National Library of Energy BETA

Sample records for raman lidar profiles

  1. ARM: Temperature Profiles from Raman Lidar at 10-min averaging...

    Office of Scientific and Technical Information (OSTI)

    Temperature Profiles from Raman Lidar at 10-min averaging interval Title: ARM: Temperature Profiles from Raman Lidar at 10-min averaging interval Temperature Profiles from Raman ...

  2. ARM: Temperature Profiles from Raman Lidar at 60-min averaging...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: ARM: Temperature Profiles from Raman Lidar at 60-min averaging interval Temperature Profiles from Raman Lidar at 60-min averaging ...

  3. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles...

    Office of Scientific and Technical Information (OSTI)

    extinction profiles and aerosol optical thickness, from first Ferrare algorithm Citation Details In-Document Search Title: ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction ...

  4. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  8. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  9. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  10. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  11. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  12. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  13. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  15. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  16. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  18. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  19. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  20. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  1. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  2. DOE/SC-ARM/TR-120 Raman Lidar Profiles-Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value-Added Product RK Newsom C Sivaraman SA McFarlane October 2012 DISCLAIMER This ... Raman Lidar Profiles-Temperature (RLPROFTEMP) Value-Added Product RK Newsom C Sivaraman SA ...

  3. DOE/SC-ARM/TR-100 Raman Lidar Profiles Best Estimate Value-Added...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Raman Lidar Profiles Best Estimate Value-Added Product Technical Report R Newsom January 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. ...

  4. Raman Lidar Measurements of Aerosols and Water Vapor During the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. ... Marina, California Abstract Raman lidar water vapor and aerosol extinction profiles ...

  5. Raman Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    While this technique is highly accurate, the retrieval is performed using signals from Raman-scattered light that is a weak scattering process. FEX uses an adaptive smoothing...

  6. Raman Lidar (RL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  7. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  8. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  9. ARM - PI Product - Raman lidar/AERI PBL Height Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsRaman lidar/AERI PBL Height Product ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Raman lidar/AERI PBL Height Product Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential

  10. Sandia Energy - ARM Raman Lidar Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman lidar was delivered in the fall of 1995. The automated nature of the Raman lidar Raman scattering boxr1 provided multiple-day views of water vapor mixing ratio and...

  11. Sandia Energy - ARM Raman Lidar Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the analysis deriving water vapor flux observations using coincident Raman and Doppler lidar measurements and characterizing entrainment in cumulus clouds using Raman...

  12. Raman Lidar Receives Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To minimize dirt and dust that interfere with operation and can damage the lidar ... Late this fall, a second laser head will be installed. In the past, component failures in ...

  13. Raman lidar and MPL Measurements during ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman lidar and MPL Measurements during ALIVE Ferrare, Richard NASA Langley Research Center Turner, David University of Wisconsin-Madison Flynn, Connor Pacific Northwest National Laboratory Petty, Diana Pacific Northwest National Laboratory Mendoza, Albert Pacific Northwest National Laboratory Clayton, Marian NASA Langley Research Center Schmid, Beat Bay Area Environmental Research Institute Category: Field Campaigns Analysis of the aerosol and water vapor data collected by the Raman lidar

  14. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  15. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  16. Atmospheric measurements using a scanning, solar-blind Raman Lidar

    SciTech Connect (OSTI)

    Eichinger, W.E.; Cooper, D.I.; Holtkamp, D.B.; Karl, R.R. Jr.; Quick, C.R.; Tiee, J.J.

    1991-01-01

    The study of the water cycle by Lidar has many applications. Because micro-scale structures can be identified by their water content, the technique offers new opportunities to visualize and study the phenomena. There are applications to many practical problems in agricultural and water management as well as at waste storage sites. Conventional point sensors are limited and are inappropriate for use in complex terrain or varied vegetation and cannot be extrapolated over even modest ranges. To this end, techniques must be developed to measure the variables associated with evapotranspirative processes over large areas and varied surface conditions. A scanning water-Raman Lidar is an ideal tool for this task in that it can measure the water vapor concentration rapidly with high spatial resolution without influencing the measurements by the presence of the sensor. 3 refs., 5 figs., 1 tab.

  17. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

  18. Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general

  19. Raman lidar/AERI PBL Height Product (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The ...

  20. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect (OSTI)

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  1. Raman Lidar Profiles-Temperature (RLPROFTEMP) Value-Added Product...

    Office of Scientific and Technical Information (OSTI)

    Authors: Newsom, RK ; Sivaraman, C ; McFarlane, SA Publication Date: 2012-10-31 OSTI Identifier: 1053989 Report Number(s): DOESC-ARMTR-120 PNNL-21965 DOE Contract Number: ...

  2. Confocal volume in laser Raman microscopy depth profiling

    SciTech Connect (OSTI)

    Maruyama, Yutaka; Kanematsu, Wataru

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  3. Imaging doppler lidar for wind turbine wake profiling

    SciTech Connect (OSTI)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  4. LIDAR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIDAR - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Reduction of the pulse spike-cut error in Fourier-deconvolved lidar profiles

    SciTech Connect (OSTI)

    Stoyanov, D.V.; Gurdev, L.L.; Dreischuh, T.N.

    1996-08-01

    A simple approach is analyzed and applied to the National Oceanic and Atmospheric Administration (NOAA) Doppler lidar data to reduce the error in Fourier-deconvolved lidar profiles that is caused by spike-cut uncertainty in the laser pulse shape, i.e., uncertainty of the type of not well-recorded (cut, missed) pulse spikes. Such a type of uncertainty is intrinsic to the case of TE (TEA) CO{sub 2} laser transmitters. This approach requires only an estimate of the spike area to be known. The result from the analytical estimation of error reduction is in agreement with the results from the NOAA lidar data processing and from computer simulation. {copyright} {ital 1996 Optical Society of America.}

  6. Measurements of Wind and Turbulence Profiles with Scanning Doppler Lidar for Wind Energy Applications

    SciTech Connect (OSTI)

    Frehlich, R.; Kelley, N.

    2008-03-01

    High-quality profiles of mean and turbulent statistics of the wind field upstream of a wind farm can be produced using a scanning Doppler lidar. Careful corrections for the spatial filtering of the wind field by the lidar pulse produce turbulence estimates equivalent to point sensors but with the added advantage of a larger sampling volume to increase the statistical accuracy of the estimates. For a well-designed lidar system, this permits accurate estimates of the key turbulent statistics over various subdomains and with sufficiently short observation times to monitor rapid changes in conditions. These features may be ideally suited for optimal operation of wind farms and also for improved resource assessment of potential sites.

  7. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  8. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect (OSTI)

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  9. Differential absorption lidar measurements of atmospheric temperature profiles - Theory and experiment

    SciTech Connect (OSTI)

    Theopold, F.A.; Boesenberg, J. )

    1993-04-01

    The method of measuring atmospheric temperature profiles with differential absorption lidar (DIAL), based on the temperature dependence of oxygen absorption lines in the near-IR, is investigated in detail. Particularly, the influence of Doppler broadening on the Rayleigh-backscattered signal is evaluated, and a correction method for this effect is presented which requires an accurate estimate of the molecular and particle backscatter contributions; this is noted not to be achievable by the usual lidar inversion techniques. Under realistic conditions, resulting errors may be as high as 10 K. First range-resolved measurements using this technique are presented, using a slightly modified DIAL system originally constructed for water vapor measurements. While much better resolution can certainly be achieved by technical improvements, the errors introduced by the uncertainty of the backscatter contributions will remain and determine the accuracy that can be obtained with this method. 35 refs.

  10. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  11. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect (OSTI)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  12. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling

    SciTech Connect (OSTI)

    Liu, Z.S.; Chen, W.B.; Hair, J.W.; She, C.Y.

    1996-12-31

    A new incoherent lidar for measuring atmospheric wind using iodine molecular filter is proposed. A unique feature of the proposed lidar lies in its capability for simultaneous measurement of aerosol mixing ratio, with which the radial wind can be determined uniquely from lidar return. A preliminary laboratory experiment using a dye laser at 589 nm and a rotating wheel has been performed demonstrating the feasibility of the proposed wind measurement.

  13. ARM Raman Lidar Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  14. ARM Raman Lidar Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Lidar for remote sensing; Proceedings of the Meeting, Berlin, Germany, June 24-26, 1992

    SciTech Connect (OSTI)

    Becherer, R.J.; Werner, C.

    1992-01-01

    The present volume on lidar for remote sensing discusses lidar system techniques for remote sensing of atmospheric pollution, airborne and surface-based lidar for environmental sensing of water and oceans, Doppler lidar for wind sensing and related measurement, aerosol measurements using lidar, ozone, water vapor, temperature, and density sensing with lidar systems, and new lidar technology systems and concepts. Attention is given to remote sensing of air pollution over large European cities by lidar, differential absorption lidar monitoring of atmospheric atomic mercury, an experimental evaluation of an airborne depth-sounding lidar, and remote sensing of the sea by tunable multichannel lidar. Topics addressed include recent developments in lidar techniques to measure the wind in the middle atmosphere, recent stratospheric aerosol measurements with a combined Raman elastic-backscatter lidar, the development of an eye-safe IR aerosol lidar, and temperature measurement by rotational Raman lidar.

  16. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect (OSTI)

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  17. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  18. Lidar Report

    SciTech Connect (OSTI)

    Wollpert.

    2009-04-01

    This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

  19. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and radiosonde thermodynamic profiles. The optical depth retrieval is derived following Comstock et al. (2001),...

  20. Symposium on Lower Tropospheric Profiling: Needs and Technologies, 1st, Boulder, CO, May 31-June 3, 1988, Papers

    SciTech Connect (OSTI)

    Dabberdt, W.F.; Hardesty, R.M.

    1989-10-01

    Papers on lower tropospheric profiling are presented, covering topics such as horizontal resolution needs for adequate lower tropospheric profiling with atmospheric systems forced by horizontal gradients in surface heating, meteorological data requirements for modeling air quality uncertainties, and kinematic quantities derived from a triangle of VHF Doppler wind profilers. Other topics include the intercomparison of wind measurements from two acoustic Doppler sodars, a laser Doppler radar, and in situ sensors, studying precipitation processes in the troposphere with an FM-CW radar, Doppler lidar measurements of profiles of turbulence and momentum flux, and airborne Doppler lidar measurements of the extended California sea breeze. Additional subjects include DIAL tropospheric ozone measurement using a Nd:YAG laser and the Raman shifting technique, design considerations for a network of thermodynamic profilers, nonredundant frequencies for ground-based microwave radiometric temperature profiling, and the sounding range of a 1-m wavelength radio acoustic sounder.

  1. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect (OSTI)

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  2. ARM - VAP Product - 10rlprofbe1news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles from Raman Lidar Active Dates 2004.10.01 - 2015.09.21 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF Measurements The measurements below provided by...

  3. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    ARM: Temperature Profiles from Raman Lidar at 10-min averaging interval Chitra Sivaraman ; Connor Flynn Temperature Profiles from Raman Lidar at 10-min averaging interval View ...

  4. Application of lidar to current atmospheric topics

    SciTech Connect (OSTI)

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  5. High Spectral Resolution Lidar Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  6. Lidar techniques for chemical and aerosol air pollution studies

    SciTech Connect (OSTI)

    Hardesty, R.M.

    1993-12-31

    At the Wave Propagation Laboratory (WPL), lidar methods are being applied in several areas of air pollution research. Differential absorption lidar (DIAL) systems for measuring ozone, ethylene, and other pollutants have been recently developed. The ozone instrument profiles ozone concentration in the boundary layer and lower troposphere to study sources, sinks, and transport of ozone. A goal is to combine DIAL and Doppler lidar techniques for measurement of the vertical fluxes of ozone and other pollutants. Doppler lidars have been also used at WPL to study visibility reduction caused by aerosol pollutants at the Grand Canyon, and to investigate dispersion of hazardous emissions near the Rocky Flats nuclear plant.

  7. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    ... Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm Sivaraman, Chitra ; Flynn, Connor 10-minute TEMPORARY Raman Lidar: ...

  8. ARM - Measurement - Lidar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLidar polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Lidar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a lidar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties

  9. ARM - Campaign Instrument - lidar-dial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentslidar-dial Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Dial Lidar (LIDAR-DIAL) Instrument Categories Aerosols, Atmospheric Profiling Campaigns ARM-FIRE Water Vapor Experiment [ Download Data ] Southern Great Plains, 2000.11.01 - 2000.12.31 Water Vapor IOP [ Download Data ] Southern Great Plains, 2000.09.18 - 2000.10.08 Primary Measurements Taken The following measurements are those considered scientifically

  10. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect (OSTI)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  11. Finnish Meteorological Institute Doppler Lidar (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Finnish Meteorological Institute Doppler Lidar Title: Finnish Meteorological Institute Doppler Lidar This doppler lidar system provides co-polar and cross polar attenuated ...

  12. Profiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling your application with Intel VTune at NERSC --- 1 --- VTune background and availability * Focus: O n---node p erformance a nalysis - Sampling a nd t race---based p rofiling - Performance c ounter i ntegra8on - Memory b andwidth a nalysis - On---node p arallelism: vectoriza8on a nd t hreading * Pre---defined a nalysis e xperiments * GUI a nd c ommand---line i nterface ( good f or h eadless collec?on a nd l ater a nalysis) * NERSC a vailability ( as t he vtune m odule) - Edison ( Dual 1

  13. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  14. ARM - Field Campaign - M-PACE HSR Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HSR Lidar Campaign Links Full Proposal Abstract M-PACE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : M-PACE HSR Lidar 2004.09.27 - 2004.10.21 Lead Scientist : Edwin Eloranta For data sets, see below. Abstract The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with

  15. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison

    SciTech Connect (OSTI)

    Bowdle, D.A. ); Rothermel, J. ); Vaughan, J.M.; Brown, D.W. ); Post, M.J. )

    1991-03-20

    An airborne continuous wave (CW) focused CO{sub 2} Doppler lidar and a ground-based pulsed CO{sub 2} Doppler lidar were used to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6 {mu}m wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter the two lidars show good agreement, with differences usually less than {approximately}50% near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  16. ARM Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Radiometer Calibration Facility Equipment Repair Lab Main Office Raman Lidar Doppler Lidar and Radar Wind Profiler Ka-Band Scanning ARM Cloud Radar Ka-Zenith Radar...

  17. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest

  18. ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Lidar Validation Experiment - ALIVE Campaign Links ALIVE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Lidar Validation Experiment - ALIVE 2005.09.12 - 2005.09.22 Website : http://geo.arc.nasa.gov/sgg/ALIVE/index.html Lead Scientist : Beat Schmid For data sets, see below. Abstract We performed the simultaneous validation of aerosol extinction profiles obtained from a

  19. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscatterin...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23) Country of Publication: United States Availability: ORNL Language: English ...

  20. A Doppler lidar for measuring winds in the middle atmosphere

    SciTech Connect (OSTI)

    Chanin, M.L.; Garnier, A.; Hauchecorne, A.; Porteneuve, J. )

    1989-11-01

    The possibility of measuring winds in the middle atmosphere with a Doppler lidar has just been demonstrated. It is aimed at studying the wave-mean flow interaction, when used is association with the Rayleigh lidar providing density and temperature profiles and their fluctuations. The new Doppler lidar relies on the Rayleigh scattering from air molecules is designed to cover the height range 25-60 km, a region where radars cannot operate. The Doppler shift to the backscattered echo is measured by inter-comparing the signal detected through each of the two high-resolution, narrow band-pass Fabry-Perot interferometers tuned on either side of the emitted laser line.

  1. Two-frequency lidar technique for mesospheric Na temperature measurements

    SciTech Connect (OSTI)

    She, C.Y.; Latifi, H.; Yu, J.R.; Alvarez, R.J. II ); Bills, R.E.; Gardner, C.S. )

    1990-06-01

    The authors describe a new two-frequency lidar for measuring Na temperature profiles that uses a stabilized cw single-mode dye laser oscillator (rms frequency jitter < 1 MHz) followed by a pulsed-dye power amplifier (140 MHz FWHM linewidth) which is pumped by an injection-locked Nd:YAG laser. The laser oscillator is tuned to the two operating frequencies by observing the Doppler-free structure of the Na D{sub 2} fluorescence spectrum in a vapor cells. The lidar technique and the initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO (40.6{degree}N,105{degree}W) are described. Absolute temperature accuracies at the Na layer peak of better than {plus minus}3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved.

  2. Cirrus and aerosol lidar profilometer - analysis and results

    SciTech Connect (OSTI)

    Spinhirne, J.D.; Scott, V.S.; Reagan, J.A.; Galbraith, A.

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  3. Doppler Lidar (DL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  4. 2 micron LIDAR for laser-based remote sensing: Flight demonstration and application survey

    SciTech Connect (OSTI)

    Wagener, T.J.; Demma, N.; Kmetec, J.D.; Kubo, T.S.

    1995-02-01

    A flight test of a diode-pumped solid-state 2 micron Doppler Light Detection And Ranging (LIDAR) system was conducted on-board the NASA Ames DC-8 Airborne Laboratory. This was the first ever airborne demonstration of a 2 micron diode-pumped solid-state Doppler LIDAR. The LIDAR performance was verified by comparing the true-airspeed (TAS) estimate with that found using the pneumatic air data system; excellent agreement was found. The capabilities of this pulsed 2 micron Doppler LIDAR system include high bandwidth air data determination without the need for extensive forebody calibration, remote wind profiling as far as several kilometers away from the aircraft, eye-safe laser transmission at 2 micron, and diode-pumped solid-state design for compact construction and reliable performance. 7 refs.

  5. ARM - Campaign Instrument - co2lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Carbon Dioxide Doppler Lidar (CO2LIDAR) Instrument Categories Cloud Properties Campaigns Remote Cloud...

  6. Doppler Lidar Wind Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Doppler Lidar Wind Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki ... DOESC-ARMTR-148 Doppler Lidar Wind Value-Added Product Version 1.0 RK Newsom C Sivaraman ...

  7. The lidar dark band: An oddity of the radar bright band analogy

    SciTech Connect (OSTI)

    Sassen, K.

    1996-04-01

    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  8. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  9. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect (OSTI)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  10. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  11. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Citation Details In-Document Search Title: "Lidar Investigations ...

  12. Doppler Lidar Vertical Velocity Statistics Value-Added Product...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Doppler Lidar Vertical Velocity Statistics ... Facility operates coherent Doppler lidar systems at several sites around the globe. ...

  13. Lidar Inter-Comparison Exercise Final Campaign Report (Program...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Lidar Inter-Comparison Exercise Final Campaign Report Citation Details In-Document Search Title: Lidar Inter-Comparison Exercise Final Campaign Report The ...

  14. ARM - Measurement - Backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Raman LIDAR Vertical Profiles TWIN-OTTER-LI-PROF : Twin Otter Lidar Profiles UAV-EGRETT : UAV-Egrett UAV-PROTEUS : UAV Proteus UW-CONVAIR580 : University of Washington Convair ...

  15. Application of coherent 10 micron imaging lidar

    SciTech Connect (OSTI)

    Simpson, M.L.; Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.

    1997-04-01

    With the continuing progress in mid-IR array detector technology and high bandwidth fan-outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging lidar is becoming a reality. In this paper experimental results are described using a 10 micron coherent imaging lidar.

  16. Nonlinear-optical spectral interferometry of nanostructures using coherent anti-Stokes Raman scattering

    SciTech Connect (OSTI)

    Konorov, Stanislav O; Mitrokhin, V P; Fedotov, Andrei B; Zheltikov, Aleksei M; Smirnova, I V; Sidorov-Biryukov, D A

    2005-01-31

    The spectrum of coherent anti-Stokes Raman scattering (CARS) from Raman-active vibrations of gas-phase nitrogen molecules in a mesoporous silica aerogel host is experimentally studied. The CARS spectral profile under these conditions is a result of interference of the resonant part of nonlinear susceptibility, originating from nitrogen molecules in aerogel pores, and the nonresonant contribution, related to the mesoporous host. Raman-active modes of gas-phase molecular nitrogen give rise to intense resonances in the CARS spectrum, serving as reference spectral profiles for probing local parameters of a nanocomposite material (nanoCARS). (laser applications and other topics in quantum electronics)

  17. Quantifying the Effect of Lidar Turbulence Error on Wind Power Prediction

    SciTech Connect (OSTI)

    Newman, Jennifer F.; Clifton, Andrew

    2016-01-01

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST

  18. Probing non-adiabatic conical intersections using absorption, spontaneous Raman, and femtosecond stimulated Raman spectroscopy

    SciTech Connect (OSTI)

    Patuwo, Michael Y.; Lee, Soo-Y.

    2013-12-21

    We present the time-frame calculated photoabsorption spectrum (ABS), spontaneous Raman excitation profile (REP), femtosecond stimulated Raman spectroscopy (FSRS) spectrum, and femtosecond stimulated Raman excitation profile (FSREP) results of a two-mode and three-mode, three-electronic-states model Hamiltonians containing conical intersections (CIs) along its two upper diabatic electronic states, e{sub 1} (dark) and e{sub 2} (bright), with and without coupling (nonadiabatic dynamics) along an asymmetric mode. For every electronic state in each model, there is one coupling mode and the rest of the modes are symmetric tuning modes. The CI appears in the Hamiltonian as off-diagonal entries to the potential term that couple the two upper states, in the form of a linear function of the coupling mode. We show that: (a) the ABS, REP, and FSREP for Stokes and anti-Stokes lines contain similar information about the e{sub 1} and e{sub 2} vibrational bands, (b) the FSRS spectra feature narrow stationary peaks and broader moving peaks contributed by the different resonant components of the third-order polarization terms from perturbation theory, and (c) a relatively strong and narrow stationary band of the allowed first overtone of the asymmetric coupling mode is observed in the Stokes FSREP in the e{sub 1} energy region with coupling to e{sub 2}.

  19. Micropulse Lidar The ARM Program studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Micropulse Lidar The ARM Program studies clouds, sunlight, and their interactions to understand how they affect Earth's climate. One of the many instruments used to look at clouds at the SGP CART site is the micropulse lidar (MPL; "lidar" was coined from "light distance and ranging"). The ARM Program operates five MPLs. One is at the SGP central facility; one is at the North Slope of Alaska CART site in Barrow, Alaska; and three are for use at the Tropical Western Pacific

  20. Raman accumulator as a fusion laser driver

    DOE Patents [OSTI]

    George, E.V.; Swingle, J.C.

    1982-03-31

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  1. Raman accumulator as a fusion laser driver

    DOE Patents [OSTI]

    George, E. Victor; Swingle, James C.

    1985-01-01

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  2. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption...

    Office of Scientific and Technical Information (OSTI)

    Hexanitrostilbene Raman electronic absorption spectra to validate DFT EOS. Citation Details In-Document Search Title: Pressure dependence of Hexanitrostilbene Raman electronic ...

  3. ARM - Instrument - rl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which provide improved measurements or derived quantities. 10rlprofasr1ferr : 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first...

  4. Posters Comparisons of Brightness Temperature Measurements and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (GSFC) Raman lidar, 3) ETL's radio acoustic sounding system (RASS), and 4) frequent ... Information on temperature profiles was also obtained from composite data from radiosondes ...

  5. Vertical Variability of Aerosols and Water Vapor Over the Southern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. ... Abstract We use Raman lidar profiles of water vapor mixing ratio, relative humidity, ...

  6. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  7. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    SciTech Connect (OSTI)

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – and the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.

  8. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  9. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect (OSTI)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  10. Lidar Inter-Comparison Exercise Final Campaign Report (Program...

    Office of Scientific and Technical Information (OSTI)

    the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian ... To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM ...

  11. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect (OSTI)

    Meyer, Matthew W.

    2013-03-14

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  12. Detection of latent prints by Raman imaging

    DOE Patents [OSTI]

    Lewis, Linda Anne; Connatser, Raynella Magdalene; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  13. SPIE international conference on Raman and luminescence spectroscopy in technology

    SciTech Connect (OSTI)

    Griffiths, J.E.; Adar, F.

    1987-01-01

    These proceedings collect papers on subjects including Raman spectroscopy of semiconductors, Raman and Infrared spectroscopy of thin films, and Raman scattering from tungsten silicide thin films.

  14. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: ELECTROLYTES; RAMAN SPECTROSCOPY; CARBONIC ACID ESTERS lithium batteries; electrolyte; solvation number; Raman spectroscopy; ethylene carbonate; ...

  15. Cloud properties derived from the High Spectral Resolution Lidar during

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPACE Cloud properties derived from the High Spectral Resolution Lidar during MPACE Eloranta, Edwin University of Wisconsin Category: Field Campaigns Cloud properties were derived from data acquired with University of Wisconsin High Spectral Resolution Lidar during its 6-week MPACE deployment. This poster presents statistics on: 1) the altitude and temperature distribution of optical depth and cloud phase. 2) the dependence of lidar depolarization and backscatter phase function on

  16. Phase sensitive Raman process with correlated seeds

    SciTech Connect (OSTI)

    Chen, Bing; Qiu, Cheng; Chen, L. Q. Zhang, Kai; Guo, Jinxian; Yuan, Chun-Hua; Zhang, Weiping; Ou, Z. Y.

    2015-03-16

    A phase sensitive Raman scattering was experimentally demonstrated by injecting a Stokes light seed into an atomic ensemble, whose internal state is set in such a way that it is coherent with the input Stokes seed. Such phase sensitive characteristic is a result of interference effect due to the phase correlation between the injected Stokes light field and the internal state of the atomic ensemble in the Raman process. Furthermore, the constructive interference leads to a Raman efficiency larger than other kinds of Raman processes such as stimulated Raman process with Stokes seed injection alone or uncorrelated light-atom seeding. It may find applications in precision spectroscopy, quantum optics, and precise measurement.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Ferrare, R., et al., Evaluation of Daytime Measurements of Aerosols and Water Vapor Made by an Operational Raman Lidar over the Southern Great Plains, J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836, 2006. Relative humidity profiles derived from the Raman lidar during the ALIVE 2005 field experiment. Aerosol

  18. A Lidar View of Clouds in Southeastern China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar View of Clouds in Southeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight From May 2008...

  19. ARM - Field Campaign - M-PACE - Polarization Diversity Lidar (PDL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : M-PACE - Polarization Diversity Lidar (PDL) 2004.09.01 - 2004.10.21 Lead Scientist : Kenneth Sassen For data sets, see below. Abstract In support of M-PACE, a Polarization Diversity Lidar (PDL), was deployed to the NSA. Unlike the micro pulses of the MPL (micropulse lidar) present at NSA, the

  20. LiDAR (Lewicki & Oldenburg, 2005) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (2005) Strategies To Detect Hidden Geothermal Systems...

  1. LiDAR (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (2004) Strategies For Detecting Hidden Geothermal Systems...

  2. Three-dimensional elastic lidar winds

    SciTech Connect (OSTI)

    Buttler, W.T.

    1996-07-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.

  3. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  4. Doppler Lidar Wind Value-Added Product

    SciTech Connect (OSTI)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  5. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  6. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    SciTech Connect (OSTI)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  7. Application of coherent lidar to ion measurements in plasma diagnostics

    SciTech Connect (OSTI)

    Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.; Simpson, M.L.

    1997-03-01

    A coherent lidar system has been constructed for the measurement of alpha particles in a burning plasma. The lidar system consists of a pulsed CO{sub 2} laser transmitter and a heterodyne receiver. The receiver local oscillator is a cw, sequence-band CO{sub 2} laser operating with a 63.23 GHz offset from the transmitter.

  8. Development of time-domain differential Raman for transient thermal probing of materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Shen; Wang, Tianyu; Hurley, David; Yue, Yanan; Wang, Xinwei

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at ?s resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomoreaccount the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 10??, 8.14 10??, and 9.51 10?? m/s. These results agree well with the reference value of 8.66 10?? m/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.less

  9. Development of time-domain differential Raman for transient thermal probing of materials

    SciTech Connect (OSTI)

    Xu, Shen; Wang, Tianyu; Hurley, David; Yue, Yanan; Wang, Xinwei

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at ?s resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking into account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 10??, 8.14 10??, and 9.51 10?? m/s. These results agree well with the reference value of 8.66 10?? m/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.

  10. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    SciTech Connect (OSTI)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  11. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  12. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  13. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption...

    Office of Scientific and Technical Information (OSTI)

    in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. ...

  14. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  15. Raman and FTIR Studies on Nanostructure Formation on Silicon...

    Office of Scientific and Technical Information (OSTI)

    Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide Citation Details In-Document Search Title: Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide ...

  16. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large ...

  17. Operando Raman and Theoretical Vibration Spectroscopy of Non...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operando Raman and Theoretical Vibration Spectroscopy of Non-PGM Catalysts Operando Raman and Theoretical Vibration Spectroscopy of Non-PGM Catalysts Presentation about ...

  18. Raman Spectroscopy for Analysis of Thorium Compounds (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Raman Spectroscopy for Analysis of Thorium Compounds Citation Details In-Document Search Title: Raman Spectroscopy for Analysis of Thorium Compounds The thorium fuel ...

  19. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  20. Raman Thermometry of Microdevices: Comparing Methods to Minimize...

    Office of Scientific and Technical Information (OSTI)

    Raman Thermometry of Microdevices: Comparing Methods to Minimize Error. Citation Details In-Document Search Title: Raman Thermometry of Microdevices: Comparing Methods to Minimize...

  1. Raman Thermometry: Comparing Methods to Minimize Error. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Raman Thermometry: Comparing Methods to Minimize Error. Citation Details In-Document Search Title: Raman Thermometry: Comparing Methods to Minimize Error. Abstract not provided....

  2. Q-switched Raman laser system

    DOE Patents [OSTI]

    George, E.V.

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predeterimined frequency nu = nu/sub O/, to ultimately produce a Raman or Brillouin pulse at frequency nu = nu/sub O/ +- nu /sub Stokes/.

  3. Q-Switched Raman laser system

    DOE Patents [OSTI]

    George, E. Victor

    1985-01-01

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predetermined frequency .nu.=.nu..sub.0, to ultimately produce a Raman or Brillouin pulse at frequency .nu.=.nu..sub.0 .+-..nu..sub.Stokes.

  4. Development, Field Testing, and Evaluation of LIDAR Assisted Controls

    SciTech Connect (OSTI)

    Ehrmann, Robert; Wang, Na; Scholbrock, Andrew; Guadayol, Marc; Wright, Alan; Arora, Dhiraj

    2015-05-18

    Typical wind turbines utilize feedback controllers which have a delayed response to winds peed disturbances. A nacelle mounted LIght Detection and Ranging(LIDAR) system measures a preview wind signal in front of the turbine. This can be included in a feed-forward control system, improving turbine pitch command for incoming variations in wind speed. The overall aim is reduced blade and tower fatigue, and potentially improved annual energy production. To be successful, the LIDAR must yield accurate wind speed measurements. Therefore, a LIDAR was characterized against a nearby met tower and turbine wind speed estimator. Results indicate good correlation between measurements.

  5. Multiplex coherent raman spectroscopy detector and method

    DOE Patents [OSTI]

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  6. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect (OSTI)

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  7. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madisons Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: An archive of thousands of Lidar images acquired before 2004 Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 MPEG animations and Lidar Multiple Scattering Models

  8. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  9. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Doppler Lidar Vertical Velocity Statistics Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki July 2015 DISCLAIMER This report was prepared as an account of work...

  10. ARM - PI Product - Finnish Meteorological Institute Doppler Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsFinnish Meteorological Institute Doppler Lidar Citation DOI: 10.54391177194 What is this? ARM Data Discovery Browse Data Comments? We would love to hear from you Send...

  11. Lidar Inter-Comparison Exercise Final Campaign Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    The objective of this IOP was to evaluate the performances of the new Leosphere R-MAN 510 ... To do so, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, ...

  12. LiDAR (Lewicki & Oldenburg) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To...

  13. Elastic Scattering LIDAR Data Acquisition Visualization and Analysis

    Energy Science and Technology Software Center (OSTI)

    1999-10-12

    ELASTIC/EVIEW is a software system that controls an elastic scattering atmospheric Light Detection and Ranging (LIDAR) instrument. It can acquire elastic scattering LIDAR data using this system and produce images of one, two, and three-dimensional atmospheric data on particulates and other atmospheric pollutants. The user interface is a modern menu driven syatem with appropriate support for user configuration and printing files.

  14. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  15. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-24

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocityazimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates somemoreof the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.less

  16. LiDAR Technology | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiDAR Technology LiDAR Technology Enables the Location of Historic Energy Production Sites Understanding the impact that newly developed novel methods for extracting resources from the Earth has on our environment is important, but this requires baseline data against which potential changes can be measured. In Pennsylvania, as in other parts of the United States, commercial activity has already left environmental impacts that are not readily discernible. Charcoal from a completed burn (image

  17. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  18. Temperature dependence of sapphire fiber Raman scattering

    SciTech Connect (OSTI)

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; Homa, Daniel; Hill, Cary; Wang, Anbo; Pickrell, Gary

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  19. A generalised background correction algorithm for a Halo Doppler lidar and its application to data from Finland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville; Petäjä, Tuukka

    2016-03-03

    Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. Lastly, we show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less

  20. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    SciTech Connect (OSTI)

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  1. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  2. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    people profiles People Profiles Featured Profile Hye-Sook Park Pursuing a challenging-and rewarding-career Read More » Henry Hui Henry Hui Tanza Lewis Tanza Lewis Jamie King Jamie King Lisa Burrows Lisa Burrows Jeremy Huckins Jeremy Huckins Ibo Matthews Ibo Matthews Peter Thelin Peter Thelin Susanna Reyes Susana Reyes Jerry Britten Jerry Britten Reggie Drachenberg Reggie Drachenberg Beth Dzenitis Beth Dzenitis Rebecca Dylla-Spears Rebecca Dylla-Spears John Heebner John Heebner Terry Land Terry

  3. Microsoft PowerPoint - 01_Schmid_AWG_Monterey_Intro.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STM, Monterey, CA Aerosol Working Group Breakout Session March 26, 2007 Beat Schmid AWG PIs (as of December 2006) AWG Instruments * Raman Lidar * Raman Lidar * Micropulse Lidars * Aerosol Observation Systems * Aerosol Observation Systems - scattering, absorption, number, size distribution, hygroscopicity, CCN, composition (major ions). yg p y, , p ( j ) * In situ Aerosol Profile (Cessna) - scattering, absorption, number, hygroscopicity, CO 2 g, p , , yg p y, 2 * Radiometers: - MFRSR, NIMFR, RSS,

  4. Raman spectroscopy at the tritium laboratory Karlsruhe

    SciTech Connect (OSTI)

    Schloesser, M.; Bornschein, B.; Fischer, S.; Kassel, F.; Rupp, S.; Sturm, M.; James, T.M.; Telle, H.H.

    2015-03-15

    Raman spectroscopy is employed successfully for analysis of hydrogen isotopologues at the Tritium Laboratory Karlsruhe (TLK). Raman spectroscopy is based on the inelastic scattering of photons off molecules. Energy is transferred to the molecules as rotational/vibrational excitation being characteristic for each type of molecule. Thus, qualitative analysis is possible from the Raman shifted light, while quantitative information can be obtained from the signal intensities. After years of research and development, the technique is now well-advanced providing fast (< 10 s), precise (< 0.1%) and true (< 3%) compositional analysis of gas mixtures of hydrogen isotopologues. In this paper, we summarize the recent achievements in the further development on this technique, and the various applications for which it is used at TLK. Raman spectroscopy has evolved as a versatile, highly accurate key method for quantitative analysis complementing the port-folio of analytic techniques at the TLK.

  5. LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    aerial Li-DAR survey flown over the project areas, securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize...

  6. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  7. FACT SHEET U.S. Department of Energy Eastern North Atlantic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * eddy correlation flux measurement system * disdrometer Lidars * micropulse lidar * Doppler lidar * Raman lidar Radars * zenith cloud radar * scanning cloud radar * scanning...

  8. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect (OSTI)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  9. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L.; Herbst, Richard L.

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  10. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  11. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  12. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  13. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  14. Coplanar Doppler Lidar Retrieval of Rotors from T-REX

    SciTech Connect (OSTI)

    Hill, Michael; Calhoun, Ron; Fernando, H. J. S.; Wieser, Andreas; Dornbrack, Andreas; Weissmann, Martin; Mayr, G.; Newsom, Rob K.

    2010-03-01

    Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The level of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.

  15. Doppler lidar for measurement of atmospheric wind fields

    SciTech Connect (OSTI)

    Menzies, R.T. )

    1991-01-01

    Measurements of wind fields in the earth's troposphere with daily global coverage is widely considered as a significant advance for forecasting and transport studies. For optimal use by NWP (Numerical Weather Prediction) models the horizontal and vertical resolutions should be approximately 100 km and 1 km, respectively. For boundary layer studies vertical resolution of a few hundred meters seems essential. Earth-orbiting Doppler lidar has a unique capability to measure global winds in the troposphere with the high vertical resolution required. The lidar approach depends on transmission of pulses with high spectral purity and backscattering from the atmospheric aerosol particles or layered clouds to provide a return signal. Recent field measurement campaigns using NASA research aircraft have resulted in collection of aerosol and cloud data which can be used to optimize the Doppler lidar instrument design and measurement strategy. 5 refs.

  16. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect (OSTI)

    Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

    2009-06-03

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman

  17. ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer CO2 Using CW Lidar Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer CO2 Using CW Lidar 2005.05.21 - 2005.05.24 Lead Scientist : Michael Dobbs Abstract Overflights Underway at ACRF Southern Great Plains Site (M.Dobbs/J.Liljegren) Science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) conducted flights over the Central

  18. ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLidar support for ICECAPS at Summit, Greenland Campaign Links ICECAPS Campaign Summary (PDF) Summit Station Research Highlight New Data from Greenland for Arctic Climate Research Cloud Cocktail Melts Greenland Ice Sheet Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Lidar support for ICECAPS at Summit, Greenland 2010.04.15 - 2018.08.31 Lead Scientist : David Turner Abstract Beginning in May 2010, the Integrated

  19. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    SciTech Connect (OSTI)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  20. Remote adjustable focus Raman spectroscopy probe

    DOE Patents [OSTI]

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  1. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  2. First-principles calculations of phonons and Raman spectra in...

    Office of Scientific and Technical Information (OSTI)

    First-principles calculations of phonons and Raman spectra in monoclinic CsSnCl 3 Citation Details In-Document Search Title: First-principles calculations of phonons and Raman ...

  3. ARM - VAP Product - 2rlprofasr1ferr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 2RLPROFASR1FERR 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first...

  4. ARM - VAP Product - 1rlprofasr1ferr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 1RLPROFASR1FERR 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first...

  5. ARM - VAP Product - 10srlprofasr1ferr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a note below or call us at 1-888-ARM-DATA. Send VAP Output : 10SRLPROFASR1FERR 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first...

  6. ARM - VAP Product - 10rlprofbe1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RL & AERI+GOES retrievals Active Dates 1998.03.01 - 2004.01.06 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF Measurements The measurements below provided by...

  7. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    SciTech Connect (OSTI)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors.

    To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s−1) and errors in the vertical velocity measurement

  8. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s−1) and errors in the vertical velocity measurement exceed the actual

  9. NASA Lidar system support and MOPA technology demonstration. Final report

    SciTech Connect (OSTI)

    Laughman, L.M.; Capuano, B.; Wayne, R.J.

    1986-08-01

    A series of lidar design and technology demonstration tasks in support of a CO/sub 2/ lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO/sub 2/ Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.

  10. Field Raman spectrograph for environmental analysis

    SciTech Connect (OSTI)

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M.

    1995-10-01

    This project entails the development of a compact raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in tanks, and environmental materials. The design of a fiber optic probe for use with the spectrograph is also discussed.

  11. Raman laser with controllable suppression of parasitics

    DOE Patents [OSTI]

    George, E. Victor

    1986-01-01

    Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.

  12. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  13. Raman laser with controllable suppression of parasitics

    DOE Patents [OSTI]

    George, E.V.

    Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.

  14. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    SciTech Connect (OSTI)

    Revercomb, Henry; Tobin, David; Knuteson, Robert; Borg, Lori; Moy, Leslie

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.

  15. P:\JODI\P113-137.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure 1. (a) Schematic diagram of idealized Raman lidar system. (b) Signals produced by the primary species in the atmosphere. Implementation of Raman Lidar for Profiling of Atmospheric Water Vapor and Aerosols at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site J.E.M. Goldsmith, F. H. Blair, and S. E. Bisson Sandia National Laboratories Livermore, California Introduction There are clearly identified scientific requirements for con- tinuous profiling of atmospheric water

  16. ARM - VAP Process - rlprof

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsrlprof Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Raman LIDAR Vertical Profiles (RLPROF) Instrument Categories Atmospheric Profiling, Aerosols, Derived Quantities and Models Rlprof data flow diagram Data flowchart for the RLPROF family. (Larger image available.) The Raman lidar automatically attempts to

  17. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect (OSTI)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  18. Advanced Lidars for ARM: What Would We Get?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... then A-HSRL, better laser * So how does the HSRL compare with the RL? CMWG Breakout Session 2009 ARM Science Team Meeting Strength of Molecular Return in Clear Skies: Raman vs. ...

  19. Combination ring cavity and backward Raman waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1983-01-01

    A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.

  20. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  1. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAAs High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  2. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Glass Buttes Area (DOE GTP) Exploration Activity Details...

  3. LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details...

  4. Doppler Lidar Wind Value-Added Product (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Wind Value-Added Product Citation Details In-Document Search Title: Doppler Lidar Wind Value-Added Product Wind speed and direction, together with pressure, temperature, and ...

  5. LiDAR At Twenty-Nine Palms Area (Sabin, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Exploration Activity...

  6. MPI Profiling

    SciTech Connect (OSTI)

    Han, D K; Jones, T R

    2005-02-11

    The Message Passing Interface (MPI) is the de facto message-passing standard for massively parallel programs. It is often the case that application performance is a crucial factor, especially for solving grand challenge problems. While there have been many studies on the scalability of applications, there have not been many focusing on the specific types of MPI calls being made and their impact on application performance. Using a profiling tool called mpiP, a large spectrum of parallel scientific applications were surveyed and their performance results analyzed.

  7. Raman spectroscopic investigations of hydrothermal solutions

    SciTech Connect (OSTI)

    Yang, M.M.

    1988-01-01

    There is still very little information about the stoichiometries, structures and stabilities of metal complexes at high temperatures and pressures. Raman spectroscopy is ideally suited to probe and study concentrated electrolyte solutions at the molecular level. This thesis includes the design and construction of a Raman cell operable up to 300C and 15MPa. In order to obtain quantitative thermodynamic information from Raman spectroscopic measurements, a chemically inert internal standard must be used. Perchlorate is commonly used for this purpose at low temperatures, but it may be unstable at high temperatures and its explosive properties make it undesirable. A new preferred internal standard; trifluoromethanesulfonic acid is introduced and its spectra p to 300C discussed. The use of this compound as a high temperature internal standard enabled stepwise stability constants of zinc-bromo complexes to be determined. Although bromide is not an important ligand in geologic systems, its chemical similarity to chloride can provide insights into the study of zinc-chloro species which do not have very informative Raman spectra. The importance of organic ligands in geologic settings such as the Mississippi-Valley Type Pb-Zn sulfide deposits is now being realized. Chapter four presents the first high temperature spectroscopic measurements of lead and zinc acetate aqueous solutions. Not only do these studies verify the stability of lead and zinc acetate complexes up to 250 C but they also show that the type of complex formed is a function of pH, metal-ligand ratio and temperature, thus having important implications for zoning of Pb-Zn sulfide deposits.

  8. First detection of a noctilucent cloud by lidar

    SciTech Connect (OSTI)

    Hansen, G.; Serwazi, M.; von Zahn, U. )

    1989-12-01

    During the night of August 5/6, 1989 for the first time a noctilucent cloud (NLC) was detected and measured by a lidar instrument. The observations were made with ground-based narrow-band Na lidar located at Andenes, Norway (69{degree}N, 16{degree}E geographic coordinates). In wavelength the lidar was operated both at the Na D{sub 2} resonance line of 589 nm as well as 5 Doppler widths shifted away. The altitude resolution was 200 m. The NLC developed at about 22:20 UT, reached its maximum backscatter cross section at 23:05 UT and became unobservable at around 00:10 UT. During this period the NLC exhibited the following properties: (a) its altitude ranged between 83.4 and 82.2 km; (b) its full width at half maximum ranged between 1.4 and 0.3 km; (c) the ratio of measured backscatter intensity from the NLC to the calculated Rayleigh signal from 82.6 km reached 450; (d) its volume backscatter cross section maximized at 6.5 {times} 10{sup {minus}9} m{sup {minus}1} sr{sup {minus}1}.

  9. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    SciTech Connect (OSTI)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

    2003-01-01

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

  10. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-07

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine powermoreperformance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.less

  11. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    SciTech Connect (OSTI)

    Saint-Amans, C.; Hébert, P. Doucet, M.; Resseguier, T. de

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  12. Raman-based system for DNA sequencing-mapping and other separations

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  13. Raman-based system for DNA sequencing-mapping and other separations

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  14. Raman scattering in a whispering mode optical waveguide

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  15. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  16. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  17. Pair breaking versus symmetry breaking: Origin of the Raman modes...

    Office of Scientific and Technical Information (OSTI)

    Pair breaking versus symmetry breaking: Origin of the Raman modes in superconducting cuprates Citation Details In-Document Search Title: Pair breaking versus symmetry breaking:...

  18. Resonance Raman Scattering of Rhodamine 6G as Calculated Using...

    Office of Scientific and Technical Information (OSTI)

    Functional Theory Citation Details In-Document Search Title: Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory The research ...

  19. A SERS Method for Handheld Portable Raman - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Sandia National Laboratories (SNL) has made an initial investment in the research and development of Surface Enhanced Raman hardware capable of being...

  20. Two-dimensional stimulated resonance Raman spectroscopy of molecules...

    Office of Scientific and Technical Information (OSTI)

    Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses Citation Details In-Document Search Title: Two-dimensional stimulated resonance ...

  1. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect (OSTI)

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  2. Raman beam combining for laser brightness enhancement

    SciTech Connect (OSTI)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  3. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  4. Depth-resolved confocal micro-Raman spectroscopy for characterizing GaN-based light emitting diode structures

    SciTech Connect (OSTI)

    Chen, Wei-Liang; Lee, Yu-Yang; Chang, Yu-Ming; Chang, Chiao-Yun; Huang, Huei-Min; Lu, Tien-Chang

    2013-11-15

    In this work, we demonstrate that depth-resolved confocal micro-Raman spectroscopy can be used to characterize the active layer of GaN-based LEDs. By taking the depth compression effect due to refraction index mismatch into account, the axial profiles of Raman peak intensities from the GaN capping layer toward the sapphire substrate can correctly match the LED structural dimension and allow the identification of unique Raman feature originated from the 0.3 μm thick active layer of the studied LED. The strain variation in different sample depths can also be quantified by measuring the Raman shift of GaN A{sub 1}(LO) and E{sub 2}(high) phonon peaks. The capability of identifying the phonon structure of buried LED active layer and depth-resolving the strain distribution of LED structure makes this technique a potential optical and remote tool for in operando investigation of the electronic and structural properties of nitride-based LEDs.

  5. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refurbishment and Upgrade of the Atmospheric Radiation Measurement Raman Lidar D.D. Turner Pacific Northwest National Laboratory Richland, Washington J.E.M. Goldsmith Sandia National Laboratories Livermore, California Introduction The Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Raman lidar (CARL) is an autonomous, turn-key system that profiles water vapor, aerosols, and clouds throughout the diurnal cycle for days without attention (Goldsmith et al. 1998).

  6. Characterization of uranium tetrafluoride (UF 4 ) with Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  7. Characterization of uranium tetrafluoride (UF4) with Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  8. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  9. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrades to Raman Lidar Backup Laser Improve Reliability Bookmark and Share The Raman Lidar is an active, ground-based laser remote sensing instrument that measures vertical...

  11. ARM - Measurement - Backscatter depolarization ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    those recorded for diagnostic or quality assurance purposes. ARM Instruments DL : Doppler Lidar HSRL : High Spectral Resolution Lidar RL : Raman Lidar Field Campaign...

  12. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K.

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross

  13. Surface enhanced Raman scattering spectroscopic waveguide

    SciTech Connect (OSTI)

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  14. NOAA lidar observations during the TMDBCE lethality test at WSMR on 5 February 1993. Technical memo

    SciTech Connect (OSTI)

    Post, M.J.; Olivier, L.D.

    1996-03-01

    The National Oceanic and Atomospheric Administration`s (NOAA) pulsed CO2 Doppler lidar successfully tracked a cloud of liquid triethyl phosphate (TEP) released from an incoming Storm missile. By concentrating on the lowest portion of the cloud, information about the descent of the TEP cloud was obtained. TEP cloud bottom height and a ground track showing the motion of the cloud relative to the lidar were plotted. In addition, lidar measurements were used to guide an instrumented air craft into the cloud. Improvements for future tests were defined.

  15. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  16. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  17. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  18. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties

    SciTech Connect (OSTI)

    Imaki, Masaharu; Kobayashi, Takao

    2005-10-01

    An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

  19. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    and characterize young faults, high resolution LiDAR and 1:12,000-scale low-sun-angle (LSA) aerial photography was acquired for the NAS Fallon study area. The LSA photos were...

  20. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect (OSTI)

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  1. Device and method for noresonantly Raman shifting ultraviolet radiation

    DOE Patents [OSTI]

    Loree, Thomas R.; Barker, Dean L.

    1979-01-01

    A device and method for nonresonantly Raman shifting broad band uv excimer laser radiation, which enhances preselected Stokes signals by varying the pressure of the Raman scattering medium, the focal interaction length of the incident radiation within the Raman scattering medium and its power density level. Gaseous molecular H.sub.2, D.sub.2, CH.sub.4 (methane), HD and mixes thereof, and liquid N.sub.2 are used as the Raman scattering medium to frequency shift the outputs of high power KrF and ArF lasers. A cable fed discharge with an unstable resonant cavity configuration is utilized to produce the output laser power levels required for operation.

  2. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Gas Shales by X-ray Raman Spectroscopy Thursday, February 23, 2012 - 10:30am SSRL Third Floor Conference Room 137-322 Drew Pomerantz, Schlumberger ...

  3. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Gas Shales by X-ray Raman Spectroscopy Monday, May 14, 2012 - 3:30pm SSRL Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon ...

  4. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large scale-length laser-produced plasmas You ...

  5. Simulation and visualization of attosecond stimulated x-ray Raman...

    Office of Scientific and Technical Information (OSTI)

    Simulation and visualization of attosecond stimulated x-ray Raman spectroscopy signals in trans-N-methylacetamide at the nitrogen and oxygen K-edges Citation Details In-Document ...

  6. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study Citation Details In-Document Search Title: ...

  7. Angular output of hollow, metal-lined, waveguide Raman sensors

    SciTech Connect (OSTI)

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  8. Performance of a VME-based parallel processing LIDAR data acquisition system (summary)

    SciTech Connect (OSTI)

    Moore, K.; Buttler, B.; Caffrey, M.; Soriano, C.

    1995-05-01

    It may be possible to make accurate real time, autonomous, 2 and 3 dimensional wind measurements remotely with an elastic backscatter Light Detection and Ranging (LIDAR) system by incorporating digital parallel processing hardware into the data acquisition system. In this paper, we report the performance of a commercially available digital parallel processing system in implementing the maximum correlation technique for wind sensing using actual LIDAR data. Timing and numerical accuracy are benchmarked against a standard microprocessor impementation.

  9. Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment

    SciTech Connect (OSTI)

    Xia, Quanxin; Lin, Ching Long; Calhoun, Ron; Newsom, Rob K.

    2008-01-01

    Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluate the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.

  10. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.