National Library of Energy BETA

Sample records for raman gas composition

  1. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  2. Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background Behavior

    E-Print Network [OSTI]

    ARTICLE Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background performed using Stokes Raman scattering for compositional analysis of algae. Two algal species, Chlorella while acquiring Raman signals from the algae. The time dependence of fluorescence background is char

  3. Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy

    SciTech Connect (OSTI)

    Amaduzzi, F.; Alarcón-Lladó, E.; Russo-Averchi, E.; Matteini, F.; Heiß, M.; Tütüncüoglu, G.; Conesa-Boj, S.; Fontcuberta i Morral, A.; Mata, M. de la; Arbiol, J.

    2014-11-14

    Due to its non-destructive and its micro-spatial resolution, Raman spectroscopy is a powerful tool for a rapid structural and compositional characterization of nanoscale materials. Here, by combining the compositional dependence of the Raman peaks with the existence of photonic modes in the nanowires, we address the composition inhomogeneities of Al{sub x}Ga{sub 1?x}As/GaAs core/shell structures. The experimental results are validated with complementary chemical composition maps of the nanowire cross-sections and finite-difference time-domain simulations of the photonic modes.

  4. Composition for absorbing hydrogen from gas mixtures

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Lee, Myung W. (Aiken, SC)

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  5. Scanning Raman spectroscopy for characterizing compositionally spread films

    E-Print Network [OSTI]

    Venimadhav, A.; Yates, K. A.; Blamire, Mark G.

    2004-01-01

    compositionally spread films Venimadhav. A?, Yates K. A., Blamire M. G. Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK Abstract Composition-spread La1-xSrxMnO3 thin films were prepared by pulsed laser... . This is close to the the phase coexistence predicted for LSMO single crystals at x = 0.17 [23]. Above x = 0.2, the 640 cm-1 mode completely disappears. The intensity of the 436 cm-1 peak in figure 4(b) shows maximum at x = 0.35. It is worth mentioning...

  6. Femtosecond pure-rotational coherent anti-stokes raman scattering gas phase diagnostics.

    SciTech Connect (OSTI)

    Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-12-01

    We discuss recent experiments for the characterization of our femtosecond pure rotational CARS facility for observation of Raman transients in N{sub 2} and atmospheric air. The construction of a simplified femtosecond four-wave mixing system with only a single laser source is presented. Pure-rotational Raman transients reveal well-ordered time-domain recurrence peaks associated with the near-uniform spacing of rotational Raman peaks in the spectral domain. Long-time, 100-ps duration observations of the transient Raman polarization are presented, and the observed transients are compared to simulated results. Fourier transformation of the transients reveals two distinct sets of beat frequencies. Simulation results for temperatures from 300-700 K are used to illustrate the temperature sensitivity of the time-domain transients and their Fourier-transform counterparts. And strategies for diagnostics are briefly discussed. These results are being utilized to develop gas-phase measurement strategies for temperature and species concentration.

  7. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder These slides were presented at the Onboard...

  8. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

  9. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

  10. 58 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 1, FEBRUARY 2004 Multichannel Raman Gas Analyzer: The Data

    E-Print Network [OSTI]

    Athens, University of

    with the green laser source previously used and reported in a related article. Index Terms--Air-pollution, data the above-listed is the Raman method, which is used for si- multaneous monitoring of a number of air pollutants in the multichannel Raman gas sensor (MRGS) device recently conceived and realized by the authors

  11. Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas

    E-Print Network [OSTI]

    Ribot, Magali

    Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional 3D Darcy flow #12 analysis K, Brenner1 , R. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional

  12. Combined raman and IR fiber-based sensor for gas detection

    DOE Patents [OSTI]

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  13. Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps

    E-Print Network [OSTI]

    Clark, J F; Schwager, Katherine; Washburn, Libe

    2005-01-01

    of gas composition and flux intensity in natural marineof gas composition and flux intensity in natural marine

  14. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...

    Open Energy Info (EERE)

    Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search OpenEI Reference...

  15. Variations in dissolved gas compositions of reservoir fluids...

    Open Energy Info (EERE)

    reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions....

  16. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect (OSTI)

    Cen Renyue

    2013-06-20

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  17. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    SciTech Connect (OSTI)

    Shih, Chien-Ju

    2010-05-16

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important issues related to bioethanol generation, which will aid the research aimed to solve the topics m

  18. Fuel composition effects on natural gas vehicle emission

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States)

    1994-12-31

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart & Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level I electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 L MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  19. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect (OSTI)

    Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  20. Using LNG to meet the challenge of gas composition

    SciTech Connect (OSTI)

    Pehrson, N.C. [Minnegasco, Minneapolis, MN (United States)

    1995-12-31

    Currently NGV fuel providers are taking actions in response to customer concerns regarding moisture and oil in compressed natural gas (CNG) fuel. Dryers are being installed and oil coalescing or non-lubricated compression equipment is being evaluated in order to minimize problems. Some utilities actively pursuing the NGV market utilize propane-air peak shaving plants to meet cold weather distribution systems demands. The effects of adding these heavier hydrocarbons have not yet appeared to result in major NGV engine problems. However, commercialization of new engine technologies will result in engines that are more fuel sensitive. As the market matures and engine tolerances narrow, increasingly stringent fuel quality standards will be developed and enforced. The Natural Gas Vehicle Technology Partnership has a proposed plan for its Fuel Composition Project which tentatively targets establishing an enforcement mechanisms for meeting gas composition standards in all fifty states as early as December 1996. Propane-air peak shaving utilities need to evaluate how they will address NGV gas quality requirements or risk serious engine problems and customer dissatisfaction. LNG may be a viable solution to meeting gas composition requirements.

  1. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect (OSTI)

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  2. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect (OSTI)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  3. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  4. Ni(NiO)/single-walled carbon nanotubes composite: Synthesis of electro-deposition, gas sensing property for NO gas and density functional theory calculation

    SciTech Connect (OSTI)

    Li, Li; Zhang, Guo; Chen, Lei; Bi, Hong-Mei; Shi, Ke-Ying

    2013-02-15

    Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 °C). Display Omitted Highlights: ? Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ? Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 °C. ?Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis–NIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 °C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through N–Ni interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.

  5. Acid gas scrubbing by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  6. Backward Raman amplification in a partially ionized gas A. A. Balakin,1

    E-Print Network [OSTI]

    and Aerospace Engineering, Princeton University, Princeton, New Jersey 08543, USA Received 30 March 2005 was accessed 10,11 . The experimental success was achieved using a gas jet of propane, subse- quently ionized of propane opens up the question of coupling in a partially ionized gas. Any additional ionization during

  7. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, Stephen L. (Harvard, MA); Lee, Eric K. L. (Acton, MA); Friesen, Dwayne T. (Bend, OR); Kelly, Donald J. (Bend, OR)

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  8. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  9. Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Systems

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    299 Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Abstract The objective of this study was to get more information about the root zone, mainly the gas and ethylene, a gas sampling system was used to get gas samples from the root zone. CO2 gas samples of 20 ml

  10. E ects of the Driving Force on the Composition of Natural Gas Hydrates

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    E ects of the Driving Force on the Composition of Natural Gas Hydrates Odd I. Levik(1) , Jean for storage and transport of natural gas. Storage of natural gas in the form of hydrate at elevated pressure concept) (Gud- mundsson et al. 1998). Natural gas hydrate contains up to 182 Sm3 gas per m3 hydrate

  11. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOE Patents [OSTI]

    Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  12. Effects of natural gas composition on ignition delay under diesel conditions

    SciTech Connect (OSTI)

    Naber, J.D.; Siebers, D.L. [Sandia National Labs., Livermore, CA (United States); Di Julio, S.S. [California State Univ., Northridge, CA (United States). Dept. of Mechanical Engineering; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

    1993-12-03

    Effects of variations in natural gas composition on autoignition of natural gas under direct-injection (DI) diesel engine conditions were studied experimentally in a constant-volume combustion vessel and computationally using a chemical kinetic model. Four fuel blends were investigated: pure methane, a capacity weighted mean natural gas, a high ethane content natural gas, and a natural gas with added propane typical of peak shaving conditions. Experimentally measured ignition delays were longest for pure methane and became progressively shorter as ethane and propane concentrations increased. At conditions characteristic of a DI compression ignition natural gas engine at Top Dead Center (CR=23:1, p = 6.8 MPa, T = 1150K), measured ignition delays for the four fuels varied from 1.8 ms for the peak shaving and high ethane gases to 2.7 ms for pure methane. Numerically predicted variations in ignition delay as a function of natural gas composition agreed with these measurements.

  13. Method and apparatus for off-gas composition sensing

    DOE Patents [OSTI]

    Ottesen, David Keith (Livermore, CA); Allendorf, Sarah Williams (Fremont, CA); Hubbard, Gary Lee (Richmond, CA); Rosenberg, David Ezechiel (Columbia, MD)

    1999-01-01

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  14. Raman Nanometrology of Graphene

    E-Print Network [OSTI]

    Calizo, Irene Gonzales

    2009-01-01

    13 Optical image of the graphene layers. . . . . .Micro-Raman Spectroscopy of Grapheneand Graphene Multi-Layers . . . . Raman Spectroscopy

  15. Multiplex coherent raman spectroscopy detector and method

    DOE Patents [OSTI]

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  16. Reactant gas composition for fuel cell potential control

    DOE Patents [OSTI]

    Bushnell, Calvin L. (Glastonbury, CT); Davis, Christopher L. (Tolland, CT)

    1991-01-01

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  17. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J. (Mt. Prospect, IL); Kurek, Paul R. (Schaumburg, IL)

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  18. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  19. Inspection and recertification of gas filled composite pressure vessels using acoustic emission

    SciTech Connect (OSTI)

    Mitchell, J.R.; Temowchek, S.J. [Physical Acoustics Corp., Lawrenceville, NJ (United States)

    1998-12-31

    Corrosion resistance and light weight have made composite materials the best choice for many high pressure gas applications. However, progress has been hampered by the limitations of traditional NDT inspection methods and lack of understanding about failure mechanisms. One solution which has emerged is the use of Acoustic Emission to monitor the composite pressure vessel during periodic proof tests. The emission generated can be used to determine the existence of hidden mechanical defects and corrosion which may have significantly lowered the burst strength. A data base of over 4,000 NGV (natural gas vehicle) containers will be used to exemplify the usefulness of the method.

  20. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  1. Raman Quantum Memory of Photonic Polarised Entanglement

    E-Print Network [OSTI]

    Dong-Sheng Ding; Wei Zhang; Zhi-Yuan Zhou; Shuai Shi; Bao-Sen Shi; Guang-Can Guo

    2014-11-06

    Quantum entanglement of particles is regarded as a fundamental character in quantum information, in which quantum state should be given for whole system instead of independently describing single particle. Constructing quantum memory of photonic entanglement is essential for realizing quantum networks, which had been performed previously by many memory protocols. Of which Raman quantum memory gives advantages in broadband and high-speed properties, resulting in huge potential in quantum network and quantum computation. However, Raman quantum memory of photonic polarised entanglement is a challenge work and still missing. Here, we report two Raman quantum memories based on gas atomic ensembles: 1. Heralded Raman quantum memory of hybrid entanglement of path and polarization of single photon. 2. Raman storage of two-particle photonic polarised entangled state. Our experimental performances of these two different Raman quantum storages of photonic entanglement show a very promising prospective in quantum information science.

  2. Dependence of the surface topology and raman scattering spectra of Ge{sub x}Si{sub 1-x}/Si films on the composition variation over the layer thickness

    SciTech Connect (OSTI)

    Lunin, L. S.; Sysoev, I. A. [Russian Academy of Sciences, Southern Scientific Center (Russian Federation); Bavizhev, M. D.; Lapin, V. A., E-mail: viacheslavlapin@yandex.ru [North Caucasus Federal University (Russian Federation); Kuleshov, D. S.; Malyavin, F. F. [South Russian State Technical University (Russian Federation)

    2013-05-15

    The surface topology and Raman scattering spectra of Ge{sub x}Si{sub 1-x}/Si(100) films are investigated in dependence of the composition variation over the film thickness. It is shown that the character of the Ge content variation in the Ge{sub x}Si{sub 1-x} alloy at the constant cumulative Ge fraction in the film (x{sub int} = 0.5) affects the surface morphology of the grown Ge{sub x}Si{sub 1-x}/Si layer. The heterostructures were grown by molecular-beam epitaxy.

  3. Method of making a continuous ceramic fiber composite hot gas filter

    DOE Patents [OSTI]

    Hill, Charles A. (Lynchburg, VA); Wagner, Richard A. (Lynchburg, VA); Komoroski, Ronald G. (Lynchburg, VA); Gunter, Greg A. (Lynchburg, VA); Barringer, Eric A. (Lynchburg, VA); Goettler, Richard W. (Lynchburg, VA)

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  4. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  5. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  6. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    SciTech Connect (OSTI)

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurements with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.

  7. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-09-15

    HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

  8. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  9. Electrospun Polyaniline/Poly (ethylene oxide) Composite Nanofibers Based Gas Sensor

    E-Print Network [OSTI]

    Li, Changling

    2013-01-01

    polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,

  10. Raman Nanometrology of Graphene

    E-Print Network [OSTI]

    Calizo, Irene Gonzales

    2009-01-01

    x10 visible x50 visible x40 near UV x50 near UV x50 LWDvisible, LWD Raman Spectroscopy Techniques One, two, and

  11. Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells 

    E-Print Network [OSTI]

    Izgec, Bulent

    2004-09-30

    various production and injection scenarios for a rich gas condensate reservoir. The software used to perform the compositional and MBO runs were Eclipse 300 and Eclipse 100 versions 2002A. The effects of black-oil PVT table generation methods, uniform...

  12. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Goldstein, Allen

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from-based, single vehicle dynamometer testing, and on-road measurements in roadway tunnels.3-12 Emission factors

  13. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    SciTech Connect (OSTI)

    Hanson, Ronald; Whitty, Kevin

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  14. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOE Patents [OSTI]

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  15. Electrospun Polyaniline/Poly (ethylene oxide) Composite Nanofibers Based Gas Sensor

    E-Print Network [OSTI]

    Li, Changling

    2013-01-01

    polymer composite nanofibers ( i.e. , (+)- camphor-10-sulfonic acid (HCSA) doped polyanline PANI (conductive)conductive hosting polymers such as poly(ethylene oxide), polyvinylpyrrolidone and cellulose acetate which have been used to assist polyaniline to form composite

  16. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    operations with natural gas: Fuel composition implications,”of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

  17. Investigation of the propagation of a gigawatt pulsed electron beam in compositions of high-pressure gas

    SciTech Connect (OSTI)

    Sazonov, R. V.; Kholodnaya, G. E.; Ponomarev, D. V.; Remnev, G. E. [High Technology Physics Institute, Tomsk Polytechnic University, 2a Lenin Avenue, 634028 Tomsk (Russian Federation)

    2014-07-15

    The paper presents the results of the experimental investigation of pulsed electron beam propagation with a varying current density (electron energy E{sub e}?=?350–400?keV; total current of a diode I{sub e} up to 11?kA; (half-amplitude) pulse duration t?=?60?ns, pulse energy W{sub e} up to 120?J) in two- and three-component gas compositions used in the pulsed plasma chemical synthesis of nanosized oxides. The mean value of the specific absorbed energy within the zone of pulsed electron beam propagation with a current density of 0.05–0.06?kA/cm{sup 2} in gas compositions has been determined.

  18. A new chemodynamical tool to study the evolution of galaxies in the local Universe: a quick and accurate numerical technique to compute gas cooling rate for any chemical composition

    E-Print Network [OSTI]

    Nicolas Champavert; Hervé Wozniak

    2007-03-13

    We have developed a quick and accurate numerical tool to compute gas cooling whichever its chemical composition.

  19. Temporal changes in noble gas compositions within the Aidlin sector ofThe Geysers geothermal system

    E-Print Network [OSTI]

    Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest, Thijs; Lewicki, Jennifer

    2006-01-01

    CONCLUSIONS Helium isotope compositions of production fluidssitu radiogenic 4 He production might have on helium isotopesource for the helium. Steam production at Aidlin began in

  20. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  1. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2001-07-31

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H2 separation. These membranes consist of a thin ({approx}1 mm) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H2 separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 4}0 alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

  2. In situ Raman spectroscopy of lanthanum-strontium-cobaltite thin films

    E-Print Network [OSTI]

    Breucop, Justin Daniel

    2012-01-01

    Raman spectroscopy is used to probe the structural change of Lanthanum Strontium Cobaltite (La1.xSrxCoO 3 -8) thin films across change in composition (0%-60% strontium) and temperature (30*C-520°C). Raman shift peaks were ...

  3. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2003-01-01

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

  4. Correlation function intercepts for $\\tilde?,q$-deformed Bose gas model implying effective accounting for interaction and compositeness of particles

    E-Print Network [OSTI]

    A. M. Gavrilik; Yu. A. Mishchenko

    2015-07-23

    In the recently proposed two-parameter $\\tilde{\\mu},q$-deformed Bose gas model [Ukr. J. Phys. {\\bf 58}, 1171 (2013), arXiv:1312.1573] aimed to take effectively into account both compositeness of particles and their interaction, the $\\tilde{\\mu},q$-deformed virial expansion of the equation of state (EOS) was obtained. In this paper we further explore the $\\tilde{\\mu},q$-deformation, namely the version of $\\tilde{\\mu},q$-Bose gas model involving deformed distributions and correlation functions. In the model, we explicitly derive the one- and two-particle deformed distribution functions and the intercept of two-particle momentum correlation function. The results are illustrated by plots, and the comparison with known experimental data on two-pion correlation function intercepts extracted in RHIC/STAR experiments is given.

  5. Variability of gas composition and flux intensity in natural marine hydrocarbon seeps

    E-Print Network [OSTI]

    Clark, Jordan F.; Washburn, Libe; Schwager Emery, Katherine

    2010-01-01

    was conducted using a flux buoy designed to simultaneouslybubbling gas flux and the buoy’s position with differentialgas flux using a flux buoy (Washburn et al. 2001) showed

  6. Variability of gas composition and flux intensity in natural marine hydrocarbon seeps

    E-Print Network [OSTI]

    Clark, Jordan F.; Washburn, Libe; Schwager Emery, Katherine

    2010-01-01

    with the flux buoy, a ~3 m long spar buoy and associatedmounted on the top of the spar. In field operations, theline near the top of the spar. The vented gas was collected

  7. Angular output of hollow, metal-lined, waveguide Raman sensors

    SciTech Connect (OSTI)

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  8. Variation of density with composition for natural gas mixtures in the supercritical region 

    E-Print Network [OSTI]

    Widia

    2004-11-15

    The densities of three different natural gas mixtures (Case A, Case B, and Case C) were evaluated at pressures from 14 to 38 MPa (2000 to 5500 psia) and temperatures from 230 K to 350 K by using SonicWare? and NIST-14 ...

  9. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    SciTech Connect (OSTI)

    Lambert, T.; Muller, E.; Federici, E.; Rosenkrantz, E.; Ferrandis, J. Y.; Tiratay, X.; Silva, V.; Machard, D.; Trillon, G.

    2011-07-01

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for five cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)

  10. Raman accumulator as a fusion laser driver

    DOE Patents [OSTI]

    George, E.V.; Swingle, J.C.

    1982-03-31

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  11. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November18.5Gross Withdrawals (Million Cubic Feet per

  12. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData2009 2010 2011204,348Receipts (MillionYear Jan

  13. Sensing behaviour of nanosized zinc-tin composite oxide towards liquefied petroleum gas and ethanol

    SciTech Connect (OSTI)

    Singh, Ravi Chand; Singh, Onkar; Singh, Manmeet Pal; Chandi, Paramdeep Singh; Thangaraj, R.

    2010-09-15

    A chemical route has been used to synthesize composite oxides of zinc and tin. An ammonia solution was added to equal amounts of zinc and tin chloride solutions of same molarities to obtain precipitates. Three portions of these precipitates were annealed at 400, 600 and 800 {sup o}C, respectively. Results of X-ray diffraction and transmission electron microscopy clearly depicted coexistence of phases of nano-sized SnO{sub 2}, ZnO, Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}. The effect of annealing on structure, morphology and sensing has been observed as well. It has been observed that annealing promoted growth of Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3} at the expense of zinc. The sensing response of fabricated sensors from these materials to 250 ppm LPG and ethanol has been investigated. The sensor fabricated from powder annealed at 400 {sup o}C responded better to LPG than ethanol.

  14. Preparation and characterization of composite membrane for high temperature gas separation

    SciTech Connect (OSTI)

    Ilias, S.; King, F.G.

    1998-03-26

    A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

  15. Raman Lidar (RL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  16. Raman Lidar Receives Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar2

  17. Nonlinear-optical spectral interferometry of nanostructures using coherent anti-Stokes Raman scattering

    SciTech Connect (OSTI)

    Konorov, Stanislav O; Mitrokhin, V P; Fedotov, Andrei B; Zheltikov, Aleksei M; Smirnova, I V; Sidorov-Biryukov, D A

    2005-01-31

    The spectrum of coherent anti-Stokes Raman scattering (CARS) from Raman-active vibrations of gas-phase nitrogen molecules in a mesoporous silica aerogel host is experimentally studied. The CARS spectral profile under these conditions is a result of interference of the resonant part of nonlinear susceptibility, originating from nitrogen molecules in aerogel pores, and the nonresonant contribution, related to the mesoporous host. Raman-active modes of gas-phase molecular nitrogen give rise to intense resonances in the CARS spectrum, serving as reference spectral profiles for probing local parameters of a nanocomposite material (nanoCARS). (laser applications and other topics in quantum electronics)

  18. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    SciTech Connect (OSTI)

    Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G.; Baron, D.; Segura, J. C.; Cecilia, G.; Provitina, O.

    2011-07-01

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have not been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

  19. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect (OSTI)

    Meyer, Matthew W.

    2013-03-14

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  20. Raman Nanometrology of Graphene

    E-Print Network [OSTI]

    Calizo, Irene Gonzales

    2009-01-01

    2D) electron gas physics it reveals, graphene is a promising material for the electronic applications beyond the conventional complementary metal-oxide semiconductor (

  1. Diagnostic compositions

    SciTech Connect (OSTI)

    Burch, W.M.

    1981-07-28

    The invention discloses diagnostic compositions for use in obtaining images of a patient's lungs. The basic components of the composition of the invention are sodium pertechnetate which is radioactive and ethanol. This composition may be combusted and the resulting products cooled or alternatively the composition may be inserted into a pressure vessel with an aerosol. In both cases a gas like mixture results. A particular advantage is that a patient is able to breath the mixture of the invention in a normal way and does not need to undergo any training in inhalation.

  2. Raman Microscopy of Lithium-Manganese-Rich Cathodes

    SciTech Connect (OSTI)

    Ruther, Rose E [ORNL; Callender, Andrew F. [Tennessee Technological University; Zhou, Hui [ORNL; Martha, Surendra [Indian Institute of Technology, Hyderabad; Nanda, Jagjit [ORNL

    2014-01-01

    Lithium rich, manganese rich composites with general formula xLi2MnO3 (1-x)LiMO2 are promising candidates for high capacity and high voltage cathodes for lithium ion batteries. Lithium rich oxides crystallize as a nanocomposite of layered phases whose structure further evolves with electrochemical cycling. Raman spectroscopy is potentially a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study Raman microscopy is used to investigate lithium-rich manganese-rich cathodes as a function of average charge and electrochemical cycling. LMR-NMC cycled at elevated temperature (60 C) has a modified crystal structure which may account for some of the observed increase in capacity. Contrary to some reports, no growth of a spinel phase is observed. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  3. Free-standing ZnOCuO composite nanowire array films and their gas sensing properties This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Free-standing ZnO­CuO composite nanowire array films and their gas sensing properties This article.1088/0957-4484/22/32/325704 Free-standing ZnO­CuO composite nanowire array films and their gas sensing properties J X Wang1 , X W. A free-standing film made of ZnO­CuO nanostructures was assembled on the surface of the hydrothermal

  4. A study on Raman Injection Laser 

    E-Print Network [OSTI]

    Liu, Debin

    2005-11-01

    The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman...

  5. JOURNAL OF RAMAN SPECTROSCOPY J. Raman Spectrosc. 2003; 34: 769775

    E-Print Network [OSTI]

    Downs, Robert T.

    . An additional change in the spectrum is observed between 7.7 and 8.9 GPa, possibly due to the formation for these changes have been the subject of much study.2 A recently discovered phase transition in pyroxenes display C1 site symmetry. According to factor group analysis, there are 14 Ag and 16 Bg Raman-active modes

  6. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    SciTech Connect (OSTI)

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  7. Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs 

    E-Print Network [OSTI]

    Jaramillo Arias, Juan Manuel

    2000-01-01

    field in Colombia. The experimental PVT tests used consisted of constant composition expansion (CCE) and constant volume depletion (CVD) and were reported by Brunal. This study was accomplished by tuning an equation of state, EOS, to the available CCE...

  8. Measurement of vibrational, gas, and rotational temperatures of H{sub 2} (X{sup 1} {sigma}{sub g}{sup +}) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    SciTech Connect (OSTI)

    Shakhatov, V.A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H{sub 2} in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2 W/cm{sup 3} have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H{sub 2} CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  9. Multiple-reflection optical gas cell

    DOE Patents [OSTI]

    Matthews, Thomas G. (Oak Ridge, TN)

    1983-01-01

    A multiple-reflection optical cell for Raman or fluorescence gas analysis consists of two spherical mirrors positioned transverse to a multiple-pass laser cell in a confronting plane-parallel alignment. The two mirrors are of equal diameter but possess different radii of curvature. The spacing between the mirrors is uniform and less than half of the radius of curvature of either mirror. The mirror of greater curvature possesses a small circular portal in its center which is the effective point source for conventional F1 double lens collection optics of a monochromator-detection system. Gas to be analyzed is flowed into the cell and irradiated by a multiply-reflected composite laser beam centered between the mirrors of the cell. Raman or fluorescence radiation originating from a large volume within the cell is (1) collected via multiple reflections with the cell mirrors, (2) partially collimated and (3) directed through the cell portal in a geometric array compatible with F1 collection optics.

  10. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  11. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    SciTech Connect (OSTI)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  12. Multifunctional Nanowire/film Composites based Bi-modular Sensors for In-situ and Real-time High Temperature Gas Detection

    SciTech Connect (OSTI)

    Gao, Pu-Xian; Lei, Yu

    2013-06-01

    This final report to the Department of Energy/National Energy Technology Laboratory for DE-FE0000870 covers the period from 2009 to June, 2013 and summarizes the main research accomplishments, which can be divided in sensing materials innovation, bimodular sensor demonstration, and new understanding and discoveries. As a matter of fact, we have successfully completed all the project tasks in June 1, 2013, and presented the final project review presentation on the 9th of July, 2013. Specifically, the major accomplishments achieved in this project include: 1) Successful development of a new class of high temperature stable gas sensor nanomaterials based on composite nano-array strategy in a 3D or 2D fashion using metal oxides and perovskite nanostructures. 2) Successful demonstration of bimodular nanosensors using 2D nanofibrous film and 3D composite nanowire arrays using electrical resistance mode and electrochemical electromotive force mode. 3) Series of new discoveries and understandings based on the new composite nanostructure platform toward enhancing nanosensor performance in terms of stability, selectivity, sensitivity and mass flux sensing. In this report, we highlight some results toward these accomplishments.

  13. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  14. Raman fiber optic probe assembly for use in hostile environments

    DOE Patents [OSTI]

    Schmucker, John E. (Hurt, VA); Falk, Jon C. (Pittsburgh, PA); Archer, William B. (Bethel Park, PA); Blasi, Raymond J. (Harrison City, PA)

    2000-01-01

    This invention provides a device for Raman spectroscopic measurement of composition and concentrations in a hostile environment by the use of a first fiber optic as a means of directing high intensity monochromatic light from a laser to the hostile environment and a second fiber optic to receive the lower intensity scattered light for transmittal to a monochromator for analysis. To avoid damage to the fiber optics, they are protected from the hostile environment. A preferred embodiment of the Raman fiber optic probe is able to obtain Raman spectra of corrosive gases and solutions at temperatures up to 600.degree. F. and pressures up to 2000 psi. The incident exciting fiber optic cable makes an angle of substantially 90.degree. with the collecting fiber optic cable. This 90.degree. geometry minimizes the Rayleigh scattering signal picked up by the collecting fiber, because the intensity of Rayleigh scattering is lowest in the direction perpendicular to the beam path of the exciting light and therefore a 90.degree. scattering geometry optimizes the signal to noise ratio.

  15. Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor: Experimental measurements, model

    E-Print Network [OSTI]

    Rubloff, Gary W.

    tool in the de- velopment of semiconductor manufacturing equipment. The value of process modeling studies have focused on modeling trans- port mechanisms in single wafer rapid thermal processing RTP the gas phase and wafer itself. In addition to the dominant radiative energy exchange modes inside

  16. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko; David J. (Naperville, IL)

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  17. Temperature dependent Raman scattering and far-infrared reflectance spectra of MgO modified Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ceramics: A composition effect

    SciTech Connect (OSTI)

    Duan, Z. H.; Chang, P.; Hu, Z. G. Chu, J. H.; Wang, J. X.; Wang, G. S.; Dong, X. L.

    2014-09-07

    Lattice dynamics and phase transition of MgO modified Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} (PZTN-x wt. % MgO, x?=?0, 0.1, 0.2, 0.5) ceramics have been investigated by far-infrared (FIR) reflectance in the temperature range of 5.5–300?K and Raman spectra between 77 and 300?K, respectively. With the aid of above complementary methods, the structure of all ceramics was defined as low-temperature ferroelectric rhombohedral phase [F{sub R(LT)}] at room temperature. The FIR dielectric functions were extracted from the multi-Lorentz oscillator dispersion model. The lowest frequency phonon mode, which is related to Pb-BO{sub 3} (B?=?Zr, Ti, Nb) vibration, mainly dominates the FIR dielectric response. With increasing MgO composition, the dielectric constants ?(0) at room temperature are estimated to 85.4, 73.4, 73.9, and 41.9, respectively. The decreasing trend can be due to the doubly ionized oxygen vacancies induced by Mg substitution for B-site. The order-disorder phase transition located around 120?K can be clearly clarified from temperature evolution of phonon frequency, damping, and intensity. It decreases slightly with increasing MgO composition, which influence the distortion due to the broken correlation chains and local permanent dipoles creation. Moreover, the transformation from antiferroelectric orthorhombic A{sub O} to [ F{sub R(LT)} ] phase has been observed around 250?K, which is associated with the antiferroelectric displacement of Pb atoms along ? 110 ? and coupled rotations of the corner-connected oxygen octahedral. Furthermore, the transition from [ F{sub R(LT)} ] to [ F{sub R(HT)} ] (high-temperature ferroelectric rhombohedral phase) was identified around 290?K for MgO-doped PZTN ceramics. It arises from the shift of cation (Pb and Zr/Ti/Nb/Mg ions) along the ? 111 ? direction and the transition temperature slightly decreases compared to the pure ceramic.

  18. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  19. Noise autocorrelation spectroscopy with coherent Raman scattering

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Noise autocorrelation spectroscopy with coherent Raman scattering XIAOJI G. XU, STANISLAV O to noise. Here, we present a new approach to coherent Raman spectroscopy in which high resolution is achieved by means of deliberately introduced noise. The proposed method combines the efficiency

  20. RAMAN SPECTROSCOPY OF GRAPHENE AND RELATED MATERIALS

    E-Print Network [OSTI]

    Chen, Yong P.

    structure of graphene. (b) Graphene is a zero-gap semiconductor. Its 2-D nature leads to a linear dispersionChapter 19 RAMAN SPECTROSCOPY OF GRAPHENE AND RELATED MATERIALS Isaac Childres*a,b , Luis A This chapter is a review of the application of Raman spectroscopy in characterizing the properties of graphene

  1. Isotopic hydrogen analysis via conventional and surface-enhanced fiber optic Raman spectroscopy

    SciTech Connect (OSTI)

    LASCOLA, ROBERT

    2004-09-23

    This report describes laboratory development and process plant applications of Raman spectroscopy for detection of hydrogen isotopes in the Tritium Facilities at the Savannah River Site (SRS), a U.S. Department of Energy complex. Raman spectroscopy provides a lower-cost, in situ alternative to mass spectrometry techniques currently employed at SRS. Using conventional Raman and fiber optics, we have measured, in the production facility glove boxes, process mixtures of protium and deuterium at various compositions and total pressures ranging from 1000-4000 torr, with detection limits ranging from 1-2 percent for as low as 3-second integration times. We are currently investigating fabrication techniques for SERS surfaces in order to measure trace (0.01-0.1 percent) amounts of one isotope in the presence of the other. These efforts have concentrated on surfaces containing palladium, which promotes hydrogen dissociation and forms metal hydride bonds, essentially providing a chemical enhancement mechanism.

  2. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis

    SciTech Connect (OSTI)

    Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.; Billingsley, Matthew; Fraga, Carlos G.; Bruno, Thomas J.; Synovec, Robert E.

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accurate fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.

  3. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    SciTech Connect (OSTI)

    Clegg, Sanuel M; Barefield, James E; Humphries, Seth D; Wiens, Roger C; Vaniman, D. T.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Smrekar, S. E.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. PLS analysis suggests that the major element compositions can be determined with root mean square errors ca. 5% (absolute) for SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}(total), MgO, and CaO, and ca. 2% or less for TiO{sub 2}, Cr{sub 2}O{sub 3}, MnO, K{sub 2}O, and Na{sub 2}O. Finally, the Raman experiments have been conducted under supercritical CO{sub 2} involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. The Raman data have shown that the individual minerals can easily be identified individually or in mixtures.

  4. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    SciTech Connect (OSTI)

    Aleksa, V. Ozerenskis, D.; Pucetaite, M.; Sablinskas, V.; Cotter, C.; Guirgis, G. A.

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15?kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  5. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01

    adjacent fractures. Natural gas composition consists mostlyNatural gas is called wet or dry depending on how large is the lique?able portion of gas composition.

  6. Inelastic neutron and low-frequency Raman scattering in a niobium-phosphate glass for Raman gain applications

    E-Print Network [OSTI]

    Schirmacher, Walter

    Inelastic neutron and low-frequency Raman scattering in a niobium-phosphate glass for Raman gain: Raman scattering; Neutron scattering; Raman gain; Boson peak We present measurements of the vibrational, extracted from specific-heat or neutron scattering measurements [7,8]. Only very recently two of the present

  7. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    E-Print Network [OSTI]

    Shih, Wei-Chuan

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. ...

  8. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  9. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  10. Properties of nano structured Ag-TiO{sub 2} composite coating on stainless steel using RF sputtering method

    SciTech Connect (OSTI)

    Bakar, S. Abu; Jamuna-Thevi, K.; Abu, N.; Mohd Toff, M. R.

    2012-07-02

    RF Sputtering system is one of the Physical Vapour Deposition (PVD) methods that have been widely used to produce hard coating. This technique is used to deposit thin layers of metallic substrates such as stainless steel (SS). From this process, a good adhesiveness and wear resistance coating can be produced for biomedical applications. In this study, RF sputtering method was used to deposit TiO{sub 2}-Ag composite coatings via various deposition parameters. The parameters are RF power of 350W, gas composition (Ar: O{sub 2}) 50:5 and deposition time at 1, 2, 4 and 6 hours. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize surface area of coated samples. The formation of nanocrystalline thin film and the surface morphology were examined using SEM. The crystallite size of TiO{sub 2}-Ag composite coatings were estimated between 20-60 nm based on XRD analysis using Scherer equation and SEM evaluation. The Raman and XRD results suggested that the structure of the TiO{sub 2}-Ag consist of anatase and rutile phases. It also showed that the intensity of anatase peaks increased after samples undergone annealing process at 500 Degree-Sign C.

  11. Ice thickness measurements by Raman scattering

    E-Print Network [OSTI]

    Pershin, Sergey M; Klinkov, Vladimir K; Yulmetov, Renat N; Bunkin, Alexey F

    2014-01-01

    A compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice-water interface while elastic scattering was used for air-ice surface detection. This approach yields an error of only 2 mm for an 80-mm-thick ice sample, indicating that it is promising express noncontact thickness measurements technique in field experiments.

  12. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  13. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect (OSTI)

    Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

    2009-06-03

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  14. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  15. Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics

    SciTech Connect (OSTI)

    Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; Johnson, Timothy J.

    2012-09-01

    Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments for in situ point detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the composition of thin films of plastic explosives or small (e.g., ?10 ?m) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ?1 ?g/cm2 level.We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.

  16. On-Chip Diamond Raman Laser

    E-Print Network [OSTI]

    Latawiec, Pawel; Burek, Michael J; Hausmann, Birgit J M; Bulu, Irfan; Loncar, Marko

    2015-01-01

    Synthetic single-crystal diamond has recently emerged as a promising platform for Raman lasers at exotic wavelengths due to its giant Raman shift, large transparency window and excellent thermal properties yielding a greatly enhanced figure-of-merit compared to conventional materials. To date, diamond Raman lasers have been realized using bulk plates placed inside macroscopic cavities, requiring careful alignment and resulting in high threshold powers (~W-kW). Here we demonstrate an on-chip Raman laser based on fully-integrated, high quality-factor, diamond racetrack micro-resonators embedded in silica. Pumping at telecom wavelengths, we show Stokes output discretely tunable over a ~100nm bandwidth around 2-{\\mu}m with output powers >250 {\\mu}W, extending the functionality of diamond Raman lasers to an interesting wavelength range at the edge of the mid-infrared spectrum. Continuous-wave operation with only ~85 mW pump threshold power in the feeding waveguide is demonstrated along with continuous, mode-hop-fr...

  17. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    of variations in natural gas composition and physical 2.1.2. Fuel Gas Compositions Both domestic natural gas and natural gas appliances vary with (are affected by) variability in fuel  composition 

  18. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  19. Raman spectroscopy of complex defined media: biopharmaceutical applications

    E-Print Network [OSTI]

    Ram, Rajeev J.

    , grown in shake flasks in batch fermentation mode, using Raman spectroscopy and explicit model glutamine, glutamate, glucose, la

  20. Raman Shift (cm-1 1500 2000 2500 3000 3500

    E-Print Network [OSTI]

    1 Raman Shift (cm-1 ) 1500 2000 2500 3000 3500 RamanIntensity(a.u.) 0 2000 4000 6000 8000 Water - Anisotropic 0.10x HBr - Anisotropic 0.10x HI - Anisotropic Raman Shift (cm-1 ) 1500 2000 2500 3000 3500 RamanIntensity(a.u.) 0 2000 4000 6000 8000 Water - Isotropic 0.015x HCl - Isotropic 0.015x HBr - Isotropic 0.015x HI

  1. Special Section Guest Editorial Coherent Raman Imaging Techniques and Biomedical

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Special Section Guest Editorial Coherent Raman Imaging Techniques and Biomedical Applications. The combination of high resolution and molecular contrast has moved Raman techniques into the biomedical spotlight on biomedical imag- ing. The spontaneous Raman interaction is weak, yielding insufficient photons for fast

  2. Raman subrecoil spectroscopy of cold cesium atoms

    E-Print Network [OSTI]

    J. Ringot; P. Szriftgiser; J. C. Garreau

    2001-07-28

    We describe and characterize a setup for subrecoil stimulated Raman spectroscopy of cold cesium atoms. We study in particular the performances of a method designed to active control and stabilization of the magnetic fields across a cold-atom cloud inside a small vacuum cell. The performance of the setup is monitored by {\\em copropagative-beam} stimulated Raman spectroscopy of a cold cesium sample. The root mean-square value of the residual magnetic field is 300 $\\mu G$, with a compensation bandwidth of 500 Hz. The shape of the observed spectra is theoretically interpreted and compares very well to numerically generated spectra.

  3. Water O?H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis

    SciTech Connect (OSTI)

    Casella, Amanda J.; Levitskaia, Tatiana G.; Peterson, James M.; Bryan, Samuel A.

    2013-04-16

    Spectroscopic techniques have been applied extensively for quantification and analysis of solution compositions. In addition to static measurements, these techniques have been implemented in flow systems providing real-time solution information. A distinct need exists for information regarding acid concentration as it affects extraction efficiency and selectivity of many separation processes. Despite of the seeming simplicity of the problem, no practical solution has been offered yet particularly for the large-scale schemes involving toxic streams such as highly radioactive nuclear wastes. Classic potentiometric technique is not amiable for on-line measurements in nuclear fuel reprocessing due to requirements of frequent calibration/maintenance and poor long-term stability in the aggressive chemical and radiation environments. In this work, the potential of using Raman spectroscopic measurements for on-line monitoring of strong acid concentration in the solutions relevant to the dissolved used fuel was investigated. The Raman water signature was monitored and recorded for nitric and hydrochloric acid solution systems of systematically varied chemical composition, ionic strength, and temperature. The generated Raman spectroscopic database was used to develop predictive chemometric models for the quantification of the acid concentration (H+), neodymium concentration (Nd3+), nitrate concentration (NO3-), density, and ionic strength. This approach was validated using a flow solvent extraction system.

  4. Videos of Experiments from ORNL Gas Hydrate Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

  5. Application of Raman spectroscopy to identification and sorting of post-consumer plastics for recycling

    DOE Patents [OSTI]

    Sommer, Edward J. (Nashville, TN); Rich, John T. (Lebanon, TN)

    2001-01-01

    A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).

  6. Raman Scattering of Water and Photoluminescence of Pollutants Arising from Solid-Water Interaction

    E-Print Network [OSTI]

    Vallée, P; Ghomi, M; Jouanne, M; Vall\\'{e}e, Philippe; Lafait, Jacques; Ghomi, Mahmoud; Jouanne, Michel

    2003-01-01

    Systematic Raman experiments performed on water and water-ethanol samples, stored in different containers (fused silica, polypropylene, soda-lime glass type III) for several hours, have shown that the luminescence contribution to the Raman signal fluctuations is directly related to the container composition. Intensity fluctuations as large as 98%, have been observed in the spectral regions corresponding to the both water intramolecular and intermolecular vibrations, despite the fact that the wavenumbers of the modes remained unchanged. We undoubtedly attribute these fluctuations to a luminescence phenomenon on the basis of : i) the absence of such effect in the anti-Stokes domain, ii) its dependence on the excitation laser wavelength, iii) other relevant photoluminescence experiments. This luminescence is attributed to pollutants at ultra-low concentration coming from the different containers.

  7. Coherent anti-Stokes Raman Scattering (CARS)

    E-Print Network [OSTI]

    Greenaway, Alan

    Coherent anti-Stokes Raman Scattering (CARS) For the study of biofilms Alexander Mc Vey1, Nils.f.mcvey@ed.ac.uk Polystyrene beads of diameter 2µm as imaged by the CARS system at COSMIC, The University of Edinburgh #12;Introduction Outline of CARS CARS set-up Results ­ Pushing the limits Results ­ Imaging E. coli Where do we go

  8. Raman laser with controllable suppression of parasitics

    DOE Patents [OSTI]

    George, E. Victor (Livermore, CA)

    1986-01-01

    Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.

  9. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect (OSTI)

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  10. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV

    SciTech Connect (OSTI)

    Molesky, Brian P.; Giokas, Paul G.; Guo, Zhenkun; Moran, Andrew M.

    2014-09-21

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries.

  11. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore »bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.« less

  12. Lattice parameters and Raman-active phonon modes of (In{sub x}Ga{sub 1–x})?O? for x<0.4

    SciTech Connect (OSTI)

    Kranert, Christian Lenzner, Jörg; Jenderka, Marcus; Lorenz, Michael; Wenckstern, Holger von; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2014-07-07

    We present X-ray diffraction and Raman spectroscopy investigations of (In{sub x}Ga{sub 1–x})?O? thin films and bulk-like ceramics in dependence of their composition. The thin films grown by pulsed laser deposition have a continuous lateral composition spread allowing the determination of phonon mode properties and lattice parameters with high sensitivity to the composition from a single 2-in. wafer. In the regime of low indium concentration, the phonon energies depend linearly on the composition and show a good agreement between both sample types. We determined the slopes of these dependencies for eight different Raman modes. While the lattice parameters of the ceramics follow Vegard's rule, deviations are observed for the thin films. Further, we found indications of the high-pressure phase InGaO? II in the thin films above a critical indium concentration, its value depending on the type of substrate.

  13. Single-shot hyperspectral coherent Raman planar imaging in the range 0–4200 cm?¹

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-10-20

    We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0–4200 cm?¹ is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H?, with spatially resolved 2D measurement of transitions of both the pure-rotational H? S-branch and the vibrational H? Q-branch, analyzing the temperature contour of amore »reacting fuel-species as it evolves at a flame-front.« less

  14. Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01

    A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

  15. Raman-based system for DNA sequencing-mapping and other separations

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  16. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  17. Raman spectroscopic investigations of hydrothermal solutions

    SciTech Connect (OSTI)

    Yang, M.M.

    1988-01-01

    There is still very little information about the stoichiometries, structures and stabilities of metal complexes at high temperatures and pressures. Raman spectroscopy is ideally suited to probe and study concentrated electrolyte solutions at the molecular level. This thesis includes the design and construction of a Raman cell operable up to 300C and 15MPa. In order to obtain quantitative thermodynamic information from Raman spectroscopic measurements, a chemically inert internal standard must be used. Perchlorate is commonly used for this purpose at low temperatures, but it may be unstable at high temperatures and its explosive properties make it undesirable. A new preferred internal standard; trifluoromethanesulfonic acid is introduced and its spectra p to 300C discussed. The use of this compound as a high temperature internal standard enabled stepwise stability constants of zinc-bromo complexes to be determined. Although bromide is not an important ligand in geologic systems, its chemical similarity to chloride can provide insights into the study of zinc-chloro species which do not have very informative Raman spectra. The importance of organic ligands in geologic settings such as the Mississippi-Valley Type Pb-Zn sulfide deposits is now being realized. Chapter four presents the first high temperature spectroscopic measurements of lead and zinc acetate aqueous solutions. Not only do these studies verify the stability of lead and zinc acetate complexes up to 250 C but they also show that the type of complex formed is a function of pH, metal-ligand ratio and temperature, thus having important implications for zoning of Pb-Zn sulfide deposits.

  18. Accelerated Testing of HT-9 with Zirconia Coatings Containing Gallium using Raman Spectroscopy and XPS

    SciTech Connect (OSTI)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2009-12-01

    Laser Raman spectroscopy and x-ray photoelectron spectroscopy were used to study the evolution of composition of oxide films in the presence of zirconia coatings on miniature HT-9 alloy specimens subjected to elevated temperature in air. The experiments expanded on previous efforts to develop a quick-screening technique for candidate alloys for cladding materials (HT-9) and actinide-based mixed oxide fuel mixtures (represented by the zirconia coating) by investigating the effect of both coating composition and alloy pretreatment conditions on the high temperature reactions. In particular, the presence of the element Ga (a potential impurity in mixed oxide fuel) in the initial zirconia coating was found to accelerate the rate of oxide growth relative to that of yttria-stabilized zirconia studied previously. In addition, HT-9 samples that were subjected to different thermal pretreatments gave different results. The results suggest that the presence of Ga in a mixed oxide fuel will enhance the corrosion of HT-9 cladding under the conditions of this study, although the extent of enhancement is influenced by thermal pretreatment of the cladding material. The results also demonstrate the need to combine Raman spectroscopy with other techniques, particularly photoelectron spectroscopy, for optimizing composition and/or fabrication conditions of both cladding and oxide fuels for advanced nuclear reactors.

  19. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    indoor air quality, liquefied natural gas, nitrogen natural gas burners with the largest potential air quality natural gas composition and physical properties that is, gas quality, 

  20. Compositions, devices and methods for SERS and LSPR

    SciTech Connect (OSTI)

    Van Duyne, Richard P; Zhang, Xiaoyu; Zhao, Jing; Whitney, Alyson V; Elam, Jeffrey W; Schatz, George C; Stair, Peter C; Zou, Shengli; Young, Matthew; Lyandres, Olga

    2014-01-14

    The present invention relates to compositions, devices and methods for detecting microorganisms (e.g., anthrax). In particular, the present invention provides portable, surface-enhanced Raman biosensors, and associated substrates, and methods of using the same, for use in rapidly detecting and identifying microorganisms (e.g., anthrax).

  1. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

  2. Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamondsilicananotube composites

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamond vapor deposition Composite thin films of nanodiamond and silica nanotubes were synthesized by means with nanodiamond particles. SEM, Raman spectroscopy, and EDX were used to analyze the composite. Wet chemical

  3. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    E-Print Network [OSTI]

    Shahil, Khan Mohammad Farhan

    2012-01-01

    heating Electrical Theory: MD Theory: MD Raman optothermalElectrical self- heating Electrical Theory:VFF,BTE Theory:Thermocouples Thermocouples Theory: BTE Electrical self-

  4. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li...

    Office of Scientific and Technical Information (OSTI)

    ChemicalRaman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate Citation Details In-Document Search...

  5. Acidic gas capture by diamines

    DOE Patents [OSTI]

    Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  6. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  7. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  8. Optical pumping via incoherent Raman transitions

    E-Print Network [OSTI]

    A. D. Boozer; R. Miller; T. E. Northup; A. Boca; H. J. Kimble

    2007-10-04

    A new optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped Cesium atom in a specific Zeeman state within the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme over existing optical pumping schemes is that the atom can be prepared in any of the F=3 Zeeman states. We demonstrate the scheme in the context of cavity quantum electrodynamics, but the technique is equally applicable to a wide variety of atomic systems with hyperfine ground-state structure.

  9. Quantum-entanglement-initiated super Raman scattering

    SciTech Connect (OSTI)

    Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2011-02-15

    It has now been possible to prepare a chain of ions in an entangled state and thus the question arises: How will the optical properties of a chain of entangled ions differ from say a chain of independent particles? We investigate nonlinear optical processes in such chains. Since light scattering is quite a versatile technique to probe matter, we explicitly demonstrate the possibility of entanglement-produced super Raman scattering. Our results suggest the possibility of similar enhancement factors in other nonlinear processes like four-wave mixing.

  10. Raman lidar and MPL Measurements during ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman

  11. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging Eric O. Potma,* Conor L. Evans with heterodyne co- herent anti-Stokes Raman scattering (CARS) interferometric microscopy. This technique that is linear in the concentration of vibrational modes. We show that heterodyne CARS microscopy permits

  12. Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation

    E-Print Network [OSTI]

    Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation S.J.V. Frankland *, D hydrogen in individual single-shell carbon nanotubes and nanotube ropes using a semiclassical model. The calculations predict that isolated hydrogen molecules inside of nanotubes have a Raman frequency that increases

  13. Influence of gas feed composition and pressure on the catalytic conversion of CO{sub 2} to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst

    SciTech Connect (OSTI)

    Robert W. Dorner; Dennis R. Hardy; Frederick W. Williams; Burtron H. Davis; Heather D. Willauer [Naval Research Laboratory, Washington, DC (United States). Navy Technology Center for Safety and Survivability Branch

    2009-08-15

    The hydrogenation of CO{sub 2} using a traditional Fischer-Tropsch Co-Pt/Al{sub 2}O{sub 3} catalyst for the production of valuable hydrocarbon materials is investigated. The ability to direct product distribution was measured as a function of different feed gas ratios of H{sub 2} and CO{sub 2} (3:1, 2:1, and 1:1) as well as operating pressures (ranging from 450 to 150 psig). As the feed gas ratio was changed from 3:1 to 2:1 and 1:1, the production distribution shifted from methane toward higher chain hydrocarbons. This change in feed gas ratio is believed to lower the methanation ability of Co in favor of chain growth, with possibly two different active sites for methane and C2-C4 products. Furthermore, with decreasing pressure, the methane conversion drops slightly in favor of C{sub 2}-C{sub 4} paraffins. Even though under certain reaction conditions product distribution can be shifted slightly away from the formation of methane, the catalyst studied behaves like a methanation catalyst in the hydrogenation of CO{sub 2}. 36 refs., 2 figs., 4 tabs.

  14. Natural gas hydrates - issues for gas production and geomechanical stability 

    E-Print Network [OSTI]

    Grover, Tarun

    2008-10-10

    gases, some liquids like tetrahydrofuran (THF) can also react with water to form hydrates. The formation of natural gas hydrates depends on pressure, temperature, gas composition, and presence of inhibitors such as salts. NGHs are found... deposits constitute the bulk of natural hydrates (Sloan and Koh, 2008). In offshore environments, hydrates are stable in water depths greater than 200 to 600 meters depending on the gas composition and seafloor temperatures (Milkov and Sassen, 2002). Fig...

  15. A compact double-pass Raman backscattering amplifier/compressor

    SciTech Connect (OSTI)

    Ren, J.; Li, S.; Morozov, A.; Suckewer, S.; Yampolsky, N. A.; Malkin, V. M.; Fisch, N. J.

    2008-05-15

    The enhancement of stimulated Raman backscattering (SRBS) amplification was demonstrated by introducing a plasma density gradient along the pump and the seed interaction path and by a novel double-pass design. The energy transfer efficiency was significantly improved to a level of 6.4%. The seed pulse was amplified by a factor of more than 20 000 from the input in a 2 mm long plasma, which also exceeded the intensity of the pump pulse by 2 orders of magnitude. This was accompanied by very effective pulse compression, from 500 fs to 90 fs in the first pass measurements and in the second pass down to approximately 50 fs, as it is indicated by the energy-pulse duration relation. Further improvements to the energy transfer efficiency and the SRBS performance by extending the region of resonance is also discussed where a uniform {approx}4 mm long plasma channel for SRBS was generated by using two subsequent laser pulses in an ethane gas jet.

  16. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  18. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  19. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  20. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  1. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  2. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  3. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  4. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  5. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site

    E-Print Network [OSTI]

    2010-01-01

    and stable isotope compositions of natural gas hydrates: acarbon isotopic composition of methane from natural gases of

  9. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect (OSTI)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  10. Anomalous junctions characterized by Raman spectroscopy in Si{sub x}Ge{sub 1?x} nanowires with axially degraded components

    SciTech Connect (OSTI)

    Xia, Minggang, E-mail: xiamg@mail.xjtu.edu.cn [Laboratory of Nanostructure and Physics Properties, and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, 710049 (China); Department of Optical Information Science and Technology, School of Science, Xi'an Jiaotong University, 710049 (China); Han, Jinyun; Cheng, Zhaofang; Liang, Chunping; Zhang, Shengli [Laboratory of Nanostructure and Physics Properties, and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, 710049 (China); Department of Applied Physics, School of Science, Xi'an Jiaotong University, Shaanxi 710049 (China)

    2014-09-08

    The characterization of junctions in nanowires by high-resolution transmission electron microscopy with spherical aberration correction is tricky and tedious. Many disadvantages also exist, including rigorous sample preparation and structural damage inflicted by high-energy electrons. In this work, we present a simple, low-cost, and non-destructive Raman spectroscopy method of characterizing anomalous junctions in nanowires with axially degraded components. The Raman spectra of Si{sub x}Ge{sub 1?x} nanowires with axially degraded components are studied in detail using a confocal micro-Raman spectrometer. Three Raman peaks (?{sub Si–Si}?=?490?cm{sup ?1}, ?{sub Si–Ge}?=?400?cm{sup ?1}, and ?{sub Ge–Ge}?=?284?cm{sup ?1}) up-shift with increased Si content. This up-shift originates in the bond compression induced by a confined effect on the radial direction of nanowire. The anomalous junctions in Si{sub x}Ge{sub 1?x} nanowires with axially degraded components are then observed by Raman spectroscopy and verified by transmission electron microscopy energy-dispersive X-ray spectroscopy. The anomalous junctions of Si{sub x}Ge{sub 1?x} nanowires with axially degraded components are due to the vortex flow of inlet SiH{sub 4} and GeH{sub 4} gas in their synthesis. The anomalous junctions can be used as raw materials for fabricating devices with special functions.

  11. Solid state electrochemical composite

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2009-06-30

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  12. Energetic composites

    DOE Patents [OSTI]

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  13. Energetic composites

    DOE Patents [OSTI]

    Danen, Wayne C. (Los Alamos, NM); Martin, Joe A. (Espanola, NM)

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  14. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect (OSTI)

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  15. Robust Ramsey sequences with Raman adiabatic rapid passage

    E-Print Network [OSTI]

    Kotru, Krish

    We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ...

  16. Quantitative biological Raman spectroscopy for non-invasive blood analysis

    E-Print Network [OSTI]

    Shih, Wei-Chuan

    2007-01-01

    The long term goal of this project is the measurement of clinically-relevant analytes in the blood tissue matrix of human subjects using near-infrared Raman spectroscopy, with the shorter term research directed towards ...

  17. Surface enhanced Raman spectroscopy on a flat graphene surface

    E-Print Network [OSTI]

    Xu, Weigao

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have ...

  18. Detection of integrins using surface enhanced raman spectroscopy 

    E-Print Network [OSTI]

    Gant, Virgil Alexander

    2005-08-29

    changes of integrins on the surface of a cell maybe possible by developing a combined device such as an atomic force microscope (AFM) and surface enhanced Raman spectroscopy (SERS) system. However, the focus of this research is to first determine...

  19. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.; Lines, Amanda M.; Levitskaia, Tatiana G.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.

  20. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

  1. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  2. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  3. Electrode compositions

    DOE Patents [OSTI]

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  4. Electrode compositions

    DOE Patents [OSTI]

    Block, Jacob (Rockville, MD); Fan, Xiyun (Orange, TX)

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  5. Robust high temperature composite and CO sensor made from such composite

    DOE Patents [OSTI]

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  6. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect (OSTI)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  7. Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations

    E-Print Network [OSTI]

    Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

    2009-01-01

    which are summarized below: 1. Gas composition is moree?ective than gas pressure on in?uencing cooling rate for app. 210–11. 37. J.E.A. John: Gas Dynamics, Allyn and Bacon,

  8. Effects of passivation on synthesis, structure and composition...

    Office of Scientific and Technical Information (OSTI)

    on synthesis, structure and composition of molybdenum carbide supported platinum water-gas shift catalysts Citation Details In-Document Search Title: Effects of passivation...

  9. Hydride compositions

    DOE Patents [OSTI]

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  10. Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors 

    E-Print Network [OSTI]

    Othman, Enas Azhar

    2014-04-07

    -component gas mixtures whose compositions are typical of Qatari natural gases with initiatives aimed at helping producers minimize costs, optimize operations, and prevent interruption of gas flow in offshore drilling and production. In addition, it presents...

  11. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25

    . These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

  12. Coherent anti-Stokes Raman scattering (CARS) optimized by exploiting optical interference 

    E-Print Network [OSTI]

    Wang, Xi

    2012-07-16

    The purpose of this work is to study the interference between the coherent nonresonant four-wave-mixing (FWM) background and the Raman-resonant signal in the coherent anti-Stokes Raman spectroscopy (CARS). The nonresonant background is usually...

  13. Fourier Transform Raman Spectroscopy of Photoactive Proteins with Near-Infrared Excitation

    E-Print Network [OSTI]

    Johnson, Carey K.; Rubinovitz, Ronald

    1990-07-01

    ) and bacteriopheophytin, bacteriochlorophyll, and carotenoids (in reaction centers). The relative intensities of retinylidene modes in the spectrum for nonresonant FT Raman spectroscopy of bacteriorhodopsin are nearly identical to those observed in the resonance Raman...

  14. Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

    Office of Scientific and Technical Information (OSTI)

    Pulsed laser Raman spectroscopy in the laser-heated diamond anvil cell Citation Details In-Document Search Title: Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

  15. Raman P. Singh School of Mechanical and Aerospace Engineering Phone (Tulsa): 918.594.8155

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Raman P. Singh School of Mechanical and Aerospace Engineering Phone (Tulsa): 918.594.8155 Oklahoma State University Phone (Stillwater): 405.744.1825 700 N. Greenwood Avenue, Tulsa, OK 74106 raman

  16. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  17. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-Print Network [OSTI]

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  18. Nonresonant hyper?Raman and hyper?Rayleigh scattering in benzene and pyridine

    E-Print Network [OSTI]

    Neddersen, John P.; Mounter, Sarah A.; Bostick, James M.; Johnson, Carey K.

    1989-01-01

    Nonresonant hyper?Raman and hyper?Rayleigh spectra excited at 1064 nm are reported for neat benzene and pyridine. The theory of Herzberg–Teller vibronic coupling in nonresonant and preresonant hyper?Raman scattering is developed. Nonresonant hyper...

  19. Time?resolved anisotropic coherent anti?Stokes Raman scattering: A new probe of reorientational dynamics

    E-Print Network [OSTI]

    Wan, Chaozhi; Johnson, Carey K.

    1993-09-01

    A formalism for the time?dependent anisotropic third?order susceptibility induced by a linearly polarized excitation pulse has been derived to describe the time dependence of coherent anti?Stokes Raman scattered(CARS) and Raman time...

  20. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    significantly with natural gas composition. Most generally,natural gas and several LNGs evaluated the impact of gas compositioncomposition (also referred to as “gas quality”) 3 , with the natural

  1. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    SciTech Connect (OSTI)

    Jia, Weiyi; Wang, Xiaojun; Jia, George D.; Lewis, Linda; Yen, Laurel C.

    2014-06-24

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  2. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOE Patents [OSTI]

    Jia, Weiyi; Wang, Xiaojun; Yen, William; Yen, Laurel C.; Jia, George D.

    2012-12-04

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  3. Method of manufacturing aerogel composites

    DOE Patents [OSTI]

    Cao, W.; Hunt, A.J.

    1999-03-09

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  4. Method of manufacturing aerogel composites

    DOE Patents [OSTI]

    Cao, Wanqing (Alameda, CA); Hunt, Arlon Jason (Oakland, CA)

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  5. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOE Patents [OSTI]

    Kyle, Kevin R. (Brentwood, CA); Brown, Steven B. (Livermore, CA)

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  6. UV resonance Raman analysis of trishomocubane and diamondoid dimers

    SciTech Connect (OSTI)

    Meinke, Reinhard Thomsen, Christian; Maultzsch, Janina; Richter, Robert; Merli, Andrea; Fokin, Andrey A.; Department of Organic Chemistry, Kiev Polytechnic Institute, pr. Pobedy 37, 03056 Kiev ; Koso, Tetyana V.; Schreiner, Peter R.; Rodionov, Vladimir N.

    2014-01-21

    We present resonance Raman measurements of crystalline trishomocubane and diamantane dimers containing a C=C double bond. Raman spectra were recorded with excitation energies between 2.33 eV and 5.42 eV. The strongest enhancement is observed for the C=C stretch vibration and a bending mode involving the two carbon atoms of the C=C bond, corresponding to the B{sub 2g} wagging mode of ethylene. This is associated with the localization of the ?-HOMO and LUMO and the elongation of the C=C bond length and a pyramidalization of the two sp{sup 2}-hybridized carbon atoms at the optical excitation. The observed Raman resonance energies of the trishomocubane and diamantane dimers are significantly lower than the HOMO-LUMO gaps of the corresponding unmodified diamondoids.

  7. Carrier-free Raman manipulation of trapped neutral atoms

    E-Print Network [OSTI]

    René Reimann; Wolfgang Alt; Tobias Macha; Dieter Meschede; Natalie Thau; Seokchan Yoon; Lothar Ratschbacher

    2014-12-02

    We experimentally realize an enhanced Raman control scheme for neutral atoms that features an intrinsic suppression of the two-photon carrier transition, but retains the sidebands which couple to the external degrees of freedom of the trapped atoms. This is achieved by trapping the atom at the node of a blue detuned standing wave dipole trap, that acts as one field for the two-photon Raman coupling. The improved ratio between cooling and heating processes in this configuration enables a five times lower fundamental temperature limit for resolved sideband cooling. We apply this method to perform Raman cooling to the two-dimensional vibrational ground state and to coherently manipulate the atomic motion. The presented scheme requires minimal additional resources and can be applied to experiments with challenging optical access, as we demonstrate by our implementation for atoms strongly coupled to an optical cavity.

  8. Chiral Topological Orders in an Optical Raman Lattice

    E-Print Network [OSTI]

    Xiong-Jun Liu; Zheng-Xin Liu; K. T. Law; W. Vincent Liu; T. K. Ng

    2014-09-14

    We find an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two incident plane-wave lasers are applied to generate simultaneously a double-well square lattice and periodic Raman couplings, the latter of which drive the nearest-neighbor hopping and create a staggered flux pattern across the lattice. Such a minimal setup is can yield the quantum anomalous Hall effect in the single particle regime, while in the interacting regime it achieves the $J_1$-$J_2$-$K$ model with all parameters controllable, which supports a chiral spin liquid phase. We further show that heating in the present optical Raman lattice is reduced by more than one order of magnitude compared with the conventional laser-assisted tunneling schemes. This suggests that the predicted topological states be well reachable with the current experimental capability.

  9. Local structures of polar wurtzites Zn1-xMgxO studied by raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering

    SciTech Connect (OSTI)

    Proffen, Thomas E; Kim, Yiung- Il; Cadars, Sylvian; Shayib, Ramzy; Feigerle, Charles S; Chmelka, Bradley F; Seshadri, Ram

    2008-01-01

    Research in the area of polar semiconductor heterostructures has been growing rapidly, driven in large part by interest in two-dimensional electron gas (2DEG) systems. 2DEGs are known to form at heterojunction interfaces that bear polarization gradients. They can display extremely high electron mobilities, especially at low temperatures, owing to spatial confinement of carrier motions. Recent reports of 2DEG behaviors in Ga{sub 1-x}Al{sub x}N/GaN and Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have great significance for the development of quantum Hall devices and novel high-electron-mobility transistors (HEMTs). 2DEG structures are usually designed by interfacing a polar semiconductor with its less or more polar alloys in an epitaxial manner. Since the quality of the 2DEG depends critically on interface perfection, as well as the polarization gradient at the heterojunction, understanding compositional and structural details of the parent and alloy semiconductors is an important component in 2DEG design and fabrication. Zn{sub 1-x}Mg{sub x}O/ZnO is one of the most promising heterostructure types for studies of 2DEGs, due to the large polarization of ZnO, the relatively small lattice mismatch, and the large conduction band offsets in the Zn{sub 1-x}Mg{sub x}O/ZnO heterointerface. Although 2DEG formation in Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have been researched for some time, a clear understanding of the alloy structure of Zn{sub 1-x}Mg{sub x}O is currently lacking. Here, we conduct a detailed and more precise study of the local structure of Zn{sub 1-x}Mg{sub x}O alloys using Raman and solid-state nuclear magnetic resonance (NMR), in conjunction with neutron diffraction techniques.

  10. Interacting composite fermions , R.K. Kamillab

    E-Print Network [OSTI]

    Scarola, Vito

    composite fermions (CFs), the inter-CF interaction is responsible for many interesting, non-trivial phenom=2; the Fermi sea of CFs is unstable to Cooper pairing of CFs, thereby opening up a gap and producing into a weakly interacting gas of composite fermions (CFs) [2±6], where a CF is the bound state of an electron

  11. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, D.J.; Newbold, D.D.; Frost, C.B.

    1997-07-08

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

  12. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, David J. (Redmond, OR); Newbold, David D. (Bend, OR); Frost, Chester B. (Bend, OR)

    1997-01-01

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

  13. Solar composition from the Genesis Discovery Mission

    E-Print Network [OSTI]

    Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

  14. Photoimageable composition

    DOE Patents [OSTI]

    Dentinger, Paul; Krafick, Karen L.; Simison, Kelby Liv

    2005-02-22

    The use of photoacid generators including an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt in a photoimageable composition helps improve resolution. Suitable photoimageable compositions includes: (a) a multifuctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; and a photoacid generator comprising an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt. Preferred alkoxyphenylphenyliodonium salts include 4-octyloxyphenyl phenyliodonium hexafluoroantimonate and 4-methoxyphenyl phenyliodonium hexafluoroantimonate. The photoimageable composition is particularly suited for producing high aspect ratio microstructures.

  15. Photoimageable composition

    DOE Patents [OSTI]

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  16. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  17. Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit

    E-Print Network [OSTI]

    Mukamel, Shaul

    Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double January 21, 2010 (received for review September 3, 2009) Coherent anti-Stokes Raman spectroscopy (CARS with re- spect to pulse parameters. CARS microscopy pulse shaping ultrafast spectroscpy Coherent Raman

  18. Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices

    E-Print Network [OSTI]

    Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

  19. Detection of Physiologically Relevant Alcohol Concentrations Using Raman Spectroscopy 

    E-Print Network [OSTI]

    McKay, Joshua L.

    2006-08-16

    . A. Watson, J. P. Wicksted, R. D. Stith, and W. F. March, ?Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy,? Applied Optics, 32-6, 925-929, (1993). 5. A. J. Berger, Y. Wang, and M. S. Feld, ?Rapid, noninvasive... concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy,? Applied Optics, 35-1, 209-212, (1996). 29 6. A. J. Berger, I. Itzkan, and M. S. Feld, ?Feasibility of measuring blood glucose concentration by near...

  20. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOE Patents [OSTI]

    Qian, Jiang (Los Alamos, NM); Zhao, Yusheng (Los Alamos, NM)

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  1. hal00276997, Raman spectra of misoriented bilayer graphene

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal­00276997, version 1 ­ 5 May 2008 Raman spectra of misoriented bilayer graphene P. Poncharal 1 spectra from single layer graphene with a bilayer in which the two layers are arbitrarily misoriented to the similarity of the electronic structures of single layer graphene and misoriented bilayer graphene. Another

  2. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  3. Raman Enhancement on Graphene: Adsorbed and Intercalated Molecular

    E-Print Network [OSTI]

    Raman Enhancement on Graphene: Adsorbed and Intercalated Molecular Species Naeyoung Jung intercalation into bulk graphite shifts the Fermi level of individual graphene-like sheets by charge-transfer doping; this process has been studied for many decades.1 With single or few layer thick graphenes

  4. Naderi and Raman 1 Design Considerations in Simulating Pedestrian Environments

    E-Print Network [OSTI]

    Naderi and Raman 1 Design Considerations in Simulating Pedestrian Environments Submitted: August 1 ABSTRACT Pedestrian Simulation is a new area of safety and health research employing contemporary these conditions, the simulated environment can be manipulated to further research in many aspects of pedestrian

  5. Postdoc Position in Microfluidics and Single Cell Raman Spectroscopy

    E-Print Network [OSTI]

    Horn, Matthias

    Postdoc Position in Microfluidics and Single Cell Raman Spectroscopy Department of Microbial and Environmental Microfluidics Group (http://web.mit.edu/romanstocker) Department of Civil & Environmental (junior or senior) with strong expertise in microfluidics and an interest in applying it to microbial

  6. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  8. Vibrational spectroscopy of polyatomic materials: Semiempirical calculations of anharmonic couplings and infrared and Raman linewidths in naphthalene and PETN crystals

    E-Print Network [OSTI]

    Tretiak, Sergei

    couplings and infrared and Raman linewidths in naphthalene and PETN crystals Andrei Piryatinski,* Sergei

  9. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  10. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  11. Transformation Composition Transformational Geometry

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    Isomotries Transformation Composition Congruence Transformational Geometry Christopher Ograin Christopher Ograin Transformational Geometry #12;Isomotries Transformation Composition Congruence Geo Transformational Geometry #12;Isomotries Transformation Composition Congruence Definitions Transformation

  12. Music Composition All music composition majors receive training in composition,

    E-Print Network [OSTI]

    Miles, Will

    Music Composition All music composition majors receive training in composition, theories of tonal and contemporary music, counterpoint, orchestration and technology. In addition, students are given personal University. A Distinctive Program Stetson University has a unique combination of classes in music composition

  13. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

    1995-01-17

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

  14. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect (OSTI)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  15. Concrete compositions and methods

    DOE Patents [OSTI]

    Chen, Irvin; Lee, Patricia Tung; Patterson, Joshua

    2015-06-23

    Provided herein are compositions, methods, and systems for cementitious compositions containing calcium carbonate compositions and aggregate. The compositions find use in a variety of applications, including use in a variety of building materials and building applications.

  16. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  17. Hot-gas conditioning of biomass derived synthesis gas

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.

    1993-12-31

    Battelle has tested selected catalysts to evaluate the potential for hot-gas conditioning of biomass gasifier product gas to modify the product gas to produce a gas suitable for methanol synthesis. The Battelle Process Research Unit (PRU) gasifier was utilized as a source of a stable supply of product gas that contained all of the trace constituents that might be present in a commercial scale gasification system. One goal of alternate fuel generation with renewable biomass fuels is the production of a liquid transportation fuel such as methanol. The hot-gas conditioning tests run were planned to evaluate commercial catalysts that would crack hydrocarbons and provide water gas shift activity to adjust the product gas composition for methanol synthesis. During the test program, a novel, low cost catalyst, was identified that showed high levels of activity and stability. The composition of this catalyst is such that it has the potential to be a disposable catalyst and is free from hazardous materials. The initial tests with this catalyst showed high levels of water gas shift activity superior to, and hydrocarbon cracking activity nearly as high as, a commercial cracking catalyst tested.

  18. The application of Raman laser in gravity measurement and metrology

    SciTech Connect (OSTI)

    Ru, Ning; Zhang, Li; Wang, Yu; Fan, Shangchun

    2014-05-27

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter, it is based on the atom interferometry technology by coherently manipulating the cold atoms in a fountain (with a height of 1m) with specific Raman lasers, the cold atom wave packet is splitted, combined, and then re-splitted in the process. Then the atomic wave packet will acquire different phase because of the different evolution path. The precise acceleration can be deduced through the precision measurement of atomic interference fringes phase, and this will be a high precision standard of acceleration. At present, the preparation of Raman laser and the precise control of the laser Frequency have been finished, and they have been proved to meet the requirements of the experiment.

  19. Optimum pulse shapes for stimulated Raman adiabatic passage

    E-Print Network [OSTI]

    G. S. Vasilev; A. Kuhn; N. V. Vitanov

    2009-06-10

    Stimulated Raman adiabatic passage (STIRAP), driven with pulses of optimum shape and delay has the potential of reaching fidelities high enough to make it suitable for fault-tolerant quantum information processing. The optimum pulse shapes are obtained upon reduction of STIRAP to effective two-state systems. We use the Dykhne-Davis-Pechukas (DDP) method to minimize nonadiabatic transitions and to maximize the fidelity of STIRAP. This results in a particular relation between the pulse shapes of the two fields driving the Raman process. The DDP-optimized version of STIRAP maintains its robustness against variations in the pulse intensities and durations, the single-photon detuning and possible losses from the intermediate state.

  20. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect (OSTI)

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  1. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect (OSTI)

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  2. Self-lubricating carbon nanotube reinforced nickel matrix composites

    SciTech Connect (OSTI)

    Scharf, T. W.; Neira, A.; Hwang, J. Y.; Banerjee, R.; Tiley, J.

    2009-07-01

    Nickel (Ni)--multiwalled carbon nanotube (CNT) composites have been processed in a monolithic form using the laser-engineered net shape (LENS) processing technique. Auger electron spectroscopy maps determined that the nanotubes were well dispersed and bonded in the nickel matrix and no interfacial chemical reaction products were determined in the as-synthesized composites. Mechanisms of solid lubrication have been investigated by micro-Raman spectroscopy spatial mapping of the worn surfaces to determine the formation of tribochemical products. The Ni-CNT composites exhibit a self-lubricating behavior, forming an in situ, low interfacial shear strength graphitic film during sliding, resulting in a decrease in friction coefficient compared to pure Ni.

  3. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Hyatt, David E. (Denver, CO); Bustard, Cynthia Jean (Littleton, CO); Sjostrom, Sharon (Denver, CO)

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  4. Nonequilibrium vibrational excitation of H{sub 2} in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    SciTech Connect (OSTI)

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V.A.; De Pascale, O.

    2005-07-15

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient {gamma}{sub H} of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  5. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bondarev, I. V.

    2015-01-01

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.

  6. Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios

    SciTech Connect (OSTI)

    Lang, X. Y.; Chen, L. Y.; Guan, P. F.; Fujita, T.; Chen, M. W. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-05-25

    We have synthesized nanoporous gold (NPG) films with a nanostructure consisting of small nanopores and large gold ligaments by the combination of chemical dealloying and electroless plating. The NPG films exhibit dramatic improvement in surface enhanced Raman scattering (SERS) in comparison with the conventional NPG. The superior SERS effect of the NPG films results from the confluence effect of enhanced local surface plasmon fields and electromagnetic coupling between ligaments, as well as the weak plasmon damping with increasing gold ligament sizes.

  7. Microfabrication of Biological Machines for Sensing and Locomotion Ritu Raman, Mechanical Science and Engineering

    E-Print Network [OSTI]

    Kilian, Kristopher A.

    Microfabrication of Biological Machines for Sensing and Locomotion Ritu Raman, Mechanical Science the autonomous and synchronous contraction of engineered cardiac muscle as an actuator for locomotion.[1] · We

  8. In situ Raman spectroscopic studies of trimethylindium pyrolysis in an OMVPE reactor

    E-Print Network [OSTI]

    Anderson, Timothy J.

    In situ Raman spectroscopic studies of trimethylindium pyrolysis in an OMVPE reactor Chinho Park for OMVPE deposition of indium-containing compound semiconductors. The pyrolysi

  9. Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser

    E-Print Network [OSTI]

    Adany, Peter; Arnett, David C.; Johnson, Carey K.; Hui, Rongqing

    2011-10-01

    We demonstrate a wavelength tunable optical excitation source for coherent Raman scattering (CRS) spectroscopy based on a single femtosecondfiber laser. Electrically controlled wavelength tuning of Stokes optical pulses ...

  10. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    gas and target byproducts is a much more realistic composition for steady state operation of an IFE powerplant.

  11. Aerogel composites and method of manufacture

    DOE Patents [OSTI]

    Cao, Wanqing (Alameda, CA); Hunt, Arlon Jason (Oakland, CA)

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel. Also disclosed are the composites made by the process.

  12. Flammable gas program topical report

    SciTech Connect (OSTI)

    Johnson, G.D.

    1996-10-30

    The major emphasis of this report is to describe what has been learned about the generation, retention, and release of flammable gas mixtures in high-level waste tanks. A brief overview of efforts to characterize the gas composition will be provided. The report also discusses what needs to be learned about the phenomena, how the Unreviewed Safety Question will be closed, and the approach for removing tanks from the Watch List.

  13. Rotational coherent anti-Stokes Raman spectroscopy (CARS) applied to thermometry in high-pressure hydrocarbon flames

    SciTech Connect (OSTI)

    Vestin, Fredrik; Sedarsky, David; Collin, Robert; Alden, Marcus; Linne, Mark; Bengtsson, Per-Erik

    2008-07-15

    Dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) has been investigated for thermometry under high-pressure and high-temperature conditions, in the product gas of fuel-lean hydrocarbon flames up to 1 MPa. Initial calibration measurements made in nitrogen, oxygen, and air, at pressures up to 1.55 MPa and temperatures up to 1800 K, showed good agreement between experimental and theoretical spectra. In the high-pressure flames, high-quality single-shot spectra were recorded in which nitrogen lines dominated, and peaks from CO{sub 2} and O{sub 2} were also visible. A spectral model including the species N{sub 2}, CO{sub 2}, and O{sub 2}, as well as the best available Raman linewidth models for flame thermometry, were used to evaluate the experimental spectra. Experimental problems as well as considerations related to the spectral evaluation are discussed. This work demonstrates the significant potential of DB-RCARS thermometry for applications in high-pressure and high-temperature environments. (author)

  14. Advanced composites enhance coiled tubing capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.; Williams, J.G.

    1994-04-01

    From early coiled tubing (CT) use to recent operations, most concerns have been about tube damage from past service and remaining safe working life. Composite CT (CCT) is designed and constructed to exhibit unique anisotropic characteristics relative to steel or alternative isotropic materials that expand burst, collapse, tensile and compressive load performance capabilities. In 1988, Conoco Inc. began a development effort focused on using high-performance composite materials to meet numerous challenges associated with current and future oil and gas exploration and development. At that time, Conoco initiated a project to explore composite materials use for high-pressure, long-length, non-corroding tubulars with primary application as onshore water injection lines. In 1989, Conoco awarded a contract to AMAT a/s in Sandefjord, Norway to develop spoolable composite pipe for small diameter subsea lines. Concurrent with ongoing spoolable composite subsea lines, Conoco also began to explore high-performance CCT development in 1989.

  15. Gas Mask 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  16. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  17. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  18. TOUGHENING OP ZIECONIA COMPOSITES

    E-Print Network [OSTI]

    Burlingame, Nicholas Hamilton

    2010-01-01

    MASTER TOUGHENING OF ZIRCONIA COMPOSITES Nicholas HamiltonFIGURES TOUGHENINC OF ZIRCONIA COMPOSITES Nicholas Hani Itonpartially stabilized zirconias. zirconias were combined at a

  19. Micro-Raman spectroscopic studies on the adhesive-dentine interface and the degree of conversion of dental adhesives 

    E-Print Network [OSTI]

    Miletic, Vesna

    2010-01-01

    A series of studies on monomer to polymer conversion in adhesive systems was undertaken using micro-Raman spectroscopy. A database of micro-Raman spectra was compiled for identification of tooth tissues and materials. ...

  20. Multiscalar line measurements in nonisobaric high-pressure underexpanded supersonic jets using rotational-vibrational raman spectroscopy 

    E-Print Network [OSTI]

    Cohen, Benjamin Nathan

    2009-05-15

    This work describes the development of a Raman spectroscopy system for measuring aerothermochemistry in high-speed jets and flames. A transmissive grating spectrometer was newly developed for capturing pure rotational Raman and rotationalvibrational...

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Many-body theory of surface-enhanced Raman scattering

    E-Print Network [OSTI]

    David J. Masiello; George C. Schatz

    2008-09-18

    A many-body Green's function approach to the microscopic theory of surface-enhanced Raman scattering is presented. Interaction effects between a general molecular system and a spatially anisotropic metal particle supporting plasmon excitations in the presence of an external radiation field are systematically included through many-body perturbation theory. Reduction of the exact effects of molecular-electronic correlation to the level of Hartree-Fock mean-field theory is made for practical initial implementation, while description of collective oscillations of conduction electrons in the metal is reduced to that of a classical plasma density; extension of the former to a Kohn-Sham density-functional or second-order M{\\o}ller-Plesset perturbation theory is discussed; further specialization of the latter to the random-phase approximation allows for several salient features of the formalism to be highlighted without need for numerical computation. Scattering and linear-response properties of the coupled system subjected to an external perturbing electric field in the electric-dipole interaction approximation are investigated. Both damping and finite-lifetime effects of molecular-electronic excitations as well as the characteristic fourth-power enhancement of the molecular Raman scattering intensity are elucidated from first principles. It is demonstrated that the presented theory reduces to previous models of surface-enhanced Raman scattering and leads naturally to a semiclassical picture of the response of a quantum-mechanical molecular system interacting with a spatially anisotropic classical metal particle with electronic polarization approximated by a discretized collection of electric dipoles.

  4. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  5. Saturation of the leading spike growth in backward Raman amplifiers

    SciTech Connect (OSTI)

    Malkin, V. M.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Toroker, Z. [Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2014-09-15

    Backward Raman amplification of laser pulses in plasmas can produce nearly relativistic unfocused output intensities and multi-exawatt powers in compact devices. The largest achievable intensity depends on which of major competitive processes set this limit. It is shown here that the relativistic electron nonlinearity can cause saturation of the leading amplified spike intensity before filamentation instabilities develop. A simple analytical model for the saturation, which supports numerical simulations, is suggested. The upper limit for the leading output spike unfocused intensity is calculated.

  6. Effects of alloy disorder and confinement on phonon modes and Raman scattering in Si{sub x}Ge{sub 1?x} nanocrystals: A microscopic modeling

    SciTech Connect (OSTI)

    Vasin, A. S.; Vikhrova, O. V. [Department of Physics and NIFTI, N. I. Lobachevskii University of Nizhnii Novgorod, Nizhnii Novgorod 603600 (Russian Federation); Vasilevskiy, M. I., E-mail: mikhail@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2014-04-14

    Confinement and alloy disorder effects on the lattice dynamics and Raman scattering in Si{sub 1?x}Ge{sub x} nanocrystals (NCs) are investigated numerically employing two different empirical inter-atomic potentials. Relaxed NCs of different compositions (x) were built using the Molecular Dynamics method and applying rigid boundary conditions mimicking the effect of surrounding matrix. The resulting variation of bond lengths with x was checked against Vegard's law and the NC phonon modes were calculated using the same inter-atomic potential. The localization of the principal Raman-active (Si-Si, Si-Ge, and Ge-Ge) modes is investigated by analysing representative eigenvectors and their inverse participation ratio. The dependence of the position and intensity of these modes upon x and NC size is presented and compared to previous calculated results and available experimental data. In particular, it is argued that the composition dependence of the intensity of the Si-Ge and Ge-Ge modes does not follow the fraction of the corresponding nearest-neighbour bonds as it was suggested by some authors. Possible effects of alloy segregation are considered by comparing the calculated properties of random and clustered Si{sub x}Ge{sub 1?x} NCs. It is found that the Si-Si mode and Ge-Ge mode are enhanced and blue-shifted (by several cm{sup ?1}for the Si-Si mode), while the intensity of the Si-Ge Raman mode is strongly suppressed by clustering.

  7. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  8. Realignment-enhanced coherent anti-Stokes Raman scattering (CARS) and three-dimensional imaging in anisotropic fluids

    E-Print Network [OSTI]

    A. V. Kachynski; A. N. Kuzmin; P. N. Prasad; I. I. Smalyukh

    2008-07-04

    We apply coherent anti-Stokes Raman Scattering (CARS) microscopy to characterize director structures in liquid crystals.

  9. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  10. Noise suppression and enhanced focusability in plasma Raman amplifier with multi-frequency pump

    E-Print Network [OSTI]

    Noise suppression and enhanced focusability in plasma Raman amplifier with multi-frequency pump A that backscatter of the desired seed pulse proceeds, the usual methods of noise suppression do not apply. In ideally uniform plasmas, the Raman instability of the plasma noise and precursor amplification

  11. ORIGINAL PAPER Calculation of infrared and Raman vibration modes of magnesite

    E-Print Network [OSTI]

    Cattin, Rodolphe

    ORIGINAL PAPER Calculation of infrared and Raman vibration modes of magnesite at high pressure) are used to obtain infrared (IR) and Raman magnesite vibration modes as they vary with pressure up to 50 approaches of vibrations in crystals based on empirical models suffer several drawbacks lead- ing

  12. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

  13. Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature spectra

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature-principles anharmonic calculations are carried out for the IR and Raman spectra of the CAH stretch- ing bands in butane.V. All rights reserved. 1. Introduction n-Butane is of great importance in several disciplines

  14. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C. (5665 Charlotte Way, No. 80, Livermore, CA 94550); Bloom, Stewart D. (141 Via Serena, Alamo, CA 94507)

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  15. Fifth-order electronically non-resonant Raman scattering: two-dimensional Fourier deconvolution

    E-Print Network [OSTI]

    Kaufman, Laura

    Fifth-order electronically non-resonant Raman scattering: two-dimensional Fourier deconvolution information on the direct ®fth-order nuclear response as well as the hyper- polarizability responses can-resonant Raman scattering is one of the new multi-dimensional spectroscopic techniques that oers information

  16. Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study

    E-Print Network [OSTI]

    Sipe,J. E.

    Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study O. V of a number of Raman-active phonons below the superconducting transition temperature in YBa2Cu3O7 x , Bi2Sr2Ca to obtain information about the superconducting state.4 Several years ago, Friedl et al.5 ob- served

  17. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared

    SciTech Connect (OSTI)

    Zhu, Liangdong [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Liu, Weimin [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States); Fang, Chong, E-mail: Chong.Fang@oregonstate.edu [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-07-28

    We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750?nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ?12?cm{sup ?1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627?cm{sup ?1} mode is increased by over 15 times.

  18. Entangled radiation via a Raman-driven quantum-beat laser 

    E-Print Network [OSTI]

    Qamar, Sajid; Al-Amri, M.; Qamar, Shahid; Zubairy, M. Suhail

    2009-01-01

    We propose a scheme for the entanglement generation of two cavity modes using a four-level Raman-driven quantum-beat laser (QBL). The atomic coherence is generated by a Raman-type two-photon process. Two different sufficient conditions...

  19. Continuous-wave high-power rotational Raman generation in molecular deuterium

    E-Print Network [OSTI]

    Yavuz, Deniz

    Continuous-wave high-power rotational Raman generation in molecular deuterium J. T. Green, D. E the generation of more than 300 mW of rotational Stokes output power in a CW Raman laser. The generation and the generated wavelengths. Advances in high-reflectivity, ultralow loss dielectric coatings have allowed CW

  20. Tunable Femtosecond Pulse Generation and Applications in Raman Micro-Spectroscopy 

    E-Print Network [OSTI]

    Peng, Jiahui

    2010-10-12

    reported tuning range for efficient nonlinear optical frequency conversion obtained with such a simple and low energy laser. We apply such a Ti:sapphire laser to Raman micro-spectroscopy. Because of the different temporal behaviors of the Raman process...

  1. Silicon-based nanoenergetic composites

    SciTech Connect (OSTI)

    Asay, Blaine; Son, Steven; Mason, Aaron; Yarrington, Cole; Cho, K Y; Gesner, J; Yetter, R A

    2009-01-01

    Fundamental combustion properties of silicon-based nano-energetic composites was studied by performing equilibrium calculations, 'flame tests', and instrumented burn-tube tests. That the nominal maximum flame temperature and for many Si-oxidizer systems is about 3000 K, with exceptions. Some of these exceptions are Si-metal oxides with temperatures ranging from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm{sup 3}/g of reactant with NH{sub 4}ClO{sub 4} - Si producing the most gas at 6500 cm{sup 3}/g and Fe{sub 2}O{sub 3} producing the least. Of the composites tested NH{sub 4}ClO{sub 4} - Si showed the fastest burning rates with the fastest at 2.1 km/s. The Si metal oxide burning rates where on the order of 0.03-75 mls the slowest of which was nFe{sub 2}O{sub 3} - Si.

  2. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: applications, fundamentals, and optimization

    SciTech Connect (OSTI)

    Jeremy Daniel Driskell

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments of SPR and SERS. Chapter 4 introduces a novel method of reducing sample incubation time via capture substrate rotation. Moreover, this work led to a method of virus quantification without the use of standards. Chapter 5 extends the methodology developed in Chapter 4 to both the antigen and ERL labeling step to perform assays with improved analytical performance in less time than can be accomplished in diffusion controlled assays. This dissertation concludes with a general summary and speculates on the future of this exciting approach to carrying out immunoassays.

  3. Spirometer techniques for measuring molar composition in argon carbon dioxide mixtures

    E-Print Network [OSTI]

    Chonde, Daniel Burje

    2007-01-01

    This paper examines a new technique for measuring gas composition through the use of a spirometer. A spirometer is high precision pressure transducer which measures the speed of sound in a gas through the emission and ...

  4. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect (OSTI)

    Russo, V.; Ghidelli, M.; Gondoni, P. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Casari, C. S.; Li Bassi, A. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Center for Nano Science and Technology PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy)

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325?nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  5. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber

    E-Print Network [OSTI]

    Westergaard, Philip G; Petersen, Jan C

    2015-01-01

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ~ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10^-4 cm^(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths.

  6. Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX

    E-Print Network [OSTI]

    Asher, Sanford A.

    Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX Manash nitrate (NH4NO3), pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), nitroamine (HMX. The ultraviolet (UV) resonance Raman/differential Raman cross-sections of NH4NO3, PETN, TNT, HMX, and RDX

  7. Pump side scattering in ultrapowerful backward Raman amplifiers A. A. Solodov, V. M. Malkin, and N. J. Fisch

    E-Print Network [OSTI]

    Pump side scattering in ultrapowerful backward Raman amplifiers A. A. Solodov, V. M. Malkin, and N of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller

  8. The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass

    E-Print Network [OSTI]

    The effect of substrates on the Raman spectrum of graphene: Graphene- on-sapphire and graphene The authors investigated the influence of substrates on Raman scattering spectrum from graphene. The room-temperature Raman signatures from graphene layers on GaAs, sapphire, and glass substrates were compared with those

  9. New C-H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol

    E-Print Network [OSTI]

    Liu, Shilin

    New C-H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol Traditionally, the Raman spectrum of ethanol in the C-H vibrational stretching region between 2800 cm-1 and 3100, and the -CH3 antisymmetric stretching. In this report, new Raman spectral features were observed for ethanol

  10. Surface-Enhanced Raman Optical Data Storage system

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-06-28

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  11. Compressed natural gas measurement issues

    SciTech Connect (OSTI)

    Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

    1993-12-31

    The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

  12. Three-dimensional gas temperature measurements in atmospheric pressure microdischarges using Raman scattering

    E-Print Network [OSTI]

    Economou, Demetre J.

    and guided into a periscope, which consisted of a Brewster's angle window, a right angle prism, and a 3 mm

  13. Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    (SNL-CA), Livermore, CA (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  14. Characterization of Gas Shales by X-ray Raman Spectroscopy | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremonySynchrotron Radiation

  15. Characterization of Gas Shales by X-ray Raman Spectroscopy | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremonySynchrotron RadiationSynchrotron

  16. Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and(Conference) | SciTech

  17. Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and(Conference) | SciTech(2D-CARS): simultaneous planar imaging

  18. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    E-Print Network [OSTI]

    Shahil, Khan Mohammad Farhan

    2012-01-01

    and methods of graphene preparation. Low TBR of graphenemethod [1-3] and graphene composite preparation techniques [The graphene-MLG concentrations utilized for preparation of

  19. Method of making a modified ceramic-ceramic composite

    DOE Patents [OSTI]

    Weaver, Billy L. (Eagan, MN); McLaughlin, Jerry C. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN)

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  20. Flammable gas project topical report

    SciTech Connect (OSTI)

    Johnson, G.D.

    1997-01-29

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  1. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  3. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  4. Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma

    SciTech Connect (OSTI)

    Daniel S. Clark; Nathaniel J. Fisch

    2003-02-06

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates.

  5. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  6. In-situ laser Raman scattering and far infrared spectroscopy studies of corrosion-passivation phenomena in metals.

    SciTech Connect (OSTI)

    Melendres, C. A.

    1999-06-28

    Vibrational spectroscopic and electrochemical techniques are among the most useful tools for the elucidation of corrosion-passivation phenomena in metals. The former can provide information on the structure and composition of corrosion films ''in situ'' in aqueous solution environments, while thermodynamic and kinetic information may be obtained using electrochemical techniques. In this paper, we demonstrate the application of Laser Raman Scattering (LRS) and Synchrotrons Far Infrared Reflectance Spectroscopy (SFIRS), coupled with electrochemical methods, for the determination of the structure and composition of surface films on nickel and copper in aqueous solution environment. The corrosion film on nickel has been found to consist of NiO and Ni(OH){sub 2} in the passive region of potential and NiOOH in the transpassive region. The film on copper consists of Cu{sub 2}O, CUO and Cu(OH){sub 2}. We also show for the first time that SFIRS can be used to obtain information on the adsorption of ions on a metal surface with sub-monolayer sensitivity. Adsorption of Cl{sup {minus}}, Br{sup {minus}}, SO{sup {minus}2}, and PO{sub 4}{sup {minus}3} was found to occur at gold electrodes in perchloric acid solution. We also observed that when two different ions are present in solution, the more strongly adsorbed ion determined the corrosion behavior of the metal.

  7. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  8. Study the gas sensing properties of boron nitride nanosheets

    SciTech Connect (OSTI)

    Sajjad, Muhammad; Feng, Peter, E-mail: p.feng@upr.edu

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH{sub 4} gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO{sub 2} laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor.

  9. Third harmonic stimulated Raman backscattering of laser in a magnetized plasma

    SciTech Connect (OSTI)

    Paknezhad, Alireza; Dorranian, Davoud

    2013-09-15

    This article studies the nonlinear Raman shifted third harmonic backscattering of an intense extraordinary laser wave through a homogenous transversely magnetized cold plasma. Due to the relativistic nonlinearity, the plasma dynamic is modified in the presence of transversely magnetic field, and this can generate the third harmonic scattered wave and an electrostatic upper hybrid wave via the Raman scattering process. Using the nonlinear wave equation, the mechanism of nonlinear third harmonic Raman scattering is discussed in detail to obtain the maximum growth rate of instability in the mildly relativistic regime. The growth rate decreases as the static magnetic field increases. It also increases with the pump wave amplitude.

  10. Raman spectroscopy of graphite in high magnetic fields: Electron-phonon coupling and magnetophonon resonance

    SciTech Connect (OSTI)

    Kim, Younghee; Smirnov, Dmitry; Kalugin, Nikolai G.; Lombardo, Antonio; Ferrari, Andrea C.

    2013-12-04

    The magneto-Raman measurements of graphite were performed in a back-scattering Faraday geometry at temperature 10 K in magnetic fields up to 45 T. The experimental data reveal the rich structure of Raman-active excitations dominated by K-point massive electrons. At high magnetic fields the graphite E{sub 2g} Raman line shows complex multi- component behavior interpreted as magnetophonon resonance coupled electron-phonon modes at graphite’s K-point. Also we found the clear signature of the fundamental, strongly dumped, n=0 magnetophonon resonance associated with H point massless holes.

  11. Q-branch Raman scattering and modern kinetic thoery

    SciTech Connect (OSTI)

    Monchick, L. [The Johns Hopkins Univ., Laurel, MD (United States)

    1993-12-01

    The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

  12. Linear optics, Raman scattering, and spin noise spectroscopy

    E-Print Network [OSTI]

    Glazov, M M

    2015-01-01

    Spin noise spectroscopy (SNS) is a new method for studying magnetic resonance and spin dynamics based on measuring the Faraday rotation noise. In strong contrast with methods of nonlinear optics, the spectroscopy of spin noise is considered to be essentially nonperturbative. Presently, however, it became clear that the SNS, as an optical technique, demonstrates properties lying far beyond the bounds of conventional linear optics. Specifically, the SNS shows dependence of the signal on the light power density, makes it possible to penetrate inside an inhomogeneously broadened absorption band and to determine its homogeneous width, allows one to realize an effective pump-probe spectroscopy without any optical nonlinearity, etc. This may seem especially puzzling when taken into account that SNS can be considered just as a version of Raman spectroscopy, which is known to be deprived of such abilities. In this paper, we clarify this apparent inconsistency.

  13. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1998-02-24

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  14. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1998-09-29

    The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  15. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1998-07-21

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  16. Stimulated Raman adiabatic passage in an extended ladder system

    SciTech Connect (OSTI)

    Niu Yingyu; Wang Rong; Qiu Minghui [School of Science, Dalian Jiaotong University, Dalian 116028 (China)

    2011-08-15

    The rovibrational dynamics of an extended ladder stimulated Raman adiabatic passage (STIRAP) system through permanent dipole moment transitions is investigated theoretically using the time-dependent quantum-wave-packet method for the ground electronic state of the HF molecule. The calculated results show that nearly 100% of the population can be transferred to the target state through (1+2), (1+3), and (2+2) STIRAP schemes. By choosing a suitable excitation pathway, the effects of the background states on the final population of the target state can be removed. For the multiphoton STIRAP process, the one-photon overtone pump scheme is more efficient than the two-photon pump scheme in controlling the population transfer to the target state.

  17. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOE Patents [OSTI]

    Talley, Chad E. (Brentwood, CA); Huser, Thomas R. (Livermore, CA); Hollars, Christopher W. (Brentwood, CA); Lane, Stephen M. (Oakland, CA); Satcher, Jr., Joe H. (Patterson, CA); Hart, Bradley R. (Brentwood, CA); Laurence, Ted A. (Livermore, CA)

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  18. COMPARATIVE MATERIALS EVALUTION FOR A GAS TURBINE ROTOR

    E-Print Network [OSTI]

    Pennycook, Steve

    COMPARATIVE MATERIALS EVALUTION FOR A GAS TURBINE ROTOR 27th Annual Conference on Composites: microturbine, silicon nitride, turbine, CARES, recuperator, ceramic, gas turbine, life analysis #12;COMPARATIVE MATERIALS EVALUTION FOR A GAS TURBINE ROTOR Kesseli et. al Ingersoll-Rand's Ceramic Microturbine (CMT) Plan

  19. In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy

    E-Print Network [OSTI]

    Day, Sarah J; Evans, Aneurin; Parker, Julia E

    2015-01-01

    Clathrate hydrates are believed to play a significant role in various solar system environments, e.g. comets, and the surfaces and interiors of icy satellites, however the structural factors governing their formation and dissociation are poorly understood. We demonstrate the use of a high pressure gas cell, combined with variable temperature cooling and time-resolved data collection, to the in situ study of clathrate hydrates under conditions relevant to solar system environments. Clathrates formed and processed within the cell are monitored in situ using synchrotron X-ray powder diffraction and Raman spectroscopy. X-ray diffraction allows the formation of clathrate hydrates to be observed as CO2 gas is applied to ice formed within the cell. Complete conversion is obtained by annealing at temperatures just below the ice melting point. A subsequent rise in the quantity of clathrate is observed as the cell is thermally cycled. Four regions between 100-5000cm-1 are present in the Raman spectra that carry feature...

  20. Vacuum 65 (2002) 415425 Plasma spraying of micro-composite thermal barrier coatings

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2002-01-01

    blades and vanes of gas turbine engines, turbine shrouds and combus- tor cans. These coatings increase. Keywords: Plasma spraying; Gas tunnel-type; Thermal barrier-composite coatings; Aluminum oxide; ZirconiumVacuum 65 (2002) 415­425 Plasma spraying of micro-composite thermal barrier coatings S. Sharafata

  1. Enhanced electrodes for solid state gas sensors

    DOE Patents [OSTI]

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  2. Thermoset molecular composites

    DOE Patents [OSTI]

    Benicewicz, Brian C. (Los Alamos, NM); Douglas, Elliot P. (Los Alamos, NM); Hjelm, Jr., Rex P. (Los Alamos, NM)

    1996-01-01

    A polymeric composition including a liquid crystalline polymer and a thermosettable liquid crystalline monomer matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms and a polymeric composition including a liquid crystalline polymer and a liquid crystalline thermoset matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms are disclosed.

  3. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  4. Microcracking in fibrous composites 

    E-Print Network [OSTI]

    Conrad, Nicholas

    1973-01-01

    Composites. (August 1973) Nicholas Conrad, B. S. , Texas A&M University Directed by: Dr. R. A, Schapery Microcracking is investigated as an important cause of nonlinear viscoelastic behavior in fibrous composites. Mechanical properties tests... are conducted on a unidirectional graphite fiber-reinforced epoxy in order to determine some aspects of nonlinear behavior, and the results of microcracking. The nature. of the microstructure of composites and the microcracking that occurs in composites...

  5. Arylene fluorinated sulfonimide compositions

    DOE Patents [OSTI]

    Teasley, Mark F. (Landenberg, PA)

    2010-11-23

    Described herein are aromatic sulfonimide compositions that can be used to prepare polymers useful as membranes in electrochemical cells.

  6. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, P.C.

    1997-05-06

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  7. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    1997-01-01

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  8. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  9. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  10. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  11. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  12. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  13. Harnessing Chemical Raman Enhancement for Understanding Organic Adsorbate Binding on Metal Surfaces

    E-Print Network [OSTI]

    Zayak, Alexey

    2014-01-01

    P. J. ; Neaton, J. B. Chemical Raman Enhancement of OrganicJ. ; Zhao, K. ; Zhang, Z. Chemical contribution to Surface-the Molecule-Surface chemical coupling in SERS. J. Am. Chem.

  14. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    E-Print Network [OSTI]

    Dingari, Narahara Chari

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic ...

  15. Photo-oxidation of Ge Nanocrystals: Kinetic Measurements by In Situ Raman Spectroscopy

    E-Print Network [OSTI]

    2008-01-01

    Photo-oxidation of Ge Nanocrystals: Kinetic Measurements byBerkeley, CA, 94720 ABSTRACT Ge nanocrystals are formed inthe Raman spectra of the Ge nanocrystals in-situ. The

  16. Single-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy

    E-Print Network [OSTI]

    Su, Jue; Xie, Ruxin; Johnson, Carey K.; Hui, Rongqing

    2013-06-01

    We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting in a...

  17. Solar Energy Materials & Solar Cells 71 (2002) 511522 In situ Raman spectroscopy of the

    E-Print Network [OSTI]

    Nabben, Reinhard

    2002-01-01

    Solar Energy Materials & Solar Cells 71 (2002) 511­522 In situ Raman spectroscopy. In this situation, a low energy excitation (e.g. visible light) is needed to excite an electron to a neighboring

  18. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation

    E-Print Network [OSTI]

    Mohiuddin, T. M. G.

    We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E[subscript 2g] optical mode ...

  19. Zone folding effect in Raman G-band intensity of twisted bilayer graphene

    E-Print Network [OSTI]

    Dresselhaus, Mildred

    The G-band Raman intensity is calculated for twisted bilayer graphene as a function of laser excitation energy based on the extended tight binding method. Here we explicitly consider the electron-photon and electron-phonon ...

  20. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    SciTech Connect (OSTI)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  1. Role of noise operators on two-photon correlations in an extended coherent Raman medium 

    E-Print Network [OSTI]

    Ooi, C. H. Raymond; Zubairy, M. Suhail.

    2007-01-01

    An extended medium driven in a double Raman configuration generates Stokes and anti-Stokes fields that are described by coupled parametric oscillator equations with solutions that depend on input boundary operators and quantum noise operators. We...

  2. ROTATIONAL AND VIBRATIONAL RAMAN SPECTROSCOPY FOR FLOW FROM AN UNDEREXPANDED JET NOZZLE 

    E-Print Network [OSTI]

    Bayeh, Alexander

    2008-08-19

    The objective of this work is the construction of a fully functioning Raman line imaging spectrometer; and the measurement of pressure, temperature, and chemical concentration in supersonic flows issuing from a jet nozzle. The measurements...

  3. Breit-Wigner-Fano line shapes in Raman spectra of graphene

    E-Print Network [OSTI]

    Hasdeo, Eddwi H.

    Excitation of electron-hole pairs in the vicinity of the Dirac cone by the Coulomb interaction gives rise to an asymmetric Breit-Wigner-Fano line shape in the phonon Raman spectra in graphene. This asymmetric line shape ...

  4. UV Resonance Raman Spectroscopy Using a New cw Laser Source: Convenience and Experimental Simplicity

    E-Print Network [OSTI]

    Asher, Sanford A.

    into the spectrometer. We dem- onstrate the ability of this laser to excite Raman spectra of solid samples such as coal-liquid- alytical applications. Examples include studies of PAHs in coal-derived liquids4-~and in petroleum

  5. Vlasov simulations of kinetic enhancement of Raman backscatter in laser fusion plasmas

    E-Print Network [OSTI]

    Strozzi, D. J. (David J.)

    2006-01-01

    Stimulated Raman scattering (SRS) is studied in plasmas relevant to inertial confinement fusion (ICF). The Eulerian Vlasov-Maxwell code ELVIS was developed and run for this purpose. Plasma waves are heavily Landau damped ...

  6. Development of a Surface Enhanced Raman Spectroscopy Platform Technology to Detect Cardiac Biomarkers of Myocardial Infarction 

    E-Print Network [OSTI]

    Benford, Melodie Elane

    2013-04-24

    to include cardiac markers as central to diagnosis. To address this clinical need, a sensitive microfluidic surface-enhanced Raman spectroscopy (SERS) nanochannel-based optical device is being developed for ultimate use as a point-of-care device...

  7. PLANETESIMAL COMPOSITIONS IN EXOPLANET SYSTEMS

    SciTech Connect (OSTI)

    Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Mousis, Olivier [Observatoire THETA, Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, BP 1615, F-25010 Besancon Cedex (France); Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Madhusudhan, Nikku, E-mail: torrence.v.johnson@jpl.nasa.gov [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06511 (United States)

    2012-10-01

    We have used recent surveys of the composition of exoplanet host stars to investigate the expected composition of condensed material in planetesimals formed beyond the snow line in the circumstellar nebulae of these systems. Of the major solid-forming elements, C and O abundances (and particularly the C/O abundance ratio) strongly affect the amounts of volatile ices and refractory phases in icy planetesimals formed in these systems. This results from these elements' effects on the partitioning of O among gas, refractory solid and ice phases in the final condensate. The calculations use a self-consistent model for the condensation sequence of volatile ices from the nebula gas after refractory (silicate and metal) phases have condensed. The resultant mass fractions (compared to the total condensate) of refractory phases and ices were calculated for a range of nebular temperature structures and redox conditions. Planetesimals in systems with sub-solar C/O should be water ice-rich, with lower than solar mass fractions of refractory materials, while in super-solar C/O systems planetesimals should have significantly higher mass fractions of refractories, in some cases having little or no water ice. C-bearing volatile ices and clathrates also become increasingly important with increasing C/O depending on the assumed nebular temperatures. These compositional variations in early condensates in the outer portions of the nebula will be significant for the equivalent of the Kuiper Belt in these systems, icy satellites of giant planets, and the enrichment (over stellar values) of volatiles and heavy elements in giant planet atmospheres.

  8. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  9. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  10. The effect of fuel composition on flame dynamics

    SciTech Connect (OSTI)

    Hendricks, Adam G.; Vandsburger, Uri

    2007-10-15

    As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

  11. Improving Raman velocimetry of laser-cooled cesium atoms by spin-polarization

    E-Print Network [OSTI]

    Julien Chabé; Hans Lignier; Pascal Szriftgiser; Jean Claude Garreau

    2007-02-04

    We study the peformances of Raman velocimetry applied to laser-cooled, spin-polarized, cesium atoms. Atoms are optically pumped into the F=4, m=0 ground-state Zeeman sublevel, which is insensitive to magnetic perturbations. High resolution Raman stimulated spectroscopy is shown to produce Fourier-limited lines, allowing, in realistic experimental conditions, atomic velocity selection to one-fiftieth of a recoil velocity.

  12. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique 

    E-Print Network [OSTI]

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-01

    spectroscopy and coherent anti-Stokes Raman-scattering (CARS) spectroscopy find widespread use in medical diagnostics [3,4]. While the probability of spontaneous Raman scattering depends on the molecular concentration linearly, for its coherent counterpart?CARS...?the signal is known to scale quadrat- ically with the concentration of scatterers due to constructive interference of the resultant coherent photons [1,2]. In recent work, Dogariu et al. [5] have measured a clear quadratic dependence of the CARS signal...

  13. Elaboration of m-cresol polyamide12/ polyaniline composite films for antistatic applications

    SciTech Connect (OSTI)

    Mezdour, D.; Tabellout, M.; Bardeau, J.-F; Sahli, S.

    2013-12-16

    The present work deals with the preparation of transparent antistatic films from an extreme dilution of an intrinsically conducting polymer (ICP) with not coloured polymers. Our approach is based on the chemical polymerization of a very thin layer of Polyaniline (PANI) around particles of an insulating polymer (PA12). Films were obtained by dissolving the synthesized core-shell particles in m-Cresol. The electric property and structure relationships were investigated by using dielectric relaxation spectroscopy, X-ray diffraction and micro-Raman spectroscopy. Composite films exhibited a well established dc conductivity over all the frequency range for 10 wt. % of PANI concentration related to the conductive properties of the PANI clusters. X-ray diffraction data show broader and lower intensity of PA12 peaks when increasing PANI content, probably due to the additional doping effect of m- cresol. The doping of PA12/PANI films with Dodecyl benzene sulfonic acid (DBSA) was unequivocally verified by Raman spectroscopy.

  14. Sol-gel synthesis of mesoporous CaCu{sub 3}Ti{sub 4}O{sub 12} thin films and their gas sensing response

    SciTech Connect (OSTI)

    Parra, R., E-mail: rparra@fi.mdp.edu.a [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales (INTEMA), CONICET-UNMdP, J. B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Savu, R. [Instituto de Quimica, UNESP, Rua F. Degni s/n, 14800-900 Araraquara, SP (Brazil); Ramajo, L.A.; Ponce, M.A. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales (INTEMA), CONICET-UNMdP, J. B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Varela, J.A. [Instituto de Quimica, UNESP, Rua F. Degni s/n, 14800-900 Araraquara, SP (Brazil); Castro, M.S. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales (INTEMA), CONICET-UNMdP, J. B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Bueno, P.R. [Instituto de Quimica, UNESP, Rua F. Degni s/n, 14800-900 Araraquara, SP (Brazil); Joanni, E. [Instituto de Quimica, UNESP, Rua F. Degni s/n, 14800-900 Araraquara, SP (Brazil); Centro de Tecnologia da Informacao Renato Archer, Rodovia Dom Pedro I (SP-65) km 143, 6, 13069-901 Campinas, SP (Brazil)

    2010-06-15

    A new sol-gel synthesis procedure of stable calcium copper titanate (CaCu{sub 3}Ti{sub 4}O{sub 12}-CCTO) precursor sols for the fabrication of porous films was developed. The composition of the sol was selected in order to avoid the precipitation of undesired phases; ethanol was used as solvent, acetic acid as modifier and poly(ethyleneglycol) as a linker agent. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 {sup o}C. The main phase present in the samples, as detected by X-ray diffraction and Raman spectroscopy, was CaCu{sub 3}Ti{sub 4}O{sub 12}. Scanning electron microscopy analysis showed that mesoporous structures, with thicknesses between 200 and 400 nm, were developed as a result of the processing conditions. The films were tested regarding their sensibility towards oxygen and nitrogen at atmospheric pressure using working temperatures from 200 to 290 {sup o}C. The samples exhibited n-type conductivity, high sensitivity and short response times. These characteristics indicate that CCTO mesoporous structures obtained by sol-gel are suitable for application in gas sensing. - Graphical abstract: A sol-gel synthesis procedure toward stable CaCu{sub 3}Ti{sub 4}O{sub 12}-precursor sols avoiding the precipitation of undesired compounds is proposed. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 {sup o}C. The thickness varied between 200 and 400 nm depending on sol composition. The films, tested as gas sensors for O{sub 2}, showed n-type conductivity, good sensitivity and short response times.

  15. Feasibility of an alpha particle gas densimeter for stack sampling applications 

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01

    , for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

  16. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    SciTech Connect (OSTI)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  17. Development of time-domain differential Raman for transient thermal probing of materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Shen; Wang, Tianyu; Hurley, David; Yue, Yanan; Wang, Xinwei

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at ?s resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomore »account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10??, 8.14 × 10??, and 9.51 × 10?? m²/s. These results agree well with the reference value of 8.66 × 10?? m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.« less

  18. Development of time-domain differential Raman for transient thermal probing of materials

    SciTech Connect (OSTI)

    Xu, Shen; Wang, Tianyu; Hurley, David; Yue, Yanan; Wang, Xinwei

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at ?s resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking into account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10??, 8.14 × 10??, and 9.51 × 10?? m²/s. These results agree well with the reference value of 8.66 × 10?? m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.

  19. Raman induced soliton self-frequency shift in microresonator Kerr frequency combs

    E-Print Network [OSTI]

    Karpov, Maxim; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J

    2015-01-01

    The formation of temporal dissipative solitons in continuous wave laser driven microresonators enables the generation of coherent, broadband and spectrally smooth optical frequency combs as well as femtosecond pulses with compact form factor. Here we report for the first time on the observation of a Raman-induced soliton self-frequency shift for a microresonator soliton. The Raman effect manifests itself in amorphous SiN microresonator based single soliton states by a spectrum that is hyperbolic secant in shape, but whose center is spectrally red-shifted (i.e. offset) from the continuous wave pump laser. The Raman induced spectral red-shift is found to be tunable via the pump laser detuning and grows linearly with peak power. The shift is theoretically described by the first order shock term of the material's Raman response, and we infer a Raman shock time of 20 fs for amorphous SiN. Moreover, we observe that the Raman induced frequency shift can lead to a cancellation or overcompensation of the soliton recoi...

  20. Bio390 Problem: Gas Laws thanks to Dr. J.F. Anderson,

    E-Print Network [OSTI]

    Prestwich, Ken

    . Gas % Composition Partial Pressure Oxygen 70 CO2 3 Nitrogen 18 Argon 9 N2 + Ar = Total - O2 - CO2 (%) For all Partial pressures, simply mulitply the fraction for each gas (%/100) times the total pressure

  1. Experimental and simulation studies of water-alternating-enriched gas injection for San Francisco Field, Colombia 

    E-Print Network [OSTI]

    Soto Tavera, Claudia Patricia

    2003-01-01

    This thesis presents a complete investigation involving experimental and compositional reservoir simulation studies into enriched gas injection as a method to enhance oil recovery from the San Francisco field in Colombia. In enriched gas floods...

  2. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  3. More light on the 2?{sub 5} Raman overtone of SF{sub 6}: Can a weak anisotropic spectrum be due to a strong transition anisotropy?

    SciTech Connect (OSTI)

    Kremer, D.; Rachet, F.; Chrysos, M., E-mail: michel.chrysos@univ-angers.fr [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers (France)

    2014-01-21

    Long known as a fully polarized band with a near vanishing depolarization ratio [?{sub s} = 0.05, W. Holzer and R. Ouillon, Chem. Phys. Lett. 24, 589 (1974)], the 2?{sub 5} Raman overtone of SF{sub 6} has so far been considered as of having a prohibitively weak anisotropic spectrum [D. P. Shelton and L. Ulivi, J. Chem. Phys. 89, 149 (1988)]. Here, we report the first anisotropic spectrum of this overtone, at room temperature and for 13 gas densities ranging between 2 and 27 amagat. This spectrum is 10 times broader and 50 times weaker than the isotropic counterpart of the overtone [D. Kremer, F. Rachet, and M. Chrysos, J. Chem. Phys. 138, 174308 (2013)] and its profile much more sensitive to pressure effects than the profile of the isotropic spectrum. From our measurements an accurate value for the anisotropy matrix-element |?000020|??|000000?| was derived and this value was found to be comparable to that of the mean-polarizability ((000020), ?{sup ¯} (000000)). Among other conclusions our study offers compelling evidence that, in Raman spectroscopy, highly polarized bands or tiny depolarization ratios are not necessarily incompatible with large polarizability anisotropy transition matrix-elements. Our findings and the way to analyze them suggest that new strategies should be developed on the basis of the complementarity inherent in independent incoherent Raman experiments that run with two different incident-beam polarizations, and on concerted efforts to ab initio calculate accurate data for first and second polarizability derivatives. Values for these derivatives are still rarities in the literature of SF{sub 6}.

  4. Raman Spectroscopic and Visible Absorption Investigation of LiCrSi2O6 Pyroxene Under Pressure

    E-Print Network [OSTI]

    Downs, Robert T.

    , changes in the Raman spectra are observed between 6.8 and 7.7 GPa, possibly due to the formation for these changes have been the subject of much study.2 A recently discovered phase transition in Mg­Fe rich in the P21/c phase. By factor-group analysis, there should be 30 Raman-active Ag modes and 30 Raman

  5. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Bustard, Cynthia Jean (Littleton, CO)

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  6. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  7. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  8. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect (OSTI)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  9. Gas Drill 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    .C. Wang, B.T. Lovell, Program, Summary Report TE4258-5-84, J. McCrank, "Topping of a Combined Gas DOE/ET/11292, Oct. 1984. and Steam Turbine Powerplant using a TAM Combustor," Thermo Electron [4J Final Report: "Thermionic Energy Report No. 4258... for each Btu fired in the burners has been cal culated with the process gas temperature as a variable. It was shown [2 ] that the maximum thermionic power produced is 18 kW per million Btu fired per hour. All com bustors are similar but progressively...

  10. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  11. Air quality impacts of liquefied natural gas in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    (Mexico) which can supply part of the terminal's natural gas capacity to Southern California (ECA, 2012). In addition, the increased extraction of shale gas in the United States occurring in the last five years of LNG or shale gas is the potential impact of the changes in natural gas composition on pollutant

  12. Composite bipolar plate for electrochemical cells

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Busick, Deanna N. (Los Alamos, NM)

    2001-01-01

    A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.

  13. Feasibility of waterflooding Soku E7000 gas-condensate reservoir 

    E-Print Network [OSTI]

    Ajayi, Arashi

    2002-01-01

    We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion...

  14. Liquid absorbent solutions for separating nitrogen from natural gas

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  15. Composition for detecting uranyl

    DOE Patents [OSTI]

    Baylor, Lewis C. (North Augusta, SC); Stephens, Susan M. (Athens, GA)

    1995-01-01

    A composition for detecting the presence and concentration of a substance such as uranyl, comprising an organohalide covalently bonded to an indicator for said substance. The composition has at least one active OH site for forming a complex with the substance to be detected. The composition is made by reacting equimolar amounts of the indicator and the organohalide in a polar organic solvent. The absorbance spectrum of the composition-uranyl complex is shifted with respect to the absorbance spectrum of the indicator-uranyl complex, to provide better spectral resolution for detecting uranyl.

  16. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  17. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  18. Reactive composite compositions and mat barriers

    DOE Patents [OSTI]

    Langton, Christine A. (Aiken, SC); Narasimhan, Rajendran (Evans, GA); Karraker, David G. (Aiken, SC)

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  19. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  20. Light trapping in thin-film solar cells measured by Raman spectroscopy

    SciTech Connect (OSTI)

    Ledinský, M., E-mail: ledinsky@fzu.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 00 Prague (Czech Republic); Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Moulin, E.; Bugnon, G.; Meillaud, F.; Ballif, C. [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Ganzerová, K.; Vetushka, A.; Fejfar, A. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 00 Prague (Czech Republic)

    2014-09-15

    In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (?c-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442?nm, 514?nm, 633?nm, and 785?nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the ?c-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infrared wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the ?c-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.

  1. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    SciTech Connect (OSTI)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  2. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

    1991-08-06

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  3. Propagation of light in low pressure gas

    E-Print Network [OSTI]

    Jacques Moret-Bailly

    2012-04-13

    The criticism by W. E. Lamb, W. Schleich, M. Scully, C. Townes of a simplified quantum electrodynamics which represents the photon as a true particle is illustrated. Collisions being absent in low-pressure gas, exchanges of energy are radiative and coherent. Thin shells of plasma containing atoms in a model introduced by Str\\"omgren are superradiant, seen as circles possibly dotted. Spectral radiance of novae has magnitude of laser radiance, and column densities are large in nebulae: Superradiance, multiphoton effects, etc., work in astrophysics. The superradiant beams induce multiphotonic scatterings of light emitted by the stars, brightening the limbs of plasma bubbles and darkening the stars. In excited atomic hydrogen, impulsive Raman scatterings shift frequencies of light. Microwaves exchanged with the Pioneer probes are blueshifted, simulating anomalous accelerations. Substituting coherence for wrong calculations in astrophysical papers, improves results, avoids "new physics".

  4. Molybdenum disilicide matrix composite

    DOE Patents [OSTI]

    Petrovic, John J. (Los Alamos, NM); Carter, David H. (Los Alamos, NM); Gac, Frank D. (Los Alamos, NM)

    1991-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  5. Molybdenum disilicide matrix composite

    DOE Patents [OSTI]

    Petrovic, John J. (Los Alamos, NM); Carter, David H. (Los Alamos, NM); Gac, Frank D. (Los Alamos, NM)

    1990-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  6. Biodegradable synthetic bone composites

    DOE Patents [OSTI]

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  7. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  8. Coherent Raman and Infrared Studies of Sulfur Trioxide

    SciTech Connect (OSTI)

    Chrysostom, Engelene; Vulpanovici, Nicolae; Masiello, Anthony; Barber, Jeffrey B.; Nibler, Joseph W.; Weber, Alfons; Maki, Arthur; Blake, Thomas A.

    2001-07-02

    High resolution (0.001 cm-1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive n1 symmetric stretching mode of 32S 16O3 and its various 18O isotopomers. The v1 spectrum of 32S 16O3 reveals two intense Q-branch regions in the 1065-1067 cm-1 region, with surprisingly complex vibrational-rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving v1 and 2v4 do not reproduce the spectral detail nor yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states; 2v4 (l = 0, ? 2), v2+v4 (l = ? 1), 2v2 (l =0) is suspected and a determination of the location of these coupled states by high resolution infrared measurements is underway. At medium resolution (0.125 cm-1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the v2, v3, v4 fundamental modes of 32S 18O3, 32S 18O2 16O and 32S 18O 16O2. These and literature data for 32S 16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with a recent ab initio calculation by Martin. *In memory of Dr. Nicolae Vulpanovici (1968-2001)

  9. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  10. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect (OSTI)

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  11. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    E-Print Network [OSTI]

    Camp, Charles H; Cicerone, Marcus T

    2015-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending ...

  12. Facile residue analysis of recent and prehistoric cook-stones using handheld Raman spectrometry

    E-Print Network [OSTI]

    Short, Laura; Cao, Bin; Sinyukov, Alexander M; Joshi, Amitabh; Scully, Rob; Sanders, Virgil; Voronine, Dmitri V

    2013-01-01

    We performed food residue analysis of cook-stones from experimental and prehistoric earth ovens using a handheld Raman spectrometry. Progress in modern optical technology provides a facile means of rapid non-destructive identification of residue artifacts from archaeological sites. For this study spectral signatures were obtained on sotol (Dasylirion spp.) experimentally baked in an earth oven as well as sotol residue on an experimentally used processing tool. Inulin was the major residue component. The portable handheld Raman spectrometer also detected traces of inulin on boiling stones used to boil commercially obtained inulin. The Raman spectra of inulin and sotol may be useful as signatures of wild plant residues in archaeology. Spectroscopic analysis of millennia-old cook-stones from prehistoric archaeological sites in Fort Hood, TX revealed the presence of residues whose further identification requires improvement of current optical methods.

  13. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    SciTech Connect (OSTI)

    Martins Ferreira, E. H.; Stavale, F. [Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias 25250-020, RJ (Brazil); Moutinho, Marcus V. O. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro 21941-972, RJ (Brazil); Lucchese, M. M. [Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias 25250-020, RJ (Brazil); Centro de Ciencias Exatas e Tecnologicas, Universidade Federal do Pampa, Bage, Rio Grande do Sul (Brazil); Capaz, Rodrigo B. [Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias 25250-020, RJ (Brazil); Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro 21941-972, RJ (Brazil); Achete, C. A. [Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias 25250-020, RJ (Brazil); Programa de Engenharia Metalurgica e de Materiais (PEMM), Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro 21945-970, RJ (Brazil); Jorio, A. [Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias 25250-020, RJ (Brazil); Depto. de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, MG (Brazil)

    2010-09-15

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A{sub D}/A{sub G}, A{sub D}{sup '}/A{sub G}, and A{sub G}{sup '}/A{sub G} is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  14. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study

    SciTech Connect (OSTI)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V., E-mail: vr.optics1@gmail.com [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021, India. (India); Kottaisamy, M. [Department of Chemistry, Thiagarajar College of Engineering, Madurai-625015, India. (India)] [Department of Chemistry, Thiagarajar College of Engineering, Madurai-625015, India. (India)

    2014-02-15

    The exfoliation of graphene from pristine graphite in a liquid phase was achieved successfully via sonication followed by centrifugation method. Ultraviolet–visible (UV–vis) spectra of the obtained graphene dispersions at different exfoliation time indicated that the concentration of graphene dispersion increased markedly with increasing exfoliation time. The sheet-like morphology of the exfoliated graphene was revealed by Scanning Electron Microscopy (SEM) image. Further, the morphological change in different exfoliation time was investigated by Atomic Force Microscopy (AFM). A complete structural and defect characterization was probed using micro-Raman spectroscopic technique. The shape and position of the 2D band of Raman spectra revealed the formation of bilayer to few layer graphene. Also, Raman mapping confirmed the presence of uniformly distributed bilayer graphene sheets on the substrate.

  15. Feshbach-resonant Raman photoassociation in a Bose-Einstein condensate

    SciTech Connect (OSTI)

    Mackie, Matt; Phou, Pierre; Shinn, Mannix; Boyce, Heather; Katz, Lev

    2011-10-15

    We model the formation of stable heteronuclear molecules via pulsed Raman photoassociation of a two-component Bose-Einstein condensate near a strong Feshbach resonance, for both counterintuitive and intuitive pulse sequencing. Compared to lasers alone, weak Raman photoassociation is enhanced by as much as a factor of ten (five) for a counterintuitive (intuitive) pulse sequence, whereas strong Raman photoassociation is barely enhanced at all--regardless of pulse sequence. Stronger intra-atom, molecule, or atom-molecule collisions lead to an expected decrease in conversion efficiency, but stronger ambient inter-atom collisions lead to an unexpected increase in the efficiency of stable molecule production. Numerical results agree reasonably with an analytical approximation.

  16. Portable microfluidic raman system for rapid, label-free early disease signature detection

    SciTech Connect (OSTI)

    Wu, Meiye; Davis, Ryan Wesley; Hatch, Anson

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  17. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR

    E-Print Network [OSTI]

    Bunkin, Alexey F; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2013-01-01

    A compact Raman LIDAR system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the RAS. The developed system is based on a diode pumped solid state YVO4:Nd laser combined with compact spectrograph equipped with gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (~20 kg) and low power consumption (300 W) make possible to install the device on any vehicle including unmanned aircraft or submarine system. The Raman LIDAR presented was used for Svalbard fjords study and analysis of different influence of the open sea and glaciers on the water properties. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It...

  18. Paper-based ultracapacitors with carbon nanotubes-graphene composites

    SciTech Connect (OSTI)

    Li, Jian E-mail: keidar@gwu.edu; Cheng, Xiaoqian; Brand, Cameron; Shashurin, Alexey; Keidar, Michael E-mail: keidar@gwu.edu; Sun, Jianwei; Reeves, Mark

    2014-04-28

    In this paper, a paper-based ultracapacitors were fabricated by the rod-rolling method with the ink of carbon nanomaterials, which were synthesized by arc discharge under various magnetic conditions. Composites of carbon nanostructures, including high-purity single-walled carbon nanotubes (SWCNTs) and graphene flakes were synthesized simultaneously in a magnetically enhanced arc. These two nanostructures have promising electrical properties and synergistic effects in the application of ultracapacitors. Scanning electron microscope, transmission electron microscope, and Raman spectroscopy were employed to characterize the properties of carbon nanostructures and their thin films. The sheet resistance of the SWCNT and composite thin films was also evaluated by four-point probe from room temperature to the cryogenic temperature as low as 90?K. In addition, measurements of cyclic voltammetery and galvanostatic charging/discharging showed the ultracapacitor based on composites possessed a superior specific capacitance of up to 100?F/g, which is around three times higher than the ultracapacitor entirely fabricated with SWCNT.

  19. Picosecond Time-Resolved Fourier Transform Raman Spectroscopy of 9,10-Diphenylanthracene in the Excited Singlet State

    E-Print Network [OSTI]

    Jas, Gouri S.; Wan, Chaozhi; Johnson, Carey K.

    1995-05-01

    resolution at several time delays between pump pulses at 355 nm and probe pulses at 1064 nm. The near-infrared excited-state Raman scattering is enhanced by resonance with an excited-state transition of DPA. The excited-state Raman bands decay in about 5-6 ns...

  20. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    cells observed with Raman spectroscopy This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Phys. Med. Biol. 56 6839 (http://iopscience.iop.org/0031 signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman

  1. Inverse Raman scattering in silicon: A free-carrier enhanced effect D. R. Solli, P. Koonath, and B. Jalali

    E-Print Network [OSTI]

    Jalali. Bahram

    , actually facilitates IRS by delaying the onset of contamination from coherent anti-Stokes Raman scattering with blueshifted anti-Stokes waves through a process known as coherent anti-Stokes Raman scattering CARS . Under . Since IRS occurs at the anti-Stokes wavelength, it avoids fluorescence contamination 7,9 . Apart from

  2. DOI: 10.1002/chem.201002027 Surface-Enhanced Raman Scattering of Single-and Few-Layer Graphene by

    E-Print Network [OSTI]

    Kim, Bongsoo

    DOI: 10.1002/chem.201002027 Surface-Enhanced Raman Scattering of Single- and Few-Layer Graphene*[a] Introduction Raman spectroscopy has been utilized as a powerful tool for the characterization of graphene and any defects in the graphene.[1] A Si substrate with a metal oxide layer of a specific thick- ness has

  3. June 1983 / Vol. 8, No. 6 / OPTICS LETTERS 295 Coherent anti-Stokes Raman scattering in thin-film dielectric

    E-Print Network [OSTI]

    Sipe,J. E.

    June 1983 / Vol. 8, No. 6 / OPTICS LETTERS 295 Coherent anti-Stokes Raman scattering in thin-film analyze coherent anti-Stokes Raman scattering in thin-film dielectric waveguides. Extraordinarily large enhancements can be obtained in films and at surfaces by coupling externally incident radiation fields to local

  4. Observation of ion wave decay products of Langmuir waves generated by stimulated Raman scattering in ignition scale plasmas

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Observation of ion wave decay products of Langmuir waves generated by stimulated Raman scattering the time resolved spectrum of ion wave decay products from two instabilities which can limit the growth of stimulated Raman scattering SRS . This experiment detected ion wave decay products far above the thermal

  5. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect (OSTI)

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  6. Method of producing a high pressure gas

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  7. Multifunctional composites : healing, heating and electromagnetic integration

    E-Print Network [OSTI]

    Plaisted, Thomas Anthony John

    2007-01-01

    the Resitance Welding of Thermoplastic Composite Materials."Investigation." Journal of Thermoplastic Composite Materialsof Resistance Welded Thermoplastic Composites." Polymer

  8. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  9. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  10. 382 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 2, FEBRUARY 2004 Effect of a Raman Co-Pump's RIN on the BER

    E-Print Network [OSTI]

    Lakoba, Taras I.

    382 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 2, FEBRUARY 2004 Effect of a Raman Co-Pump's RIN from a Raman co-pump, on the bit-error rate (BER). We show that a given amount of the transferred RIN spontaneous emission (ASE) noise, than erbium amplifiers. The backward-pumping scheme, where the Raman pump

  11. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect (OSTI)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  12. Cooling in reduced period optical lattices: non-zero Raman detuning

    E-Print Network [OSTI]

    V. S. Malinovsky; P. R. Berman

    2006-05-06

    In a previous paper [Phys. Rev. A 72, 033415 (2005)], it was shown that sub-Doppler cooling occurs in a standing-wave Raman scheme (SWRS) that can lead to reduced period optical lattices. These calculations are extended to allow for non-zero detuning of the Raman transitions. New physical phenomena are encountered, including cooling to non-zero velocities, combinations of Sisyphus and "corkscrew" polarization cooling, and somewhat unusual origins of the friction force. The calculations are carried out in a semi-classical approximation and a dressed state picture is introduced to aid in the interpretation of the results.

  13. Exploring the Saturation Levels of Stimulated Raman Scattering in the Absolute Regime

    SciTech Connect (OSTI)

    Michel, D. T. [LULI, UMR 7605 CNRS-Ecole Polytechnique-CEA-Universite Paris VI, 91128 Palaiseau cedex (France); CEA DAM DIF, F- 91297 Arpajon (France); Depierreux, S.; Tassin, V. [CEA DAM DIF, F- 91297 Arpajon (France); Stenz, C. [CELIA, Universite Bordeaux 1, 351 cours de la Liberation, 33405 Talence cedex (France); Labaune, C. [LULI, UMR 7605 CNRS-Ecole Polytechnique-CEA-Universite Paris VI, 91128 Palaiseau cedex (France)

    2010-06-25

    This Letter reports new experimental results that evidence the transition between the absolute and convective growth of stimulated Raman scattering (SRS). Significant reflectivities were observed only when the instability grows in the absolute regime. In this case, saturation processes efficiently limit the SRS reflectivity that is shown to scale linearly with the laser intensity, and the electron density and temperature. Such a scaling agrees with the one established by T. Kolber et al.[Phys. Fluids B 5, 138 (1993)] and B Bezzerides et al.[Phys. Rev. Lett. 70, 2569 (1993)], from numerical simulations where the Raman saturation is due to the coupling of electron plasma waves with ion waves dynamics.

  14. Determination of the paradihlorobenzene and paradibromobenzene solid solutions nanoparticles structure via Raman spectra

    E-Print Network [OSTI]

    Korshunov, M A

    2012-01-01

    We measured the small frequencies Raman spectrum of the paradihlorobenzene and paradihlorobenzene solid solution nanoparticles with the size about 100 nanometers. Values of frequencies of lines decrease. The size of nanoparticles was determined by the electronic microscope. Calculations of nanoparticles structure were done using the method of molecular dynamics and histograms of nanoparticles spectra were calculated via the Dyne's method. The result is that the Raman spectrum is the sum of spectra from the central part of the nanoparticle and superficial structures with smaller concentration of paradihlorobenzene.

  15. Raman Spectroscopy of UH3 from the Hydrogen Corrosion of Uranium

    SciTech Connect (OSTI)

    Smyrl, N. R.; Stowe, A. C.; Powell, G. L.

    2011-05-31

    Hydrogen reacts with a uranium surface to form a fine, pyrophoric metal power (UH{sub 3}). Few spectroscopic studies have been conducted to study this reaction. Advances in Raman spectroscopy permit the application of the Raman method to formally difficult areas of chemistry such as the hydrogen corrosion of uranium: availability of multiple laser excitation wavelengths; fiber optics delivery and collection systems; upgraded instrumentation and detection techniques; and development of special enclosed in situ reactor cells. UH{sub 3} vibrations are expected to occur at low frequencies due to extended U-H-U structure.

  16. Infrared and Raman spectra of the fluoroxysulfate ion, SO/sub 4/F/sup -1 -/, and of fluorine perchlorate, ClO/sub 4/F

    SciTech Connect (OSTI)

    Appelman, E.H.; Basile, L.J.; Kim, H.

    1982-07-01

    The infrared and Raman spectra of solid cesium and rubidium fluoroxysulfates, CsSO/sub 4/F and RbSO/sub 4/F, have been measured, along with the gas-phase spectra of the isoelectronic molecule fluorine perchlorate, ClO/sub 4/F. The spectra are consistent with a perchloric acid type structure of C/sub s/ symmetry, and the vibrational bands have been assigned with reference to the analogous species of C/sub 3..nu../ symmetry: the fluorosulfate ion, SO/sub 3/F/sup -/, and perchloryl fluoride, ClO/sub 3/F. Normal-coordinate analyses have been carried out for both ClO/sub 4/F and SO/sub 4/F/sup -/. 6 figures, 4 tables.

  17. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  18. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  19. Electrically conductive composite material

    SciTech Connect (OSTI)

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  20. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  1. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  2. Flexible composite radiation detector

    DOE Patents [OSTI]

    Cooke, D. Wayne (Santa Fe, NM); Bennett, Bryan L. (Los Alamos, NM); Muenchausen, Ross E. (Los Alamos, NM); Wrobleski, Debra A. (Los Alamos, NM); Orler, Edward B. (Los Alamos, NM)

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  3. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  4. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  5. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  6. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  7. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Synthesizing Smart Polymeric and Composite Materials

    E-Print Network [OSTI]

    GONG, CHAOKUN

    2013-01-01

    Ebewele (eds), “Polymer science and technology”, CRC Press,polymer composite,” Composites Science and Technology, vol.polymer-composite materials: a review,” Composites Science and Technology,

  9. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  10. Multimode Raman light-atom interface in warm atomic ensemble as multiple three-mode quantum operations

    E-Print Network [OSTI]

    Micha? Parniak; Daniel P?cak; Wojciech Wasilewski

    2015-06-29

    We analyze the properties of a Raman quantum light-atom interface in long atomic ensemble and its applications as a quantum memory or two-mode squeezed state generator. We consider the weak-coupling regime and include both Stokes and anti-Stokes scattering and the effects of Doppler broadening in buffer gas assuming frequent velocity-averaging collisions. We find the Green functions describing multimode transformation from input to output fields of photons and atomic excitations. Proper mode basis is found via singular value decomposition for short interaction times. It reveals that triples of modes are coupled by a transformation equivalent to a combination of two beamsplitters and a two-mode squeezing operation. We analyze the possible transformations on an example of warm rubidium-87 vapor. The model we present bridges the gap between the Stokes only and anti-Stokes only interactions providing simple, universal description in a temporally and longitudinally multimode situation. Our results also provide an easy way to find an evolution of the states in a Schr\\"odinger picture thus facilitating understanding and design.

  11. Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb MarNGPL Production,Energy Office

  12. Near-resonance enhanced O2 detection for dual-broadband pure rotational coherent anti-Stokes Raman scattering with an ultraviolet-visible setup at 266 nm

    SciTech Connect (OSTI)

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-07-01

    Broadband and dual-broadband coherent anti-Stokes Raman scattering (CARS) are widely established tools for nonintrusive gas diagnostics. Up to now the investigations have been mainly performed for electronic nonresonant conditions of the gas species of interest. We report on the enhancement of the O2-N2 detection limit of dual-broadband pure rotational CARS by shifting the wavelength of the narrowband pump laser from the commonly used 532-266 nm. This enhancement is caused when the Schumann-Runge absorption band is approached near 176 nm. The principal concept of this experiment, i.e., covering the Raman resonance with a single- or dual-broadband combination of lasers in the visible range and moving only the narrowband probe laser near or directly into electronic resonant conditions in the UV range, should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects for the purpose of single-shot concentration measurements of minority species. To quantify the enhancement in O2 sensitivity, comparative measurements at both a 266 and a 532 nm narrowband pump laser wavelength are presented, employing a 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram (DCM) dye laser as a broadband laser source at 635 nm. An increase of approximately 13% in the ratio of the rotational CARS cross sections of O2 and N2 was obtained. The broad spectral width of the CARS excitation profile was approximately equal for both setups. Further enhancement should be achievable by shifting the narrowband pump laser closer toward 176 nm, for example, with a frequency-doubled optical parametric oscillator or an excimer laser. The principal concept of this experiment should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects of the narrowband pump laser with electronic transitions of minority species for the purpose of single-shot concentration measurements of those species.

  13. Noble gas geochemistry in thermal springs

    SciTech Connect (OSTI)

    Kennedy, B.M.; Reynolds, J.H. (Univ. of California, Berkeley (USA)); Smith, S.P. (Charles Evans and Associates, Redwood City, CA (USA))

    1988-07-01

    The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic {sup 4}He, and {sup 40}Ar and the greater the depletion in Ne relative to {sup 36}Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other components, one each for gas and water entering the bottom of the pool. The two bottom components are not in equilibrium. In Horseshoe Spring, the bubbles entering at the bottom strip the atmospheric-derived pool gases from the surrounding water while en route to the surface. If the original bottom bubbles are noble gas, as in the case of Horseshoe, the acquired pool gases can then quickly obliterate the original bubble composition. These results are used to demonstrate that Yellowstone spring surface gas samples, and perhaps similarity sampled thermal springs from other hydrothermal systems, have gas abundances that depend more on spring morphology than processes occurring deeper in the hydrothermal system.

  14. Composite zeolite membranes

    DOE Patents [OSTI]

    Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  15. Composition for detecting uranyl

    DOE Patents [OSTI]

    Baylor, L.C.; Stephens, S.M.

    1994-01-01

    The present invention relates to an indicator composition for use in spectrophotometric detection of a substance in a solution, and a method for making the composition. Useful indicators are sensitive to the particular substance being measured, but are unaffected by the fluid and other chemical species that may be present in the fluid. Optical indicators are used to measure the uranium concentration of process solutions in facilities for extracting uranium from ores, production of nuclear fuels, and reprocessing of irradiated fuels. The composition comprises an organohalide covalently bonded to an indicator for the substance, in such a manner that the product is itself an indicator that provides increased spectral resolution for detecting the substance. The indicator is preferably arsenazo III and the organohalide is preferably cyanuric chloride. These form a composition that is ideally suited for detecting uranyl.

  16. Sintered composite filter

    DOE Patents [OSTI]

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  17. Overview: Gas hydrate geology and geography

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-01-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  18. Overview: Gas hydrate geology and geography

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-06-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  19. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Li, Mo

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  20. Composite desiccant structure

    DOE Patents [OSTI]

    Fraioli, A.V.; Schertz, W.W.

    1984-06-06

    This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  1. Composite desiccant structure

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorn Woods, IL); Schertz, William W. (Batavia, IL)

    1987-01-01

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  2. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  3. Gas hydrates at two sites of an active continental margin

    SciTech Connect (OSTI)

    Kvenvolden, K.A.

    1985-03-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart or the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m. Both sites are characterized by rates of sedimentation exceeding about 30 m/m.y. and organic carbon contents exceeding about 0.5%. The magnitudes and trends of gas compositions, residual gas concentrations and chlorinity variations are generally similar at both sites. The carbon isotopic compositions are significantly heavier at Site 568 than at Site 565. The isotopic compositions and trends at Site 565 are typical of biogenic methane generation. At Site 568, the isotopic compositions are very heavy. In spite of its heavy carbon isotopic composition, this methane is believed to have a biogenic source.

  4. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  5. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  6. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation ) JumpOpen

  7. Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel Boff AboutofPlumbingUtilities,FuelDeep

  8. Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement

    SciTech Connect (OSTI)

    Singh, J.P.; Yueh, Fang-Yu

    1993-10-01

    The Coherent anti-Stokes Raman Spectroscopy system (CARS) has been developed as a laser-based, advanced, combustion-diagnostic technique to measure temperature and major species concentration. Principles of operation, description of the system and its capabilities, and operational details of this instrument are presented in this report.

  9. Detection of bacterial endospores by means of ultrafast coherent raman spectroscopy 

    E-Print Network [OSTI]

    Pestov, Dmitry Sergeyevich

    2008-10-10

    backscattered CARS signal from DPA and NaDPA powders. The possibility of selective Raman excitation via pulse shaping of the preparation pulses is also demonstrated. The analysis of time-resolved CARS experiments on powders and B. subtilis spores, a harmless...

  10. Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

    SciTech Connect (OSTI)

    Lupoi, Jason

    2012-08-27

    This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.

  11. Raman spectra of out-of-plane phonons in bilayer graphene

    E-Print Network [OSTI]

    Sato, Kentaro

    The double resonance Raman spectra of the overtone of the out-of-plane tangential optical (oTO) phonon and of combinations of the LO, ZO, and ZA phonons with one another are calculated for bilayer graphene. In the case of ...

  12. Improving total column ozone retrievals by using cloud pressures derived from Raman scattering in the UV

    E-Print Network [OSTI]

    Joiner, Joanna

    Improving total column ozone retrievals by using cloud pressures derived from Raman scattering resolution, coverage, and sampling of the Aura satellite ozone monitoring instrument (OMI), as compared with the total ozone mapping spectrometer (TOMS) should allow for improved ozone retrievals. By default, the TOMS

  13. April 1, 1995 / Vol. 20, No. 7 / OPTICS LETTERS 791 Intracavity technique for improved Raman / Rayleigh

    E-Print Network [OSTI]

    Long, Marshall B.

    April 1, 1995 / Vol. 20, No. 7 / OPTICS LETTERS 791 Intracavity technique for improved Raman cavity is modified to include sheet-forming optics and 100% reflecting end mirrors. In a comparison of this system with a laser configuration with the sheet-forming optics outside the cavity, the beam waist

  14. Beyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke, Thorsten Joachims

    E-Print Network [OSTI]

    Joachims, Thorsten

    Beyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke,adith,johannes,tj}@cs.cornell.edu ABSTRACT Big Data Pipelines decompose complex analyses of large data sets into a series of simpler tasks different pipelines. However, the interaction of independently tuned pipeline components yields poor end

  15. Analysis of climate trends in North Carolina (19491998) Ryan P. Boyles*, Sethu Raman

    E-Print Network [OSTI]

    Raman, Sethu

    Analysis of climate trends in North Carolina (1949­1998) Ryan P. Boyles*, Sethu Raman State Climate Office of North Carolina, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-7236, USA Abstract North Carolina has one of the most complex climates

  16. Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order

    E-Print Network [OSTI]

    Schreiber, Frank

    Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale, such as radially or azimuthally polarized doughnut beams, are combined with topography studies of pentacene thin in the mirror focus and kept within a nanometer distance from the surface to probe the topography using shear

  17. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    DOE Patents [OSTI]

    Fink, Samuel D. (Aiken, SC); Fondeur, Fernando F. (North Augusta, SC)

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  18. MODIFYING AN INVERTED LABORATORY MICROSCOPE FOR RAMAN Presented in Partial Fulfillment of the Requirements for

    E-Print Network [OSTI]

    that area to provide image contrast. Several different model systems were imaged with the Raman microscope by Professor Heather C. Allen, Advisor Professor Richard L. McCreery _________________________________ Advisor, but there are a few that deserve a special thank you. First of all, I would like to thank my advisor, Heather Allen

  19. Raman spectroscopy of carbon dust samples from NSTX Y. Raitses a,*, C.H. Skinner a

    E-Print Network [OSTI]

    Duffy, Thomas S.

    . The Raman measurements indicate that the production of carbon dust particles in NSTX involves modifications to be similar to those measured for carbon deposits from atmospheric pressure helium arc discharge responsible for dust production: (i) evap- oration and sublimation of thermally overloaded wall material

  20. Time-resolved x-ray Raman spectroscopy of photoexcited polydiacetylene oligomer: A simulation study

    E-Print Network [OSTI]

    Mukamel, Shaul

    , Osaka Prefecture University, Sakai 599-8531, Japan Sergei Volkov Department of Chemistry, University of the x-ray Raman peaks on the scattering wave vector k and energy . The electronic excitation energies progress in generating ultrafast x-ray pulses and bringing them down to the attosecond regime has opened up

  1. Practical substrate and apparatus for static and continuous monitoring by surface-enhanced raman spectroscopy

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1987-01-01

    A substrate for use in surface-enhanced Raman spectroscopy (SERS) is disclosed, comprising a support, preferably flexible, coated with roughness-imparting microbodies and a metallized overcoating. Also disclosed is apparatus for using the aforesaid substrate in continuous and static SERS trace analyses, especially of organic compounds.

  2. JustSpeak: Enabling Universal Voice Control on Android , T.V. Raman2

    E-Print Network [OSTI]

    Cortes, Corinna

    JustSpeak: Enabling Universal Voice Control on Android Yu Zhong1 , T.V. Raman2 , Casey Burkhardt2 to the Android op- erating system. JustSpeak offers two contributions as compared to existing systems. First, it enables system wide voice control on Android that can accommodate any application. JustSpeak constructs

  3. Computer based pedestrian landscape design using decision tree templates Baranidharan Raman a,

    E-Print Network [OSTI]

    Raman, Barani

    Computer based pedestrian landscape design using decision tree templates Baranidharan Raman a. In this paper, we demonstrate the application of a decision tree learning algorithm for designing pedestrian that queried responses to cognitive, physical and social attributes that influence pedestrian spatial analysis

  4. In-situ Observation of Raman Scattering of SWNTs during ACCVD Process

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Murakami, Yuhei Miyauchi and Shigeo Maruyama Department of Mechanical Engineering, The University of Tokyo) (c) (b) (a) Fig. 2 Raman scattering by SWNTs during ACCVD process. rotary pump & turbo monochromator quartz window detector laser (633 nm)filter rotary pump & turbo-molecular pump excitation laser

  5. Electrochemical Control of the Time-Dependent Intensity Fluctuations in Surface-Enhanced Raman Scattering (SERS)

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    in surface-enhanced Raman scattering (SERS) intensities were recorded from a roughened silver electrode the applied potential. The potential-controlled distribution of SERS intensities was interpreted by considering the modulation of the surface coverage of the adsorbed dye by the interfacial electric field

  6. Micro-resonance Raman study of optically trapped Escherichia coli cells overexpressing human neuroglobin

    E-Print Network [OSTI]

    Wenseleers, Wim

    neuroglobin Kerstin Ramser Göteborgs University Department of Physics SE-412 96 Göteborg, Sweden and Luleå coli E. coli overexpressing wild type wt neuroglobin NGB and its E7Leu mutant, respectively. NGB. DOI: 10.1117/1.2753478 Keywords: E. coli bacteria; neuroglobin; E7Leu neuroglobin; resonance Raman

  7. Demonstration of triple pump coherent anti-Stokes Raman scattering in a jet diffusion flame 

    E-Print Network [OSTI]

    Velur Natarajan, Viswanathan

    2002-01-01

    Three pulsed narrow band pump sources (a frequency doubled pulsed Nd-YAG, and two narrow band dye lasers) and a broad-band Stokes laser source are used to demonstrate triple pump coherent anti-Stokes Raman scattering in a jet diffusion flame...

  8. MESOSCALE ANALYSIS OF A CAROLINA COASTAL FRONT SETHU RAMAN, NEERAJA C. REDDY and DEVDUTTA S. NIYOGI

    E-Print Network [OSTI]

    Niyogi, Dev

    MESOSCALE ANALYSIS OF A CAROLINA COASTAL FRONT SETHU RAMAN, NEERAJA C. REDDY and DEVDUTTA S. NIYOGI the shore. Key words: GALE, Coastal front, Atmospheric boundary layer, Gulf Stream, Mesoscale analysis turbulent heat fluxes. These strong gradients in heat fluxes enhance mesoscale circulation

  9. Hydrostatic pressure dependence of the luminescence and Raman frequencies in polyfluorene C. M. Martin,1

    E-Print Network [OSTI]

    Chandrasekhar, Meera

    , absorption, and Raman scattering spectra from poly 2,7-,,9,9 -bis(2-ethylhexyl)...fluorene under hydrostatic fabricated from the PF family of materials are known to degrade under operation. The desired blue elec,14 In this work we probe the optical properties of poly 2,7-,,9,9 -bis(2-ethylhexyl)...fluorene PF2/6 via PL

  10. Computational modeling of composite material fires.

    SciTech Connect (OSTI)

    Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

    2010-10-01

    Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary condition is examined to study the propagation of decomposition fronts of the epoxy and carbon fiber and their dependence on the ambient conditions such as oxygen concentration, surface flow velocity, and radiant heat flux. In addition to the computational effort, small scaled experimental efforts to attain adequate data used to validate model predictions is ongoing. The goal of this paper is to demonstrate the progress of the capability for a typical composite material and emphasize the path forward.

  11. Activated Carbon Composites for Air Separation

    SciTech Connect (OSTI)

    Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Tsouris, Costas [ORNL; McFarlane, Joanna [ORNL

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  12. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    cushion gas for natural gas storage, Energy and Fuels, 17(RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburg Eartheffective cushion gas for gas storage reservoirs. Thus at

  13. Gas custody measurement accuracy improved in Saudi Arabia

    SciTech Connect (OSTI)

    Ali, I. (Saudi Arabian Oil Co., Dhahran (Saudi Arabia))

    1994-06-06

    To comply with new and more accurate gas measurement standards, Saudi Arabian Oil Co. (Saudi Aramco) modified software for existing flow computers and installed an on-line gas chromatograph for measuring natural gas and ethane-rich gas sales. For gases of varying composition (e.g., ethane-rich gas), a knowledge of the pressure, volume, and temperature (PVT) relationship is required for determining supercompressibility factors. The BWR-Starling equation of state was determined to best represent ethane-rich gas properties and is programmed in the new flow computers. The paper discusses gas sales, previous installations, previous calculations, revised calculations, application to ethane-rich gas, the orifice-flow constant, and field modifications of computers.

  14. Mechanical Properties of Porous-Matrix Ceramic Composites**

    E-Print Network [OSTI]

    Zok, Frank

    requirements of high-temperature components for future gas turbine engine technologies becomes realizable composites (CFCCs) in one of two ways. The more conventional approach involves the use of fiber coat- ings, obviating the need for a fiber coating (Fig. 1b). This approach can be viewed as an extension of the porous

  15. Multiwavelength Raman spectroscopy analysis of a large sampling of disordered carbons extracted from the Tore Supra tokamak

    E-Print Network [OSTI]

    Pardanaud, Cedric; Roubin, P

    2014-01-01

    Disordered carbon often exhibit a complex Raman spectrum, with four to six components. Here, a large variety of disordered carbons, forming a collection of samples with a great variety of structures, are analysed using multi-wavelength Raman microscopy (325.0, 514.5, 785.0 nm). They allow us to extend Raman behaviour known for nano-crystalline graphite to amorphous carbons, (dependence with the excitation wavelength) and other known for amorphous carbons to nano-crystalline graphite, (differentiation of the smallest cluster size probed using different excitation wavelengths). Experimental spectra were compared to simulated spectra, built using known laws, to evidence a new source of broadening.

  16. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    E-Print Network [OSTI]

    Li, Daojing; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  17. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOE Patents [OSTI]

    Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  18. Vacuum 59 (2000) 185}193 Development of composite thermal barrier coatings with

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2000-01-01

    barrier composite coating was produced using a gas-tunnel-type plasma spraying torch. To enhance) in high-temperature turbine blade applications has led to the recognition that TBC-coated superalloys oVacuum 59 (2000) 185}193 Development of composite thermal barrier coatings with anisotropic

  19. Quantitative Trait Loci Analysis of Primary Cell Wall Composition in Arabidopsis1

    E-Print Network [OSTI]

    Pauly, Markus

    fingerprinting techniques: monosaccharide composition analysis by gas chromatography, xyloglucan oligosaccharideQuantitative Trait Loci Analysis of Primary Cell Wall Composition in Arabidopsis1 Gre´gory Mouille2 trait loci (QTL) analysis was used to identify genes underlying natural variation in primary cell wall

  20. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  1. Advanced aircraft engine microlaminated intermetallic composite turbine technology

    SciTech Connect (OSTI)

    Rowe, R.G.; Skelly, D.W.; Jackson, M.R.; Larsen, M. [GE Corporate Research and Development, Schenectady, NY (United States); Lachapelle, D. [GE Aircraft Engines, Cincinnati, OH (United States)

    1996-12-31

    Higher gas path temperatures for greater aircraft engine thrust and efficiency will require both higher temperature gas turbine airfoil materials and optimization of internal cooling technology. Microlaminated composites consisting of very high temperature intermetallic compounds and ductile refractory metals offer a means of achieving higher temperature turbine airfoil capability without sacrificing low temperature fracture resistance. Physical vapor deposition, used to synthesize microlaminated composites, also offers a means of fabricating advanced turbine blade internal cooling designs. The low temperature fracture resistance of microlaminated Nb(Cr)-Cr{sub 2}Nb microlaminated composites approached 20 MPa{radical}m in fracture resistance curves, but the fine grain size of vapor deposited intermetallics indicates a need to develop creep resistant microstructures.

  2. Silicone-containing composition

    DOE Patents [OSTI]

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  3. Ceramic composite coating

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1997-01-01

    A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  4. Saccharide antifreeze compositions

    DOE Patents [OSTI]

    Walters, Kent; Duman, John G; Serianni, Anthony S

    2013-12-10

    The invention provides an antifreeze glycolipid compounds and composition comprising a polysaccharide moiety of Formula I; ##STR00001## wherein D-Manp represents a D-mannopyranose moiety, D-Xylp represents a D-xylopyranose moiety, and n is about 5 to about 70; and one or more lipid moieties covalently linked to the polysaccharide moiety of Formula I or electrostatically associated with the polysaccaride moiety for Formula I. The antifreeze glycolipid compounds and compositions can be used for a variety of industrial, agricultural, medical, and cosmetic applications where recrystallization-inhibition, cyroprotection, or cryopreservation is desired. The antifreeze glycolipid compounds or compositions can be used as, for example, as cryoprotectants for tissue preservation and transplantation, improving the texture of processed frozen food and frozen meats, frostbit protection, crop protection, and green alternatives for land vehicle antifreeze and aircraft de-icing.

  5. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    SciTech Connect (OSTI)

    Iyer, Ajai Liu, Xuwen; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Johansson, Leena-Sisko

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  6. Abrasion resistant composition

    DOE Patents [OSTI]

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  7. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  8. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  9. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    E-Print Network [OSTI]

    Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation of the spray to globular transition in gas metal arc welding: a spectroscopic investigation F Valensi1.iop.org/JPhysD/46/224005 Abstract The gas metal arc welding (GMAW) process is strongly influenced by the composition

  10. New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations

    E-Print Network [OSTI]

    Jackson, Robert B.

    New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can tool is validated by examining the composition of effluent discharge from an oil and gas brine

  11. A new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry

    E-Print Network [OSTI]

    Mazzini, Adriano

    acquired a wide set of data of molecular and isotopic composition of gas sampled in several Lusi vents, in the surrounding mud volcanoes, in the closest natural gas field (Wunut), and in the hydrothermal ventsA new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry

  12. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Franklin M. Orr, Jr.

    2002-12-31

    This report outlines progress in the first quarter of the third year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. In this report we present an application of compositional streamline simulation in modeling enhanced condensate recovery via gas injection. These processes are inherently compositional and detailed compositional fluid descriptions must be use to represent the flow behavior accurately. Compositional streamline simulation results are compared to those of conventional finite-difference (FD) simulation for evaluation of gas injection schemes in condensate reservoirs. We present and compare streamline and FD results for two-dimensional (2D) and three-dimensional (3D) examples, to show that the compositional streamline method is a way to obtain efficiently estimates of reasonable accuracy for condensate recovery by gas injection.

  13. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  14. On-line chemical composition analyzer development

    SciTech Connect (OSTI)

    Garrison, A.A.

    1993-01-01

    This report relates to the development of an on-line Raman analyzer for control of a distillation column. It is divided into: program issues, experimental control system evaluation, energy savings analysis, and reliability analysis. (DLC)

  15. Composite Higgs Sketch

    E-Print Network [OSTI]

    Bellazzini, Brando; Hubisz, Jay; Serra, Javi; Terning, John

    2012-01-01

    The coupling of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness is reached, which would suggest that additional composites should lie well below this scale. In this paper we account for the presence of an additional spin 1 custodial triplet of rhos. We examine the implications of requiring perturbative unitarity up to the compositeness scale and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and the rho couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the spin 1 triplet. We find that they can substantially enhance the Higgs di-photon rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel where the charged rhos decay to a W-boson and a Z, whi...

  16. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  17. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    E-Print Network [OSTI]

    Lin, Jian

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for ...

  18. Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores 

    E-Print Network [OSTI]

    Ooi, C. H. Raymond; Beadie, G.; Kattawar, George W.; Reintjes, J. F.; Rostovtsev, Y.; Zubairy, M. Suhail; Scully, Marlan O.

    2005-01-01

    Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering...

  19. Stimulated Raman scattering of laser in a plasma in the presence of a co-propagating electron beam

    SciTech Connect (OSTI)

    Parashar, J. [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)] [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)

    2013-12-15

    A relativistic electron beam co-propagating with a high power laser in plasma is shown to add to the growth of the stimulated Raman back scattering of the laser. The growth rate is sensitive to phase matching of electron beam with the plasma wave. In the case of phase mismatch, the growth rate drops by an order. The energy spread of the electron beam significantly reduces the effectiveness of the beam on the stimulated Raman process.

  20. Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few-Layer Molybdenum Diselenide by Raman Spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Xin; Utama, M. Iqbal Bakti; Lin, Junhao; Luo, Xin; Zhao, Yanyuan; Zhang, Jun; Pantelides, Sokrates T.; Zhou, Wu; Quek, Su Ying; Xiong, Qihua

    2015-07-02

    Various combinations of interlayer shear modes emerge in few-layer molybdenum diselenide grown by chemical vapor deposition depending on the stacking configuration of the sample. Raman measurements may also reveal polytypism and stacking faults, as supported by first principles calculations and high-resolution transmission electron microscopy. Thus, Raman spectroscopy is an important tool in probing stacking-dependent properties in few-layer 2D materials.