National Library of Energy BETA

Sample records for raise turbine efficiency

  1. City of Longwood- Raising Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Longwood offers the Raising Energy Efficiency Program (REEP) to owner occupied residences within the City of Longwood for making energy efficiency improvements to their properties while...

  2. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  3. Test Program for High Efficiency Gas Turbine Exhaust Diffuser...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Test Program for High Efficiency Gas Turbine Exhaust Diffuser Citation Details In-Document Search Title: Test Program for High Efficiency Gas Turbine Exhaust ...

  4. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbines Hydrogen Turbine photo Hydrogen Turbines The NETL Hydrogen Turbine Program manages a research, development, and demonstration (RD&D) portfolio of projects designed to remove environmental concerns about the future use of fossil fuels through development of revolutionary, near-zero-emission advanced turbine technologies. More Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency,

  5. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  6. Improved global efficiency in industrial applications with cogeneration steam turbines

    SciTech Connect (OSTI)

    Hassan, A.; Alsthom, G.

    1998-07-01

    This paper focuses on medium steam turbine in the range of 10--80 MW and their application in cogeneration plants. The author summarizes the different steps which have led to the TM concept: good efficiency; competitive price; short delivery time; operation flexibility; ease of integration in a cogeneration process. The second part of the document shows two examples of integration of these turbines in cogeneration processes; one for acrilonitril (ACN) and polypropylene plant in Spain and the second for a textile plant in Taiwan.

  7. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  8. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  9. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  10. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  11. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  12. High Efficiency Microturbine with Integral Heat Recovery- Presentation by Capstone Turbine Corporation, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on High Efficiency Microturbine with Integral Heat Recovery, given by John Nourse of Capstone Turbine Corporation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  13. turbine | OpenEI Community

    Open Energy Info (EERE)

    turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

  14. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    SciTech Connect (OSTI)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  15. Raising the Efficiency Ceiling with Multijunction III-V Concentrator Photovoltaics

    SciTech Connect (OSTI)

    King, R. R.; Boca, A.; Edmondson, K. M.; Romero, M. J.; Yoon, H.; Law, D. C.; Fetzer, C. M.; Haddad, M.; Zakaria, A.; Hong, W.; Mesropian, S.; Krut, D. D.; Kinsey, G. S.; Pien, R.; Sherif, R. A.; Karam, N. H.

    2008-01-01

    In this paper, we look at the question 'how high can solar cell efficiency go?' from both theoretical and experimental perspectives. First-principle efficiency limits are analyzed for some of the main candidates for high-efficiency multijunction terrestrial concentrator cells. Many of these cell designs use lattice-mismatched, or metamorphic semiconductor materials in order to tune subcell band gaps to the solar spectrum. Minority-carrier recombination at dislocations is characterized in GaInAs inverted metamorphic solar cells, with band gap ranging from 1.4 to 0.84 eV, by light I-V, electron-beam-induced current (EBIC), and cathodoluminescence (CL). Metamorphic solar cells with a 3-junction GaInP/ GaInAs/ Ge structure were the first cells to reach over 40% efficiency, with an independently confirmed efficiency of 40.7% (AM1.5D, low-AOD, 240 suns, 25 C). The high efficiency of present III-V multijunction cells now in high-volume production, and still higher efficiencies of next-generation cells, is strongly leveraging for low-cost terrestrial concentrator PV systems.

  16. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  17. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  18. Indirect heating system for turbine anti-icing

    SciTech Connect (OSTI)

    Wagar, S.N.

    1980-03-01

    Gas-transmission service in northern Minnesota has verified the effectiveness of American Air Filter Co.'s indirect-heating method of preventing gas-turbine icing at compressor stations. By routing hot exhaust gases through a heat exchanger rather than directly into the inlet-air system, the indirect-heating method avoids turbine fouling, raises the air temperature at a constant specific humidity, and provides a uniform cross section of heated intake air for good turbine efficiency.

  19. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  20. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  1. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  2. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  3. R and D for improved efficiency small steam turbines. Phase II. Second quarterly technical report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The detailed design of a radial inflow steam turbine (RIT) comprised of two radial inflow turbine stages driving a common bull gear/output shaft designed for rated speeds of 70,000 rpm and 52,500 rpm, respectively, is described. Details are presented on: aerodynamic design; high speed rotors; high speed rotor bearings; high speed rotor sealing; gearing; output shaft; static structure; and predicted performance. (MCW)

  4. Hydrogen Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  5. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that will accelerate turbine performance and efficiency beyond current state-of-the-art and reduce the risk to market for novel and advanced turbine-based power cycles. ...

  6. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  7. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratorys Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCTs Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the

  8. Shoosing the appropriate size wind turbine

    SciTech Connect (OSTI)

    Lynette, R.

    1996-12-31

    Within the past several years, wind turbines rated at 400 kW and higher have been introduced into the market, and some manufacturers are developing machines rated at 750 - 1,000+ kW. This raises the question: What is the appropriate size for utility-grade wind turbines today? The answer depends upon the site where the machines will be used and the local conditions. The issues discussed in the paper are: (1) Site-Related (a) Visual, noise, erosion, television interference, interference with aviation (b) Siting efficiency (2) Logistics (a) Adequacy of roads and bridges to accept large vehicles (b) Availability and cost of cranes for erection and maintenance (c) Capability of local repair/overhauls (3) Cost Effectiveness (a) Capital costs (1) Wind Turbine (2) Infrastructure costs (b) Maintenance costs (4) Technical/Financial Risk. 1 fig., 1 tab.

  9. Sandia Energy - Sandia's Brayton-Cycle Turbine Boosts Small Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Home Energy Nuclear Energy News Energy Efficiency News & Events Sandia's Brayton-Cycle Turbine Boosts Small Nuclear...

  10. Turbine FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine FAQs faq-header-big.jpg TURBINES - BASICS Q: What is a turbine? A: A turbine is a mechanical device that extracts energy from a fluid flow and turns it into useful work. A ...

  11. Turbine blade tip gap reduction system

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  12. tidal turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tidal turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  13. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  14. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  15. Comments on: SWiFT Facility Prepared for More-Efficient Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    swift-facility-prepared-for-more-efficient-operations-advanced-turbine-turbine-wake-interaction-control-research...

  16. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    SciTech Connect (OSTI)

    Hsu, M.; Nathanson, D.; Bradshaw, D.T.

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  17. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  18. Testimonials - Partnerships in R&D - Capstone Turbine Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capstone Turbine Corporation Testimonials - Partnerships in R&D - Capstone Turbine Corporation Addthis Text Version The words Office of Energy Efficiency and Renewable Energy U.S. ...

  19. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  20. NETL: University Turbine Systems Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research The University Turbine Systems Research (UTSR) Program addresses scientific research to develop and transition advanced turbines and turbine-based systems that will operate cleanly and efficiently when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. This research focuses on the areas of combustion, aerodynamics/heat transfer, and materials, in support of the Department of Energy (DOE) Office of Fossil Energy's Advanced Turbine Program

  1. Types of Hydropower Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines Types of Hydropower Turbines There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost. Terms used on this page are defined in the glossary. Impulse Turbine The impulse turbine generally uses the velocity of the water to

  2. R and D for improved efficiency small steam turbines, Phase II. Report No. 1380-3. First quarterly technical report

    SciTech Connect (OSTI)

    Jansen, Dr., W.; Maillar, K. M.; Bender, D. A.; Brassert, W. L.; Capone, P. A.; Carter, A. F.; Heitmann, A. M.; Holland, J. E.; Lord, R. E.; Thirumalaisamy, S. N.

    1980-09-01

    Progress made in the second phase of a two-phase research, design and prototype development program is presented. Phase II consists of the detailed design of the prototype radial inflow steam turbine configuration selected during the first phase and subsequent fabrication and testing. At this time, the detailed aerodynamic design of the stage flowpath has been completed except for the crossover piping from the first stage exhaust to the second stage inlet. In addition, mechanical design effort has resulted in a definition of a rotor system. The aerodynamic design included the optimization of the overall flowpath geometry of the stages specified in the initial phase of the program. The detailed aerodynamic designs of the rotor blades, nozzle vanes, scroll and diffuser were based on the optimized geometry. The final blading selected for the stage is a radial design with 26 blades, 13 of which are splitters. Sixteen nozzle vanes have been specified. The mechanical design of the rotor system to date has included the specification of the rotor wheels and shafts with their polygon connection, and the design of the thrust and journal bearings and the gearing. In addition, various shaft sealing arrangements have been evaluated, subject to the constraints indicated by initial rotordynamic analyses. Indications are that a reasonably effective labyrinth seal is not precluded by shaft length limitations. As this type of seal has been long accepted by steam turbine users, its use in the prototype is most likely. Proven components have been specified wherever possible, i.e., redesign/development could not be justified. The rotor system has been designed for at least 100,000 hours life with the most severe operating conditions and loads. The system cannot be considered complete, however, until dynamic response of the rotors for all possible operating conditions is shown to be within acceptable limits.

  3. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  4. new wind-turbine controls algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  5. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines ...

  6. Turbine system

    DOE Patents [OSTI]

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  7. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  8. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  9. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  10. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  11. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  12. Trends in gas turbine development

    SciTech Connect (OSTI)

    Day, W.H.

    1999-07-01

    This paper represents the Gas Turbine Association's view of the gas turbine industry's R and D needs following the Advanced Turbine Systems (ATS) Program which is funded by the U.S. Department of Energy (DOE). Some of this information was discussed at the workshop Next Generation Gas Turbine Power Systems, which was held in Austin, TX, February 9--10, 1999, sponsored by DOE-Federal Energy Technology Center (FETC), reference 1. The general idea is to establish public-private partnerships to reduce the risks involved in the development of new technologies which results in public benefits. The recommendations in this paper are focused on gas turbines > 30 MW output. Specific GTA recommendations on smaller systems are not addressed here. They will be addressed in conjunction with DOE-Energy Efficiency.

  13. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Wind TurbineRadar Interference Mitigation (TSPEAR & IFT&E) HomeStationary PowerEnergy Conversion EfficiencyWind EnergySiting and Barrier MitigationSiting: Wind TurbineRadar ...

  14. OUT Success Stories: Advanced Airfoils for Wind Turbines

    DOE R&D Accomplishments [OSTI]

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  15. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  16. Capstone Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capstone Turbine Project Capstone Turbine Project February 5, 2016 - 9:00am Addthis C370 Production Concept Layouts C370 Production Concept Layouts The standard small turbines currently on the market have little or no heat recovery capability and use conventional high temperature nickel alloys that limit engine efficiency. Significant amounts of energy could be saved if technologies were available to allow operation at higher temperatures with substantial heat recovery. To address this

  17. Aero Turbine | Open Energy Information

    Open Energy Info (EERE)

    Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine...

  18. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  19. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  20. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 ...

  1. Steam turbine materials and corrosion

    SciTech Connect (OSTI)

    Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

    2007-12-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

  2. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  3. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  4. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 Consider Steam Turbine Drives for Rotating Equipment (January 2012) (398.66 KB) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  5. DOE Taps Universities for Turbine Technology Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas

  6. Advanced IGCC/Hydrogen Gas Turbine Development

    SciTech Connect (OSTI)

    York, William; Hughes, Michael; Berry, Jonathan; Russell, Tamara; Lau, Y. C.; Liu, Shan; Arnett, Michael; Peck, Arthur; Tralshawala, Nilesh; Weber, Joseph; Benjamin, Marc; Iduate, Michelle; Kittleson, Jacob; Garcia-Crespo, Andres; Delvaux, John; Casanova, Fernando; Lacy, Ben; Brzek, Brian; Wolfe, Chris; Palafox, Pepe; Ding, Ben; Badding, Bruce; McDuffie, Dwayne; Zemsky, Christine

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  7. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  8. Wind Turbine Manufacturers in the U. S.: Locations and Local...

    Wind Powering America (EERE)

    Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Wind Turbine Manufacturers in the U.S.: Locations and Local Impacts WINDPOWER 2010 Conference...

  9. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  10. Recommendations to Address Power Reliability Concerns Raised...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns Raised as a ...

  11. Gas turbine bucket wall thickness control

    DOE Patents [OSTI]

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  12. Performance and market evaluation of the bladeless turbine

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

    1982-10-01

    The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

  13. Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency of High Order Spectral Element Methods on Petascale Architectures Maxwell Hutchinson 1 , Alexander Heinecke 2 , Hans Pabst 3 , Greg Henry 4 , Matteo Parsani 5 , and David Keyes 5 1 Department of Physics, University of Chicago, Chicago IL, USA 2 Intel Corporation, Santa Clara CA, USA 3 Intel Semiconductor AG, Zurich, Switzerland 4 Intel Corporation, Hillsboro OR, USA 5 Extreme Computing Research Center, KAUST, Thuwal, 23955, KSA Abstract. High order methods for the solution of PDEs

  14. Western Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine Jump to: navigation, search Name: Western Turbine Place: Aurora, Colorado Zip: 80011 Sector: Wind energy Product: Wind Turbine Installation and Maintainance. Coordinates:...

  15. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  16. DOE Technology Successes - "Breakthrough" Gas Turbines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher

  17. Performance uprate of a geothermal steam turbine case study: Brady Power low pressure turbine

    SciTech Connect (OSTI)

    Miller, R.J. Jr.

    1997-12-31

    The output of a low pressure steam turbine operating in a geothermal power plant has been increased 10.9% by performing an efficiency uprate. The performance of the turbine was studied, resulting in a design for re-optimizing the steam path. New high-efficiency components were blended with existing turbine parts to achieve large output gains at minimum cost. Because the uprate was performed by a non-OEM, the analysis and manufacturing techniques were specifically tailored for the aftermarket. The work was completed on the spare turbine components, thereby allowing the plant to continue operation while the uprated parts were being manufactured. The predicted output gains were confirmed by field performance tests of the existing and uprated turbines.

  18. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  19. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply

  20. Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle

    SciTech Connect (OSTI)

    2015-04-13

    A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.

  1. SWiFT Facility Prepared for More-Efficient Operations & Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared for More-Efficient Operations & Advanced Turbine-Turbine Wake-Interaction-Control Research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee ...

  2. Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.; Yang, W.

    2013-07-01

    High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

  3. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  4. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  5. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  6. Sliding vane geometry turbines

    SciTech Connect (OSTI)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  7. Ducting arrangement for cooling a gas turbine structure

    SciTech Connect (OSTI)

    Lee, Ching-Pang; Morrison, Jay A.

    2015-07-21

    A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72) is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).

  8. New Funding Opportunity to Develop Larger Wind Turbine Blades | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Funding Opportunity to Develop Larger Wind Turbine Blades New Funding Opportunity to Develop Larger Wind Turbine Blades March 16, 2015 - 2:47pm Addthis The Energy Department today announced $1.8 million in funding for the development of larger wind turbine blades that will help capture more power from wind resources and increase the efficiency of wind energy systems. This funding will support the research and development of technological innovations to improve the manufacturing,

  9. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  10. Turbine Imaging Technology Assessment

    SciTech Connect (OSTI)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  11. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  12. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  13. Coalescing Wind Turbine Wakes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  14. Coalescing Wind Turbine Wakes

    SciTech Connect (OSTI)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  15. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update

  16. Fireplaces and Woodburning Stoves...May Raise Energy Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fireplaces and Woodburning Stoves...May Raise Energy Costs Fireplaces and Woodburning Stoves...May Raise Energy Costs Information on energy efficiency and costs with regard to fireplaces and woodburning stoves Fireplaces and Woodburning Stoves...May Raise Energy Costs (188.31 KB) More Documents & Publications .Hearth, Patio & Barbecue Association's Comments on DOE's Regulatory Burden RFI RegReview_ReplyComments_Lennox_Hearth_Products.PDF HPBA Comments NOPR on Energy

  17. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meet Certification Requirements | Department of Energy Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements May 11, 2016 - 5:01pm Addthis NREL has awarded four subcontracts to manufacturers of small and mid-size wind turbines to improve their turbine design and manufacturing processes while reducing costs and improving efficiency as they work toward

  18. 10 MW Supercritical CO2 Turbine Test (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    10 MW Supercritical CO2 Turbine Test Citation Details In-Document Search Title: 10 MW Supercritical CO2 Turbine Test The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved

  19. Testing America's Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing America's Wind Turbines Testing America's Wind Turbines View All Maps Addthis

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  4. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. Annual Report: Turbines (30 September 2012)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2012-09-30

    The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address Development and design of aerothermal and materials concepts in FY12-13. Design and manufacturing of these advanced concepts in FY13. Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

  6. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  7. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  8. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  9. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  10. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  11. Small Wind Guidebook/What Size Wind Turbine Do I Need | Open...

    Open Energy Info (EERE)

    & OUTREACHSmall Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo Newsletter Signup SlideShare Sandia Wind Turbine Loads Database ...

  13. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce...

  14. TGM Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Name: TGM Turbines Place: Sertaozinho, Sao Paulo, Brazil Zip: 14175-000 Sector: Biomass Product: Brazil based company who constructs and sells...

  15. wind-turbine fleet reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-turbine fleet reliability - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers wind-turbine fleet reliability Home...

  16. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  17. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  18. Gas-path leakage seal for a turbine

    DOE Patents [OSTI]

    Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.

    1999-08-10

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.

  19. Wind Turbine Tribology Seminar - A Recap

    SciTech Connect (OSTI)

    Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

    2012-02-01

    Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

  20. Annual Report: Turbines (30 September 2012) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 ...

  1. Innovative Drivetrain Testing for Wind Turbines Nears Completion

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind turbines wouldn't do their job without a drivetrain--and EERE's National Renewable Energy Laboratory has developed a new system that promises greater efficiency at less cost.

  2. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    (NG-SOFCCC) novel power plant systems were earlier introduced as high efficient systems. ... This work is focused on novel power plant systems by combining gas turbines, solid oxide ...

  3. "Nanoengineered Surfaces for Efficiency Enhancements in Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems including oil & gas (flow assurance and energy efficiency), aircraft, turbines, engines, power and desalination plants, and electronics cooling will be highlighted. ...

  4. $390K raised for youth scholarships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $395K raised for youth scholarships Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit $390K raised for youth scholarships More than 15 percent of Lab employees give to LAESF. July 6, 2016 Española High School graduate and Silver Scholar recipient Evelyn Juarez (right) chats with Lab employees. Española High School graduate and Silver Scholar recipient Evelyn Juarez (right) chats with

  5. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  6. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  7. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  8. Turbine disc sealing assembly

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  9. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  10. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  11. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  12. Turbine blade tip with offset squealer

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  13. Turbine airfoil with outer wall thickness indicators

    DOE Patents [OSTI]

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  14. Success Story: Capstone Turbine Corporation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profile story on Capstone Turbine Corporation for the American Energy and Manufacturing Competitiveness (AEMC) Summit.

  15. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  16. Oxidation of alloys for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  17. Cooled snubber structure for turbine blades

    SciTech Connect (OSTI)

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  18. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  19. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  20. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  1. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  2. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  3. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  4. Howden Wind Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

  5. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  6. Category:Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

  7. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  8. Capstone Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    Turbine Corp Jump to: navigation, search Name: Capstone Turbine Corp Place: Chatsworth, California Zip: 91311 Product: Capstone Turbine Corp produces low-emission microturbine...

  9. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  10. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  11. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    GC China Turbine Corp Jump to: navigation, search Name: GC China Turbine Corp Place: Wuhan, Hubei Province, China Sector: Wind energy Product: China-base wind turbine manufacturer....

  13. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  14. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  15. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges

  16. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  17. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  18. Gas turbine engine

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  19. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  20. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  1. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  2. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  3. SwanTurbines | Open Energy Information

    Open Energy Info (EERE)

    SwanTurbines Jump to: navigation, search Name: SwanTurbines Place: United Kingdom Product: SwanTurbines is developing a tidal stream turbine. The company is currently working on a...

  4. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  5. Full Life Wind Turbine Gearbox Lubricating Fluids

    SciTech Connect (OSTI)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest

  6. Investigations on Marine Hydrokinetic Turbine Foil Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - ... Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring ...

  7. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect (OSTI)

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  8. Solar Decathlon 2013: Raising More Than Just Walls | Department...

    Office of Environmental Management (EM)

    Raising More Than Just Walls Solar Decathlon 2013: Raising More Than Just Walls September ... To celebrate the groundbreaking of their Solar Decathlon house, the team invited all of ...

  9. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  10. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  11. Turbine inner shroud and turbine assembly containing such inner shroud

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2001-01-01

    A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

  12. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  13. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  14. Wind Turbine System State Awareness

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-02-08

    Researchers at the Los Alamos National Laboratory Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading....

  15. Nexus Energy Center Raises Funds for Energy-Saving Tiny Home | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Raises Funds for Energy-Saving Tiny Home Nexus Energy Center Raises Funds for Energy-Saving Tiny Home bbrn_stories_nexus_energy_9-2-14.png Nexus Energy Center, a Huntsville, Alabama-based Better Buildings Residential Network member, is trying to raise $5,000 through a crowd-funding effort to build the city's first tiny, energy-efficient home. The idea was inspired by a Nexus Energy Center volunteer who approached Executive Director Ruchi Singhal in winter 2013 with a video of

  16. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-12-31

    The proposed approach is to build on Westinghouse`s successful 501 series of gas turbines. The 501F offered a combined cycle efficiency of 54%; 501G increased this efficiency to 58%; the proposed single-shaft 400 MW class ATS combined cycle will have a plant cycle efficiency greater than 60%. Westinghous`s strategy is to build upon the next evolution of advances in combustion, aerodynamics, cooling, leakage control, materials, and mechanical design. Westinhouse will base its future gas turbine product line, both 50 and 60 Hz, on ATS technology; the 501G shows early influences of ATS.

  17. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  18. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  19. Advanced protective coatings for gas turbine blading

    SciTech Connect (OSTI)

    Czech, N.; Stamm, W.

    1998-07-01

    The new gas turbines now being marketed are characterized by outputs and efficiencies which were unthinkable just a few years ago. A key factor for achieving efficiency is the highest possible turbine inlet temperature, currently approx. 1,400 C. In such a machine, it is the turbine blades which are subjected to the greatest thermal and mechanical stresses. They are also subjected to extreme chemical stress in the form of oxidation, which in the following is understood as the corrosive action due almost exclusively to the temperature of the turbine blade surface and (to a much lesser degree) the pressure and oxygen content of the hot gas. In many cases, this is compounded by hot corrosion, which results in accelerated oxidation due to impurities in the fuel and air. In terms of physics, this demanding challenge requires the use of cooling techniques which push the envelope of feasibility. In terms of materials engineering, an innovative multifaceted solution is called for. In more concrete terms, this means a combination of convection, impingement and film cooling of blades made of the strongest high-temperature alloy materials and coated with one or possibly multiple coatings. The base material ensures the blade's mechanical integrity while the coating(s) provide(s) protection against the oxidizing and corrosive attack, as well as the thermal stresses which cannot be sufficiently mitigated by cooling. The superiority of single crystal materials over polycrystalline or directionally solidified nickel-base superalloys is illustrated. The coating is a third-generation NiCoCrAIY VPS (vacuum plasma spray) coating. In the paper, the authors discuss the current status of coating developments for large, stationary gas turbines and present solutions for achieving important development objectives.

  20. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds

    SciTech Connect (OSTI)

    Derakhshan, Shahram; Nourbakhsh, Ahmad

    2008-01-15

    Pump manufacturers do not normally provide the characteristic curves of their pumps working as turbines. Therefore, establishing a correlation between the performances of direct (pump) and reverse (turbine) modes is essential in selecting the proper machine. In this paper, several centrifugal pumps (N{sub s} < 60 (m, m{sup 3}/s)) were tested as turbines. Using experimental data, some relations were derived to predict the best efficiency point of a pump working as a turbine, based on pump hydraulic characteristics. Validity of the presented method was shown using some referenced experimental data. Two equations were presented to estimate the complete characteristic curves of centrifugal pumps as turbines based on their best efficiency point. Deviations of suggested method from experimental data were considered and discussed. Finally, a procedure was presented for selecting a suitable pump to work as a turbine in a small hydro-site. (author)

  1. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  2. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  3. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  4. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  5. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  6. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  7. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  8. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  9. Sandia Modifies Delft3D Turbine Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifies Delft3D Turbine Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  10. Sandia's 2016 Wind Turbine Blade Workshop Beings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Wind Turbine Blade Workshop Beings - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  11. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  12. Ceramic gas turbine shroud

    DOE Patents [OSTI]

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  13. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  14. Multiple piece turbine airfoil

    SciTech Connect (OSTI)

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  15. Turbine-Fact-Sheets | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Turbines FE0023975 TurboGT(tm) Gas Turbine with ArticReturn(tm) Cooling Florida Turbine Technologies, Inc. Hydrogen Turbines FE0023983 Rotating Detonation Combustion for ...

  16. DOE Selects Project to Help Advance More Efficient Supercritical...

    Office of Environmental Management (EM)

    higher thermal efficiencies when compared to state of the art steam-based power cycles. ... Developing Components for Advanced Turbine and Supercritical CO2-Based Power Cycles ...

  17. Materials and Additive Manufacturing for Energy Efficiency in...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries Citation Details In-Document Search Title: Materials and ...

  18. Transportation Energy Futures Series: Potential for Energy Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure at the intake manifold, forcing more air into the engine. Improvements to compressor or turbine efficiency can reduce fuel consumption. High-pressure-ratio radial...

  19. NEI Corporation Technology Promotes Efficiency in Heat Exchangers...

    Office of Science (SC) Website

    condensing steam turbine by allowing steam to condense into water more efficiently. ... Cooling water flows inside the tubes, and steam condenses on the outside surface. Usually, ...

  20. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn ...

  1. Simulated passage through a modified Kaplan turbine pressure regime: A supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

    SciTech Connect (OSTI)

    Abernethy, C. S.; Amidan, B. G.; Cada, G. F.

    2002-04-01

    A previous test series (Abernethy et al. 2001) evaluated the effects of passage through a Kaplan turbine under the worst case pressure conditions. For this series of tests, pressure changes were modified to simulate passage through a Kaplan turbine under a more fish-friendly mode of operation. The results were compared to results from Abernethy et al. (2001). These data indicate that altered operating conditions that raise the nadir (low point) of the turbine passage pressure regime could reduce the injury and mortality rates of fish during turbine passage. Fall Chinook salmon were not injured or killed when subjected to the modified pressure scenario. Bluegills were more sensitive to pressure effects than fall Chinook salmon, but injury and mortality rates were lower under the modified Kaplan pressure regime. This improvement was particularly significant among fish that were acclimated to greater water pressures (traveling at greater depth).

  2. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  3. Turbine vane structure

    DOE Patents [OSTI]

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  4. Turbine imaging technology assessment

    SciTech Connect (OSTI)

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  5. Low pressure cooling seal system for a gas turbine engine

    SciTech Connect (OSTI)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  6. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  7. Remarkable Teacher Raises Bar for Building Students

    Broader source: Energy.gov [DOE]

    The Arizona teacher's expertise draws from technologies and strategies in residential efficiency and renewable energy developed through the Energy Department’s Building America program. His class' first home generates more power than it uses.

  8. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably

  9. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  10. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect (OSTI)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  11. Turbine repair process, repaired coating, and repaired turbine component

    SciTech Connect (OSTI)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  12. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  13. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect (OSTI)

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  14. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  15. SWiFT Facility Prepared for More-Efficient Operations & Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine-Turbine Wake-Interaction-Control Research Prepared for More-Efficient Operations & Advanced Turbine-Turbine Wake-Interaction-Control Research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy

  16. Raising the Bar for Quality PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising the Bar for Quality PV Modules Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the...

  17. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  18. Turbine seal assembly

    SciTech Connect (OSTI)

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  19. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  20. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  1. Turbine vane plate assembly

    DOE Patents [OSTI]

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  2. Multiple piece turbine airfoil

    SciTech Connect (OSTI)

    Kimmel, Keith D

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  3. Snubber assembly for turbine blades

    DOE Patents [OSTI]

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  4. Building America Technology Solutions for New and Existing Homes: Raised

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceiling Interior Duct System, New Smyrna, Florida (Fact Sheet) | Department of Energy Raised Ceiling Interior Duct System, New Smyrna, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Raised Ceiling Interior Duct System, New Smyrna, Florida (Fact Sheet) This project describes a Habitat for Humanity builder's efforts to construct a home to new DOE Zero Energy Ready Home standards, and use a fur-up or raised ceiling chase. Raised Ceiling Interior Duct

  5. SRS employees raise funds for American Heart Association | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) raise funds for American Heart Association Tuesday, April 1, 2014 - 10:00am About 300 employees of Savannah River Site management and operation contractor Savannah River Nuclear Solutions participated in the annual Central Savannah River Area Heart Walk, raising funds for the American Heart Association. SRNS employees raised $76,492, and SRNS donated $10,000. SRS employees raise funds for American Heart Association Related Topics community donations srs

  6. Gas turbine premixing systems

    SciTech Connect (OSTI)

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  7. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  8. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  9. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  10. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  11. Small Wind Turbine Certifications Signal Maturing Industry |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Wind Turbine Certifications Signal Maturing Industry Small Wind Turbine Certifications Signal Maturing Industry January 6, 2014 - 10:00am Addthis A 5-kW wind turbine with a ...

  12. Electrical generation using a vertical-axis wind turbine

    SciTech Connect (OSTI)

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  13. Design and evaluation of small water turbines. Final report

    SciTech Connect (OSTI)

    Marquis, J.A.

    1983-02-17

    An evaluation was made of the design and hydromechanical performance characteristics for three basic turbine types: axial flow (Jonval), inward radial flow (Francis) and crossflow (Banki). A single commercially available turbine representative of each type and within the appropriate power range (<5hp) was obtained for evaluation. Specific turbine selections were based on price, availability and suitability for operation at heads of 50 feet or less and flows under 2 cubic feet per second. In general, the peak operating efficiencies of each unit tended to be lower than anticipated, falling in the range of 40 to 50%. With sufficient flow, however, significant useful power outputs up to 3 hp were obtained. While the radial flow turbine (a centrifugal pump operated as a turbine) had the lowest initial unit cost, the axial and cross flow designs exhibited more stable operation, particularly under transient loadings. The crossflow turbine had the added advantage that it was essentially self-cleaning. With further developmental effort and appropriate design modifications it should be possible to bring each of these microhydro designs to their full performance potential.

  14. Annual Report: Turbine Thermal Management (30 September 2013)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2014-04-10

    The FY13 NETL-RUA Turbine Thermal Management effort supported the Department of Energy’s (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach included explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE’s advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address: • Development and design of aerothermal and materials concepts in FY12-13. • Design and manufacturing of these advanced concepts in FY13. • Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. In addition to a Project Management task, the Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of heat transfer, materials development, and secondary flow control. These include: • Aerothermal and Heat Transfer • Coatings and Materials Development • Design Integration and Testing • Secondary Flow Rotating Rig.

  15. Turbine Cost Systems Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2012-09-30

    turb_costSE is a set of models that link wind turbine component masses (and a few other key variables) to component costs.

  16. How to Build a Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

  17. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  18. Characterisation of a small viscous flow turbine

    SciTech Connect (OSTI)

    Lemma, E.; Deam, R.T.; Toncich, D.; Collins, R.

    2008-10-15

    The result of experimental and numerical study that was undertaken to determine the performance characteristics of viscous flow turbines is presented. It is anticipated that these devices may find use in applications such as small power sources for electronic appliances and micro-combined heat and power applications. In the numerical work that was carried out to broaden the experimental results, commercial CFD solver Fluent 6.2 was used while accompanying software, Gambit 3.2, was used for performing the necessary pre-processing. The results of the experimental study indicate that the adiabatic efficiency of these machines is around 25%. The main reasons for the low efficiency have been identified to be, parasitic losses in the bearing, viscous losses in the end walls, and other dissipative losses in the plenum chamber that also significantly contribute to the low efficiencies of these devices. If these parasitic losses can be minimised the turbine could potentially operate with an adiabatic expansion efficiency close to the theoretical limit of around 40%. (author)

  19. Infinity Turbine LLC | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin-based small turbine manufacturer focusing on small-scale binary turbine manufacturing. Coordinates: 43.07295, -89.386694 Show Map Loading map......

  20. Miniaturized Turbine Offers Desalination Solution | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integrating GE's experience with steam turbine, oil & gas compressors, 3D printing and ... GE is a world leader in the development and application of steam turbine technology, with ...

  1. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency ...

  2. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Broader source: Energy.gov (indexed) [DOE]

    and create U.S. jobs by improving labor productivity in wind turbine blade construction. ... Certain components of wind turbine blades are naturally more suitable to domestic ...

  3. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... First, the authors would like to thank the entire Wind Turbine Radar Interference Working ...

  4. Synchrotron Mesodiffraction: A Tool for Understanding Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA 94720 roritchie@lbl.gov Aircraft turbine engines routinely experience the ... Turbine blades, for example, are susceptible to debris strikes and also experience ...

  5. Pioneer Asia Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Asia Wind Turbines Jump to: navigation, search Name: Pioneer Asia Wind Turbines Place: Madurai, Tamil Nadu, India Zip: 625 002 Sector: Wind energy Product: Madurai-based wind...

  6. Middelgrunden Wind Turbine Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Middelgrunden Wind Turbine Cooperative Jump to: navigation, search Name: Middelgrunden Wind Turbine Cooperative Place: Copenhagen, Denmark Zip: 2200 Sector: Wind energy Product:...

  7. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  8. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    Maglev Wind Turbine Technologies Jump to: navigation, search Name: Maglev Wind Turbine Technologies Place: Sierra Vista, Arizona Zip: 85635 Sector: Wind energy Product: The new...

  9. Westwind Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Ireland based small scale wind turbine manufacturer which originally started in Australia. References: Westwind Wind Turbines1 This article is a stub. You can help OpenEI...

  10. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels

    Broader source: Energy.gov [DOE]

    Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

  11. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  12. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  13. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine | Department of Energy Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_baines.pdf (807.9 KB) More Documents & Publications Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains Environmental Effects

  14. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    SciTech Connect (OSTI)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.; Stephenson, John R.; Pflugrath, Brett D.; Welch, Abigail E.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-02-01

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to the incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.

  15. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  16. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Shezel-Ayagh

    2005-05-01

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  17. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect (OSTI)

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  18. A small scale biomass fueled gas turbine engine

    SciTech Connect (OSTI)

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  19. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect (OSTI)

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  20. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  1. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect (OSTI)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  2. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  3. Pantex raises bike safety awareness | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) raises bike safety awareness Thursday, May 22, 2014 - 4:38pm In an effort to raise awareness of bike safety and to protect their fellow cyclists, a group of Pantexans recently left their cars in the garage and hopped a two-wheeled ride to work. The six Pantexans met in Amarillo, Texas and rode their bicycles approximately 25 miles to the Pantex Plant, then returned to Amarillo after a full day's work. Pantex raises bike safety awareness Pantex raises bike safety

  4. Lawrence Livermore charitable campaign raises $3.3 million for...

    National Nuclear Security Administration (NNSA)

    charitable campaign raises 3.3 million for local organizations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  5. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    SciTech Connect (OSTI)

    Cook, T.C.; Hecker, G.E.; Faulkner, H.B.; Jansen, W.

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  6. Turbine anti-icing system

    SciTech Connect (OSTI)

    Ball, B. D.

    1985-12-31

    Exhaust gas is recirculated from the exhaust stack of a gas fired turbine to the air inlet along a constantly-open path to prevent inlet freeze-up. When anti-icing is not needed the exhaust stack is fully opened, creating a partial vacuum in the exhaust stack. At the turbine inlet the recirculation line, is opened to atmosphere. The resultant pressure differential between the opposite ends of the recirculation line creates a driving force for positively purging the recirculation line of unwanted residual exhaust gases. This in turn eliminates a source of unwanted moisture which could otherwise condense, freeze and interfere with turbine operations.

  7. Development of the helical reaction hydraulic turbine. Final...

    Office of Scientific and Technical Information (OSTI)

    the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. ...

  8. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    up to 1,000 square meters improve their turbine designs and manufacturing processes to ... Manufacturing Process Upgrades; Turbine Certification (for wind turbines with ...

  9. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  10. 2015 University Turbine Systems Research Workshop | netl.doe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Proceedings 2015 University Turbine Systems Research Workshop The 2015 UTSR ... Energy's Advanced Turbines Program by NETL Turbine Technology Manager Richard Dennis. ...

  11. Enviro effects of hydrokinetic turbines on fish | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish 47fish-hkturbineinteractionseprijacobs...

  12. Liberty Turbine Test Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  14. Archbold Local Schools Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Archbold Local Schools Wind Turbine Jump to: navigation, search Name Archbold Local Schools Wind Turbine Facility Archbold Local Schools Wind Turbine Sector Wind energy Facility...

  15. Conneaut Middle School Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Conneaut Middle School Wind Turbine Jump to: navigation, search Name Conneaut Middle School Wind Turbine Facility Conneaut Middle School Wind Turbine Sector Wind energy Facility...

  16. Holy Name Central Catholic School Wind Turbine | Open Energy...

    Open Energy Info (EERE)

    Name Central Catholic School Wind Turbine Jump to: navigation, search Name Holy Name Central Catholic School Wind Turbine Facility Holy Name Central Catholic School Wind Turbine...

  17. International Turbine Research Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type...

  18. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  19. Conneaut Wastewater Facility Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy...

  20. City of Medford Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Medford Wind Turbine Jump to: navigation, search Name City of Medford Wind Turbine Facility City of Medford Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility...

  1. New England Tech Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Tech Wind Turbine Jump to: navigation, search Name New England Tech Wind Turbine Facility New England Tech Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility...

  2. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  3. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  4. Consider Steam Turbine Drives for Rotating Equipment, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Consider Steam Turbine Drives for Rotating Equipment Steam turbines are well suited as ... This service generally calls for a backpressure noncondensing steam turbine. The ...

  5. Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

  6. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  7. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  8. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  9. Sprayed skin turbine component

    DOE Patents [OSTI]

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  10. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  11. Multiple piece turbine blade

    SciTech Connect (OSTI)

    Kimmel, Keith D

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  12. Turbine Support | Open Energy Information

    Open Energy Info (EERE)

    data from Skystream wind turbines. You can obtain a FREE preprogrammed Raspberry Pi computer to read and send data to OpenEI from at Kansas State University. See the...

  13. New Facility Tool at SWiFT Makes Rotor Work More Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Rotor fixation stands, one for each Scaled Wind Farm Technology (SWiFT) facility turbine, ...

  14. Turbine test report. Addendum to final report

    SciTech Connect (OSTI)

    Elliott, T.J.; Batton, W.D.

    1984-07-01

    The radial inflow turbine developed for the NASA 404 program 25-ton solar air conditioner (RCWS-2-2753-GO) was tested for performance. Using the converging-only nozzles designed for this system, a peak efficiency of 86% was measured at a pressure ratio of 2.7 and a velocity ratio of 0.66. Near the design pressure ratio of 3.5 and velocity ratio of 0.645, the measured pressure ratio of 3.5 and velocity of 0.645, the measured efficiency was 84% instead of the predicted 82%. Data are presented for pressure ratios of 2.7, 3.6, and velocity ratio ranges of 0.20 to 0.85. This covers the normal operating range of interest in this machine. The performance is better than predicted. This indicates that some of the loss coefficient values assumed during the original analysis were conservative.

  15. Ultra supercritical turbines--steam oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  16. Boiler-turbine life extension

    SciTech Connect (OSTI)

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  17. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  18. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  19. Rim seal for turbine wheel

    DOE Patents [OSTI]

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  20. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  1. wind-turbine composites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  2. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    SciTech Connect (OSTI)

    Huyer, S. [Univ. of Colorado, Boulder, CO (US)] [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  3. Impact of Advanced Turbine Systems on coal-based power plants

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1993-12-31

    The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

  4. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. This video highlights the various parts and mechanisms of a modern wind turbine. Text Version Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as

  5. Microsoft Word - Increased Strength in Wind Turbine Blades through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Strength in Wind Turbine Blades through Innovative Structural ... design approach is applied to wind turbine blades, manufacturing and structural ...

  6. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward; Zuo, Baifang; Stevenson, Christian Xavier

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  7. Advanced turbine systems (ATS) program conceptual design and product development. Quarterly report, September 1 - November 30, 1994

    SciTech Connect (OSTI)

    1994-12-31

    Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature must increase, although this will lead to increased NOx emission. Improved coating and materials along with creative combustor design can result in solutions. The program is focused on two specific products: a 70 MW class industrial gas turbine based on GE90 core technology utilizing an innovative air cooling methodology, and a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. This report reports on tasks 3-8 for the industrial ATS and the utility ATS. Some impingement heat transfer results are given.

  8. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal ORC system | Department of Energy Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with

  9. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  10. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  11. Los Alamos Employees' Scholarship Fund raises record amount

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Employees' Scholarship Fund raises record amount Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Los Alamos Employees' Scholarship Fund raises record amount $555,625 will fund regional students' post-secondary education July 1, 2013 Students from Valarde Middle School won the video competition in the Best in Show and Middle School categories. They are shown here with

  12. Raising Our Game in Clean Energy Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising Our Game in Clean Energy Innovation Raising Our Game in Clean Energy Innovation June 24, 2016 - 1:51pm Addthis Blog post by Dr. Elizabeth Sherwood-Randall, Deputy Secretary of Energy, June 24, 2016. Recently I traveled to San Francisco to participate in international efforts to meet the challenge of climate change and accelerate the global transition to clean energy. The main event was the Seventh Clean Energy Ministerial (CEM7), a meeting of 23 countries and the European Commission.

  13. Raising funds for a cure | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raising Our Game in Clean Energy Innovation Raising Our Game in Clean Energy Innovation June 24, 2016 - 1:51pm Addthis Blog post by Dr. Elizabeth Sherwood-Randall, Deputy Secretary of Energy, June 24, 2016. Recently I traveled to San Francisco to participate in international efforts to meet the challenge of climate change and accelerate the global transition to clean energy. The main event was the Seventh Clean Energy Ministerial (CEM7), a meeting of 23 countries and the European Commission.

  14. Raising Our Game in Clean Energy Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising Our Game in Clean Energy Innovation Raising Our Game in Clean Energy Innovation June 23, 2016 - 3:00pm Addthis Dr. Elizabeth Sherwood-Randall Dr. Elizabeth Sherwood-Randall Deputy Secretary of Energy Recently I traveled to San Francisco to participate in international efforts to meet the challenge of climate change and accelerate the global transition to clean energy. The main event was the Seventh Clean Energy Ministerial (CEM7), a meeting of 23 countries and the European Commission.

  15. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  16. Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

  17. Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion)

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This report summarizes the results of preliminary studies conducted to identify and evaluate three innovative concepts for an open-cycle ocean thermal energy conversion (OTEC) steam turbine that could significantly reduce the cost of OTEC electrical power plants. The three concepts are (1) a crossflow turbine, (2) a vertical-axis, axial-flow turbine, and (3) a double-flow, radial-inflow turbine with mixed-flow blading. In all cases, the innovation involves the use of lightweight, composite plastic blading and a physical geometry that facilitates efficient fluid flow to and from the other major system components and reduces the structural requirements for both the turbine or the system vacuum enclosure, or both. The performance, mechanical design, and cost of each of the concepts are developed to varying degrees but in sufficient detail to show that the potential exists for cost reductions to the goals established in the US Department of Energy's planning documents. Specifically, results showed that an axial turbine operating with 33% higher steam throughput and 7% lower efficiency than the most efficient configuration provides the most cost-effective open-cycle OTEC system. The vacuum enclosure can be significantly modified to reduce costs by establishing better interfaces with the system. 33 refs., 26 figs., 11 tabs.

  18. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  19. Advanced Turbine Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Research AerodynamicsHeat Transfer Project goals of the aero-thermo-mechanical ... The combustion program goal is to design and develop the combustion portion of the turbine ...

  20. 50MW extreme-scale turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... SunShot Grand Challenge: Regional Test Centers 50MW extreme-scale turbine HomeTag:50MW ...

  1. The Inside of a Wind Turbine

    Broader source: Energy.gov [DOE]

    Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

  2. Wind Turbine Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all ...

  3. Examination of the effect of system pressure ratio and heat recuperation on the efficiency of a coal based gas turbine fuel cell hybrid power generation system with CO2 capture

    SciTech Connect (OSTI)

    VanOsdol, J.G.; Gemmen, R.S.; Liese, E.A

    2008-06-01

    This paper examines two coal-based hybrid configurations that employ separated anode and cathode streams for the capture and compression of CO2. One configuration uses a standard Brayton cycle, and the other adds heat recuperation ahead of the fuel cell. Results show that peak efficiencies near 55% are possible, regardless of cycle configuration, including the cost in terms of energy production of CO2 capture and compression. The power that is required to capture and compress the CO2 is shown to be approximately 15% of the total plant power.

  4. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  5. Biomass gasification for gas turbine-based power generation

    SciTech Connect (OSTI)

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  6. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  7. Recovery Act - Refinement of Cross Flow Turbine Airfoils

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2013-08-30

    Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water into clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre

  8. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  9. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  10. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  11. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: Decades of Wind Turbine Loads Simulations, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  12. Sandia vertical axis wind turbines (VAWTs) demonstrate offshore advantages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical axis wind turbines (VAWTs) demonstrate offshore advantages - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  13. High Fidelity Evaluation of Tidal Turbine Performance for Industry Partner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fidelity Evaluation of Tidal Turbine Performance for Industry Partner - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  14. University of Illinois uses Sandia Labs' reference hydrokinetic turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study potential bed erosion effects Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  15. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  16. Radial-radial single rotor turbine

    DOE Patents [OSTI]

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  17. NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2007-01-01

    Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for

  18. Identifying the Effects on Fish of Changes in Water Pressure during Turbine Passage

    SciTech Connect (OSTI)

    Becker, James M.; Abernethy, Cary S.; Dauble, Dennis D.

    2003-09-01

    than bluegill to death/injury from simulated Kaplan turbine passage, and Chinook salmon incurred no visible injuries from simulated bulb turbine passage under any scenario. Acclimation to 30 ft depth had little additional effect on the injury/death rate of Chinook salmon and rainbow trout subjected to Kaplan turbine passage. However, these species were much more susceptible to acute gas bubble trauma than bluegill, particularly those acclimated at surface pressure at 120% or 135% of saturation. Consequently, it would be advantageous to develop advanced turbines that operate efficiently under more fish friendly pressure regimes and to reduce the amount of gas supersaturation.

  19. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  20. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  1. NNSA employees run to raise awareness about concussions | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) run to raise awareness about concussions Tuesday, June 3, 2014 - 11:44am Staff from across NNSA participated in the third annual Derek Sheely Lead the Way 4.0-Mile Run. The event raises funds to support concussion awareness on behalf of the Derek Sheely Foundation. On Aug. 22, 2011, Derek suffered a traumatic brain injury during football practice at Frostburg State University and died one week later. He had previously served as an NNSA intern and is the son

  2. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  3. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  5. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  6. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  7. Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008

    SciTech Connect (OSTI)

    Devenport, W.; Burdisso, R. A.; Camargo, H.; Crede, E.; Remillieux, M.; Rasnick, M.; Van Seeters, P.

    2010-05-01

    The U.S. Department of Energy (DOE), working through its National Renewable Energy Laboratory (NREL), is engaged in a comprehensive research effort to improve the understanding of wind turbine aeroacoustics. The motivation for this effort is the desire to exploit the large expanse of low wind speed sites that tend to be close to U.S. load centers. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center (NWTC) is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. NWTC researchers are working hand in hand with engineers in industry to ensure that research findings are available to support ongoing design decisions.

  8. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1995-11-01

    This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

  9. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  10. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect (OSTI)

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  11. Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors

    SciTech Connect (OSTI)

    Sale, D.; Jonkman, J.; Musial, W.

    2009-08-01

    This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

  12. NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

  13. Airfoil for a turbine of a gas turbine engine

    DOE Patents [OSTI]

    Liang, George

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  14. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  15. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  16. Simulating Collisions for Hydrokinetic Turbines. FY2010 Annual Progress Report.

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.

    2010-11-30

    Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories , funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

  17. Proceedings of the Advanced Turbine Systems annual program review meeting

    SciTech Connect (OSTI)

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  18. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect (OSTI)

    T.E. Lippert; D.M. Bachovchin

    2004-03-31

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. In addition to kinetic modeling and experimental task, CFD modeling (by Texas A&M) of airfoil injection and its effects on blade aerodynamics and turbine performance. This report discusses validation of the model against single-vane combustion test data from Siemens Westinghouse, and parametric studies of injection reheat in a modern turbine. The best location for injection is at the trailing edge of the inlet guide vane. Combustion is incomplete at trailing edges of subsequent vanes. Recommendations for further development are presented.

  19. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  20. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect (OSTI)

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a

  1. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  2. Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine

    Broader source: Energy.gov [DOE]

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  3. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  4. Gas turbine vane platform element

    DOE Patents [OSTI]

    Campbell, Christian X.; Schiavo, Anthony L.; Morrison, Jay A. (Oviedo, FL

    2012-08-28

    A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

  5. Cooling scheme for turbine hot parts

    DOE Patents [OSTI]

    Hultgren, Kent Goran; Owen, Brian Charles; Dowman, Steven Wayne; Nordlund, Raymond Scott; Smith, Ricky Lee

    2000-01-01

    A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

  6. On the Fatigue Analysis of Wind Turbines

    SciTech Connect (OSTI)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  7. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994

    SciTech Connect (OSTI)

    1997-06-01

    GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

  8. Built Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  9. Scale Models and Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    As wind turbines and wind farms become larger to take advantage of the economies of scale and increased wind speeds at higher altitudes, their impact in the locales where they are sited becomes more dramatic. One place this is especially contentious is in the offshore environment of the Northeast. This lesson explores scale models and the issues surrounding models and their accuracy when developing a large wind farm. Worksheets are included.

  10. Apparatus for raising or tilting a micromechanical structure

    DOE Patents [OSTI]

    Allen, James J.

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  11. Robotic Wind Turbine Inspection | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances Wind Turbine Inspection Through Robotic Trials Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Advances Wind Turbine Inspection Through Robotic Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers. Currently, an inspector

  12. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu; Teichmann, Ralph; Avagliano, Aaron; Kammer, Leonardo Cesar; Pierce, Kirk Gee; Pesetsky, David Samuel; Gauchel, Peter

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  13. Lightning protection system for a wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P.; Petter, Jeffrey K.

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  14. Decades of Wind Turbine Load Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decades of Wind Turbine Load Simulation Matthew Barone ∗ , Joshua Paquette † , Brian Resor ‡ Sandia National Laboratories § , Albuquerque, NM 87185 Lance Manuel ¶ University of Texas, Austin, TX 78712 A high-performance computer was used to simulate ninety-six years of operation of a five megawatt wind turbine. Over five million aero-elastic simulations were performed, with each simulation consisting of wind turbine operation for a ten minute period in turbulent wind conditions. These

  15. Companies Selected for Small Wind Turbine Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  16. NREL Raises Rooftop Photovoltaic Technical Potential Estimate - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Raises Rooftop Photovoltaic Technical Potential Estimate New analysis nearly doubles previous estimates and shows U.S. building rooftops could generate close to 40 percent of national electricity sales March 24, 2016 Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) have used detailed light detection and ranging (LiDAR) data for 128 cities nationwide, along with improved data analysis methods and simulation tools, to update its estimate of

  17. Adaptive Pitch Control for Variable Speed Wind Turbines - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the early development of wind energy, the majority of wind turbines or wind turbine ... In most cases, wind turbine pitch angles can be adjusted to control the operation of the ...

  18. SNL Wake Imaging System Solves Wind Turbine Wake Formation Mysteries...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration showing a utility-scale wind turbine in a field. A square brown steel shed ... a green triangle) that travels from the shed to above the turbine downwind of the turbine. ...

  19. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex ...

  20. River Turbine Provides Clean Energy to Remote Alaskan Village...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides ...

  1. Three D Metals Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Three D Metals Wind Turbine Jump to: navigation, search Name Three D Metals Wind Turbine Facility Three D Metals Wind Turbine Sector Wind energy Facility Type Small Scale Wind...

  2. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  3. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  4. Raising consciousness about the nuclear threat through music

    SciTech Connect (OSTI)

    Ungerleider, J.H.

    1987-01-01

    This dissertation examines the use of music, in particular topical collaborative group song writing, as a tool for raising consciousness about the threat of nuclear war. Consciousness raising is one way to overcome the phenomenon of denial and to increase discussion and social action in response to the nuclear threat. This dissertation measures the impact of a group song writing workshop on developing critical problem-solving in adult groups; it reviews how music is applied in psychological research and clinical work, has been used historically as a tool in social-change movements in America, and is used in the contemporary field of peace education. The perspectives of several theorists who discuss the potential of music to contribute to social change are presented. It is concluded that consciousness about the nuclear threat - in terms of naming and analyzing - can be raised by working with music's potential for developing affective, expressive, and collaborative capabilities in individuals and groups. Potential applications of the group song writing workshop are in schools, with peace organizations, music groups, and in relation to other social issues.

  5. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  6. Earth Turbines Inc | Open Energy Information

    Open Energy Info (EERE)

    Earth Turbines Inc Place: Hinesburg, Vermont Zip: 5461 Sector: Wind energy Product: Start-up company developing small-scale wind technology for the residential and commercial...

  7. SCALING OF COMPOSITE WIND TURBINE BLADES FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMPOSITE MATERIALS FOR MEGAWATT-SCALE WIND TURBINE BLADES: DESIGN CONSIDERATIONS AND ... Both VARTM and prepreg materials have particular design challenges for manufacturing ...

  8. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  9. Neutron Computed Tomography of Turbine Blade

    SciTech Connect (OSTI)

    Bilheux, Hassina

    2015-06-03

    ORNL Researcher Hassina Bilheux explains the ability of SNS to explore the internal structure of a 3D-printed turbine blade.

  10. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  11. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  12. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2009-02-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  13. Turbine bucket natural frequency tuning rib

    DOE Patents [OSTI]

    Wang, John Zhiqiang; Norton, Paul Francis; Barb, Kevin Joseph; Jacala, Ariel Caesar-Prepena

    2002-01-01

    A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

  14. Water turbine system and method of operation

    DOE Patents [OSTI]

    Costin, Daniel P.

    2011-05-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  15. Active Load Control Techniques for Wind Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Load Control Techniques for Wind Turbines Scott J. Johnson and C. P. "Case" van Dam Department of Mechanical and Aeronautical Engineering University of California One ...

  16. Nature's Classroom Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgwindex.php?titleNature%27sClassroomWindTurbine&oldid585985...

  17. Advanced horizontal axis wind turbines in windfarms

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind turbine section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  18. Wind Turbine Condition Monitoring, Reliability Database, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O&M Research Update ... (OEMs), gearbox rebuild shops, wind plant owneroperators, and consulting ...

  19. Controlling Wind Turbines for Secondary Frequency Regulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC ... Workshop on Large-Scale Integration of Wind Power Into Power Systems as Well as on ...

  20. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 101: Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern

  1. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Water Wall Turbine Region: Canada Sector: Marine and Hydrokinetic Website: www.wwturbine.com This company is listed in the Marine and Hydrokinetic...

  2. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... from the advice and comments of two wind industry and trade association ...

  3. Technologies for Evaluating Fish Passage Through Turbines

    Broader source: Energy.gov [DOE]

    This report evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines.

  4. Developing Biological Specifications for Fish Friendly Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Specifications for Fish Friendly Turbines The U.S. Department of Energy's ... which environmen- tal attributes, such as entrainment survival for fish, are emphasized. ...

  5. NREL: Wind Research - Advanced Research Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and meteorological towers upwind are instrumented to collect data. The National Wind Technology Center (NWTC) uses two large turbines to conduct advanced controls research. ...

  6. Golden Turbines LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Golden Turbines LLC Address: 280 Meadow Ash Dr Lewis Center Zip: 43035 Region: United States Sector: Marine and Hydrokinetic Year Founded:...

  7. Avista Turbine Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    Power, Inc Jump to: navigation, search Name: Avista Turbine Power, Inc Place: Washington Phone Number: 800.936.6629 Website: www.avistacorp.comhomePages Twitter:...

  8. 2015 University Turbine Systems Research Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research Workshop November 3-5, 2015 Accommodations Georgian Terrace Hotel 659 Peachtree Street, NE Atlanta, GA 30308 The Georgian Terrace Hotel will be...

  9. Turbine Electric Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Power Inc Jump to: navigation, search Name: Turbine Electric Power Inc Sector: Vehicles Product: US-based, holder of the 'exclusive worldwide rights' to install, sell,...

  10. SMART Wind Turbine Rotor: Data Analysis and Conclusions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Data Analysis and Conclusions Data analysis and conclusions from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. SMART Wind Turbine Rotor: Data Analysis and Conclusions (2.47 MB) More Documents & Publications SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Design and Field Test

  11. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  12. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Office of Environmental Management (EM)

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work ...

  13. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable ...

  14. Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open...

    Open Energy Info (EERE)

    Aviation Enterprises Ltd see Marine Current Turbines Ltd Jump to: navigation, search Name: Aviation Enterprises Ltd see Marine Current Turbines Ltd Region: United Kingdom Sector:...

  15. MHK Technologies/The Davis Hydro Turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is...

  16. Built-Environment Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Built-environment wind turbine projects are wind energy projects that are constructed on, in, or near buildings. These projects present an...

  17. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  18. New Report States That Hydrokinetic Turbines Have Minimal Environmenta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August ...

  19. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February...

  20. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  1. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  2. Gamesa Wind Turbines Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gamesa Wind Turbines Pvt Ltd Jump to: navigation, search Name: Gamesa Wind Turbines Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind...

  3. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 17 ... SERVICE LIFE; SHEAR PROPERTIES; SILICA; TESTING; TOLERANCE; TURBINE BLADES; WIND TURBINES ...

  4. Engineering ECO ROTR Wind Turbines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECO ROTR (Energy Capture Optimization by Revolutionary Onboard Turbine Reshape) - Making ... ECO ROTR (Energy Capture Optimization by Revolutionary Onboard Turbine Reshape) - Making ...

  5. Wind Turbine Radar Interference Mitigation Working Group Releases New Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines...

  6. Hydro Review: Computational Tools to Assess Turbine Biological...

    Broader source: Energy.gov (indexed) [DOE]

    Computational Tools to Assess Turbine Biological Performance (483.71 KB) More Documents & Publications Hydropower R&D: Recent Advances in Turbine Passage Technology Environmental ...

  7. New Wind Turbine Dynamometer Test Facility Dedicated at NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  8. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavioral responses to turbine exposure also are investigated to support assessment of ... (3) performing flume testing with three turbine designs and several fish species and size ...

  9. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 Opportunities for Micropower and Fuel CellGas Turbine ...

  10. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Addthis Description Innovation in the design ...

  11. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home ... Google + Vimeo Newsletter Signup SlideShare Innovative Offshore Vertical-Axis Wind Turbine ...

  12. Statistics Show Bearing Problems Cause the Majority of Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September ...

  13. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...

  14. ECO ROTR - The Future of Wind Turbines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECO ROTR (Energy Capture Optimization by Revolutionary Onboard Turbine Reshape) - How did ... ECO ROTR (Energy Capture Optimization by Revolutionary Onboard Turbine Reshape) - How did ...

  15. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The ...

  16. Aerodynamic Wind-Turbine Blade Design for the National Rotor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Design for the National Rotor Testbed - Sandia Energy Energy Search ... Twitter Google + Vimeo Newsletter Signup SlideShare Aerodynamic Wind-Turbine Blade Design ...

  17. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKING TOGETHER TO BUILD A FASTER AND LEANER FUTURE FOR WIND TURBINE BLADE MANUFACTURING ... For the wind industry, 3D printing could transform turbine blade mold manufacturing, ...

  18. Dynamic Models for Wind Turbines and Wind Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Each of these models includes representations of general turbine aerodynamics, the ... 9 1.1.2 Wind power integration and wind turbine modeling ......

  19. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Turbine Radar Interference Mitigation Working Group to address these challenges. This new report lays out the plan for how the working group will address wind turbine radar ...

  20. New Modularization Framework Transforms FAST Wind Turbine Modeling...

    Broader source: Energy.gov (indexed) [DOE]

    an expanded version of its FAST wind turbine computer-aided engineering tool under a ... to analyze multimember offshore wind turbine substructures A new state-space ...

  1. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - ...

  2. Nine Projects Selected for Funding through University Turbine...

    Broader source: Energy.gov (indexed) [DOE]

    funding through the NETL-managed University Turbine Systems Research Program. The Program funds a portfolio of gas turbine-focused university projects to facilitate the ...

  3. NWTC Researchers Field-Test Advanced Control Turbine Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease ... damage that increase maintenance costs and shorten the life of a turbine or wind plant. ...

  4. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Broader source: Energy.gov (indexed) [DOE]

    chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ... chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ...

  5. International Effort Advances Offshore Wind Turbine Design Codes...

    Broader source: Energy.gov (indexed) [DOE]

    a reference model based on a 5-megawatt turbine on a floating semisubmersible foundation. ... New Modularization Framework Transforms FAST Wind Turbine Modeling Tool New Modeling Tool ...

  6. Seven Universities Selected To Conduct Advanced Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. ...

  7. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Broader source: Energy.gov (indexed) [DOE]

    with backpressure turbine-generators as part of optimized steam systems. STEAM TIP SHEET 22 Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators (January ...

  8. Abstract - This paper describes the latest generic wind turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbine generator models of types 3 and 4 developed for implementation in the Western Electricity Coordinating Council (WECC) base cases. Key Words - Generic wind turbine ...

  9. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume II (Appendices), January 2000 Opportunities for Micropower and Fuel CellGas Turbine Hybrid ...

  10. The development of advanced hydroelectric turbines to improve...

    Office of Scientific and Technical Information (OSTI)

    turbines to improve fish passage survival Citation Details In-Document Search Title: The development of advanced hydroelectric turbines to improve fish passage survival You ...

  11. The development of advanced hydroelectric turbines to improve...

    Office of Scientific and Technical Information (OSTI)

    turbines to improve fish passage survival Citation Details In-Document Search Title: The development of advanced hydroelectric turbines to improve fish passage survival Recent ...

  12. Analysis of Wind Turbine Simulation Models: Assessment of Simplified...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Wind Turbine Simulation Models: Assessment of Simplified versus Complete ... Spain, September 10-12, 2015 ANALYSIS OF WIND TURBINE SIMULATION MODELS: ASSESSMENT OF ...

  13. Use of SCADA Data for Failure Detection in Wind Turbines

    SciTech Connect (OSTI)

    Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P.

    2011-10-01

    This paper discusses the use of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.

  14. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This ...

  15. Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd...

    Open Energy Info (EERE)

    Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd NCWA Jump to: navigation, search Name: Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd (NCWA) Place: Nantong,...

  16. MHK Technologies/Open Centre Turbine | Open Energy Information

    Open Energy Info (EERE)

    Centre Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group...

  17. MHK Technologies/Blue Motion Energy marine turbine | Open Energy...

    Open Energy Info (EERE)

    Blue Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile...

  18. Minnkota Power Cooperative Wind Turbine (Petersburg) | Open Energy...

    Open Energy Info (EERE)

    Minnkota Power Cooperative Wind Turbine (Petersburg) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Petersburg) Facility Minnkota Power Cooperative Wind...

  19. Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongqi Wind Turbine Blade Engineering Co Ltd Jump to: navigation, search Name: Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd Place: Tianjin Municipality, China Sector: Wind...

  20. MHK Technologies/MRL Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here Axial Flow Turbine Technology...

  1. Renewable Devices Swift Turbine Ltd | Open Energy Information

    Open Energy Info (EERE)

    Swift Turbine Ltd Jump to: navigation, search Name: Renewable Devices Swift Turbine Ltd Place: Edinburgh, Scotland, United Kingdom Zip: EH26 0PH Sector: Wind energy Product:...

  2. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  3. MHK Technologies/Turbines OWC | Open Energy Information

    Open Energy Info (EERE)

    Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Description The patent pending Neo Aerodynamic turbine invented by Phi...

  4. MHK Technologies/OCGen turbine generator unit TGU | Open Energy...

    Open Energy Info (EERE)

    OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile...

  5. MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy...

    Open Energy Info (EERE)

    Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary...

  6. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s)...

  7. MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    Cross flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization...

  8. MHK Technologies/Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Type Click...

  9. Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy...

    Open Energy Info (EERE)

    Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name: Beijing Goldwind Kechuang Wind Turbine Manufacturer Place: Beijing, Beijing Municipality, China Zip:...

  10. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  11. Indian Wind Turbine Manufacturers Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Turbine Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

  12. MHK Technologies/Gorlov Helical Turbine | Open Energy Information

    Open Energy Info (EERE)

    Gorlov Helical Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine.jpg Technology Profile Primary Organization GCK...

  13. Iskra Wind Turbine Manufacturers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name: Iskra Wind Turbine Manufacturers Ltd Place: Nottingham, United Kingdom Sector: Wind energy Product: Iskra...

  14. Dongfang Steam Turbine Works DFSTW | Open Energy Information

    Open Energy Info (EERE)

    Turbine Works DFSTW Jump to: navigation, search Name: Dongfang Steam Turbine Works (DFSTW) Place: Deyang, Sichuan Province, China Zip: 618000 Sector: Wind energy Product:...

  15. MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information

    Open Energy Info (EERE)

    Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization...

  16. MHK Technologies/Anaconda bulge tube drives turbine | Open Energy...

    Open Energy Info (EERE)

    Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile...

  17. Danish Wind Turbine Owners Association | Open Energy Information

    Open Energy Info (EERE)

    Turbine Owners Association Jump to: navigation, search Name: Danish Wind Turbine Owners' Association Place: Aarhus C, Denmark Zip: DK-8000 Sector: Wind energy Product: Danish Wind...

  18. MHK Technologies/Tidal Stream Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned...

  19. MHK Technologies/Savanious Turbine | Open Energy Information

    Open Energy Info (EERE)

    Savanious Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Savanious Turbine.jpg Technology Profile Primary Organization Rugged...

  20. MHK Technologies/Benkatina Turbine | Open Energy Information

    Open Energy Info (EERE)

    Benkatina Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Benkatina Turbine.jpg Technology Profile Primary Organization Leviathan...

  1. MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy...

    Open Energy Info (EERE)

    SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile...

  2. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  3. MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy...

    Open Energy Info (EERE)

    Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile...

  4. Vykson Formerly Turbine Developments NI Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vykson Formerly Turbine Developments NI Ltd Jump to: navigation, search Name: Vykson (Formerly Turbine Developments (NI) Ltd) Place: Canterbury, England, United Kingdom Zip: BR6...

  5. MHK Technologies/EnCurrent Turbine | Open Energy Information

    Open Energy Info (EERE)

    EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy...

  6. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    Open Energy Info (EERE)

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  7. MHK Technologies/Wells Turbine for OWC | Open Energy Information

    Open Energy Info (EERE)

    Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro...

  8. MHK Technologies/Gorlov Helical Turbine GHT | Open Energy Information

    Open Energy Info (EERE)

    Gorlov Helical Turbine GHT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine GHT.jpg Technology Profile Primary...

  9. FloDesign Wind Turbine Corporation | Open Energy Information

    Open Energy Info (EERE)

    FloDesign Wind Turbine Corporation Jump to: navigation, search Name: FloDesign Wind Turbine Corporation Place: Massachusetts Zip: 1095 Sector: Wind energy Product:...

  10. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  11. Consider Installing High-Pressure Boilers with Backpressure Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    turbine-generator maintenance does not interfere with plant thermal deliveries. Cost-Effective Power Generation In a backpressure steam turbine, energy from high-pressure ...

  12. Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994

    SciTech Connect (OSTI)

    1994-11-01

    This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

  13. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect (OSTI)

    Singh, Punit; Nestmann, Franz [Institute of Water and River Basin Management (IWG), Karlsruhe Institute of Technology, Kaiser Str. 12, D 76131 Karlsruhe (Germany)

    2011-01-15

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding

  14. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  15. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1994-10-01

    Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

  16. Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application

    SciTech Connect (OSTI)

    Ashok K. Anand

    2005-12-16

    This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key

  17. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  18. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  19. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  20. Method for detecting gas turbine engine flashback

    DOE Patents [OSTI]

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.