in the drilling of six wells into the Jurassic formations by Oil Exploration (Investments) Ltd. (OEL) in 1976-1980. A small amount of oil was found in two wells, Ashdod 2 and 5. The remaining wells were abandoned as ''dry holes''. Evaluation of the drill cuttings, cores, and the electric logs defined two lithologic units of potential interest for hydrothermal exploitation, the Zohar and Shderot Dolomites. Investigation of the hydrothermal potential of the Jurassic formations underlying the Ashdod area has revealed that the aquifer temperatures range between 85 and 92/sup 0/C. The hydrologic parameters are not well defined; however the matrix permeability of the dolomites and limestones is probably between 1 and 10 md. This is insufficient permeability for a large scale pumping operation such as the one required to operate the desalination plant. Therefore, successful utilization of the resource requires the presence of significant fractures and/or connected vugs in the formation. The very low well productivity and formation plugging may indicate that permeability of the fracture zones may easily be impaired, suggesting that the fracture zones are not suitable production intervals. Until a test is conducted on a properly completed well, it is not possible to evaluate the deliverability of wells tapping these aquifers. 14 refs., 8 figs.

Benson, S.M.

1984-08-01T23:59:59.000Z

499

Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area ExplorationOpenEnergy

500

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie &  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber AreaTruesdell, 1977) | Open