Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stream habitat and rainbow trout (Oncorhynchus mykiss) physiological stress responses to  

E-Print Network (OSTI)

Stream habitat and rainbow trout (Oncorhynchus mykiss) physiological stress responses to streamside and sedimentation, loss of habitat complexity) are potentially stressful to stream-dwelling fish. We examined stream Columbia using 15 streams divided into three categories: old growth (reference), recently logged (clear

Hinch, Scott G.

2

Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss)  

SciTech Connect

The herbicide atrazine (ATZ) is one of the most widely used pesticides in the world and is now under scrutiny for its alleged capacity to disrupt the endocrine system. Exhibiting negligible interaction with the estrogen receptor (ER), ATZ's mode of action remains to be elucidated. ATZ may act as an inducer of the enzyme aromatase, which converts androgens to estrogens, although other mechanisms should also be taken into consideration such as impairment of hepatic metabolism. Therefore we administered juvenile rainbow trout (Oncorhynchus mykiss) a dose of either 2 or 200 {mu}g ATZ/kg, or of carrier control phosphate buffered saline (PBS) and we measured plasma concentrations of testosterone (T), 17beta-estradiol (E2) and vitellogenin (Vtg) 6 days after exposure. Simultaneously we analyzed hepatic gene expression of cytochrome P450 (CYP) 1A and pi-class glutathione S-transferase (GST-P), and catalase (CAT) activity. Although sex steroid levels showed no significant alterations, we found a dose-dependent increase in Vtg and a concomitant decrease in CYP1A. There was no effect of ATZ on GST-P mRNA levels but GST-P was positively correlated with CYP1A. Also, CYP1A was negatively correlated with liver CAT and E2, and varied with T concentrations in a hormetic manner. The results showed that ATZ can alter hepatic metabolism, induce estrogenic effects and oxidative stress in vivo, and that these effects are linked.

Salaberria, Iurgi [Department of Zoology and Animal Cell Biology, University of the Basque Country, Apdo. 644, E-48080 Bilbao (Spain); Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)], E-mail: iurgi.salaberria@hotmail.com; Hansen, Bjorn Henrik [SINTEF Materials and Chemistry, Marine Environmental Technology, N-7465 Trondheim (Norway); Asensio, Vega [Department of Zoology and Animal Cell Biology, University of the Basque Country, Apdo. 644, E-48080 Bilbao (Spain); Olsvik, Pal A. [National Institute of Nutrition and Seafood Research (NIFES), Nordnes, N-5817 Bergen (Norway); Andersen, Rolf A.; Jenssen, Bjorn Munro [Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2009-01-01T23:59:59.000Z

3

Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro  

E-Print Network (OSTI)

organochlorine pesticide, on cortisol secretion, cell viability, antioxidants and lipid peroxidation wereOxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow troutAMP-stimulated cortisol secretion, and cell viability were impaired in a dose-related manner following acute in vitro

Hontela, Alice

4

Assessment of energetic costs of AhR activation by ?-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis  

SciTech Connect

Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

2013-08-15T23:59:59.000Z

5

Development and comparison of computational models for estimation of absorbed organ radiation dose in rainbow trout (Oncorhynchus mykiss) from uptake of iodine-131  

Science Journals Connector (OSTI)

Abstract This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from 131I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (?Gy) to selected organs after several half-lives of 131I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body \\{DCFs\\} for each model (?3 × 10?3 ?Gy d?1 per Bq kg?1) were comparable to \\{DCFs\\} listed in ICRP 108 for 131I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements.

N.E. Martinez; T.E. Johnson; K. Capello; J.E. Pinder III

2014-01-01T23:59:59.000Z

6

Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout  

Science Journals Connector (OSTI)

...and JC Garza. 2009 Over the falls? Rapid evolution of ecotypic...Assignment of rainbow trout linkage groups to specific chromosomes. Genetics...Oncorhynchus mykiss) in the Klamath River. Environ. Biol. Fish...redband trout in the Upper Klamath Basin. Trans. Am. Fish...

2014-01-01T23:59:59.000Z

7

The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout  

SciTech Connect

Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) {alpha}, {beta}, and {gamma} isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

Prindiville, John S., E-mail: jprin041@uottawa.ca; Mennigen, Jan A.; Zamora, Jake M.; Moon, Thomas W.; Weber, Jean-Michel

2011-03-15T23:59:59.000Z

8

E-Print Network 3.0 - anadromous rainbow trout Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

press) A comparative analysis of the rainbow trout genome with two other species of fish (Arctic charr... parameters for upper thermal tolerance and growth-related traits in...

9

The antidepressant venlafaxine disrupts brain monoamine levels and neuroendocrine responses to stress in rainbow trout  

Science Journals Connector (OSTI)

The antidepressant venlafaxine disrupts brain monoamine levels and neuroendocrine responses to stress in rainbow trout ... We tested the hypothesis that venlafaxine perturbs brain monoaminergic levels and disrupts molecular responses essential for stress coping and feeding activity in fish. ... This treatment elevated norepinephrine, serotonin and dopamine levels in the brain in a region-specific manner. ...

Nataliya Melnyk-Lamont; Carol Best; Manuel Gesto; Mathilakath M. Vijayan

2014-10-30T23:59:59.000Z

10

Lake Roosevelt Fisheries Evaluation Program; Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington, 1999 Annual Report.  

SciTech Connect

Hatchery supplementation of kokanee Oncorhynchus nerka and rainbow trout O. mykiss has been the primary mitigation provided by Bonneville Power Administration for loss of anadromous fish to the waters above Grand Coulee Dam (GCD). The hatchery program for rainbow trout has consistently met management goals and provided a substantial contribution to the fishery; however, spawner returns and creel survey results for kokanee have been below management goals. Our objective was to identify factors that limit limnetic fish production in Lake Roosevelt by evaluating abiotic conditions, food limitations, piscivory, and entrainment. Dissolved oxygen concentration was adequate throughout most of the year; however, levels dropped to near 6 mg/L in late July. For kokanee, warm water temperatures during mid-late summer limited their nocturnal distribution to 80-100 m in the lower section of the reservoir. Kokanee spawner length was consistently several centimeters longer than in other Pacific Northwest systems, and the relative weights of rainbow trout and large kokanee were comparable to national averages. Large bodied daphnia (> 1.7 mm) were present in the zooplankton community during all seasons indicating that top down effects were not limiting secondary productivity. Walleye Stizostedion vitreum were the primary piscivore of salmonids in 1998 and 1999. Burbot Lota lota smallmouth bass Micropterus dolomieui, and northern pikeminnow Ptychocheilus oregonensis preyed on salmonids to a lesser degree. Age 3 and 4 walleye were responsible for the majority (65%) of the total walleye consumption of salmonids. Bioenergetics modeling indicated that reservoir wide consumption by walleye could account for a 31-39% loss of stocked kokanee but only 6-12% of rainbow trout. Size at release was the primary reason for differential mortality rates due to predation. Entrainment ranged from 2% to 16% of the monthly abundance estimates of limnetic fish, and could account for 30% of total mortality of limnetic fishes, depending on the contribution of littoral zone fishes. Inflow to GCD forebay showed the strongest negative relationship with entrainment whereas reservoir elevation and fish vertical distribution had no direct relationship with entrainment. Our results indicate that kokanee and rainbow trout in Lake Roosevelt were limited by top down impacts including predation and entrainment, whereas bottom up effects and abiotic conditions were not limiting.

Baldwin, Casey; Polacek, Matt

2009-03-01T23:59:59.000Z

11

The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.  

SciTech Connect

Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

2010-06-25T23:59:59.000Z

12

Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.  

SciTech Connect

The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

Underwood, Keith D.

1995-01-01T23:59:59.000Z

13

An individual-based instream flow model for coexisting populations of brown and rainbow trout  

SciTech Connect

This report describes an individual-based model for sympatric populations of brown and rainbow trout in a stream habitat. Hatchery rainbow trout are included as a third species. The model provides a tool for predicting flow effects on trout populations by linking the hydraulic component of the Physical Habitat Simulation (PHABSIM) methodology and an individual-based population modeling approach. PHABSIM simulates the spatial distribution of depth and velocity at different flows. The individual-based model simulates the reproduction, foraging, consumption, energetic costs, growth, habitat utilization, movement, and mortality of individual fish, and enables population attributes to be determined from relevant attributes of individual fish. The spatially explicit nature of the model permits evaluation of behavioral responses used by fish to mitigate temporary setbacks in habitat quality. This linked mechanistic modeling approach readily lends itself to the iterative process of making predictions, testing against field data, improving the model, and making more predictions. The model has been applied to a stream segment in the Tule River, California. Physical and biological data from this site are used as input to the model. Calibrating the model to abundance data was relatively easy because values for mortality parameters were not strongly constrained by empirical data. Calibrating the model to observed growth rates and habitat use was more challenging. The primary reason for developing this model has been to provide a new and complementary tool to PHABSIM that can be used in instream-flow assessments.

Van Winkle, W.; Jager, H.I.; Holcomb, B.D.

1996-03-01T23:59:59.000Z

14

Cloned rainbow trout liver P(1)450 complementary DNA as a potential environmental monitor  

SciTech Connect

A technique is proposed for the biological monitoring of pollutants in aquatic environments by use of a complementary DNA (cDNA) probe. The induction of hepatic cytochrome P(1)450 mRNA has been investigated utilizing pfP(1)450-3', a 3'-specific 1.5 kb cDNA clone derived from 3-methylcholanthrene-inducible mRNA of rainbow trout. A time course of induction of both the hybridizable mRNA and hepatic monooxygenase catalytic activity in rainbow trout with a known inducer in fish, beta-naphthoflavone, was studied. The cDNA probe was also shown to hybridize with induced mRNA of brook trout, scup, garter snake, painted turtle, and rat demonstrating the suitability of the probe for examining induction of mRNA in various species. The results of these experiments suggest that the cDNA probe may be useful as a biological monitoring tool for determining the presence and effects of chemical pollutants which are inducers of hepatic microsomal monooxygenase activity. The probe may have the potential to be applied as an early warning system in the monitoring of water quality.

Haasch, M.L.; Wejksnora, P.J.; Stegeman, J.J.; Lech, J.J.

1989-04-01T23:59:59.000Z

15

Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish and rainbow trout  

E-Print Network (OSTI)

Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish; accepted 16 October 2002 Abstract 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a widespread in zebrafish and rainbow trout that dioxin increases expression of this EF-hand calcium-binding protein gene

Tullos, Desiree

16

Distribution and elimination routes of a naphthenic hydrocarbon (Dodecylcyclohexane) in rainbow trout (Salmo gairdneri)  

SciTech Connect

Contamination of fish by hydrocarbons, whether it occurred directly via the water or indirectly via the food chain has been the object of many studies during the last decade. The interest of laboratories have been focused on the most toxic components of crude oils, i.e., aromatic hydrocarbons but there is a lack of information on the fate of cyclic alkanes in fish. Naphthenic hydrocarbons are the least biologically active of the more mobile fractions of petroleum; nevertheless the fate of these compounds are worth considering, because they constitute respectively 41% and 19.2% of light and heavy crude oils. This paper reports the results of our experiment in which /sup 3/H-dodecylcyclohexane has been given per os to rainbow trout in order to evaluate the distribution and elimination routes of this cycloparaffin.

Cravedi, J.P.; Tulliez, J.

1981-03-01T23:59:59.000Z

17

Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.  

SciTech Connect

The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

Sears, Sheryl

2004-01-01T23:59:59.000Z

18

The effects of diesel oil-based drilling mud extracts on immune responses of rainbow trout  

Science Journals Connector (OSTI)

The potential suppressive effect of oil-pollution in the aquatic environment on fish...Oncorhynchus mykiss) with an extract obtained from diesel oil-based drilling mud. To investigate the effect of extract ... 4 ...

A. Tahir; C. J. Secombes

1995-07-01T23:59:59.000Z

19

RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays  

E-Print Network (OSTI)

: conservation genomics, hybridization, introgression, invasive species, microfluidic PCR, salmonids, SNP, trout

Hohenlohe, Paul A.

20

Effects of replacing fish oil with vegetable oils in feed for rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus).  

E-Print Network (OSTI)

??As global capture of fish has stagnated and fish consumption is increasing due to a growing human population, the demand can only be met by… (more)

Pettersson, Andreas

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network (OSTI)

Upper American River Hydroelectric Project, FERC Project No.California, Chili Bar Hydroelectric Project, FERC Projectthe night, as part of hydroelectric power generation by the

2010-01-01T23:59:59.000Z

22

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network (OSTI)

impact statement for hydropower license. Upper Americanand permitted for hydropower generation and flood control.1):257–268 Hunter MA (1992) Hydropower flow fluctuations and

2010-01-01T23:59:59.000Z

23

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network (OSTI)

the night, as part of hydroelectric power generation by theto manage water for hydroelectric power generation. There

2010-01-01T23:59:59.000Z

24

Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.  

SciTech Connect

The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

Trotter, Patrick C.

2001-05-01T23:59:59.000Z

25

Costs of chronic waterborne zinc exposure and the consequences of zinc acclimation on the gill/zinc interactions of rainbow trout in hard and soft water  

SciTech Connect

Juvenile rainbow trout were exposed to zinc in both moderately hard water and soft water for 30 d. Only the 450 {micro}g/L zinc-exposed fish experienced significant mortality. Zinc exposure caused no effect on growth rate, but growth affected tissue zinc levels. Whole body zinc levels were elevated, but gill sand liver showed no consistent increases relative to controls over the 30 d. Therefore, tissue zinc residues were not a good indicator of chronic zinc exposure. After the 30-d exposure, physiological function tests were performed. Zinc was 5.4 times more toxic in soft water. All zinc-exposed trout had acclimated to the metal, as seen by an increase in the LC50 of 2.2 to 3.9 times over that seen in control fish. Physiological costs related to acclimation appeared to be few. Zinc exposure had no effect on whole body Ca{sup 2+} or Na{sup +} levels, on resting or routine metabolic rates, or on fixed velocity sprint performance. However, critical swimming speed (U{sub Crit}) was significantly reduced in zinc-exposed fish, an effect that persisted in zinc-free water. Using radioisotopic techniques to distinguish new zinc incorporation, the gills were found to possess two zinc pools: a fast turnover pool and a slow turnover pool. The fast pool was much larger in soft water than in hard water, but at most it accounted for < 3.5% of the zinc content of the gills. The size of the slow pool was unknown, but its loading rate was faster in soft water. Chronic zinc exposure was found to increase the size of the fast pool and to increase the loading rate of the slow pool.

Alsop, D.H.; McGeer, J.C.; McDonald, D.G.; Wood, C.M. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology

1999-05-01T23:59:59.000Z

26

E-Print Network 3.0 - auratus ictalurus punctatus Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management and Restoration Technologies ; Engineering 10 Effects of clove oil and MS-222 on blood hormone profiles in rainbow trout Oncorhynchus Summary: sh...

27

Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.  

SciTech Connect

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

2006-01-26T23:59:59.000Z

28

EA-296-B Rainbow Energy Marketing Corporation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Rainbow Energy Marketing Corporation EA-296-B Rainbow Energy Marketing Corporation Order authorizing Rainbow Energy to export electric energy to Canada. EA-296-B Rainbow Energy...

29

Singularity Free Rainbow Universe  

E-Print Network (OSTI)

Isotropic quantum cosmological perfect fluid model is studied in the formalism of Rainbow gravity. It is found that the only surviving matter degree of freedom played the role of cosmic time. It is possible to find the wave packet naturally with a suitable choice of the Rainbow functions which resulted from the superposition of the wave functions of the Schr$\\ddot{o}$dinger-Wheeler-deWitt equation. The many-worlds interpretation of quantum mechanics is applied to investigate the behavior of the scale factor and the behaviour is found to depend on the operator ordering. It is shown that the model in the Rainbow framework naturally avoids singularity and a bouncing non-singular universe is found.

Majumder, Barun

2013-01-01T23:59:59.000Z

30

Smolt Monitoring Program, Part II, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1985 Annual Report.  

SciTech Connect

Volume I of this report describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the freeze brand data used in the analysis of travel time for Lower Granite, Rock Island, McNary, and John Day dams. Brand recoveries for Lower Monumental dam also are presented. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data.

Fish Passage Center

1986-02-01T23:59:59.000Z

31

EA-375 Rainbow Energy Marketing Corporation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Rainbow Energy Marketing Corporation EA-375 Rainbow Energy Marketing Corporation Order authorizing Rainbow Energy Marketing Corporation to export electric energy to Mexico EA-375...

32

EA-296-A Rainbow Energy Mrketing Corporation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-296-A Rainbow Energy Mrketing Corporation Order authorizing Rainbow Energy Marketing Corporation to export electric energy to Canada EA-296-A Rainbow Energy Mrketing...

33

Rainbow trapping of guided waves  

E-Print Network (OSTI)

Rainbow trapping of guided waves Javier Polanco and Rosa M.the propagation of a wave packet that is a superpositionof three s-polarized guided waves with different frequencies

Polanco, Javier; Fitzgerald, Rosa M; Leskova, Tamara A; Maradudin, Alexei A

2011-01-01T23:59:59.000Z

34

Status of Oregon's Bull Trout.  

SciTech Connect

Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

1997-10-01T23:59:59.000Z

35

Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.  

SciTech Connect

Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

Cegelski, Christine C.; Campbell, Matthew R.

2006-05-30T23:59:59.000Z

36

Black Hole Complementarity in Gravity's Rainbow  

E-Print Network (OSTI)

We calculate the required energy for duplication of information in the context of black hole complementarity in the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit given by the conventional result for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could be not allowed below a certain critical value of the rainbow parameter; however, it could be possible above the critical value of the rainbow parameter, so that the consistent formulation in the rainbow Schwarzschild black hole requires additional constraints or any other resolutions for the latter case.

Gim, Yongwan

2015-01-01T23:59:59.000Z

37

Gravity's Rainbow induces Topology Change  

E-Print Network (OSTI)

In this work, we explore the possibility that quantum fluctuations induce a topology change, in the context of Gravity's Rainbow. A semi-classical approach is adopted, where the graviton one-loop contribution to a classical energy in a background spacetime is computed through a variational approach with Gaussian trial wave functionals. The energy density of the graviton one-loop contribution, or equivalently the background spacetime, is then let to evolve, and consequently the classical energy is determined. More specifically, the background metric is fixed to be Minkowskian in the equation governing the quantum fluctuations, which behaves essentially as a backreaction equation, and the quantum fluctuations are let to evolve; the classical energy, which depends on the evolved metric functions, is then evaluated. Analysing this procedure, a natural ultraviolet (UV) cutoff is obtained, which forbids the presence of an interior spacetime region, and may result in a multipy-connected spacetime. Thus, in the context of Gravity's Rainbow, this process may be interpreted as a change in topology, and in principle results in the presence of a Planckian wormhole.

Remo Garattini; Francisco S. N. Lobo

2014-08-20T23:59:59.000Z

38

Rainbow Energy Marketing Corp | Open Energy Information  

Open Energy Info (EERE)

Rainbow Energy Marketing Corp Rainbow Energy Marketing Corp Jump to: navigation, search Name Rainbow Energy Marketing Corp Place North Dakota Utility Id 15711 Utility Location Yes Ownership W NERC Location MRO Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Rainbow_Energy_Marketing_Corp&oldid=411422" Categories: EIA Utility Companies and Aliases

39

3-Rainbow Domination Number in Graphs  

Science Journals Connector (OSTI)

The k-rainbow domination is a location problem in operations research. Give an undirected graph G as the natural model of location problem. We have a set of k colors and assign an arbitrary subset of these col...

Kung-Jui Pai; Wei-Jai Chiu

2013-01-01T23:59:59.000Z

40

Quantum Rainbow Cosmological Model With Perfect Fluid  

E-Print Network (OSTI)

Isotropic quantum cosmological perfect fluid model is studied in the formalism of Rainbow gravity. It is found that the only surviving matter degree of freedom played the role of cosmic time. With the suitable choice of the Rainbow functions it is possible to find the wave packet naturally from the superposition of the wave functions of the Schr$\\ddot{o}$dinger-Wheeler-deWitt equation. The many-worlds interpretation of quantum mechanics is applied to investigate the behavior of the scale factor and the behavior is found to depend on the operator ordering. It is shown that the model in the Rainbow framework may avoid singularity yielding a bouncing non-singular universe.

Majumder, Barun

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cadmium uptake in isolated adrenocortical cells of rainbow trout and yellow perch  

E-Print Network (OSTI)

in lakes contaminated by atmospheric depositions from mining activities contain high levels of Cd released into the aquatic and terrestrial ecosystems by industrial activities poses significant health risks to both humans and wildlife. In 1993, the International Agency for Research on Cancer classified

Hontela, Alice

42

Hepatic versus gallbladder bile composition: in vivo transport physiology of the gallbladder in rainbow trout  

E-Print Network (OSTI)

and water reabsorption; bile acid BILE IS A HEPATIC SECRETION that functions to promote digestion and absorption of lipids from the intestine via the action of bile acids or bile salts. Bile also acts

Grosell, Martin

43

Rainbow, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rainbow, California: Energy Resources Rainbow, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3101806°, -120.5085396° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3101806,"lon":-120.5085396,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Rainbow Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

Rainbow Power Company Ltd Rainbow Power Company Ltd Jump to: navigation, search Name Rainbow Power Company Ltd Place Nimbin, New South Wales, Australia Zip 2480 Sector Hydro, Renewable Energy, Solar, Wind energy Product Manufacturer, distributor and retailer of renewable energy products, including solar, wind and hydro. Website http://www.rpc.com.au/ Coordinates -28.595261°, 153.222794° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-28.595261,"lon":153.222794,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Geodesic Structure of the Schwarzschild Black Hole in Rainbow Gravity  

E-Print Network (OSTI)

In this paper we study the geodesic structure of the Schwarzschild black hole in rainbow gravity analyzing the behavior of null and time-like geodesic. We find that the structure of the geodesics essentially does not change when the semi-classical effects are included. However, we can distinguish different scenarios if we take into account the effects of rainbow gravity. Depending on the type of rainbow functions under consideration, inertial and external observers see very different situations in radial and non radial motion of a test particles.

Carlos Leiva; Joel Saavedra; Jose Villanueva

2008-12-09T23:59:59.000Z

46

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Draft Environmental Impact Statement Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (FS) and State of Montana Fish, Wildlife, and Parks (MFWP) Department Title of Proposed Project: South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program State Involved: Montana Abstract: In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead drainage. The South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program constitutes a

47

Trout Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Trout Creek Geothermal Area Trout Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Trout Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.18822,"lon":-118.37756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014  

SciTech Connect

The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after their release, representing a residualization rate of 12.8% (21 of 164). Snorkeling revealed considerable overlap of habitat use (in space and time) by residual hatchery steelhead and naturally produced O. mykiss in the South Santiam River. Results from our study (and others) also indicated that hatchery steelhead juveniles typically dominate interactions with naturally produced O. mykiss juveniles. The overlap in space and time, combined with the competitive advantage that residual hatchery steelhead appear to have over naturally produced O. mykiss, increases the potential for negative ecological interactions that could have population-level effects on the wild winter steelhead population of the South Santiam River.

Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

2014-12-23T23:59:59.000Z

49

Comparative Biochemistry and Physiology Part A 124 (1999) 329334 Modulation of stress hormones in rainbow trout by means of  

E-Print Network (OSTI)

/ml plasma. Cortisol was elevated (to \\10 ng/ml) within 30 s of stress initiation. Surreptitious infusion

Demers, Nora Egan

50

Bull Trout Life History, Genetics, Habitat Needs, and Limiting Factors in Central and Northeast Oregon. Annual Report 1996.  

SciTech Connect

This study is part of a multi-year research project studying aspects of bull trout life history, ecology and genetics. This report covers the activities of the project in 1996. Results and analysis are presented in the following five areas: (1) analysis of the genetic structure of Oregon bull trout populations; (2) distribution and habitat use of bull trout and brook trout in streams containing both species; (3) bull trout spawning surveys; (4) summary and analysis of historical juvenile bull trout downstream migrant trap catches in the Grande Ronde basin; and (5) food habits and feeding behavior of bull trout alone and in sympatry with brook trout.

Bellerud, Blane L.; Gunckel, Stephanie; Hemmingsen, Alan R.; Buchanan, David V.; Howell, Philip J.

1997-10-01T23:59:59.000Z

51

YELLOWSTONE LAKE TROUT CREEL CENSUSES, 1950-51  

E-Print Network (OSTI)

7^ YELLOWSTONE LAKE TROUT CREEL CENSUSES, 1950-51 SPECIAL SCIENTIFIC REPORT: FISHERIES No. 81 -, h Census method .......... ,o ..... |j Fishing Bridge Dock ........... 5 West Thumb Dock Bridge ,.....,.....,,.,.,.. 18 Lake shore census .......... . ip Private boat fishery

52

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2000 Annual Report.  

SciTech Connect

Repeat spawning is a life history strategy that is expressed by some species from the family salmonidae. Natural rates of repeat spawning for Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. Increasing this repeat spawning rate using fish culture techniques could assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to grow and develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for local populations. The primary purpose of this project in 2000 was to test the general feasibility of collecting, feeding, and treating steelhead kelts in a captive environment. Steelhead kelts were collected from the Yakima River at the Chandler Juvenile Evaluation Facility (Rkm 48) from 12 March to 13 June 2000. Kelts were reconditioned at adjacent Prosser Hatchery in both rectangular and circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus, and we tested the use of ivermectin to control internal parasites (e.g., Salmincola spp.). Some the kelts that died during the reconditioning process were analyzed via pathology and gonad histology to ascertain the possible cause of death and to describe their reproductive development at the time of death. All surviving specimens were released for natural spawning on 12 December 2000. Overall success of the reconditioning process was based on the proportion of fish that survived captivity, gained weight, and on the number of fish that successfully underwent gonadal recrudescence. Many of the reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery. In total, 512 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 37% (512/1,380) of the entire 1999-2000 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. At the conclusion of the experiments ({approx}240 days from capture), 91 fish (18%) had survived and were released to spawn in the wild. Ultrasound examination--to determine sex and reproductive development--determined that 87 (96%) of 91 specimens were female, and we estimated 62 fish (12% of the total collected) had successfully reconditioned. Unfortunately, the majority (82%) of the kelts collected died during the experiment, with the bulk of the moralities occurring during the first 100 days of captivity. Much was learned from the mortalities and modifications were made to the facility to reduce loss for future projects. Overall, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Knowledge regarding kelt husbandry, food type preferences, condition, and rearing environments were obtained during this research endeavor. Although the reconditioning success rate achieved (estimated at 12%) was substantially lower than we initially hoped yet still six times higher than the natural rate of respawning and the authors are encouraged by the results of this innovative project. Information collected during this feasibility study will be incorporated into the experimental design for the upcoming year of research and is expected to increase survival.

Evans, Allen F.; Beaty, Roy E.; Hatch, Douglas R. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2001-12-01T23:59:59.000Z

53

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2002-2003 Annual Report.  

SciTech Connect

We assessed the relationships between specific stream attributes and Yellowstone cutthroat trout Oncorhynchus clarki bouvieri distribution and biomass at 773 stream reaches (averaging 100 m in length) throughout the Upper Snake River Basin in Idaho, in an effort to identify possible limiting factors. Because limiting factors were expected to vary across the range of cutthroat trout distribution in Idaho, separate logistic and multiple regression models were developed for each of the nine major river drainages to relate stream conditions to occurrence and biomass of cutthroat trout. Adequate stream flow to measure fish and habitat existed at 566 sites, and of those, Yellowstone cutthroat trout were present at 322 sites, while rainbow trout O. mykiss (or rainbow x cutthroat hybrids) and brook trout Salvelinus fontinalis occurred at 108 and 181 sites, respectively. In general, cutthroat trout presence at a specific site within a drainage was associated with a higher percentage of public property, higher elevation, more gravel and less fine substrate, and more upright riparian vegetation. However, there was much variation between drainages in the direction and magnitude of the relationships between stream characteristics and Yellowstone cutthroat trout occurrence and biomass, and in model strength. This was especially true for biomass models, in which we were able to develop models for only five drainages that explained more than 50% of the variation in cutthroat trout biomass. Sample size appeared to affect the strength of the biomass models, with a higher explanation of biomass variation in drainages with lower sample sizes. The occurrence of nonnative salmonids was not strongly related to cutthroat trout occurrence, but their widespread distribution and apparent ability to displace native cutthroat trout suggest they may nevertheless pose the largest threat to long-term cutthroat trout persistence in the Upper Snake River Basin.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2004-03-01T23:59:59.000Z

55

Storage of Dressed Chinook Salmon, Oncorhynchus tshawytscha, in Refrigerated Freshwater, Diluted Seawater, Seawater, and in Ice  

E-Print Network (OSTI)

Storage of Dressed Chinook Salmon, Oncorhynchus tshawytscha, in Refrigerated Freshwater, Diluted Seawater, Seawater, and in Ice M. N. BRONSTEIN, R. J. PRICE, E. M. STRANGE, E. F. MELVIN, C. M. DEWEES mixtures of seawater and freshwater, refrigerated seawater, and chilled mixtures of seawater and ice

56

WHIRLING DISEASE OF TROUTS CAUSED BY Myxosoma cerebralis  

E-Print Network (OSTI)

hydroelectric power systems; administers grazing and forestry programs on federally owned range and commercial mineral research; promotes mine safety; conducts saline water research; administers oil import pro- grams. The parasite develops in the car- tilage, primarily of the head of very small trout. Symptoms of black- tail

57

Bull Trout Population Assessment in the Columbia River Gorge : Annual Report 2000.  

SciTech Connect

We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were <15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m{sup 2} in Trappers Creek, 2.6 fish/100m{sup 2} on Clearwater Creek, and 0.4 fish/100m{sup 2} in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem Klickitat to determine the distribution of bull trout throughout the drainage and to determine the extent of hybridization with brook trout.

Byrne, Jim; McPeak, Ron

2001-02-01T23:59:59.000Z

58

Idaho Water Rental Pilot Project probability/coordination study resident fish and wildlife impacts, Phase III. Annual report  

SciTech Connect

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss)in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, E.

1996-09-01T23:59:59.000Z

59

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impact Phase III, 1995 Annual Report.  

SciTech Connect

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, Eric J. (Idaho Department of Fish and Game, Boise, ID)

1996-09-01T23:59:59.000Z

60

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2003 Annual Report.  

SciTech Connect

Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 12 March to 28 May 2003. In total, 690 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.8% (690 of 2,235) of the entire 2002-2003 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in circular tanks, fed freeze-dried krill and received hw-wiegandt multi vit dietary supplement; long-term steelhead kelts also received Moore-Clark pellets. Oxytetracycline was administered to reconditioned fish to boost immune system response following the stress of initial capture. Formalin was also administered to prevent outbreaks of fungus and we also intubated the fish that were collected with Ivermectin{trademark} to control internal parasites (e.g., Salmincola spp.). Captured kelts were separated into two experimental groups: short-term and long-term reconditioning. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were reconditioned for 3 to 7 weeks. Surviving specimens were released for natural spawning on June 4, 2003. Survival-to-release was very good for the short-term experiment, with a rate of 89.9%. Long-term steelhead kelts were held for 5-9 months then released on December 8, 2003. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. Survival and rematuration for long-term kelts increased as well with 62.4% surviving to release and 91.7% rematuring. A total of 47 reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery and to evaluate in-season homing fidelity. As in previous years, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Valuable knowledge regarding kelt husbandry, condition, and rearing environments were obtained during this research endeavor. The authors were very pleased with the high survival rates. Information collected during this feasibility study has been significantly incorporated into the experimental design for upcoming years of research, and is expected to continue to increase survival of long-term reconditioned fish and successful expression of iteroparity.

Hatch, Douglas R.; Branstetter, Ryan (Columbia River Inter-Tribal Fish Commission, Portland, OR); Blodgett, Joe (Yakama Nation, Toppenish, WA)

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2002 Annual Report.  

SciTech Connect

Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from March 12 to June 13, 2002. In total, 899 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 19.8% (899 of 4,525) of the entire 2001-2002 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Kelts were reconditioned in circular tanks and were fed freeze-dried krill, Moore-Clark pellets, altered Moore-Clark pellets (soaked in krill extract and dyed), or a combination of the altered Moore-Clark/unaltered Moore-Clark pellets. Formalin was used to prevent outbreaks of fungus and we also intubated the fish that were collected with Ivermectin{trademark} to control internal parasites (e.g., Salmincola spp.). Captured kelts were separated into two experimental groups: short-term and long-term reconditioning. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were then subsequently split into two groups for either 1 or 2-month reconditioning. Surviving specimens were released for natural spawning in two groups, corresponding with reconditioning duration, with releases on May 20/28, 2002. Survival rates for both short-term experiments were high. Long-term reconditioned kelts were subsequently split into three groups that were given three different diet formulations and then released on December 10, 2002. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. A total of 60 reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery and to evaluate in-season homing fidelity. As in previous years, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Valuable knowledge regarding kelt husbandry, food preferences, condition, and rearing environments were obtained during this research endeavor. Although survival rates were higher in 2002, even higher survival rates would be desirable; overall the authors were encouraged by the positive results of this innovative project. Information collected during this feasibility study has been significantly incorporated into the experimental design for upcoming years of research, and is expected to continue to increase survival and successful expression of iteroparity.

Hatch, Douglas R.; Branstetter, Ryan (Columbia River Inter-Trial Fish Commission, Portland, OR); Blodgett, Joe (Yakama Nation, Toppenish, WA)

2003-07-01T23:59:59.000Z

62

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2004 Annual Report.  

SciTech Connect

Iteroparity, the ability to repeat spawn, is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of three study groups (direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 15 March to 21 June 2004. In total, 842 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.5% (842 of 2,755) of the entire 2003-2004 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially or for the duration of the experiment. All steelhead kelts received hw-wiegandt multi vit dietary supplement as a means to improve initial nutrition. Long-term steelhead kelts received Moore-Clark pellets to provide essential minerals and nutrients necessary for gonadal redevelopment. Oxytetracycline was administered to all reconditioned fish to boost immune system response following the stress of initial capture. To control parasitic infestations two methods were used, first, after initial capture an intubation of Ivermectin{trademark} was administered to control internal parasites (e.g., Salmincola spp.). Next, a Formalin drip was used for the duration of reconditioning to prevent fungal outbreaks. Captured kelts were separated into three experimental groups: short-term reconditioning, long-term reconditioning, and direct transport and release. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were reconditioned for 3 to 5 weeks. Surviving specimens were released for natural spawning on May 11, 2004. Survival-to-release was good for the short-term experiment, with a rate of 79.0%. Long-term steelhead kelts are currently being held for a 6-9 month period with a scheduled release in December 2004. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. Survival and rematuration for long-term kelts has not been determined and will be presented in the 2005 annual report. Direct transport and release kelts and short-term reconditioned kelts were radio or acoustic tagged to assess their travel time and migratory behaviors below Bonneville Dam. A total of 29 direct-transport and release kelts and 29 short-term reconditioned kelts received surgically implanted radio tags, and a total of 28 direct-transport/release and 26 short-term reconditioned fish received surgically implanted hydro acoustic tags. These tags will allow us to determine outm

Hatch, Douglas R.; Branstetter, Ryan; Whiteaker, John (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2004-11-01T23:59:59.000Z

63

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2005-2006 Annual Report.  

SciTech Connect

Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Estimated rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the current expression of repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of four study groups (in river release, direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 7 March to 8 June 2006. In total, 348 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 17.0% (348 of 2,002) of the entire 2005-2006 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially (first 2 months of long-term reconditioning) or for the duration of the experiment. Long-term steelhead kelts also received Moore-Clark pellets to provide essential minerals and nutrients necessary for gonadal redevelopment. Oxytetracycline was administered to all reconditioned fish to boost immune system response following the stress of initial capture. To control parasitic infestations two methods were used: an intubation of Ivermectin{trademark} was administered to control internal parasites (e.g., Salmincola spp.) and, a Formalin drip system was administered via drip system for the duration of reconditioning to prevent fungal outbreaks. From the steelhead kelts collected at the CJMF, four experimental groups were established; in-river release, direct transport and release, short-term reconditioning and long-term reconditioning. Short-term kelts were reconditioned for 3 to 5 weeks. Surviving specimens were released on May 15, 2006 and June 27, 2006. Long-term steelhead kelts were held for a 6-9 month period with a release in October 18, 2006. No-term release kelts and short-term reconditioned kelts received PIT-tags with a portion of each group receiving hydro-acoustic tags to assess return survival, travel time, and migratory behavior below Bonneville Dam. In total, 49 No-term release kelts and 50 short-term reconditioned kelts were PIT-tagged, with all surviving No-term and short-term reconditioned kelts successfully receiving a surgically implanted hydroacoustic tag as well. With the conclusion of this third year we have completed a number of multi year analyses to better understand how kelts are faring in the lower river as well as laying the groundwork for a cost analysis.

Branstetter, Ryan; Whiteaker, John; Hatch, Douglas R. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2006-12-01T23:59:59.000Z

64

Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporation: Federal Register Notice Volume 72, Corporation: Federal Register Notice Volume 72, No. 158 - Aug. 16, 2007 Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation: Federal Register Notice Volume 72, No. 158 - Aug. 16, 2007 Application from Rainbow Energy Marketing Corporation to export energy to Canada. Federal Register Notice Vol 72 No 158 EA-296-A Rainbow Energy Marketing Corporation More Documents & Publications Application to Export Electric Energy OE Docket No. EA-328 RBC Energy Services L.P.: Federal Register Notice Volume 72, No. 158 - Aug. 16, 2007 Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 Application to Export Electric Energy OE Docket No. EA-98-M WSPP Inc:

65

4.1 Bull Trout (Salvelinus confluentus) 4.1.1 Background  

E-Print Network (OSTI)

Panhandle National Forests have named bull trout as Management Indicator Species (MIS) in their Forest Plan to guide stream and riparian management and to monitor progress toward achieving Forest Plan objectivesTribes of the Salish and Kootenai consider bull trout a sensitive species and an important cultural resource

66

Frostbite Theater - Liquid Nitrogen Experiments - Freeze the Rainbow!  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen in a Microwave! Liquid Nitrogen in a Microwave! Previous Video (Liquid Nitrogen in a Microwave!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Antifreeze!) Liquid Nitrogen and Antifreeze! Freeze the Rainbow! Starburst candy. They're fruity. They're chewy. They're delicious! But, can they survive taking a bath in liquid nitrogen? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A student visiting Jefferson Lab from Huntington Middle School in Newport News, Virginia, asked what happens to a starburst if you put it in liquid nitrogen. Well, we're going to find out! Steve: At room temperature, starburst isn't really all that special. I can kind of squish it if I squeeze it hard enough and, if I drop it, nothing

67

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.  

SciTech Connect

The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

2000-11-01T23:59:59.000Z

68

Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident  

Science Journals Connector (OSTI)

Abstract The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium (137Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and 137Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations (137Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption.

Mayumi Yoshimura; Tetsuya Yokoduka

2014-01-01T23:59:59.000Z

69

DOE/EIS-0353; South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement Bonneville Power Administration July 2005 South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agencies: U.S. Department of Agriculture, Forest Service (FS) and State of Montana Fish, Wildlife, and Parks (MFWP) Department Title of Proposed Project: South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program State Involved: Montana Abstract: In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic

70

E-Print Network 3.0 - anadromous brown trout Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Sample search results for: anadromous brown trout Page: << < 1 2 3 4 5 > >> 1 J. Fish Biol. (1987)31, 143-146 Mating of anadromousAtlanticsalmon, Salmo salar L., with...

71

Effects of Catch-and-Release Angling on Salmonids at Elevated Water Temperatures  

SciTech Connect

Few studies have assessed catch and release mortality of salmonids at water temperatures ?23°C, despite predictions of warming stream temperatures due to climate change. In addition, the effects of diel temperature fluctuations on salmonid mortality have largely been ignored in catch and release angling studies. The primary objective of this study was to measure catch and release mortality of rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, and mountain whitefish Prosopium williamsoni in three water temperature treatments; when daily maximum water temperatures were cool (<20°C), warm (20 to 22.9°C), and hot ( 23°C). A secondary objective was to assess catch and release mortality of salmonids angled in morning and evening within water-temperature treatments. These objectives were related to Montana Fish, Wildlife and Parks’ Drought Fishing Closure Policy (DFCP). Angling (fly-fishing only) occurred in the Gallatin and Smith rivers. All angled fish were confined to in-stream holding cages and monitored for mortality for 72 h. Mortality of rainbow trout peaked at 16% in the Gallatin River and 9% in the Smith River during the hot treatment. Mortality of brown trout was less than 5% in all water-temperature treatments in both rivers. Mountain whitefish mortality peaked at 28% in the hot treatment in the Smith River. No mortality for any species occurred in either river when daily maximum water temperatures were <20°C. Mortality of rainbow trout peaked at 16% in the evening hot treatment in the Smith River. Mortality of brown trout and mountain whitefish was not related to time of day. The catch and release mortality values presented here likely represent fishing mortality given that most anglers in southwest Montana practice catch and release angling. The mortality values we observed were lower than predicted (< 30%), given reports in the literature. The difference is likely related to the in situ nature of the study and periods of cooler water temperatures between peaks facilitating recovery from thermal stress.

Boyd, James W.; Guy, Christopher S.; Horton, Travis; Leathe, Steven A.

2010-08-01T23:59:59.000Z

72

THE EFFECTS OF LAMPRICIDE 3-TRIFLUOROMETHYL-4-NITROPHENOL TOXICITY ON THE GILLS OF LARVAL SEA LAMPREY AND NON-TARGET RAINBOW TROUT AND LAKE STURGEON.  

E-Print Network (OSTI)

??The pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), is widely used in the Great Lakes to control invasive sea lampreys (Petromyzon marinus) populations, but much about its sub-lethal effects… (more)

Sorensen, Lisa A

2015-01-01T23:59:59.000Z

73

Detection and Quantification of Flavobacterium psychrophilum-Specific Bacteriophages In Vivo in Rainbow Trout upon Oral Administration: Implications for Disease Control in Aquaculture  

Science Journals Connector (OSTI)

...organs investigated (intestine, spleen, brain, and kidney) 0.5 h postadministration...organ samples from the intestine, spleen, brain, and kidney were transferred to Eppendorf...psychrophilum. Samples from the spleen, brain, and kidney were streaked onto TYES plates...

Rói Hammershaimb Christiansen; Inger Dalsgaard; Mathias Middelboe; Anne H. Lauritsen; Lone Madsen

2014-10-03T23:59:59.000Z

74

Detection and Quantification of Flavobacterium psychrophilum Specific Bacteriophages In Vivo in Rainbow Trout upon Oral Administration: Implications for Disease Control in Aquaculture  

Science Journals Connector (OSTI)

...special emphasis on the oral route of delivery. Phages could be detected in all the investigated organs (intestine, spleen, brain and kidney) 0.5 h post administration, reaching concentrations within the first 24 h up to 105 PFU mg intestine1 and 103...

Rói Hammershaimb Christiansen; Inger Dalsgaard; Mathias Middelboe; Anne H. Lauritsen; Lone Madsen

2014-10-03T23:59:59.000Z

75

Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.  

SciTech Connect

The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

Runyon, John

2002-08-01T23:59:59.000Z

76

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impacts Phase III, 1996 Annual Report.  

SciTech Connect

Phase 3 began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River Basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transinontanus) and rainbow trout (Oncorhynchus mykiss) in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased habitat for adult and juvenile white sturgeon and adult rainbow trout. But, the flows have failed to meet mean monthly flow recommendations for the past three years despite the addition of the flow augmentation releases. It is unlikely that the flow augmentation releases have had any significant long-term benefit for sturgeon and rainbow trout in the Snake River. Flow augmentation releases from the Boise and Payette rivers have in some years helped to meet or exceed minimum flow recommendations in these tributaries. The minimum flows would not have been reached without the flow augmentation releases. But, in some instances, the timing of the releases need to be adjusted in order to maximize benefits to resident fishes in the Boise and Payette rivers.

Leitzinger, Eric J. [Idaho Dept. of Fish and Game, Boise, ID (United States)

1997-12-01T23:59:59.000Z

77

Note on Design Criteria for Rainbow-Type Multivariates Jintai Ding1  

E-Print Network (OSTI)

This was a short note that deals with the design of Rainbow or "stagewise unbalanced oil-and-vinegar" multivariate parameters in current schemes. These can be ameliorated according to an updated list of security design, 2006: Second Draft, TWISC (Taiwan Information Security Center) tech report · September 5, 2006

78

The role of couplings in nuclear rainbow formation at energies far above the barrier  

SciTech Connect

A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

Pereira, D.; Linares, R. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Instituto de Fisica da Universidade Federal Fluminense, Rio de Janeiro, Niteroi, RJ (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); and others

2012-10-20T23:59:59.000Z

79

Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.  

SciTech Connect

We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S. (Washington Department of Fish and Wildlife); Honanie, Isadore (Confederated Tribes and Bands, Yakama Nation)

2002-01-01T23:59:59.000Z

80

Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.  

SciTech Connect

We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.  

SciTech Connect

We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tag was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft. above water surface in a helicopter. However, we lost detection capability from 40 ft. water depth when we passed 700 ft. above the water surface in a helicopter. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we reduced the size of the radio tags that we implanted, and delayed most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

2005-11-01T23:59:59.000Z

82

Bull Trout Population and Habitat Surveys in the Middle Fork Willamette and McKenzie Rivers, Annual Report 2002.  

SciTech Connect

Bull trout in the Willamette River Basin were historically distributed throughout major tributaries including the Middle Fork Willamette and McKenzie rivers. Habitat degradation, over-harvest, passage barriers, fish removal by rotenone, and hybridization and competition with non-native brook trout are all likely factors that have led to the decline of bull trout in the Willamette Basin (Ratliff and Howell 1992). The U.S. Fish and Wildlife Service listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act in 1998. Four bull trout populations were isolated in the upper Willamette River following the construction of flood control dams on the South Fork McKenzie River, McKenzie River, and Middle Fork Willamette River that created Cougar, Trail Bridge, and Hills Creek reservoirs. Buchanan et al. (1997) described the population in the main stem McKenzie as 'of special concern', the South Fork McKenzie population as 'high risk of extinction', the population above Trail Bridge Reservoir as 'high risk of extinction', and bull trout in the Middle Fork Willamette as 'probably extinct'. Various management efforts such as strict angling regulations and passage improvement projects have been implemented to stabilize and rehabilitate bull trout habitat and populations in the McKenzie River over the past 10 years. Since 1997, bull trout fry from Anderson Creek on the upper McKenzie River have been transferred to the Middle Fork Willamette basin above Hills Creek Reservoir in an attempt to re-establish a reproducing bull trout population. This project was developed in response to concerns over the population status and management of bull trout in the McKenzie and Middle Fork Willamette Rivers by the Oregon Department of Fish and Wildlife during the early 1990s. The project was conducted under measure 9.3G(2) of the Columbia Basin Fish and Wildlife Program to monitor the status, life history, habitat needs, and limiting factors for bull trout within sub basins of the Columbia River. Also, this project provides information to develop native fish recovery plans such as the Oregon Plan for Salmon and Watersheds and the U.S. Fish and Wildlife Bull Trout Recovery Plan.

Seals, Jason; Reis, Kelly

2003-10-01T23:59:59.000Z

83

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2002-2003 Annual Report.  

SciTech Connect

The Malheur River is a 306-kilometer tributary to the Snake River, which drains 12,950 square kilometers. The Malheur River originates in the Blue Mountains and flows into the Snake River near Ontario, Oregon. The climate of the basin is characterized by hot dry summers, occasionally exceeding 38 C, and cold winters that may drop below -29 C. Average annual precipitation is 30 centimeters in the lower reaches. Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2002. Bull trout Salvelinus confluentus are considered to be cold water species and are temperature-dependant. Due to the interest of bull trout from various state and Federal agencies, a workgroup was formed to develop project objectives related to bull trout. Table 1 lists individuals that participated in the 2002 work group. This report will reflect work completed during the Bonneville Power Administration contract period starting April 1, 2002, and ending March 31, 2003. All tasks were conducted within this timeframe, and a more detailed timeframe may be referred to in each individual report.

Miller, Alan; Soupir, Jim (US Forest Service, Prairie City Ranger District, Prairie City, OR); Schwabe, Lawrence (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

2003-08-01T23:59:59.000Z

84

Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change  

Science Journals Connector (OSTI)

...PF Luce C Dare MR ( 2010 ) Wildfire and management of forests and...interactions between juvenile Colorado River cutthroat trout and brook...Effects of climate change and wildfire on stream temperatures and...Great Basin and the Columbia, Colorado, and...

Seth J. Wenger; Daniel J. Isaak; Charles H. Luce; Helen M. Neville; Kurt D. Fausch; Jason B. Dunham; Daniel C. Dauwalter; Michael K. Young; Marketa M. Elsner; Bruce E. Rieman; Alan F. Hamlet; Jack E. Williams

2011-01-01T23:59:59.000Z

85

Development of a rapid and efficient microinjection technique for gene insertion into fertilized salmonid eggs  

SciTech Connect

An efficient one-step injection technique for gene insertion into fertilized rainbow trout (Oncorhynchus mykiss) eggs is described, and basic parameters affecting egg survival are reported. Freshly fertilized rainbow trout eggs were injected in the perivitelline space with a recombinant mouse metallothionein-genomic bovine growth hormone (bGH) DNA construct using a 30-gauge hypodermic needle and a standard microinjection system. Relative to control, site of injection and DNA concentration did not affect the egg survival, but injections later than 3--4 hours post fertilization were detrimental. The injection technique permitted treatment of 100 eggs/hr with survivals up to 100%, resulting in a 4% DNA uptake rate as indicated by DNA dot blot analysis. Positive dot blot results also indicated that the injected DNA is able to cross the vitelline membrane and persist for 50--60 days post hatching, obviating the need for direct injection into the germinal disk. Results are consistent with previous transgenic fish work, underscoring the usefulness of the technique for generating transgenic trout and salmonids. 24 refs., 6 figs., 3 tabs.

Chandler, D.P.; Welt, M.; Leung, F.C.

1990-10-01T23:59:59.000Z

86

Queen for an ice age: Katje Borgesius as the form of ideology in Pynchon's Gravity's Rainbow  

E-Print Network (OSTI)

QUEEN FOR AN ICE AGE: KATJE BORGESIUS AS THE FORM OF IDEOLOGY IN PYNCHON'S GRAVITY'S RAINBOW A Thesis by RUSSELL GREGORY MOSES Submitted to the Office ol Graduate Studies of Texas A8rM Ilniversity in partial t'ulfillment of the requirements... for the degree of MASTER OF ARTS December 1988 Major Subject: English QUEEN FOR AN ICE AGE: KATJE BORGESIUS AS THE FORM OF IDEOLOGY IN PYNCHON'S GRAVITY'S RAINBOV( A Thesis by RUSSELL GREGORY MOSES Approved as to style and content by: Robert D. Newman...

Moses, Russell Gregory

1988-01-01T23:59:59.000Z

87

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.  

SciTech Connect

The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will include the North Fork Malheur River and the Upper Malheur River from Warm Springs Reservoir upstream to the headwaters.

Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

2001-08-01T23:59:59.000Z

88

Colville Resident Trout Hatchery Project Supplement Analysis (DOE/EA-0307-SA-01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2003 2, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Colville Resident Trout Hatchery Project Supplement Analysis (DOE/EA-0307-SA-01) TO: Greg Baesler Project Manager - KEWU-4 Proposed Action: Colville Resident Trout Hatchery Project-Modifications to original proposal Project No.: 1985-038-00 Location: Colville Indian Reservation, Okanogan County, Washington Proposed by: Bonneville Power Administration (BPA) Introduction: The Bonneville Power Administration prepared an Environmental Assessment (DOE/EA-0307) for the Colville Resident Hatchery Project (Project) and published a Finding of No Significant Impact (FONSI) in the Federal Register on September 8, 1986 (Vol. 51, No.173). The Project involved the design, site selection, construction, operation and maintenance of a

89

Kalispel Non-Native Fish Suppression Project 2007 Annual Report.  

SciTech Connect

Non-native salmonids are impacting native salmonid populations throughout the Pend Oreille Subbasin. Competition, hybridization, and predation by non-native fish have been identified as primary factors in the decline of some native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi) populations. In 2007, the Kalispel Natural Resource Department (KNRD) initiated the Kalispel Nonnative Fish Suppression Project. The goal of this project is to implement actions to suppress or eradicate non-native fish in areas where native populations are declining or have been extirpated. These projects have previously been identified as critical to recovering native bull trout and westslope cutthroat trout (WCT). Lower Graham Creek was invaded by non-native rainbow (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) after a small dam failed in 1991. By 2003, no genetically pure WCT remained in the lower 700 m of Graham Creek. Further invasion upstream is currently precluded by a relatively short section of steep, cascade-pool stepped channel section that will likely be breached in the near future. In 2008, a fish management structure (barrier) was constructed at the mouth of Graham Creek to preclude further invasion of non-native fish into Graham Creek. The construction of the barrier was preceded by intensive electrofishing in the lower 700 m to remove and relocate all captured fish. Westslope cutthroat trout have recently been extirpated in Cee Cee Ah Creek due to displacement by brook trout. We propose treating Cee Cee Ah Creek with a piscicide to eradicate brook trout. Once eradication is complete, cutthroat trout will be translocated from nearby watersheds. In 2004, the Washington Department of Fish and Wildlife (WDFW) proposed an antimycin treatment within the subbasin; the project encountered significant public opposition and was eventually abandoned. However, over the course of planning this 2004 project, little public involvement or education was conducted prior to the planned implementation. Therefore, in 2007 we implemented an extensive process to provide public education, address public concerns and provide opportunity for public involvement in implementing piscicides and other native fish recovery actions in the subbasin.

Wingert, Michele; Andersen, Todd [Kalispel Natural Resource Department

2008-11-18T23:59:59.000Z

90

Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.  

SciTech Connect

In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

1990-10-01T23:59:59.000Z

91

Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation  

SciTech Connect

We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.

Hrayr Matevosyan; Anthony Thomas; Peter Tandy

2007-04-01T23:59:59.000Z

92

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.  

SciTech Connect

The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found t

Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

2009-03-02T23:59:59.000Z

93

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program (DOE/EIS-0353) (05/01/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Fork Flathead Watershed South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program RECORD OF DECISION Summary The Bonneville Power Administration (BPA) has decided to fund Montana Fish, Wildlife, and Parks Department's (MFWP) South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program. This program is the Proposed Action in the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program EIS (DOE/EIS- 0353, July 2005). BPA will fund the program pursuant to its authority under the Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) to protect, mitigate, and enhance fish affected by the Federal Columbia River Power System (FCRPS) in the Columbia River Basin. The project constitutes a portion of the Hungry

94

E-Print Network 3.0 - acute silver toxicity Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane of Rainbow Trout Gills Summary: that are the primary site for acute heavy metal toxicity (Mc- Donald and Wood, 1993). The toxic action of silver... and chloride...

95

Congruent energy density trends of fish and birds reflect ecosystem ...  

Science Journals Connector (OSTI)

We used long-term biomonitoring data to calculate whole-body energy densities for Lake Huron rainbow smelt (Osmerus mordax), lake trout (Salvelinus ...

96

Lake Roosevelt Fisheries Monitoring Program; 1990 Annual Report.  

SciTech Connect

As partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam, the Northwest Power Planning Council directed Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries on Lake Roosevelt (NPPC 1987 [Section 903 (g)(l)(C)]). The hatcheries are to produce 8 million kokanee salmon fry or 3.2 million adults for outplanting into Lake Roosevelt as well as 500,000 rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen programs. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) conduction of a year-round creel census survey to determine angler pressure, catch rates and composition, growth and condition of fish caught by anglers, and economic value of the fishery. Comparisons will be made before and after hatcheries are on-line to determine hatchery effectiveness; (2) conduct an assessment of kokanee, rainbow trout, and walleye feeding habits, growth rates, and densities of their preferred prey at different locations in the reservoir and how reservoir operations affect population dynamics of preferred prey organisms. This information will be used to determine kokanee and rainbow trout stocking locations, stocking densities and stocking times; (3) conduct a mark-recapture study designed to assess effectiveness of various release times and locations for hatchery-raised kokanee and net-pen raised rainbow so fish-loss over Grand Coulee Dam will be minimized, homing to egg collection sites will be improved and angler harvest will be increased. The above measures were adopted by the Council based on a management plan developed by Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and the National Park Service. This plan examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program and continue research through 1995. This report contains the results of the monitoring program from January to December 1990.

Griffith, Janelle R.; Scholz, Allan T. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

1991-09-01T23:59:59.000Z

97

Stress protein induction in speckled trout exposed to contaminants in the natural environment  

SciTech Connect

The induction of contaminant-specific stress proteins in estuarine organisms inhabiting chemical contaminated sites appears to contribute to pollution tolerance in these populations. In this study, the authors examined (1) stress protein induction speckled trout (Cynoscion nebulosus) exposed to petroleum and petrochemical pollutants in Galveston Bay, and (2) the relationship between stress protein responses and other physiological biomarkers of stress. Mature speckled trout were collected alive by gill net at a reference site north of the Texas City Dike and two contaminated sites, one in the Texas City Channel in lower Galveston Bay adjacent to a large number of petrochemical plants, and the other in Tabbs Bay, an oilfield produced water discharge area in upper Galveston Bay. Tissue samples were dissected from a total of 45 fish and frozen immediately on dry ice. Stress proteins were identified in liver, kidney, gill and gonad tissues using polyacrylamide gel electrophoresis and were quantified by imaging densitometry. Stress proteins ranging in size from 13 to 80 kDa were found to be elevated in liver gill and ovary of speckled trout collected from the two contaminated sites, compared to those from the reference site. In addition, the stress protein profiles of tissues from fish collected at Tabbs Bay differed markedly from the Texas City Channel fish, suggesting that both the type of contaminant exposure and the ambient environmental conditions may affect stress protein induction. The stress protein results were compared to other physiological and reproductive biomarkers measured in these fish in an effort to determine possible long-term effects of pollutants on estuarine fish populations.

Howard, C.L.; Whitt, K.R.; Arndt, L.M. [Univ. of Houston, TX (United States)

1995-12-31T23:59:59.000Z

98

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Annual Report 2002.  

SciTech Connect

In 1999, Montana Fish, Wildlife & Parks (MFWP) began a program aimed at conserving the genetically pure populations of westslope cutthroat trout in the South Fork Flathead River drainage. The objective of this program is to eliminate all of the exotic and hybrid trout that threaten the genetically pure westslope cutthroat populations in the South Fork Flathead. The exotic and hybrid trout populations occur in several headwater lakes and their outflow streams. In 2001 MFWP released a draft environmental assessment, pursuant to the Montana Environmental Policy Act (MEPA), that addressed the use of motorized equipment to deliver personnel and materials to some of these lakes in the Bob Marshall and Great Bear Wildernesses (Grisak 2001). After a 30-day public comment period, MFWP determined that the complexity of issues was too great and warranted a more detailed analysis. These issues included transportation options for personnel, equipment and materials, the use of motorized equipment in wilderness, fish removal methods, fish stocking, and the status and distribution of amphibian populations in the project area. Because the program also involves the U.S. Forest Service (USFS) and Bonneville Power Administration (BPA), the environmental analysis needs to comply with the National Environmental Policy Act (NEPA). In October 2001, pursuant to NEPA, MFWP, along with the USFS and BPA initiated an environmental assessment to address these issues. In June 2002, the three agencies determined that the scope of these issues warranted an Environmental Impact Statement. This specialist report describes the logistical, technical and biological issues associated with this project and provides an analysis of options for fish removal, transportation and fish stocking. It further analyzes issues and concerns associated with amphibian populations and creating new domesticated stocks of westslope cutthroat trout. Finally, this document provides a description of each lake, the best method of fish removal that would achieve the goals of the project, logistics for carrying out the fish removal, and the immediate management direction for each lake following fish removal. The USFS is preparing a specialist report detailing land management issues that relate to National Forest, designated Hiking Areas, and Wilderness. Information from these two documents will be used by BPA to prepare an Environmental Impact Statement.

Grisak, Grant; Marotz, Brian

2003-06-01T23:59:59.000Z

99

Impact of tide gates on the migration of juvenile sea trout, Salmo trutta  

Science Journals Connector (OSTI)

Abstract As part of flood protection and land reclamation schemes, tide gates allow rivers to discharge to sea when open, and prevent salt water intrusion when closed. Their impact on diadromous fish migration between essential spawning and rearing habitats, and the effectiveness of mitigation measures, have received little consideration. The River Meon, UK, discharges to sea through four top-hung counterbalanced tide gates. In March 2012, the gates were replaced with new ones of the same design, but with an orifice installed in two of them partly to improve fish passage. Sixty downstream migrating juvenile sea trout, Salmo trutta, were trapped approximately 4.9 km upstream of the tidal limit and tagged with acoustic transmitters in April 2011 (n = 30) and 2012 (n = 30). Tagged individuals were detected by acoustic receivers placed near the tide gates before (year 1) and after (year 2) orifice installation. Of the fish that approached the tide gates, 95.8% and 100.0% successfully passed in years 1 and 2, respectively. The speed of migration at the gates was slower than for upstream and downstream reaches, and was positively related to percentage of time the gates were open. Presence of the orifices did not influence delay. Overall, top-hung tide gates delayed sea trout migration, potentially increasing the risk of predation and energy expenditure during the vulnerable juvenile life stage.

G.V. Wright; R.M. Wright; P.S. Kemp

2014-01-01T23:59:59.000Z

100

Effects of petroleum hydrocarbons and chlorinated biphenyls on the morphology of the intestine of chinook salmon (Oncorhynchus tshawytscha)  

SciTech Connect

Structural changes of the intestinal mucosal cells of juvenile chinook salmon (Oncorhynchus tshawytscha) exposed in parallel experiments to a model mixture of petroleum hydrocarbons, chlorinated biphenyls, and the combined contaminants have been studied by light and electron microscopy. The mucosa was intact in the control and petroleum hydrocarbon-exposed fish; some exfoliation was observed in the group exposed to chlorinated biphenyls. The group fed the combined contaminants (petroleum and chlorinated biphenyls) had considerably increased sloughing indicating an interactive effect. The goblet or mucous cells appeared normal in all groups, but in the contaminant-exposed groups the columnar cells of the mucosa had distinct subcellular inclusions. The inclusions were not stained by carbohydrate-specific (PAS) or lipid-specific (Sudan black) reagents. Ultrastructurally, the inclusions that appeared after exposure to petroleum hydrocarbons were variable in size and contained a flocculent, finely granular material. In the petroleum hydrocarbon-exposed group the inclusions differed from both the chlorinated biphenyl and the combined-contaminant groups. The inclusions in the latter groups included large, irregularly shaped vesicles with relatively electron-transparent material and other vesicles with a range of electron densities. The cellular alterations were consistent within the exposed groups and presented a distinct change from normal morphology. Since the average gain in weight for all groups was similar, we could not conclude, however, that functional impairment from intestinal damage had occurred.

Hawkes, J.W.; Gruger, E.H. Jr.; Olson, O.P.

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Genetic and Phenotypic Catalog of Native Resident Trout of the Interior Columbia River Basin; Populations of the Upper Yakima Basin, 1997-1998 Annual Report.  

SciTech Connect

The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique.

Trotter, Patrick C. (Fishery Science Consultant, Seattle, WA); McMillan, Bill; Gayeski, Nick (Washington Trout, Duvall, WA)

1999-10-01T23:59:59.000Z

102

Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2000 Annual Report.  

SciTech Connect

Prior to 1978, Dolly Varden Salvelinus malma were classified into an anadromous and interior form. Cavender (1978) classified the interior form as a distinct species, Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1989). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a well developed fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from lat. 41{sup o}N to lat. 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette sub-basins west of the Cascades (Buchanan et al. 1997). However, it is believed bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. Before 1963, bull trout in the McKenzie sub-basin were a contiguous population from the mouth to Tamolitch Falls. Following the construction of Cougar and Trail Bridge Reservoirs there are three isolated populations: (1) mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir. (2) mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls. (3) South Fork McKenzie and tributaries above Cougar Reservoir. The study area includes the three aforementioned McKenzie populations, and the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques including: spawning surveys, standard pool counts, juvenile trapping, radio tracking, electronic fish counters, and a modified Hankin and Reeves protocol to estimate juvenile abundance and density. In addition, we continued to reintroduce bull trout fry from Anderson Creek (McKenzie Basin) to the Middle Fork Willamette above Hills Creek Reservoir in an attempt to rehabilitate the bull trout population in the Middle Fork Willamette Basin. By monitoring population trends and determining life history characteristics of bull trout in McKenzie and Middle Fork Willamette basins we can make informed management decisions that will help maintain long term and sustainable bull trout populations in the Upper Willamette Basin.

Taylor, Greg

2000-11-28T23:59:59.000Z

103

Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2001 Annual Report.  

SciTech Connect

Prior to 1978, bull trout were commonly known as dolly varden (Salvelinus malma) and were classified into an anadromous and interior form. Cavender (1978) described the interior form as a distinct species, classifying it as Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1994). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from latitude 41{sup o}N to 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette subbasins west of the Cascades (Buchanan et al. 1997). However, it is likely that bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. McKenzie River bull trout were a contiguous population from the mouth to Tamolitch Falls prior to 1963. Three populations were isolated following the construction of Cougar and Trail Bridge Reservoirs which include the mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir, mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls, and the South Fork McKenzie and tributaries above Cougar Reservoir. On June 10, 1998 the U.S. Fish and Wildlife Service (USFWS) listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act and Buchanan et al. (1997) listed the bull trout population in the mainstem McKenzie as ''of special concern'', the South Fork McKenzie population as ''high risk of extinction,'' and the population above Trail Bridge Reservoir as ''high risk of extinction.'' Bull trout in the Middle Fork Willamette were listed as ''probably extinct.'' Our study area includes the three McKenzie populations, and a reintroduced population in the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques that include spawning surveys, juvenile trapping, electronic fish counters, and night snorkeling. We continued to reintroduce bull trout fry from Anderson Creek (McKenzie Basin) to the Middle Fork Willamette above Hills Creek Reservoir in an attempt to rehabilitate the bull trout population in the Middle Fork Willamette Basin. By monitoring population trends and determining life history characteristics of bull trout in McKenzie and Middle Fork Willamette basins, we can make informed management decisions that will help maintain long term and sustainable bull trout populations in the upper Willamette Basin.

Taylor, Greg

2003-02-01T23:59:59.000Z

104

Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.  

SciTech Connect

This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco x (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation facility to the Imnaha River juvenile migration trap. (3) Monitor the daily catch and biological cha

Michaels, Brian; Espinosa, Neal (Nez Perce Tribe)

2009-02-18T23:59:59.000Z

105

Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.  

SciTech Connect

This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing waterfalls than males. The study also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 3,971 kcals (34% anaerobic and 66% aerobic) for a sample of five fish. A bioenergetics example was run, which estimated that fall chinook salmon would expend an estimated 1,208 kcal to pass from the mouth of the Columbia River to Bonneville Dam and 874 kcals to pass Bonneville Dam and pool and the three falls on the Lower Klickitat River, plus an additional 2,770 kcals above the falls to reach the spawning grounds, leaving them with approximately 18% (1,089 kcals) of their original energy reserves for spawning. Results of the bioenergetics example suggest that a delay of 9 to 11 days along the lower Klickitat River may deplete their remaining energy reserves (at a rate of about 105 kcal d{sup -1}) resulting in death before spawning would occur.

Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

2002-08-30T23:59:59.000Z

106

Evaluate the Life History of Native Salmonids in the Malheur Subbasin, Fiscal Year 2008 Annual Report.  

SciTech Connect

This report has the following chapters: (1) Synopsis of 2000-2008 Stream Temperature Monitoring with Implications for Bull Trout Recovery in the Upper Malheur Logan Valley Wildlife Mitigation Property, 2008; (2) Bull Trout Spawning Survey Report, 2008; (3) 2008 Efforts to Trap and Haul Entrained Bull Trout Salvelinus confluentus over Agency Valley Dam on the North Fork Malheur River, Oregon; (4) Distribution and Abundance of Redband Trout Oncorhynchus mykiss in the Malheur River Basin, 2008; and (5) Spatial Patterns of Hybridization between Bull Trout, Salvelinus confluentus, and Brook Trout, Salvelinus fontinalis in an Oregon Stream Network.

Abel, Chad; Brown, Daniel; Schwabe, Lawrence [Burns Paiute Tribe Natural Resources Department Fisheries Division

2009-07-15T23:59:59.000Z

107

Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.  

SciTech Connect

The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on promoting the ability for anadromous salmonids to respond to change by assuring that the genetic diversity to facilitate such responses is present. The key in developing an effective recovery program for chinook salmon and steelhead is to recognize that multiple life history forms associated with temperature characterize the species in the Columbia Basin, and recovery measures taken must address the biological requirements of the population unit within the environmental template identified. Unless such measures are given first and highest priority, establishment of biologically self-sustaining populations will be restrained.

Brannon, E.L.; National Science Foundation (U.S.)

2002-08-01T23:59:59.000Z

108

Joan M. Dukes Rhonda Whiting  

E-Print Network (OSTI)

proceeding to Step2/3 (i.e., a design/build approach) of this project. This recommendation is conditioned) and Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). The recovery and long-term sustainability

109

Physiologic, toxicologic, and population responses of brook trout to acidification: Interim report of the lake acidification and fisheries project: Final report  

SciTech Connect

This report overviews investigations of the ''Lake Acidification and Fisheries'' (LAF) project into the effects of surface water acidification on brook trout (Salvelinus fontinalis) populations. Of the six life stages examined, freshly-fertilized eggs were the most sensitive to reduced pH. In contrast, aluminum was most toxic to fry, juvenile, and adult fish. Increased calcium concentrations reduced the toxic effects of acid/aluminum exposure at all life stages. Little evidence was found to indicate that exposure to acidic waters affects oocyte development or production, suggesting that direct mortality plays a larger role in losses of brook trout populations from acidic waters. For fry and adult fish, the major toxic mechanism of acid/aluminum exposure seems to be disturbance of normal ion regulation at the gill, but aluminum exposure can cause respiratory impairment as well. Using results from LAF toxicity studies and available field data, a modeling framework was developed that predicts the probability of presence or absence of brook trout populations, based ion surface water chemistry. In addition, this framework can be used to evaluate changes in this probability caused by changes in water chemistry (e.g., liming), stocking rates, or fishing pressure. 129 refs., 37 figs., 8 tabs.

Mount, D.R.; Marcus, M.D. (eds.); Breck, J.E.; Christensen, S.W.; Gern, W.A.; Ingersoll, C.G.; Gulley, D.D.; McDonald, D.G.; Parkhurst, B.R.; Van Winkle, W.

1989-02-01T23:59:59.000Z

110

Predicting future threats to the long-term survival of Gila Trout using a high-resolution simulation of climate change  

SciTech Connect

Regional climates are a major factor in determining the distribution of many species. Anthropogenic inputs of greenhouse gases into the atmosphere have been predicted to cause rapid climatic changes in the next 50-100 years. Species such as the Gila Trout (Onchorhynchus gilae) that have small ranges, limited dispersal capabilities, and narrow physiological tolerances will become increasingly susceptible to extinction as their climate envelope changes. This study uses a regional climate change simulation (Leung et al. 2004) to determine changes in the climate envelope for Gila Trout, which is sensitive to maximum temperature, associated with a plausible scenario for greenhouse gas increases. The model predicts approximately a 2° C increase in temperature and a doubling by the mid 21st Century in the annual number of days during which temperature exceeds 37°C, and a 25% increase in the number of days above 32°C, across the current geographical range of Gila Trout. At the same time summer rainfall decreases by more than 20%. These climate changes would reduce their available habitat by decreasing the size of their climate envelope. Warmer temperatures coupled with a decrease in summer precipitation would also tend to increase the intensity and frequency of forest fires that are a major threat to their survival. The climate envelope approach utilized here could be used to assess climate change threats to other rare species with limited ranges and dispersal capabilities.

Kennedy, Thomas L.; Gutzler, David S.; Leung, Lai R.

2008-11-20T23:59:59.000Z

111

Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.  

SciTech Connect

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

2009-05-11T23:59:59.000Z

112

E-Print Network 3.0 - australian lungfish neoceratodus Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

teleost fish... lungfish frog salamander caecilian ostrich chicken rook painted turtle side-necked turtle alligator human... 73 52 71 99 99 100 100 100 81 100 rainbow trout...

113

Kalispel Resident Fish Project, 2004-2005 Annual Report.  

SciTech Connect

In 2004 the Kalispel Natural Resource Department (KNRD) implemented a new enhancement monitoring project for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Largemouth bass (Micropterus salmoides) enhancement projects were also monitored. Additional baseline fish population and habitat assessments were conducted, in tributaries to the Pend Oreille River.

Olson, Jason; Andersen, Todd

2005-06-01T23:59:59.000Z

114

Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.  

SciTech Connect

Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

Everest, Fred H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B.; Cain, Thomas C. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

1988-03-01T23:59:59.000Z

115

Beyond the rainbow  

Science Journals Connector (OSTI)

...without an insulated skin, metabolic energy would be lost as heat instead of being...including iridescence, vivid blues and greens, and ultraviolet reflection) requires the...cone cell types are sensitive to blue, green, and red). Tetrachromacy is a basal...

Marie-Claire Koschowitz; Christian Fischer; Martin Sander

2014-10-24T23:59:59.000Z

116

Lower Flathead System Fisheries Study, 1986 Interim Report.  

SciTech Connect

We believe our results have clearly shown Kerr hydroelectric operations and operational constraints have negatively affected Flathead River trout and northern pike populations and the aquatic habitat which support them. Even so, it is possible to mitigate many of these impacts and develop a very important fishery. Trout abundance in the lower Flathead averaged only 19 fish per kilometer, the lowest abundance of trout for a river of this size in Montana. Little main channel spawning by trout was observed and most spawning probably occurs in tributaries. Lower river tributaries support resident populations of brook, rainbow, brown, and cutthroat trout; and a small resident population of bull trout is present in the South Fork of the Jocko River. Using weirs, spawning runs of rainbow and brown trout from the main river were monitored entering the Jocko River and the Post/Mission Creek system. Utilization of Crow Creek by main river trout stocks of trout was limited to the 6 km segment below Crow Dam. Evaluations of tributary spawning gravels showed high levels of silt which would suggest poor survival of trout eggs. Excessive harvest in the tributaries was indicated by analysis of age class structure and abundance of trout greater than 200 mm.

Bradshaw, William H.; DosSantos, Joseph M.; Darling, James M.

1986-08-01T23:59:59.000Z

117

Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.  

SciTech Connect

The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

1992-01-01T23:59:59.000Z

118

Idaho Habitat and Natural Production Monitoring Part I, 1993 Annual Report.  

SciTech Connect

The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss and chinook salmon O. tshawytscha in the Clearwater River and Salmon River drainages on a large scale for the past 8 years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed using increased carrying capacity and/or survival as the best measures of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

Rich, Bruce A.; Petrosky, Charles E. (idaho Department of Fish and Game, Fisheries Research Section, Boise, ID)

1994-02-01T23:59:59.000Z

119

EIS-0246-SA-27: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Supplement Analysis 7: Supplement Analysis EIS-0246-SA-27: Supplement Analysis Wildlife Mitigation Program, Kalispell, Flathead County, Montana BPA proposes to fund a fishery enhancement project where a fish passage barrier will be installed in Abbot Creek to remove introduced rainbow trout and prevent hybridization with westslope cutthroat trout. Montana Fish, Wildlife & Parks (MFWP) will operate a fish trap downstream of the barrier for 6-10 consecutive years to manually remove the rainbow trout and hybrid spawners from the population. Removal of rainbow trout and hybrids from the stream will eradicate the existing hybrid population spawning in Abbot Creek and ultimately reduce the threat of hybridization in the Flathead River system. Pending completion of a successful disease screening and

120

EIS-0246-SA-27: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46-SA-27: Supplement Analysis 46-SA-27: Supplement Analysis EIS-0246-SA-27: Supplement Analysis Wildlife Mitigation Program, Kalispell, Flathead County, Montana BPA proposes to fund a fishery enhancement project where a fish passage barrier will be installed in Abbot Creek to remove introduced rainbow trout and prevent hybridization with westslope cutthroat trout. Montana Fish, Wildlife & Parks (MFWP) will operate a fish trap downstream of the barrier for 6-10 consecutive years to manually remove the rainbow trout and hybrid spawners from the population. Removal of rainbow trout and hybrids from the stream will eradicate the existing hybrid population spawning in Abbot Creek and ultimately reduce the threat of hybridization in the Flathead River system. Pending completion of a successful disease screening and

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIS-0246-SA-33: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Supplement Analysis 3: Supplement Analysis EIS-0246-SA-33: Supplement Analysis Wildlife Mitigation Program, Flathead County, Montana Bonneville Power Administration is proposing to fund a fish barrier project with Montana Fish, Wildlife, and Parks that proposes to block migrating rainbow trout during spawning to prevent the production and recruitment of approximately 2,500 rainbow trout into the Flathead River system annually. This action will reduce the opportunity for hybridization between rainbow and native westslope cutthroat trout; a species currently under consideration for threatened status under the Endangered Species Act. The project will be accomplished by replacing an existing culvert and retrofitting a fish passage barrier to the bayou. DOE/EIS-0246, Bonneville Power Administration and Montana Fish, Wildlife,

122

Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.  

SciTech Connect

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water quality issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.

Sellman, Jake; Perugini, Carol [Department of Fish, Wildlife, and Parks, Shoshone-Paiute Tribes

2009-02-20T23:59:59.000Z

123

Variations in the response of fish erythrocytes to epinephrine  

E-Print Network (OSTI)

trout and mummichog erythrocytes via a stimulation of proton efflux. This regulation is closely tied to the control of intracellular pH (pH;) of rainbow trout erythi ocytes The nnimmichog, on the other hand, regulates intraccllular nucleotide... conducted with ion exchange inhibitors(Amiloride, SITS and Oubain) to determine if epinephrine-stimulated proton efflux afFected pH; or changed NTP concentrations. Epinephrine did stimulate proton efflux, but the response ' was not sufficien to change p...

Brown, Denise Maureen

2012-06-07T23:59:59.000Z

124

Kalispel Resident Fish Project : Annual Report, 2002.  

SciTech Connect

In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

Andersen, Todd; Olson, Jason

2003-03-01T23:59:59.000Z

125

Kalispel Resident Fish Project Annual Report, 2003.  

SciTech Connect

In 2003 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2003, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented.

Olson, Jason; Andersen, Todd

2004-04-01T23:59:59.000Z

126

Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.  

SciTech Connect

The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

1996-12-01T23:59:59.000Z

127

Where do rainbows come from?  

Science Journals Connector (OSTI)

... for others. Experiments include how to make plastic from milk and hydrogen sulphide from a metal bottle cap!

Peter Newmark

1982-12-09T23:59:59.000Z

128

Big Canyon Creek Ecological Restoration Strategy.  

SciTech Connect

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

129

Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.  

SciTech Connect

Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

Peters, Ronald; Kinkead, Bruce; Stanger, Mark

2003-07-01T23:59:59.000Z

130

Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.  

SciTech Connect

This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat conditions exist for spring chinook in the Touchet River.

Mendel, Glen; Trump, Jeremy; Gembala, Mike

2003-09-01T23:59:59.000Z

131

Journey of the Oncorhynchus.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

stones in the shallow water of a cold, clear stream at the foot of Mt. Hood. A nest of fish eggs is called a redd. Cool water gently washes over the eggs in the redd. If you look...

132

LONGTERM OLFACTORY "MEMORY" IN COHO SALMON, ONCORHYNCHUS  

E-Print Network (OSTI)

by the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. months. Ten months distinguish the upper section control subjects from the lower section exper- imentals. A small drop (% m) prevented water in the lower section from reentering the upper section. Immediately below the drop a dilute

133

Kalispel Resident Fish Project : Annual Report, 1995.  

SciTech Connect

In 1995 the Kalispel Natural Resource Department (KNRD) in conjunction with the Washington Department of Fish and Wildlife (WDFW) initiated the implementation of a habitat and population enhancement project for bull trout (Salvelinus confluentus), westslope cutthroat trout (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Habitat and population assessments were conducted in seven tributaries of the Box Canyon reach of the Pend Oreille River. Assessments were used to determine the types and quality of habitat that were limiting to native bull trout and cutthroat trout populations. Assessments were also used to determine the effects of interspecific competition within these streams. A bull trout and brook trout (Salvelinus fontinalis) hybridization assessment was conducted to determine the degree of hybridization between these two species. Analysis of the habitat data indicated high rates of sediment and lack of wintering habitat. The factors that contribute to these conditions have the greatest impact on habitat quality for the tributaries of concern. Population data suggested that brook trout have less stringent habitat requirements; therefore, they have the potential to outcompete the native salmonids in areas of lower quality habitat. No hybrids were found among the samples, which is most likely attributable to the limited number of bull trout. Data collected from these assessments were compiled to develop recommendations for enhancement measures. Recommendations for restoration include riparian planting and fencing, instream structures, as well as, removal of non-native brook trout to reduce interspecific competition with native salmonids in an isolated reach of Cee Cee Ah Creek.

Maroney, Joseph; Donley, Christopher; Scott, Jason; Lockwood, Jr., Neil

1997-06-01T23:59:59.000Z

134

Investigations of the cause of fishkills in fish-rearing facilities in Raven Fork watershed  

SciTech Connect

An investigation was undertaken to determine the cause of fishkills in trout-rearing facilities located adjacent to Raven Fork Creek within the Cherokee Indian Reservation in North Carolina. Approximately 50,000 rainbow trout were lost at the Blankenship trout farm-a commercial facility-following eight storm events between March 31 and December 2, 1981. In addition, 524 trophy-size trout died in three ponds operated by the Cherokee tribe for stocking reservation streams. It was found fishkills in the trout farm could be prevented by adding lime to water from the creek as it was pumped into the facility; this strengthened the assumption acidity (H/sup +/) was responsible for the fishkills. Mortality of trophy trout was stopped by routing water from nearby springs to the ponds during and following rain events. Because of concern that these fishkills might be caused by acid rain, TVA was requested by the Cherokee tribe to assist in determining the cause. Limited studies were conducted during March through August 1982 to test two hypotheses: (1) concentrations of H/sup +/ and soluble aluminum in Raven Fork following storm events were high enough to kill rainbow trout and (2) atmospheric deposition was a greater source of stream H/sup +/ than acid-producing geologic formations or the forest soils.

Jones, H.C.; Noggle, J.C.; Young, R.C.; Kelly, J.M.; Olem, H.; Ruane, R.J.; Pasch, R.W.; Hyfantis, G.J.; Parkhurst, W.J.

1983-04-01T23:59:59.000Z

135

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

136

RIFLE GAP RESERVOIR FISHERY INVESTIGATION Photo: Willow Hibbs  

E-Print Network (OSTI)

in western Colorado, hosts a popular recreational fishery. Historically, stocked rainbow and brown trout have Department of Fish, Wildlife and Conservation Biology, Colorado State University Tel: 970-491-5002 email, Wildlife and Conservation Biology, Colorado State University March 2009 #12;Rifle Gap Reservoir Fishery

137

Resources Abstracts Input Transaction Form  

E-Print Network (OSTI)

#12;Resources Abstracts Input Transaction Form 4. Title 5. Report Date 6.Urban Aquaculture Covered The University of the District of Columbia 12. Sponsoring Organization Water Resources Research of the rainbow trout (Salmo gairdneri) in a closed recycling water system in an urban environment is described

District of Columbia, University of the

138

Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines  

E-Print Network (OSTI)

on Reclaimed Coal Mines in Alberta, Canada L. L. Miller · J. B. Rasmussen · V. P. Palace · G. Sterling · A to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout

Hontela, Alice

139

Response to ISRP Comments for Project 35044 Determine the Effects of Contaminants on White Sturgeon Reproduction and Parental Transfer  

E-Print Network (OSTI)

, such as dioxins, furans, and heavy metals. Significant contamination of the upper Columbia River and the Kootenai was acutely toxic to rainbow trout (CRIEMP, 1994). Chlorinated dioxins and furans, although not detectable dioxin and furan regulations. Cominco has been operating since 1906 (MacDonald Environmental Sciences Ltd

140

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity  

E-Print Network (OSTI)

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill concentration distribution of toxicant in a cell test chamber, (2) an electroosmotic (EO) pump chip

Le Roy, Robert J.

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

304 BULLETIN OF THE UNITED STATES FISH COMMISSION. dike. This may usually be avoided by constructing the outflow in t  

E-Print Network (OSTI)

304 BULLETIN OF THE UNITED STATES FISH COMMISSION. dike. This may usually be avoided for the ova of the landlocked salmon, the rainbow or California trout, the whitefish, and a fresh stock resulted in about 2,500 fry being placed in a race. It is intended to keep the most Of these fry until

142

Protect and Restore the Upper Lochsa : Annual Progress Report, May 2008 – April 2009.  

SciTech Connect

The Upper Lochsa watersheds included in the project contain critical spawning and rearing habitat for anadromous and resident fish (Clearwater National Forest 1999). Species that depend on the tributary habitat include spring chinook salmon (Oncorhynchus tshawytscha), Snake River summer steelhead (Oncorhynchus mykiss), bull trout (Salvelinus confluentes), and westslope cutthroat trout (Oncorhynchus clarki lewisi). Steelhead and bull trout populations are currently listed as Threatened under the Endangered Species Act (ESA), and westslope cutthroat trout has been petitioned for listing. Both out-of-basin and in-basin factors threaten fish populations in the Lochsa Drainage (Clearwater Subbasin Plan 2003). Out-of-basin factors include the hydroelectric system and ocean conditions, while in-basin factors include a variety of management activities leading to habitat degradation. This project is implemented under Bonneville Power Administration's Fish and Wildlife program in order to meet National Marine Fisheries Service requirements to offset losses caused by the operation of the hydrosystem by improving tributary habitats to promote increased productivity of salmon and steelhead. The Clearwater Subbasin Plan (2003) defines limiting factors to fisheries in the area as watershed disturbances, habitat degradation, sediment, temperature, and connectivity.

Lloyd, Rebecca; Forestieri, David [Nez Perce Tribe

2009-08-13T23:59:59.000Z

143

Kalispel Resident Fish Project : Annual Report, 2008.  

SciTech Connect

In 2008, the Kalispel Natural Resource Department (KNRD) continued to implement its habitat enhancement projects for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Baseline fish population and habitat assessments were conducted in Upper West Branch Priest River. Additional fish and habitat data were collected for the Granite Creek Watershed Assessment, a cooperative project between KNRD and the U.S. Forest Service Panhandle National Forest (FS) . The watershed assessment, funded primarily by the Salmon Recovery Funding Board of the State of Washington, will be completed in 2009.

Andersen, Todd [Kalispel Natural Resource Department

2009-07-08T23:59:59.000Z

144

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.  

SciTech Connect

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2005-08-01T23:59:59.000Z

145

Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms  

SciTech Connect

As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

1980-08-01T23:59:59.000Z

146

On the Estimation of Detection Probabilities for Sampling Stream-Dwelling Fishes.  

SciTech Connect

To examine the adequacy of fish probability of detection estimates, I examined distributional properties of survey and monitoring data for bull trout (Salvelinus confluentus), brook trout (Salvelinus fontinalis), westslope cutthroat trout (Oncorhynchus clarki lewisi), chinook salmon parr (Oncorhynchus tshawytscha), and steelhead /redband trout (Oncorhynchus mykiss spp.), from 178 streams in the Interior Columbia River Basin. Negative binomial dispersion parameters varied considerably among species and streams, but were significantly (P<0.05) positively related to fish density. Across streams, the variances in fish abundances differed greatly among species and indicated that the data for all species were overdispersed with respect to the Poisson (i.e., the variances exceeded the means). This significantly affected Poisson probability of detection estimates, which were the highest across species and were, on average, 3.82, 2.66, and 3.47 times greater than baseline values. Required sample sizes for species detection at the 95% confidence level were also lowest for the Poisson, which underestimated sample size requirements an average of 72% across species. Negative binomial and Poisson-gamma probability of detection and sample size estimates were more accurate than the Poisson and generally less than 10% from baseline values. My results indicate the Poisson and binomial assumptions often are violated, which results in probability of detection estimates that are biased high and sample size estimates that are biased low. To increase the accuracy of these estimates, I recommend that future studies use predictive distributions than can incorporate multiple sources of uncertainty or excess variance and that all distributional assumptions be explicitly tested.

Peterson, James T.

1999-11-01T23:59:59.000Z

147

CX-007364: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Categorical Exclusion Determination 4: Categorical Exclusion Determination CX-007364: Categorical Exclusion Determination Provision of Funds to the Kootenai Tribe of Idaho to Purchase the Upper Twin Rivers Conservation Easement CX(s) Applied: B1.25 Date: 11/17/2011 Location(s): Idaho Offices(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to fund the acquisition of 87 acres in the Kootenai River watershed for wildlife habitat mitigation. The acquisition parcel was selected for protection in part due to the potential to restore altered riparian habitats for wildlife, resident fish species (i.e., rainbow trout, bull trout, westslope cutthroat trout, kokanee) and the Kootenai River White Sturgeon, which is listed as threatened under the Endangered Species Act. The Kootenai River watershed

148

Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2001 Annual Report.  

SciTech Connect

On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999, when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2001, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to all three lakes in October and to Pettit and Alturas lakes in July; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September along with anadromous adult sockeye salmon that returned to the Sawtooth basin and were not incorporated into the captive broodstock program. Kokanee population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September. Only age-0 and age-1 kokanee were captured on Redfish Lake, resulting in a population estimate of 12,980 kokanee. This was the second lowest kokanee abundance estimated since 1990. On Alturas Lake age-0, age-1, and age-2 kokanee were captured, and the kokanee population was estimated at 70,159. This is a mid range kokanee population estimate for Alturas Lake, which has been sampled yearly since 1990. On Pettit Lake only age-1 kokanee were captured, and the kokanee population estimate was 16,931. This estimate is in the midrange of estimates of the kokanee population in Pettit Lake, which has been sampled yearly since 1992. We continue to have difficulty capturing age-0 kokanee in the midwater trawl on Pettit Lake. Angler surveys were conducted on Redfish and Alturas lakes to estimate kokanee harvest and to estimate return to creel for hatchery rainbow trout planted in Alturas Lake. We failed to encounter any kokanee that had been harvested in 88 angler interviews conducted between May 26 and August 7, resulting in an estimated kokanee harvest of zero. On Alturas Lake, we again failed to encounter any harvested kokanee in 116 angler interviews, resulting in an estimated kokanee harvest of zero. We estimated that anglers harvested 9.5% of the 6,598 rainbow trout planted in Alturas Lake. We estimated that 110 wild/natural and 9,616 hatchery-produced sockeye salmon smolts out-migrated from Redfish Lake in 2001. This was the lowest estimate of unmarked smolt out-migration since monitoring began in 1991. The trap on Redfish Lake Creek was operated from April 22 to June 6, 2001 to estimate out-migration. Mean travel times for PIT-tagged smolts from Redfish Lake Creek Trap to Lower Granite Dam was 10.3 days for wild/natural smolts and 10.6 days for hatchery-produced smolts. Based on cumulative unique PIT tag interrogations from Sawtooth basin traps to mainstem Snake and Columbia river dams, the Redfish Lake wild/natural smolts, Redfish fall direct presmolts group, and Alturas Lake fall direct presmolts recorded the highest detection rates. In 2001, 65 hatchery-raised and 14 anadromous adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 12 to 15 areas of excavation in the lake that were possible redds. We monitored bull trout spawning on Fishhook Creek, a tributary to Redfish Lake, and on Alpine Creek, a tributary to Alturas Lake. This represented the fourth consecutive year that the index reaches have been surveyed on these two streams. Adult counts on Fishhook Creek were similar to previous years as were redd counts. On Alpine Creek, bull trout numbers were also similar to previous years, but the number of redds observed increased over prev

Hebdon, J. Lance; Castillo, Jason; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

2003-12-01T23:59:59.000Z

149

Climate Change and Trout in Wisconsin Streams  

E-Print Network (OSTI)

1950 2000 Lake Mendota Ice Duration 1855-6 to 2008-9 The Story Continues - Trends Persist, Greater to the observed increase in anthropogenic greenhouse gas concentrations." #12;IPCC 2007 Simulated Annual Mean Surface Air Temperatures Observed Natural Forcing Alone Natural and Anthropogenic Forcing #12;· Higher

Sheridan, Jennifer

150

Robert Trout 5295 W. 35th  

E-Print Network (OSTI)

in marketing power produced by the Federal Columbia River Power System (FCRPS). At both hearings opinions were County during last year's energy crisis, you would have seen sign on every block and in virtually every employees have contributed another $300,000.00 through their Contrib Club and plant matching gift program

151

Rio Grande Cutthroat Trout John N. Rinne,  

E-Print Network (OSTI)

. 1990; Behnke 1992). It may have occurred as far south as Chihuahua, Mexico (Behnke 1992). Currently

152

FOOD AND GROWTH PARAMETERS OF JUVENILE CHINOOK SALMON, ONCORHYNCHUS TSHAWYTSCHA,  

E-Print Network (OSTI)

section of the river. Data arc provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations from hydro- electric development. Only one section of the main channel now survives in its natural

153

Stocking of Offsite Waters for Hungry Horse Dam Mitigation; Creston National Fish Hatchery, 2002-2003 Annual Report.  

SciTech Connect

Mitigation Objective 1: Produce Native Westslope Cutthroat Trout at Creston NFH--Task: Acquire eggs and rear up to 100,000 Westslope Cutthroat trout annually for offsite mitigation stocking. Accomplishments: A total of 141,000 westslope cutthroat eggs (M012 strain) was acquired from the State of Montana Washoe Park State Fish Hatchery in May 2002 for this objective. We also received an additional 22,000 westslope cutthroat eggs, MO12 strain naturalized, from feral fish at Rogers Lake, Flathead County, Montana. The fish were reared using approved fish culture techniques as defined in the U.S. Fish and Wildlife Service, Fish Hatchery Management guidelines. Survival from the swim up fry stage to stocking was 95.6%. We achieved a 0.80 feed conversion this year on a new diet, Skretting ''Nutra Plus''. Post release survival and angler success is monitored annually by Montana Fish Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribe (CSKT). Stocking numbers and locations vary yearly based on results of biological monitoring and adaptive management. Mitigation Objective 2: Produce Rainbow Trout at Creston NFH--Task: Acquire and rear up to 100,000 Rainbow trout annually for offsite mitigation in closed basin waters. Accomplishments: A total of 54,000 rainbow trout eggs (Arlee strain) was acquired from the Ennis National Fish Hatchery in December 2002 for this objective. The fish were reared using approved fish culture techniques as defined in the U.S. Fish and Wildlife Service, Fish Hatchery Management guidelines. Survival from the swim up fry stage to stocking was 99.9%. We achieved a 0.79 feed conversion this year on a new diet, Skretting ''Nutra Plus''. Arlee rainbow trout are being used for this objective because the stocking locations are terminal basin reservoirs and habitat conditions and returns to the creel are unsuitable for native cutthroat. Post release survival and angler success is monitored annually by the Confederated Salish and Kootenai Tribe (CSKT). Stocking numbers and locations vary yearly based on results of biological monitoring and adaptive management.

US Fish and Wildlife Service Staff, (US Fish and Wildlife Service, Creston National Fish Hatchery, Kalispell, MT)

2004-02-01T23:59:59.000Z

154

Wigwam River McNeil Substrate Sampling Program : 1998-2002 Summary Report.  

SciTech Connect

The Wigwam River is an important fisheries stream in the East Kootenay region of British Columbia that supports healthy populations of both bull trout (Salvelinus confluentus) and Westslope cutthroat trout (Oncorhynchus clarki lewisi). The river has been characterized as the single most important bull trout spawning steam in the Kootenay Region (Baxter and Westover 2000), and thus has been the focus of numerous studies in the last ten years (Cope 1998; Cope and Morris 2001; Cope, Morris and Bisset 2002; Kohn Crippen Consultants Ltd. 1998; Westover 1999a; Westover 1999b; Westover and Conroy 1997). Although bull trout populations in the East Kootenay region remain healthy, bull trout populations in other parts of British Columbia and within their traditional range in northwestern United States have declined. Thus, bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Centre (Cannings 1993) and remain a species of special concern. Bull trout in the north-western United States, within the Columbia River watershed, were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. In 1999, the Ministry of Water, Land and Air Protection applied and received funding from the Bonneville Power Administration (BPA) to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. The purpose of this report is to summarize one of the many studies undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00). Three permanent sampling sites were established on the Wigwam River in April 1998. At each site, substrate samples were obtained using a McNeil Core sampler in April of each year from 1998 to 2002. The objectives of this study were to assess the quality of stream-bed substrates used by bull trout for spawning prior to major resource development in the Wigwam watershed, thus providing one potential measure of future impact to bull trout spawning habitat.

Tepper, Herb

2003-01-01T23:59:59.000Z

155

Physiological, toxicological, and population responses of smallmouth bass to acidification  

SciTech Connect

The Lake Acidification and Fisheries (LAF) project examined effects of acidic water chemistries on four fish species. This report presents an overview of investigations on smallmouth bass (Micropterus dolomieui). Experiments conducted with this species included as many as 84 exposure combinations of acid, aluminum, and low calcium. In egg, fry, and juvenile stages of smallmouth bass, increased acid and aluminum concentrations increased mortality and decreased growth, while increased calcium concentrations often improved survival. Relative to the juvenile life stages of smallmouth bass tested, yolksac and swim-up fry were clearly more sensitive to stressful exposure conditions. While eggs appeared to be the most sensitive life stage, this conclusion was compromised by heavy mortalities of eggs due to fungal infestations during experimental exposures. As found in our earlier studies with brook and rainbow trout, acid-aluminum stressed smallmouth bass exhibited net losses of electrolytes across gills and increased accumulation of aluminum on gill tissues. Overall, our results indicated that smallmouth bass were generally more sensitive to increased exposure concentrations of aluminum than to increased acidities. Compared to toxicology results from earlier LAF project studies, smallmouth bass were more sensitive than brook trout and slightly less sensitive than rainbow trout when exposed to water quality conditions associated with acidification.An example application of the LAF modeling framework shows how different liming scenarios can improve survival probabilities for smallmouth bass in a set of lakes sensitive to acidification.

Marcus, M.D.; Gulley, D.D. (eds.); Christensen, S.W.; McDonald, D.G.; Van Winkle, W.; Mount, D.R.; Wood, C.M.; Bergman, H.L. (Wyoming Univ., Laramie, WY (United States). Dept. of Zoology and Physiology)

1992-08-01T23:59:59.000Z

156

Hungry Horse Dam Fisheries Mitigation; Kokanee Stocking and Monitoring in Flathead Lake, 1995 Annual Report.  

SciTech Connect

The operation of Hungry Horse Dam on the South Fork-of the Flathead River reduced the reproductive success of kokanee (Oncorhynchus nerka) spawning in the Flathead River. Montana Fish, Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribes (CSKT) authored a mitigation plan to offset those losses. The mitigation goal, stated in the Fisheries Mitigation Plan for Losses Attributed to the Construction and Operation of Hungry Horse Dam, is to: {open_quotes}Replace lost annual production of 100,000 kokanee adults, initially through hatchery production and pen rearing in Flathead Lake, partially replacing lost forage for lake trout (Salvelinus namaycush) in Flathead Lake.{close_quotes}

Fredenberg, Wade; Carty, Daniel (US Fish and Wildlife Service, Kalispell, MT); Cavigli, Jon (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

1996-06-01T23:59:59.000Z

157

Evaluation of the Reproductive Success of Wild and Hatchery Steelhead in Hatchery and Natural and Hatchery Environments : Annual Report for 2008.  

SciTech Connect

This report summarizes the field, laboratory, and analytical work from December 2007 through November 2008 on a research project that investigates interactions and comparative reproductive success of wild and hatchery origin steelhead (Oncorhynchus mykiss) trout in Forks Creek, a tributary of the Willapa River in southwest Washington. First, we continued to successfully sample hatchery and wild (i.e., naturally spawned) adult and wild smolt steelhead at Forks Creek. Second, we revealed microsatellite genotype data for adults and smolts through brood year 2008. Finally, four formal scientific manuscripts were published in 2008 and two are in press, one is in revision and two are in preparations.

Quinn, Thomas P.; Seamons, todd; Hauser, Lorenz; Naish, Kerry

2008-12-05T23:59:59.000Z

158

Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.  

SciTech Connect

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into five chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the sixth release of hatchery salmon smolts in the upper Yakima River Basin. Chapter 2 reports on the impacts of supplementation and reintroduction of salmon to trout. Chapter 2 was submitted as a manuscript to the North American Journal of Fisheries Management. Chapter 3 is an essay that describes the problems associated

Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

2005-05-01T23:59:59.000Z

159

Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.  

SciTech Connect

The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in 1997, with 97 percent of tag recoveries from rainbow trout coming from below Grand Coulee Dam. High water years appear to have substantial entrainment impacts on salmonids. The 1998 salmonid harvest has improved from the previous two years, due to the relatively water friendly year of 1998, from the harvest observed in the 1996-1997 high water years, which were particularly detrimental to the reservoir salmonid fisheries. Impacts from those water years are still evident in the reservoir fish populations. Analysis of historical relative species abundance, tagging data and hydroacoustical studies, indicate that hydro-operations have a substantial influence on the annual standing crop of reservoir salmonid populations due to entrainment losses, and limited prey species recruitment, due to reservoir elevation level fluctuation, and corresponding reproductive success.

Spotts, Jim; Shields, John; Underwood, Keith

2002-05-01T23:59:59.000Z

160

Rainbows from inhomogeneous transparent spheres: a ray-theoretic approach  

E-Print Network (OSTI)

of refractive index can be caused when droplets undergo simultaneous heating and evaporation in a combustion spatial and time- varying changes in refractive index, and are valuable for analysis of the combustion of liquid hydrocarbons, the injection of sprays in high-pressure environ- ments, as well as the spraying

Adam, John A.

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1997 Annual Report.  

SciTech Connect

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris.

Buettner, Edwin W.; Nelson, William R.

1999-04-01T23:59:59.000Z

162

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1999 Annual Report.  

SciTech Connect

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris.

Buettner, Edwin W.; Brimmer, Arnold F.; Putnam, Scott A.

2001-06-01T23:59:59.000Z

163

Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.  

SciTech Connect

The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

1997-05-01T23:59:59.000Z

164

Kalispell (i.e. Kalispel) Resident Fish Project : Annual Report, 1996.  

SciTech Connect

In 1996 the Kalispell Natural Resource Department (KNRD) in conjunction with the Washington Department of Fish and Wildlife (WDFW) continued the implementation of a habitat and population enhancement project for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). A habitat and population assessment was conducted on Browns Creek a tributary of Cee Cee Ah Creek, one of the priority tributaries outlined in the 1995 annual report. The assessment was used to determine the type and quality of habitat that was limiting to native bull trout and cutthroat trout populations. Analysis of the habitat data indicated high amounts of sediment in the stream, low bank cover, and a lack of winter habitat. Data collected from this assessment was used to prescribe habitat enhancement measures for Browns Creek. Habitat enhancement measures, as outlined in the recommendations from the 1995 annual report, were conducted during field season 1996. Fencing and planting of riparian areas and in stream structures were implemented. As a precursor to these enhancement efforts, pre-assessments were conducted to determine the affects of the enhancement. Habitat quality, stream morphology and fish populations were pre-assessed. The construction of the largemouth bass hatchery was started in October of 1995. The KNRD, Contractors Northwest Inc. and associated subcontractors are in the process of constructing the hatchery. The projected date of hatchery completion is summer 1997.

Maroney, Joseph; Donley, Christopher; Lockwood, Jr., Neil

1997-08-01T23:59:59.000Z

165

2009 Blackfoot Challenge and Trout Unlimited Citation: Blackfoot Challenge and Trout Unlimited 2009. Blackfoot Subbasin Plan. A report  

E-Print Network (OSTI)

Service, Region One Dick Hutto - University of Montana Land Lindbergh - Greenough Landowner Martin Miller

166

Lower Flathead System Fisheries Study, 1984 Annual Report.  

SciTech Connect

This study was undertaken to assess the effects of Kerr Dam operations on the fisheries of the Lower Flathead System. Supported by Bonneville Power Administration funding, and conducted by the Confederated Salish and Kootenai Tribes, the study began in December of 1982 and is scheduled for completion in December of 1987. This report covers the 1983-84 field season and includes the status of target fish species populations in the Flathead River and tributaries, and initial work in South Bay of Flathead Lake. Additionally it addresses how Kerr operations may effect the reproduction of salmonids and northern pike. Combined trout population estimates for rainbow, brown, brook, and bull trout, averaged 13 fish/km of the lower Flathead River. The number of bull trout and cutthroat trout captured was so low that estimation of their individual populations was not possible. An interim closure to trout harvest on the lower Flathead River was recommended and approved by the Tribal Council until study results can be further analyzed and management options reviewed. Population estimates for northern pike ranged from six/kilometer in poorer habitat, to one hundred three/km in the best habitat in the main Flathead River. Seven pike were radio tagged and their movements monitored. Movements of over 89 km were recorded. One fish left the Flathead River and moved down the Clark Fork to the Plains area. Fish weirs were constructed on the Jocko River and Mission Creek to assess spawning runs of trout from the main river. Thirty-two adult rainbow passed the Jocko weir and twenty-eight passed the Mission weir during the spring spawning season. Twenty adult brown trout were captured at the Jocko weir and five at Mission weir in the fall. The Jocko weir suffered minor damage due to bed load movement during high flows of spring runoff. The structure of trout populations in the lower Flathead River points to spawning and recruitment problems caused by hydroelectric operations and sedimentation. Among the consequences of the present operational regime are constant, rapid changes in river discharge during spawning and Incubation seasons of trout species present in the lower river. Hamilton and Buell (1976) reported that similar fluctuation might exceed tolerance limits of adults and inhibit spawning behavior, dewater redds, strand fry, and displace juveniles to habitats less suitable for survival. Similar problems are felt to exist on the lower river. Constant fluctuations over backwater vegetation have been linked to major problems in successful northern pike spawning and recruitment by preventing access to spawning sites, and dewatering eggs and attached fry. Phase I of the South Bay investigation was completed this year resulting in a detailed study program for the next three years. Dominant habitat types were mapped, and physical habitat and biological monitoring methods were evaluated and selected. Permanent habitat transects, water quality stations, fish sampling, gillnetting, seining, and trapping sites were established.

Darling, James E.; Pajak, Paul; Wunderlich, Mary P.

1984-12-01T23:59:59.000Z

167

E-Print Network 3.0 - arco iris oncorhynchus Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Error Tradeooff... ARCO 1. 1- 13 ITS N.Dalal Histograms of oriented gradients (HOG) 2 HOG HOG 11 12 13 1 ... Source: Takiguchi, Tetsuya - Department of Computer and...

168

Spawning Areas and Abundance of Chinook Salmon (Oncorhynchus tsha>vytscha)  

E-Print Network (OSTI)

. SPECIAL SCIENTIFIC REPORT-FISHERIES Na 571 #12;#12;UNITED STATES DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Special Scientific Report- - Fisheries No. 571 Washington, D.C. October 1968 #12 of salmonids . Evermann (1896) reported on the salmon runs in Idaho during the early 1890's. He listed

169

Application to Export Electric Energy OE Docket No. EA-296-B...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Rainbow Energy Marketing Corp Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp Application from Rainbow Energy Marketing Corp to export...

170

Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010  

SciTech Connect

This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, the average fish length remained relatively consistent (132 {+-} 54 mm), after which average lengths increased to 295 {+-} 148 mm for mid-November though early December. From mid-December through January the average fish length decreased to 151 {+-} 76 mm. Milling in front of the WTC tower was the most common fish behavior observed throughout the study period. Traversing along the front of the tower, east-to-west and west-to-east, was the next common behavior. The percentage of fish events showing movement from the forebay to the tower or from the tower to the forebay was generally low throughout the spring, summer, and early fall (0 to 30% for both directions combined, March through early November). From mid-November 2010 through the end of the study (January 31, 2011), the combined percentages of fish moving into and out of the tower were higher (25 to 70%) than during previous months of the study. Schooling behavior was most distinct in the spring. Schooling events were present in 30 to 96% of the fish events during that period, with a peak on May 19. Schooling events were also present in the summer, but at lower numbers. With the exception of some schooling in mid-December, few to no schooling events were observed in the fall and winter months. Diel distributions for schooling fish during spring and fall months indicate schooling was concentrated during daylight hours and no schooling was observed at night. However, in December, schooling occurred at night, after midnight, and during daylight hours. Predator activity, most likely bull trout or rainbow trout according to a USACE biologist, was observed during late spring, when fish abundance index and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months.

Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

2012-04-01T23:59:59.000Z

171

Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).  

SciTech Connect

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in the epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371 rainbow trout, and 509 yellow perch were harvested from Banks Lake in 2008. No kokanee were reported in the creel; however, local reports indicated that anglers were targeting and catching kokanee. The economic benefit of the Banks Lake fishery was estimated at $2,288,005 during 2008. Abundance estimates from the hydroacoustic survey in July were 514,435 lake whitefish and 10,662 kokanee, with an overall abundance estimate of 626,061 limnetic fish greater than 100 mm. When comparing spring fry, fall fingerling and yearling net pen release strategies of kokanee, 95% were of hatchery origin, with the highest recaptures coming from the fall fingerling release group.

Polacek, Matt [Washington Department of Fish and Wildlife

2009-07-15T23:59:59.000Z

172

Asotin Creek Instream Habitat Alteration Projects: 1998 Habitat Evaluation Surveys.  

SciTech Connect

The Asotin Creek Model Watershed Master Plan was completed 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from the various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories, (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were, (a) create more pools, (b) increase the amount of large organic debris (LOD), (c) increase the riparian buffer zone through tree planting, and (d) increase fencing to limit livestock access; additionally, the actions are intended to stabilize the river channel, reduce sediment input, and protect private property. Fish species of main concern in Asotin Creek are summer steelhead (Oncorhynchus mykiss), spring chinook (Oncorhynchus tshawytscha), and bull trout (Salvelinus confluentus). Spring chinook in Asotin Creek are considered extinct (Bumgarner et al. 1998); bull trout and summer steelhead are below historical levels and are currently as ''threatened'' under the ESA. In 1998, 16 instream habitat projects were planned by ACCD along with local landowners. The ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. The Washington Department of Fish and Wildlife's (WDFW) Snake River Lab (SRL) was contracted by the ACCD to take pre-construction measurements of the existing habitat (pools, LOD, width, depth, etc.) within each identified site, and to eventually evaluate fish use within these sites. All pre-construction habitat measurements were completed between 6 and 14 July, 1998. 1998 was the first year that this sort of evaluation has occurred. Post construction measurements of habitat structures installed in 1998, and fish usage evaluation, will be conducted in 1999. As such, this report is confined to 1998 habitat data summaries for each site, with no analytical evaluation.

Bumgarner, Joseph D.

1999-03-01T23:59:59.000Z

173

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report.  

SciTech Connect

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and wild chinook salmon there was a 2.0- and 2.6-fold increase in migration rate, respectively, between 50 and 100 thousands of cubic feet per second (kcfs). For hatchery steelhead trout there was a 2.6-fold increase in migration rate between 50 kcfs and 100 kcfs. For fish marked at the Salmon River trap, statistical analysis of the 1998 data detected a significant relation between migration rate and discharge for hatchery and wild chinook salmon hatchery and found a 3.3- and 2.6-fold increase in migration rate, respectively, between 50 and 100 kcfs. A significant relation between migration rate and discharge was not detected for hatchery steelhead trout. Insufficient numbers of wild steelhead trout were PIT-tagged at the Salmon River trap to estimate travel time and migration rate to Lower Granite Dam.

Buettner, Edwin W.; Brimmer, Arnold F.

2000-04-01T23:59:59.000Z

174

Coeur d'Alene Tribe Fisheries Program Research, Monitoring and Evaluation Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.  

SciTech Connect

Westslope cutthroat trout (Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) are currently of special concern regionally and are important to the culture and subsistence needs of the Coeur d'Alene Tribe. The mission of the Coeur d'Alene Tribe Fisheries Program is to restore and maintain these native trout and the habitats that sustain them in order to provide subsistence harvest and recreational fishing opportunities for the Reservation community. The adfluvial life history strategy exhibited by westslope cutthroat and bull trout in the Lake Coeur d'Alene subbasin makes these fish susceptible to habitat degradation and competition in both lake and stream environments. Degraded habitat in Lake Coeur d'Alene and its associated streams and the introduction of exotic species has lead to the decline of westslope cutthroat and listing of bull trout under the endangered species act (Peters et al. 1998). Despite the effects of habitat degradation, several streams on the Reservation still maintain populations of westslope cutthroat trout, albeit in a suppressed condition (Table 1). The results of several early studies looking at fish population status and habitat condition on the Reservation (Graves et al. 1990; Lillengreen et al. 1993, 1996) lead the Tribe to aggressively pursue funding for habitat restoration under the Northwest Power Planning Council's (NWPPC) resident fish substitution program. Through these efforts, habitat restoration needs were identified and projects were initiated. The Coeur d'Alene Tribe Fisheries Program is currently involved in implementing stream habitat restoration projects, reducing the transport of sediment from upland sources, and monitoring fish populations in four watersheds on the Coeur d'Alene Reservation (Figure 1). Restoration projects have included riparian plantings, addition of large woody debris to streams, and complete channel reconstruction to restore historical natural channel forms. In addition, ponds have been constructed to trap sediment from rill and gully erosion associated with agricultural practices, and to provide flow enhancement and ameliorate elevated stream temperatures during the summer base flow period. The implementation of restoration efforts that target the key habitats and lifestages for resident westslope cutthroat trout on the Coeur d'Alene Reservation is one means the Tribe is using to partially mitigate for lost anadromous fisheries. In this context, restoration is consistent with the definition provided by Ebersole et al. (1997), who described stream restoration as the reexpression of habitat capacity in a stream system. At the reach scale, habitat capacity is affected by biotic (e.g., riparian vegetation) and physical (e.g., flooding) processes. Superimposed on the natural biotic and physical processes are anthropogenic stressors (e.g., logging, roads and grazing) that suppress habitat capacity and can result in simplified, degraded stream reaches. The effectiveness of habitat restoration, measured as an increase in native trout abundance, is dependent on reducing limiting factors (e.g., passage barriers, high water temperatures, sediment transport from source areas) in areas that are critical for spawning and rearing lifestages. This plan outlines a monitoring strategy to help determine the effectiveness of specific restoration/enhancement treatments and to track the status of trout populations in four target watersheds.

Vitale, Angelo; Lamb, Dave; Peters, Ronald

2002-11-01T23:59:59.000Z

175

(DOE/EIS-0285/SA-27): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 6/28/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2002 June 28, 2002 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-27) Ron Morinaka, KEWU-4 Fish and Wildlife Project Manager Proposed Action: Abbot Creek Fish Barrier Project (Hungry Horse Mitigation / Habitat Improvements) Project No: 1991-19-03 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 8.2 Control of Predators and Nuisance Animals Location: Kalispell, Flathead County, Montana Proposed by: Bonneville Power Administration (BPA) and Montana Fish, Wildlife & Parks Description of the Proposed Action: BPA proposes to fund a fishery enhancement project where a fish passage barrier will be installed in Abbot Creek to remove introduced rainbow trout

176

Toxicity and acclimation to ammonia by Tilapia aurea  

E-Print Network (OSTI)

occur when the increasing permeability of the ti. sauce exceeds the maximus susI ai ned rate of urine production (approximately 12 ml!Eg/hr for rainbow trout). Chronic ratI'er than acute ammoni. a poisoning, is a major problem in som f" sh cul. ture.... 374 30. 268 27. 209 49. 768 48. 365 48. 424 6. 2-31. 7 4. . 2-30. 5 7. 0-33. 0 5. 7-30. 5 2. 9-35. 5 11. 5-31. 7 3. 0-31. 7 3. 0-33. 0 0. 1-0. 8 0. 1-0. 7 0. 1-0. 4 10 able 5. ? On-ionized ammoni. (mg/1 N) means for first pre...

Redner, Barry Duncan

1978-01-01T23:59:59.000Z

177

Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.  

SciTech Connect

Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

Mendel, Glen Wesley; Trump, Jeremy; Karl, David

2002-12-01T23:59:59.000Z

178

Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)  

SciTech Connect

Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability in fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.

Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch [University Basel, Man-Society-Environment, Department of Environmental Sciences, Vesalgasse 1, CH-4051 Basel (Switzerland); Bucheli, Thomas D.; Wettstein, Felix E. [Agroscope Reckenholz-Taenikon (ART), Research Station ART, Reckenholzstrasse 191, CH-8046 Zuerich (Switzerland); Burkhardt-Holm, Patricia [University Basel, Man-Society-Environment, Department of Environmental Sciences, Vesalgasse 1, CH-4051 Basel (Switzerland)

2011-10-01T23:59:59.000Z

179

Assessment of fish health effects resulting from exposure to oil sands wastewater  

SciTech Connect

The objective of this study was to determine if oil sands wastewater had an effect on the general health and condition of hatchery raised rainbow trout (200 to 400 g). Effects were assessed based on a battery of physiological and biochemical indices and the physical condition of the fish. The trout were exposed to tailings water in the field and in a flow through system under laboratory conditions. The field tests were conducted in 1992 and 1993 in experimental ponds at Syncrude which contained fine tails covered with surface water, fine tails covered with tailings water, and a surface water control pond. The laboratory treatments included Mildred Lake tailings water, dyke drainage water, fractionated tailings pond water (acid fraction containing naphthenic acids), sodium naphthenate, recycle water from Suncor`s tailings pond, and a laboratory control. All body condition factors and blood parameters were normal in the field and laboratory exposed fish and there were no apparent differences between the fish exposed to the tailings water and controls.

Balch, G.C.; Goudey, J.S. [HydroQual Labs. Ltd., Calgary, Alberta (Canada); Birkholtz, D. [EnviroTest Labs. Ltd., Edmonton, Alberta (Canada); Van Meer, T.; MacKinnon, M. [Syncrude Canada Ltd., Fort McMurray, Alberta (Canada)

1995-12-31T23:59:59.000Z

180

Rainbow Flags and Donor Tags: Queer Materials at the Pride Library  

E-Print Network (OSTI)

donations, creating a library space that is visible andthese materials and the library space available to thosesame way as the Pride Library’s space is different from the

Cooper, Danielle Miriam

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rainbow Flags and Donor Tags: Queer Materials at the Pride Library  

E-Print Network (OSTI)

public libraries do not support LGBTQ social movements. By discussing how conventional institutions fail to create meaningful spaces

Cooper, Danielle Miriam

2014-01-01T23:59:59.000Z

182

Indigenous Nations Studies Programs: A Rainbow Bridge Across the 21st Century?  

E-Print Network (OSTI)

the events, I have spent considerable time reflecting on the covert forms of racism that exist. One such concept, "color-blindness" (Carr 1997; Fair 1997; Killian 1990; Shanklin 1998; Willaims 1998), or the inability on the part of Euro- Americans... Justice, 7( 1 ):9-33. Sacks, D. O and P.A. Thiel. 1995. The Diversity Myth: "Multiculturalism" and the Politics of Intolerance at Stanford. Oakland, CA: Independent Institute. Shanklin, E. 1998. "The Profession of the Color Blind: Sociocultural...

Calhoon, J. Anne

2000-03-01T23:59:59.000Z

183

Rainbow Rummy : a Web-based game for vocabulary acquisition using computer-directed speech  

E-Print Network (OSTI)

Acquiring vocabulary in a foreign language is a long process which often involves the use of flashcards or cycling through long word lists for memorization. While many students learn effectively in this way, research at ...

Yoshimoto, Brandon (Brandon T.)

2009-01-01T23:59:59.000Z

184

Sperm competition affects male behaviour and sperm output in the rainbow darter  

Science Journals Connector (OSTI)

...Bob Warner and Doug Shapiro gave advice in adapting...methods for darters. R.C.F. was supported by...954. Vincent, A. C. J. 1994 Seahorses exhibit...151. Warner, R. R., Shapiro, D. Y., Marconato, A. & Petersen, C. W. 1995 Sexual con...

1998-01-01T23:59:59.000Z

185

Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors  

SciTech Connect

Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of breakpoints in papillary thyroid cancer (PTC).

O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

2010-08-19T23:59:59.000Z

186

E-Print Network 3.0 - aqui-stm exposed rainbow Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

extract, ... Source: Chivers, Douglas P. - Department of Biology, University of Saskatchewan Collection: Biology and Medicine ; Environmental Sciences and Ecology 8 Journal of...

187

Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors  

E-Print Network (OSTI)

ELE1 genes, in a post-Chernobyl papillary thyroid cancer.in a case of post-Chernobyl childhood thyroid cancer. Foliafrom Belarus after the Chernobyl reactor accident. Oncogene

O'Brien, Benjamin

2011-01-01T23:59:59.000Z

188

High Performance Graded Rainbow Holograms via Two-Stage Sequential Orthogonal Thiol–Click Chemistry  

Science Journals Connector (OSTI)

† Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States ... Subsequent to pattern formation, via a thiol–allyl radical “click” photopolymerization initiated by flood illumination of the sample, holographic materials with high Tg, high modulus, diffraction efficiency as high as 82%, and refractive index modulation of 0.004 were obtained. ...

Haiyan Peng; Devatha P. Nair; Benjamin A. Kowalski; Weixian Xi; Tao Gong; Chen Wang; Michael Cole; Neil B. Cramer; Xiaolin Xie; Robert R. McLeod; Christopher N. Bowman

2014-03-28T23:59:59.000Z

189

Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)  

E-Print Network (OSTI)

River, and the Golden Gate Bridge (GGB). Example releaseRiver, westward to the Golden Gate Bridge (Figure 1). Delta

2012-01-01T23:59:59.000Z

190

Routine and Active Metabolic Rates of Migrating Adult Wild Sockeye Salmon (Oncorhynchus nerka Walbaum) in Seawater and Freshwater  

E-Print Network (OSTI)

in freshwater at all swimming speeds except those approaching critical swimming speed. Dur- ing a 45-min- water. When fish performed a second swim test, active meta- bolic rates again remained 28%­81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates

Farrell, Anthony P.

191

The Effects of Disease-Induced Juvenile Mortality on the Transient and Asymptotic Population Dynamics of Chinook Salmon (Oncorhynchus tshawytscha)  

E-Print Network (OSTI)

the scenarios investigated. We conclude that the increase in disease mortality likely has an effect on fishery yield under a fluctuating environment, not only because the mean equilibrium adult spawning abundance has likely been reduced, but also because...

Fujiwara, Masami; Mohr, Michael S.; Greenberg, Aaron

2014-01-10T23:59:59.000Z

192

Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta  

E-Print Network (OSTI)

sampling during both flood (inundation from SacramentoRiver) and non-flood periods. During much of the samplingYolo Bypass (when it floods), and Chipps Island (Figure 3).

2013-01-01T23:59:59.000Z

193

Nearshore Areas Used by Fry Chinook Salmon, Oncorhynchus tshawytscha, in the Northwestern Sacramento–San Joaquin Delta, California  

E-Print Network (OSTI)

framework for the future: Yolo Bypass management strategy: (J&S 99079). Prepared for Yolo Basin Foundation, Davis, CA.L. 2001b. California’s Yolo Bypass: evidence that flood

McLain, Jeff; Castillo, Gonzalo

2009-01-01T23:59:59.000Z

194

Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta  

E-Print Network (OSTI)

potential impor- tance of the Yolo Bypass floodplain as anKnights Landing Sacramento Yolo Bypass Chipps Island N 10 kmRiver flow events, the Yolo Bypass floodplain, which is the

2013-01-01T23:59:59.000Z

195

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

SciTech Connect

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

196

Appendix 42 Streams in the Flathead Subbasin that contain brook trout as of  

E-Print Network (OSTI)

Creek Meadow Creek Miller Creek Nelson Creek Paul Creek Plume Creek Potter Creek Reid Creek Robertson

197

Non–indigenous brook trout and the demise of Pacific salmon: a forgotten threat?  

Science Journals Connector (OSTI)

...1.07 Bear Valley Creek 0.99 1.02 Camas Creek 0.92 0.94 Cape Horn Creek 1...B. & Brown, J. H. 1999 Invasion of North American drainages by alien fish species...genetic effects of salmonid introductions in North America. Can. J. Fish. Aquat. Sci...

2002-01-01T23:59:59.000Z

198

Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout  

E-Print Network (OSTI)

in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than

Hutchens, John

199

Fate of 2 year-old, hatchery-reared trout cod Maccullochella macquariensis (Percichthyidae)  

E-Print Network (OSTI)

a range of habitats including pools, riffles and runs but is usually associated with deeper water into two upland rivers B. C. EBNER*, J. D. THIEM* AND M. LINTERMANS* *Parks, Conservation & Lands water rat Hydromys chrysogaster were the probable causes of mortality. Predator-assisted movement

Cooke, Steven J.

200

PRELIMINARY EXPERIMENTS ON SEX CONTROL IN TROUT : PRODUCTION OF STERILE FISHES  

E-Print Network (OSTI)

completed. Thus, in the present study, we tried to choose the best conditions for success by treating fry

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rapid Diagnosis of IHN Virus Infection in Salmon and Steelhead Trout, Final Report.  

SciTech Connect

The main objective for this study was the development of a rapid diagnostic method for IHN virus in fish tissue samples. The rationale for developing new techniques for diagnosing IHNV infection was that present methods were time consuming and dependent on virus neutralization by specific antisera, a reagent that was not readily available or reliable. Fish pathologists required a rapid detection method which was sensitive enough to detect virus strain differences so that they could provide data for effective management decisions in controlling the spread of IHNV. Bonneville Power Administration's (BPA) role in efforts in fish diseases and more generically the protection, mitigation, and enhancement of Columbia River salmon and steelhead populations, is mandated by Congress through the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act), Pub. L. 96-501. Section 4 (h) of the Regional Act directs the Northwest Power Planning Council to develop a Fish and Wildlife Program. BPA's Administrator is authorized in Section 4 (h) (10) (A) to ''use funds and the authorities available to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries''. The fund is to be used to implement measures that are consistent with the Council's Fish and Wildlife Program. The research detailed in this final report is consistent with these objectives. This final report has been prepared as part of BPA's policy to encourage the preservation and dissemination of research results by publication in scientific journals.

Leong, JoAnn Ching

1984-12-01T23:59:59.000Z

202

Influence of egg predation and physical disturbance on lake trout Salvelinus namaycush egg mortality and  

E-Print Network (OSTI)

. WILLISTON*, G. WILLISTON*, J. E. MARSDEN§, B. J. ELLROTT§k AND D. C. HONEYFIELD{ *Department of Fisheries

Marsden, Ellen

203

Non–indigenous brook trout and the demise of Pacific salmon: a forgotten threat?  

Science Journals Connector (OSTI)

...freshwater ecosystems are among...decline of aquatic and riparian...charged with restoration of the flora...protection and restoration are the centrepieces...that habitat restoration aimed at...fishes in aquatic ecosystems. In Uses...

2002-01-01T23:59:59.000Z

204

Application to Export Electric Energy OE Docket No. EA-296-A...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation Application from Rainbow Energy Marketing Corporation to export electric...

205

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.  

SciTech Connect

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild Chinook salmon and 2.4-fold for hatchery steelhead as discharge increased between 50 kcfs and

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

206

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.  

SciTech Connect

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the fo

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

207

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.  

SciTech Connect

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monume

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

208

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.  

SciTech Connect

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2001 spring out-migration at migrant traps on the Snake River and Salmon River. In 2001 fish management agencies released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 11% of the 2000 numbers. The wild chinook catch was 3% of the previous year's catch. Hatchery steelhead trout catch was 49% of 2000 numbers. Wild steelhead trout catch was 69% of 2000 numbers. The Snake River trap collected 28 age-0 chinook salmon. During 2001 the Snake River trap captured zero hatchery and zero wild/natural sockeye salmon and six hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant reduction in catch during 2001 was due to a reduction in hatchery chinook production (60% of 2000 release) and due to extreme low flows. Trap operations began on March 11 and were terminated on June 29. The trap was out of operation for a total of two days due to mechanical failure or debris. Hatchery chinook salmon catch at the Salmon River trap was 47% and wild chinook salmon catch was 67% of 2000 numbers. The hatchery steelhead trout collection in 2001 was 178% of the 2000 numbers. Wild steelhead trout collection in 2001 was 145% of the previous year's catch. Trap operations began on March 11 and were terminated on June 8 due to the end of the smolt monitoring season. There were no days where the trap was out of operation due to high flow or debris. The decrease in hatchery chinook catch in 2001 was due to a reduction in hatchery production (39% of 2000 releases). The increase in hatchery and wild steelhead trap catch is due to the ability to operate the trap in the thalweg for a longer period of time because of the extreme low flow condition in 2001. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout marked at the head of the reservoir were affected by discharge. There were not enough hatchery and wild chinook salmon tagged at the Snake River trap in 2001 to allow migration rate/discharge analysis. For steelhead trout tagged at the Snake River trap, statistical analysis of 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 1.5-fold increase in migration rate in, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery and wild chinook salmon and hatchery and wild steelhead trout. Migration rate increased 3.7-fold for hatchery chinook salmon and 2.5-fold for wild chinook salmon between 50 and 100 kcfs. For hatchery steelhead there was a 1.6-fold increase in migration rate, and for wild steelhead trout there was a 2.2-fold increase between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 86% for hatchery chinook, 70% for wild chinook, 71% for hatchery steelhead, and 89% for wild steelhead. Cumulat

Buettner, Edwin W.; Putnam, Scott A.

2003-06-01T23:59:59.000Z

209

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.  

SciTech Connect

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

210

Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake; 3 of 3; Addendum to the Disease Risk Assessment Section of the 2002 Technical Report, 2003 Technical Report.  

SciTech Connect

The purpose of this addendum is, first, to provide and discuss disease agent survey results that were not available for inclusion in the Disease Risk Assessment portion of the YEAR 3 report at the time of its writing, and second, to make recommendations stemming from these results. The first set of results deals with live box exposure tests conducted using juvenile sentinel rainbow trout in the spring of 2002 to detect Myxosoma cerebralis and Ceratomyxa shasta. The second set of results deals with similar exposure tests conducted in the spring of 2003. The latter tests were initially intended to occur in the fall of 2002 but had to be re-scheduled to the spring of 2003 because suitably aged sentinel rainbow trout for the exposures were not available in the fall of 2002. The methods used for the live box exposure tests were essentially the same as those described in the YEAR 3 report. Fish were again exposed at the same four sites above McIntyre Dam and at the same four sites below the dam. As mentioned in the YEAR 3 report, the spring 2002 exposure lasted for 21 days (May 6 to 27). The spring 2003 exposure also lasted for 21 days (April 22 to May 13). The number of fish in the spring 2003 tests was, however, reduced to approximately half the number used in previous tests in order to reduce the chances of dissolved oxygen problems, suspected to have occurred in earlier tests in some of the live boxes. As before, fish that survived the live box exposures were transferred to Skaha Hatchery where they were held for sufficient time to permit any infections with M. cerebralis and C. shasta to develop and to permit for spore development in these pathogens. Assays for the pathogens were carried out as previously described. Detection of M. cerebralis was based on detecting its spores following the trypsin/pepsin digestion method. Detection of C. shasta was based on a polymerase chain reaction (PCR) test, but smears of fresh intestinal tissues (one fish per smear) were also prepared so that positive PCR findings could be confirmed by the microscopic observation of C. shasta spores. Except as just mentioned, appropriate tissues from the fish were in most cases pooled (maximum of five fish per pool) for the assays.

Evelyn, Trevor (Okanagan Nation Alliance, Fisheries Department, Westbank, BC, Canada)

2004-01-01T23:59:59.000Z

211

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2000 Annual Report.  

SciTech Connect

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2000 spring out-migration at migrant traps on the Snake River and Salmon River. In 2000 the Nez Perce Tribe released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 36% of the 1999 number. The wild chinook catch was 34% of the previous year's catch. Hatchery steelhead trout catch was 121% of 1999 numbers. Wild steelhead trout catch was 139% of 1999 numbers. The Snake River trap collected 689 age-0 chinook salmon. During 2000, the Snake River trap captured 40 hatchery and 92 wild/natural sockeye salmon and 159 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 13 and were terminated for the season due to high flows on June 16. There were no down days due to high flows or debris. Hatchery chinook salmon catch at the Salmon River trap was 96%, and wild chinook salmon catch was 66% of 1999 numbers. The hatchery steelhead trout collection in 2000 was 90% of the 1999 numbers. Wild steelhead trout collection in 2000 was 147% of the previous years catch. Trap operations began on March 13 and were terminated for the season due to high flows on May 22. There were no days where the trap was out of operation due to high flow or debris. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged chinook salmon and steelhead trout, marked at the head of the reservoir, were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 2000 data detected a significant relation between migration rate and discharge. For hatchery and wild chinook salmon, there was a 3.0 and 16.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. For hatchery steelhead, there was a 2.7-fold increase in migration rate, respectively, between 50 kcfs and 100 kcfs. The statistical analysis could not detect a significant relation between migration rate and discharge for wild steelhead in 2000. For fish marked at the Salmon River trap, statistical analysis of the 2000 data detected a significant relation between migration rate and discharge for hatchery chinook salmon at the 0.05 level of significance and at the 0.1 level of significance for wild chinook salmon. Migration rate increased 3.2- and 1.9-fold, respectively, between 50 and 100 kcfs. For hatchery steelhead there was a 1.5-fold increase in migration rate between 50 kcfs and 100 kcfs. Insufficient numbers of wild steelhead trout were PIT tagged at the Salmon River trap to estimate travel time and migration rate to Lower Granite Dam. Fish tagged with PIT tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 57% for hatchery chinook, 65% for wild chinook, 73% for hatchery steelhead and 71% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 53% for hatchery chinook, 64% for wild chinook salmon, 68% for hatchery steelhead trout, and 65% for wild steelhead trout.

Buettner, Edwin W.; Putnam, Scott A.

2002-08-01T23:59:59.000Z

212

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

213

Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.  

SciTech Connect

The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.

Backman, Thomas; Sprague, Sherman; Bretz, Justin [Nez Perce Tribe

2009-06-10T23:59:59.000Z

214

Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.  

SciTech Connect

This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. M

Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

2007-11-13T23:59:59.000Z

215

Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.  

SciTech Connect

Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmo

Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

2009-06-26T23:59:59.000Z

216

The Effects of Neutrally Buoyant, Externally Attached Transmitters on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon  

SciTech Connect

The presence of an externally attached telemetry tag is often associated with the potential for impaired swimming performance (i.e., snags and drag) as well as increased susceptibility to predation, specifically for smaller fish. The effects on swimming performance due to the presence of a neutrally buoyant externally attached acoustic transmitter were examined by comparing critical swimming speeds (Ucrit) for juvenile Chinook salmon tagged with two different neutrally buoyant external transmitters (Type A and B), nontagged individuals, and those surgically implanted with the current JSATS acoustic transmitter. Fish tagged with the Type A and B designs had lower Ucrit when compared to nontagged individuals. However, there was no difference in Ucrit among fish tagged with Type A or B designs compared to those with surgically implanted tags. Further testing was then conducted to determine if predator avoidance ability was affected due to the presence of Type A tags when compared to nontagged fish. No difference was detected in the number of tagged and nontagged fish consumed by rainbow trout throughout the predation trials. The results of this study support the further testing on the efficacy of a neutrally buoyant externally attached telemetry tag for survival studies involving juvenile salmonids passing through hydro turbines.

Janak, Jill M.; Brown, Richard S.; Colotelo, Alison HA; Pflugrath, Brett D.; Stephenson, John R.; Deng, Zhiqun; Carlson, Thomas J.; Seaburg, Adam

2012-08-01T23:59:59.000Z

217

Wildlife toxicity extrapolations: Dose metric  

SciTech Connect

Ecotoxicological assessments must rely on the extrapolation of toxicity data from a few indicator species to many species of concern. Data are available from laboratory studies (e.g., quail, mallards, rainbow trout, fathead minnow) and some planned or serendipitous field studies of a broader, but by no means comprehensive, suite of species. Yet all ecological risk assessments begin with an estimate of risk based on information gleaned from the literature. One is then confronted with the necessity of extrapolating toxicity information from a limited number of indicator species to all organisms of interest. This is a particularly acute problem when trying to estimate hazards to wildlife in terrestrial systems as there is an extreme paucity of data for most chemicals in all but a handful of species. This section continues the debate by six panelists of the ``correct`` approach for determining wildlife toxicity thresholds by examining which dose metric to use for threshold determination and interspecific extrapolation, Since wild animals are exposed to environmental contaminants primarily through ingestion, should threshold values be expressed as amount of chemical in the diet (e.g., ppm) or as a body weight-adjusted dose (mg/kg/day)? Which of these two approaches is most relevant for ecological risk assessment decision making? Which is best for interspecific extrapolations? Converting from one metric to the other can compound uncertainty if the actual consumption rates of a species is unknown. How should this be dealt with? Is it of sufficient magnitude to be of concern?

Fairbrother, A. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States); Berg, M. van den [Univ. of Utrecht (Netherlands). Research Inst. of Toxicology

1995-12-31T23:59:59.000Z

218

Wildlife toxicity extrapolations: Allometry versus physiologically-based toxicokinetics  

SciTech Connect

Ecotoxicological assessments must rely on the extrapolation of toxicity data from a few indicator species to many species of concern. Data are available from laboratory studies (e.g., quail, mallards, rainbow trout, fathead minnow) and some planned or serendipitous field studies of a broader, but by no means comprehensive, suite of species. Yet all ecological risk assessments begin with an estimate of risk based on information gleaned from the literature. The authors are then confronted with the necessity of extrapolating toxicity information from a limited number of indicator species to all organisms of interest. This is a particularly acute problem when trying to estimate hazards to wildlife in terrestrial systems as there is an extreme paucity of data for most chemicals in all but a handful of species. The question arises of how interspecific extrapolations should be made. Should extrapolations be limited to animals within the same class, order, family or genus? Alteratively, should extrapolations be made along trophic levels or physiologic similarities rather than by taxonomic classification? In other words, is an avian carnivore more like a mammalian carnivore or an avian granivore in its response to a toxic substance? Can general rules be set or does the type of extrapolation depend upon the class of chemical and its mode of uptake and toxicologic effect?

Fairbrother, A. [Ecological Planning and Toxicology Inc., Corvallis, OR (United States); Berg, M. van den [Univ. of Utrecht (Netherlands). Research Inst. of Toxicology

1995-12-31T23:59:59.000Z

219

Wildlife toxicity extrapolations: NOAEL versus LOAEL  

SciTech Connect

Ecotoxicological assessments must rely on the extrapolation of toxicity data from a few indicator species to many species of concern. Data are available from laboratory studies (e.g., quail, mallards, rainbow trout, fathead minnow) and some planned or serendipitous field studies of a broader, but by no means comprehensive, suite of species. Yet all ecological risk assessments begin with an estimate of risk based on information gleaned from the literature. One is then confronted with the necessity of extrapolating toxicity information from a limited number of indicator species to all organisms of interest. This is a particularly acute problem when trying to estimate hazards to wildlife in terrestrial systems as there is an extreme paucity of data for most chemicals in all but a handful of species. This section continues the debate by six panelists of the ``correct`` approach for determining wildlife toxicity thresholds by debating which toxicity value should be used for setting threshold criteria. Should the lowest observable effect level (LOAEL) be used or is it more appropriate to use the no observable effect level (NOAEL)? What are the short-comings of using either of these point estimates? Should a ``benchmark`` approach, similar to that proposed for human health risk assessments, be used instead, where an EC{sub 5} or EC{sub 10} and associated confidence limits are determined and then divided by a safety factor? How should knowledge of the slope of the dose-response curve be incorporated into determination of toxicity threshold values?

Fairbrother, A. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States); Berg, M. van den [Univ. of Utrecht (Netherlands). Research Inst. of Toxicology

1995-12-31T23:59:59.000Z

220

Wildlife toxicity extrapolations: Measurement endpoints  

SciTech Connect

Ecotoxicological assessments must rely on the extrapolation of toxicity data from a few indicator species to many species of concern. Data are available from laboratory studies (e.g., quail, mallards, rainbow trout, fathead minnow) and some planned or serendipitous field studies of a broader, but by no means comprehensive, suite of species. Yet all ecological risk assessments begin with an estimate of risk based on information gleaned from the literature. One is then confronted with the necessity of extrapolating toxicity information from a limited number of indicator species to ail organisms of interest. This is a particularly acute problem when trying to estimate hazard to wildlife in terrestrial systems as there is an extreme paucity of data for most chemicals in all but a handful of species. This section continues the debate by six panelists of the ``correct`` approach for determining wildlife toxicity thresholds by examining which are the appropriate measurement endpoints. Should only mortality, growth, or reproductive endpoints be used? Since toxicity threshold values may be used to make management decisions, should values related to each measurement endpoint be presented to allow the risk assessor to choose the measurement endpoint most relevant to the assessment questions being asked, or is a standard approach that uses the lowest value that causes a toxicologic response in any system of the animal a more appropriate, conservative estimate?

Fairbrother, A. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States); Berg, M. van den [Univ. of Utrecht (Netherlands). Research Inst. of Toxicology

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of a Database to Support a Multi-Scale Analysis of the Distribution of Westslope Cutthroat Trout  

E-Print Network (OSTI)

Development of a Database to Support a Multi-Scale Analysis of the Distribution of Westslope ....................................................................................................................................5 Database Development expression of life history, and no hybridization) comprise only 22% of this total (Thurow et al. 1997

222

Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone  

Science Journals Connector (OSTI)

...implications for ecosystem management and the conservation of aquatic-terrestrial linkages...restored, and the ecosystem consequences of breaking this aquatic-terrestrial link...between terrestrial and aquatic ecosystems. Bioscience 24...

2013-01-01T23:59:59.000Z

223

Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.  

SciTech Connect

Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection procedure. Data are maintained in computer databases housed at the IDFG Nampa Fisheries Research off

Copeland, Timothy; Johnson, June; Putnam, Scott

2008-12-01T23:59:59.000Z

224

Effects of Mine Waste Contamination on Fish and Wildlife Habitat at Multiple Levels of Biological Organization in the Methow River, 2001-2002 Annual Report.  

SciTech Connect

A three-year multidisciplinary study was conducted on the relationship between mine waste contamination and the effects on aquatic and terrestrial habitats in the Methow River below abandoned mines near Twisp in Okanogan County, Washington (U.S.A.). Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's. An above-and-below-mine approach was used to study potentially impacted sites. Although the dissolved metal content of water in the Methow River was below the limits of detection, eleven chemicals of potential environmental concern were identified in the tailings, mine effluents, groundwater, streamwater and sediments (Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se and Zn). The potential for ecosystem level impacts was reflected in the risk of contamination in the mine waste to communities and populations that are valued for their functional properties related to energy storage and nutrient cycling. Dissolved and sediment metal contamination changed the benthic insect community structure in a tributary of the Methow River below Alder Mine, and at the population level, caddisfly larval development in the Methow River was delayed. Arsenic accumulation in bear hair and Cd in fish liver suggest top predators are effected. In situ exposure of juvenile triploid trout (Oncorhynchus mykiss) to conditions at the downstream site resulted in reduced growth and increased mortality among exposed individuals. Histopathological studies of their tissues revealed extensive glycogen inclusions suggesting food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body. Subcellular observations revealed mitochondrial changes including a decrease in the number and increase in the size of electron-dense metrical granules, the presence of glycogen bodies in the cytoplasm, and glycogen nuclei in exposed trout hepatocytes, which are signs that Type IV Glycogen Storage disease is occurring. GSD IV is caused by either a deficiency or inactivation of the glycogen branching enzyme that results in the synthesis of an abnormal glycogen molecule that is insoluble and has decreased branch points and increased chain length. These results show that the effects of mine waste contaminants can be expressed at all levels of organization from molecular to ecosystem-level responses.

Peplow, Dan; Edmonds, Robert.

2002-06-01T23:59:59.000Z

225

Stocking of Offsite Waters for Hungry Horse Dam Mitigation Creston National Fish Hatchery, FY 2006 Annual Report.  

SciTech Connect

A total of 350,000, M012 strain, westslope cutthroat trout (WCT) eggs were received from Montana Fish Wildlife & Parks (MFWP), Washoe Park State Fish Hatchery in June of 2005 to accomplish this fishery management objective. These eggs were incubated, hatched and reared entirely inside the hatchery nursery building using a protected well water supply. Fish grew according to schedule and survival was excellent. The hatchery achieved a 0.78 feed fed to pounds gained conversion ratio for this group of WCT. Not all of the progenies from this fish lot were used for Hungry Horse Dam Fishery Mitigation Implementation. Some were used for other regional fishery management projects. Westslope cutthroat trout were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook and also utilizing a regimen adapted for hatchery specific site conditions. The fish health for these WCT was very good. Survival from first feeding fry stage to stocking was 79%. The hatchery had an annual fish health inspection performed by the USFWS Bozeman Fish Health Center in mid March of 2006. This inspection found all fish lots at Creston to be disease free. The Montana State Fish Health Board has placed the hatchery under a limited quarantine since May of 2005 due to an epizootic of Furunculosis. This classification has allowed the Creston NFH to stock disease free fish in locations approved by regional fish managers. The hatchery has been working with the State Fish Pathologist to remove the limited quarantine classification from the facility. Although fish health for all station fish lots remains disease free, MFWP has asserted it will not remove the limited quarantine until the new influent water treatment system, including the ultraviolet disinfection unit, is running full time, year round. The USFWS is working to secure the additional funding necessary to operate the treatment building year round. Distribution of the WCT took place from March through June. The stocking locations on the Flathead Reservation and State managed waters were identified by Confederated Salish and Kootenai Tribe (CSKT) and MFWP fishery biologists. Post release survival and angler success is monitored routinely by CSKT and MFWP fishery technicians. Stocking numbers and locations vary annually based on the results of biological monitoring, creel evaluations and adaptive management decisions. A total of 99,126 WCT were stocked during nine distribution trips in management approved waters (see Table 1). The average size of WCT at stocking was 3.91-inches. A total of 101,600, Arlee strain, rainbow trout (RBT) eggs were received from the Ennis National Fish Hatchery, Ennis, Montana, in December of 2005 and 35,000 Kamloops strain eggs were received from Murray Springs SFH, Eureka, Montana, in March of 2006 to accomplish this fishery management objective. The RBT were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook. There was no fish health related problems associated with this lot of fish. Survival from swim up fry stage to stocking was 93% for the Arlee's and 79% for the Kamloops. The hatchery achieved a 0.68 feed fed to pounds gained conversion ratio for the Arlee and 0.97 for the Kamloops RBT. The excellent feed conversion ratio can be attributed to refined feeding techniques and the use of an extruded high performance fry feed made with premium fish meal and marine fish oil. The Arlee strain of rainbow trout is requested for this fishery mitigation objective because the chosen stocking locations are terminal basin reservoirs or lakes, habitat conditions prevent natural spawning runs and returns to the creel are more favorable then for native westslope cutthroat trout. MFWP also requested a fall plant of Kamloops strain RBT and they will be evaluated for performance and future fall stockings in Echo Lake. Post release survival and angler success is monitored routinely by the Confederated Salish and Kootenai Tribe (CSKT) and Montana Fish Wildlife & Parks (MFWP) fishery techn

Hooley, Sharon

2009-03-20T23:59:59.000Z

226

E-Print Network 3.0 - acyl-coa dehydrogenase scad Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dehydrogenase Complementary Deoxyribonucleic Acid in Rainbow ... Source: Young, Graham - School of Aquatic and Fishery Sciences, University of Washington at Seattle...

227

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.  

SciTech Connect

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

Simmons, M.; McKinstry, C.; Cook, C.

2004-01-01T23:59:59.000Z

228

Banks Lake Fishery Evaluation Annual Report 2002-2003.  

SciTech Connect

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

2003-11-01T23:59:59.000Z

229

Hangman Restoration Project : Annual Report, August 1, 2001 - July 31, 2002.  

SciTech Connect

The construction of hydroelectric facilities in the Columbia Basin resulted in the extirpation of anadromous fish stocks in Hangman Creek and its tributaries within the Coeur d'Alene Reservation. Thus, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as redband trout (Oncorhynchus mykiss garideini), westslope cutthroat trout (O. clarki lewisii) and bull trout (Salvelinus confluentus) as well as local wildlife populations. Additionally, the Tribe was forced to convert prime riparian habitat into agricultural lands to supply sustenance for their changed needs. Wildlife habitats within the portion of the Hangman Creek Watershed that lies within the Coeur d'Alene Indian Reservation have been degraded from a century of land management practices that include widespread conversion of native habitats to agricultural production and intensive silvicultural practices. Currently, wildlife and fish populations have been marginalized and water quality is significantly impaired. In the fall of 2000 the Coeur d'Alene Tribe Wildlife Program, in coordination with the Tribal Fisheries Program, submitted a proposal to begin addressing the degradations to functioning habitats within the Coeur d'Alene Reservation in the Hangman Watershed. That proposal led to the implementation of this project during BPA's FY2001 through FY2003 funding cycle. The project is intended to protect, restore and/or enhance priority riparian, wetland and upland areas within the headwaters of Hangman Creek and its tributaries in order to promote healthy self-sustaining fish and wildlife populations. A key goal of this project is the implementation of wildlife habitat protection efforts in a manner that also secures areas with the potential to provide stream and wetland habitats essential to native salmonid populations. This goal is critical in our efforts to address both resident fish and wildlife habitat needs in the Hangman Watershed. All proposed implementation activities are conducted in the headwaters of the system and are expected to prove beneficial to the natural functions of the entire Hangman Watershed. The following is the FY2001 annual report of Project activities and is submitted as partial fulfillment of Operation and Maintenance Task 2.a. The Objectives and Tasks for this first year were designed to position this Project for a long-term habitat restoration effort. As such, efforts were largely directed at information gathering and project orientation. The major task for this first year was development of a Habitat Prioritization Plan (attached) to guide implementation efforts by selecting areas that will be of greatest benefit to the native ecology. Completion of the first year tasks has positioned the project to move forward with implementing restoration activities using the latest information to accomplish the greatest possible results. The Project will be looking to implement on-the-ground protection and restoration efforts in the coming fiscal year using the data and information gathered in the last fiscal year. Continually refining our understanding of the natural watershed functions and fish and wildlife habitats within the Project Area will result in an increase in the efficiency of project implementation. Research and data gathering efforts will remain a strong emphasis in the coming fiscal year, as it will throughout the life of this Project.

Green, Gerald I.; Coeur D'Alene Tribe.

2002-06-01T23:59:59.000Z

230

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

231

Acute lethal toxicity of some reference chemicals to freshwater fishes of Scandinavia  

SciTech Connect

Relevance of the choice of a test organism intended to be representative for a given environment seems to be under continual debate in aquatic ecotoxicology. For instance, it is commonly argue that acute toxicity tests with rainbow trout, the species most often recommended as a standard cold water teleost, were not representative for Nordic countries because the species is an alien in local faunas. A comparative study with several freshwater species was therefore initiated to clarify the validity of this assumption. As a first approximation, standard LC 50 assays were conducted. The species used were chosen only on the basis of their local availability, i.e, they randomly represented the fish fauna of Nordic inland waters. Furthermore, inter-species variation of toxicity response was compared with certain other, quantitatively more important, intra-species sources of variability affecting the toxicity of chemicals. Use of reference toxicants has been recommended as a means of standardizing bioassays. Compounds, characteristic of effluents from the pulp and paper industry, were selected for the present study. The toxicity of organic acids such a phenols and resin acids, as well as that of pupmill effluents, strongly depends on water pH. Because of the possibility that species differences could exist in this respect, effects of water acidity on toxicity of these types of substances to a randomly selected local species was investigated. Finally, as an example of the biological source of assay variability, the effect of yolk absorption was studied with a subsequent crisis period due to moderate starvation under laboratory conditions.

Oikari, A.O.J.

1987-07-01T23:59:59.000Z

232

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

SciTech Connect

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

233

Organotin intake through fish consumption in Finland  

SciTech Connect

Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune [Finnish Game and Fisheries Research Institute, Helsinki (Finland)] [Finnish Game and Fisheries Research Institute, Helsinki (Finland); Mannio, Jaakko [Finnish Environment Institute, Helsinki (Finland)] [Finnish Environment Institute, Helsinki (Finland); Hallikainen, Anja [Finnish Food Safety Authority Evira, Helsinki (Finland)] [Finnish Food Safety Authority Evira, Helsinki (Finland)

2010-08-15T23:59:59.000Z

234

Notice of Availability of the Record of Decision for the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program (DOE/EIS-0353) (05/12/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

714 Federal Register 714 Federal Register / Vol. 71, No. 92 / Friday, May 12, 2006 / Notices 6623. Please specify the complete title of the information collection when making your request. Comments regarding burden and/or the collection activity requirements should be electronically mailed to IC DocketMgr@ed.gov. Individuals who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1- 800-877-8339. [FR Doc. E6-7288 Filed 5-11-06; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF EDUCATION Office of Special Education and Rehabilitative Services; Special Education-Technology and Media Services for Individuals With Disabilities-Access to Emerging Technologies (CFDA No. 84.327C) ACTION: Notice inviting applications for new awards for fiscal year (FY) 2006;

235

Environmental Protection Agency Notice of Availability of the South Fork Flathead Watershed Westslop Cutthroat Trout Conservation Program (DOE/EIS-0353) (08/19/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04 04 Federal Register / Vol. 70, No. 160 / Friday, August 19, 2005 / Notices electronic docket at 67 FR 38102 (May 31, 2002), or go to http://www.epa.gov/ edocket. Title: NSPS for Primary and Secondary Emissions from Basic Oxygen Furnaces (Renewal). Abstract: The New Source Performance Standards (NSPS) for the regulations published at 40 CFR part 60, subparts N and Na were proposed on were proposed on June 11, 1973, and promulgated on March 8, 1974. These regulations apply to each basic oxygen process furnace (BOPF) in an iron and steel plant commencing construction, modification or reconstruction after the date of a proposal. An opacity limit was promulgated on April 13, 1978, as a supplement to the mass standard. On January 20, 1983, amendments to the

236

Notice of Intent to prepare an Environmental Impact Statement for the South Fork Flatbed Watershed/Westslope Cutthroat Trout Conservation Program (5/5/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05 05 Federal Register / Vol. 68, No. 86 / Monday, May 5, 2003 / Notices the estimated annual cost to the public of this information collection will be about $128,263. C. Request for Comments The Commission solicits written comments from all interested persons about the proposed collection of information. The Commission specifically solicits information relevant to the following topics: * Whether the collection of information described above is necessary for the proper performance of the Commission's functions, including whether the information would have practical utility; * Whether the estimated burden of the proposed collection of information is accurate; * Whether the quality, utility, and clarity of the information to be collected could be enhanced; and

237

www.planetearth.nerc.ac.uk Autumn 2014 Trout in hot water Biodiversity and big data Bioenergy's carbon footprint Sustainable drainage  

E-Print Network (OSTI)

­ from pole to pole, from the deep Earth and oceans to the atmosphere and space. We work in partnership of government. Our projects range from curiosity-driven research to long-term, multi-million-pound strategic to us at Planet Earth Editors, NERC, Polaris House, North Star Avenue, Swindon SN2 1EU. NERC

Brierley, Andrew

238

Steelhead and Chinook Salmon Bioenergetics: Temperature, Ration, and Genetic Effects  

E-Print Network (OSTI)

Oncorhynchus mykiss) bioenergetics. Ph.D. Dissertation,L . Johnson. 1992. Fish Bioenergetics Model 2: An UpgradeUniversity of Generalized Bioenergetics Model of Fish Growth

Cech, Joseph J Jr.; Myrick, Christopher A

1999-01-01T23:59:59.000Z

239

Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.  

SciTech Connect

A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

1995-11-01T23:59:59.000Z

240

RECORD of Categorical Exclusion (CX) determination: Office of Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECORD of Categorical Exclusion (CX) determination: Office of RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation Record of Categorical Exclusion (CX) Determination, Office of Electricity Delivery and Energy Reliability (OE): Application from Rainbow Energy Marketing Corp to export electric energy to Canada. EA-296-B Rainbow Energy CN.pdf More Documents & Publications EA-296-B Rainbow Energy Marketing Corporation Record of Categorical Exclusion (CX) Determination: Office of Electricity Delivery and Energy Reliability (OE): EA-385 Dynasty Power, Inc. Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Application to Export Electric Energy OE Docket No. EA-296-B...  

Office of Environmental Management (EM)

Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 Application to Export...

242

RECORD of Categorical Exclusion (CX) determination: Office of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation RECORD of Categorical Exclusion (CX) determination: Office of...

243

Application to Export Electric Energy OE Docket No. EA-296-A...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2007 Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation: Federal Register Notice Volume 72, No. 158 - Aug. 16, 2007 Application...

244

E-Print Network 3.0 - acquired pseudo-pelger-hut anomaly Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

site in ultramafic environment Summary: A positive magnetic anomaly at Rainbow hydrothermal site in ultramafic environment Jrme DYMENT1... substratum present a...

245

E-Print Network 3.0 - atmospheric solar heating Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmosphere Absorption 12;Transmission... Refraction and Rainbow sunlight 12;The Greenhouse Effect and ... Source: Pan, Feifei - Department of Geography, University of North Texas...

246

Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2001 (September 1, 2001 to August 31, 2002).  

SciTech Connect

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

Polacek, Matt; Knuttgen, Kamia; Baldwin, Casey; Woller, Heather

2003-03-01T23:59:59.000Z

247

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.  

SciTech Connect

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

2003-01-01T23:59:59.000Z

248

EIS-0353: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0353: Final Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program In cooperation with Montana, Fish, Wildlife, and Parks, Bonneville Power Administration is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage. The South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program constitutes a portion of the Hungry Horse Mitigation Program. South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement, DOE/EIS-0353 (July 2005) More Documents & Publications EIS-0353: Draft Environmental Impact Statement

249

EIS-0353: EPA Notice of Availability of the Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0353: EPA Notice of Availability of the Draft Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Montana EIS No. 040274, Draft EIS, DOE, MT, South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Preserve the Genetic Purity of the Westslope Cutthroat Trout Population, Flathead National Forest, Flathead River, Flathead, Powell and Missoula Counties, Montana DOE/EIS-0353 Environmental Protection Agency, Notice of Availability, Draft Environmental Impact Statement for South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Montana, 69 FR 34161 (June 2004) More Documents & Publications

250

EIS-0353: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Watershed Westslope Cutthroat Trout Conservation Program In cooperation with Montana, Fish, Wildlife and Parks, Bonneville Power Administration is proposing to implement a...

251

EIS-0265-SA-88: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Warm Springs Reservation of Oregon (CTWSRO), propose to complete seven types of fish habitat enhancement projects. The projects are located within bull trout and Middle...

252

Microsoft Word - Fish Letter _2_.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

253

E-Print Network 3.0 - adenylate energy charge Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

for 12h has little effect on adenylate energy charge... trout muscle: Adenine nucleo- tide concentrations, phosphorylation state and adenylate energy charge... in the swimming...

254

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

Location: Twisp, Okanogan County, Wash. Acres: 145 Partners: Methow Salmon Recovery Foundation, the Yakama Nation and Trout Unlimited Purpose: The Bonneville Power Administration...

255

HEADING FRONTMATTER  

NLE Websites -- All DOE Office Websites (Extended Search)

on odor control and waste water disposal to regional trout farm, beet sugar, and potato industries. Bioremediation: Tested and developed design procedures for a new style of...

256

E-Print Network 3.0 - atlantic salmon salmo Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

A. - Department of Biology, Dalhousie University Collection: Environmental Sciences and Ecology 17 Norwegian Salmon and Trout Farming ROBERT J. FORD Summary: Norwegian Salmon and...

257

2007 Fall Meeting Search Results  

E-Print Network (OSTI)

, geology, and geophysics DE: 8416 Mid-oceanic ridge processes (1032, 3614) DE: 8424 Hydrothermal systems:Further Geological Sampling Around the Rainbow Hydrothermal Site, Mid-Atlantic Ridge AU:* Ildefonse, B EM, France AB:The Rainbow hydrothermal site, at 36°14'N on the Mid-Atlantic Ridge, is one of the few known

Demouchy, Sylvie

258

Analysis of the parallel distinguished point tradeoff  

Science Journals Connector (OSTI)

Cryptanalytic time memory tradeoff algorithms are tools for quickly inverting one-way functions and many consider the rainbow table method to be the most efficient tradeoff algorithm. However, it was recently announced, mostly based on experiments, that ... Keywords: distinguished point, parallel distinguished point, rainbow table, time memory tradeoff

Jin Hong; Ga Won Lee; Daegun Ma

2011-12-01T23:59:59.000Z

259

Ecological Economics 33 (2000) 2943 Forest owner incentives to protect riparian habitat  

E-Print Network (OSTI)

management on a larger scale (Amoros et al., 1987; Swallow and Wear, 1993; Sample, 1994; Gottfried et al salmon (Oncorhynchus kisutch) populations led the Na- tional Marine Fisheries Service (NMFS) to con

260

Fish farming: Eat your veg  

Science Journals Connector (OSTI)

... world's food supply, but there's a hidden cost behind some of the farmed fish on supermarket shelves. Many, including the popular salmon, trout and cod, are fed ... shelves. Many, including the popular salmon, trout and cod, are fed on wild fish. Lots of wild ...

Kendall Powell

2003-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Resource partitioning as a factor limiting gene flow in hybridizing populations of Dolly Varden  

E-Print Network (OSTI)

. We examined juvenile stream ecology and adult reproductive ecology of these species in sympatry against hybrids at the juvenile stream-rearing life-history stage. Bull trout, however, are adfluvial, whereas Dolly Varden are permanent stream residents. Bull trout are also much larger at maturity (50­80 cm

Taylor, Eric B. "Rick"

262

Influence of a Weak Field of Pulsed DC Electricity on the Behavior and Incidence of Injury in Adult Steelhead and Pacific Lamprey, Final Report.  

SciTech Connect

Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys. The effects of electricity on fish have been widely studied and include injury or death (e.g., Sharber and Carothers 1988; Dwyer et al. 2001; Snyder 2003), physiological dysfunction (e.g., Schreck et al. 1976; Mesa and Schreck 1989), and altered behavior (Mesa and Schreck 1989). Much of this work was done to investigate the effects of electrofishing on fish in the wild. Because electrofishing operations would always use more severe electrical settings than those proposed for the pinniped barrier, results from these studies are probably not relevant to the work proposed by SRI. Field electrofishing operations typically use high voltage and amperage settings and a variety of waveforms, pulse widths (PW), and pulse frequencies (PF), depending on conditions and target species. For example, when backpack electrofishing for trout in a small stream, one might use settings such as 500 V pulsed DC, a PW of 1 ms, and a PF of 60 Hz. In contrast, the electrical barrier proposed by SRI will produce electrical conditions significantly lower than those used in electrofishing, particularly for PW and PF (e.g., PW ranging from 300-1,000 {micro}s and PF from 2-3 Hz). Further, voltage gradients (in V/cm) are predicted to be lower in the electric barrier than those produced during typical electrofishing. Although the relatively weak, pulsed DC electric fields to be produced by the barrier may be effective at deterring pinnipeds, little, if anything, is known about the effects of such low intensity electrical fields on fish behavior. For this research, we evaluated the effects of weak, pulsed DC electric currents on the behavior of adult steelhead and Pacific lamprey and the incidence of injury in steelhead only. In a series of laboratory experiments, we: (1) documented the rate of passage of fish over miniature, prototype electric barriers when they were on and off; (2) determined some electric thresholds beyond which fish would not pass over the barrier; and (3) assessed the incidence and severity of injury in steelhead exposed to relatively severe electrical conditions. The results of this study should be useful for making decisions about whether to install electrical barriers in the lower Columbia River, or elsewhere, to reduce predation on upstream migrating salmonids and other fishes by marine pinnipeds.

Mesa, Matthew

2009-02-13T23:59:59.000Z

263

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

SciTech Connect

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

264

Team Instructor Subject Course Section Number Days Start End Room Subject Course Section  

E-Print Network (OSTI)

:00 PM 100D omega Rainbow HON 2301 16 12894 MW 4:00 PM 5:30 PM 212J ENGL 1370 16 12776 MWF 12:00 PM 1

Azevedo, Ricardo

265

MARKETING PORTFOLIO SAMPLES OF CONTENT FOR EXECUTIVE SUMMARIES*  

E-Print Network (OSTI)

MARKETING PORTFOLIO SAMPLES OF CONTENT FOR EXECUTIVE SUMMARIES* Table of Contents Professional Marketing (Rainbow Realty) Page 6 Marketing Research (Kroger, Private Label) Page 8 Consumer Behavior (Slim Fast) Page 10 Marketing Information Technology (Sierra Nevada

de Lijser, Peter

266

Epileptic seizures: Quakes of the brain? Ivan Osorio,1,2,* Mark G. Frei,2,  

E-Print Network (OSTI)

Rainbow Boulevard, Mailstop 2012, Kansas City, Kansas 66160, USA 2 Flint Hills Scientific, 5040 Bob to earthquakes and forest fires 2­9 . It has been con- tended that the fact that all of these systems generate

Lai, Ying-Cheng

267

WBSDF for simulating wave effects of light and audio  

E-Print Network (OSTI)

Diffraction is a common phenomenon in nature when dealing with small scale occluders. It can be observed on biological surfaces, such as feathers and butterfly wings, and man-made objects like rainbow holograms. In acoustics, ...

Cuypers, Tom

268

Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.  

SciTech Connect

On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds

Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

2008-12-17T23:59:59.000Z

269

Kristie Stremel Oral History  

E-Print Network (OSTI)

Under the Rainbow: Oral Histories of GLBTQ People in Kansas Kristie Stremel Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Return to Kristie Stremel Oral History in KU ScholarWorks Tami Albin, Director for Under the Rainbow...

Stremel, Kristie; Albin, Tami

2009-10-27T23:59:59.000Z

270

PRESENTATION TITLE  

NLE Websites -- All DOE Office Websites (Extended Search)

STRONG STRONG ® Projects Impacting Federal Power Tulsa District Dan Brueggenjohann 9 June 2010 BUILDING STRONG ® 303(d) Listing of Broken Bow Tailwaters Impairment Impaired Use Cadmium Fish and Wildlife Propagation - Trout Fishery Lead Fish and Wildlife Propagation - Trout Fishery Water Temperature* Fish and Wildlife Propagation - Trout Fishery The 303(d) List reports on waters identified as impaired. These waters: Have elevated portions of one or more pollutants. Do not meet one or more water quality standards. Portions of the Mountain Fork River below Broken Bow Dam are on the 2010 draft Oklahoma 303(d) list. * ODWC is currently working to implement a selective withdrawal

271

Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.  

SciTech Connect

The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large percentage of the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton, zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification

McLellan, Holly; Lee, Chuck; Scofield, Ben; Pavlik, Deanne

1999-08-01T23:59:59.000Z

272

The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations  

SciTech Connect

One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

2012-04-01T23:59:59.000Z

273

Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.  

SciTech Connect

The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment basin construction and the installation of strip systems are also taking place. The years 2000 through 2002 were productive years for the Pataha Creek Model Watershed but due to the fact that most of the cooperators in the watershed have reached their limitation allowed for no-till and direct seed/ two pass of 3 years with each practice, the cost share for these practices is lower than the years of the late 90's. All the upland practices that were implemented have helped to further reduce erosion from the cropland. This has resulted in a reduction of sedimentation into the spawning and rearing area of the fall chinook salmon located in the lower portion of the Tucannon River. The tree planting projects have helped in reducing sedimentation and have also improved the riparian zone of desired locations inside the Pataha Creek Watershed. The CREP (Conservation Reserve Enhancement Program) along with the CCRP (Continuous Conservation Reserve Program) are becoming more prevalent in the watershed and are protecting the riparian areas along the Pataha Creek at an increasing level every year. Currently roughly 197 acres of riparian has been enrolled along the Pataha Creek in the CREP program.

Bartels, Duane G.

2003-04-01T23:59:59.000Z

274

Julie A. Smith and Christopher Lawrence Office of Electricity Delivery and Energy Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

christopher.lawrence@hq.doe.gov christopher.lawrence@hq.doe.gov RE: Comments on a Draft Integrated, Interagency Pre-Application (IIP) Process Dear Ms. Smith and Mr. Lawrence: Please accept these Trout Unlimited (TU) comments on the draft Integrated, Interagency Pre-Application (IIP) Process. Trout Unlimited is concerned with expediting renewable development in a thoughtful and deliberate manner in order to protect and conserve fish and wildlife resources and sportsmen's interests. Trout Unlimited routinely participates in the Federal and state processes for environmental review of major energy projects and cooperates with State as well as Federal fish and wildlife and land management agencies. A well designed pre-application process could be instrumental in avoiding potential issues but Trout

275

EIS-0353: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record of Decision Record of Decision EIS-0353: Record of Decision South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program The Bonneville Power Administration (BPA) has decided to fund Montana Fish, Wildlife, and Parks Department's (MFWP) South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program. This program is the Proposed Action in the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program EIS (DOE/EIS-0353, July 2005). South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Record of Decision (DOE/EIS-0353) (05/01/06) More Documents & Publications EIS-0353: Draft Environmental Impact Statement EIS-0353: Final Environmental Impact Statement EIS-0353: DOE Notice of Availability of the Record of Decision

276

EIS-0353: DOE Notice of Availability of the Record of Decision | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Record of Decision DOE Notice of Availability of the Record of Decision EIS-0353: DOE Notice of Availability of the Record of Decision South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Flathead County, Montana This notice announces the availability of the ROD for the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, based on the South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program Final Environmental Impact Statement (DOE/ EIS-0353, July 2005). BPA is taking this action to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage in Flathead County, Montana. DOE/EIS-353, Bonneville Power Administration, Notice of Availability of the

277

A review of fish swimming mechanics and behaviour in altered flows  

Science Journals Connector (OSTI)

...Agent IBM) simulation. In Civil and environmental engineering...Final Report 2002, Report to Bonneville Power Administration, Contract No. 00000022, pp...energetics of trout. I. Thrust and power output at cruising speeds...

2007-01-01T23:59:59.000Z

278

North American Journal of Fisheries Management 25:954963, 2005 [Article]Copyright by the American Fisheries Society 2005  

E-Print Network (OSTI)

in the Thomas Fork of the Bear River, Idaho­Wyoming WARREN T. COLYER* Trout Unlimited, 249 South 100th West (Dunning et al. 1992; Hilderbrand and Kershner 2000a; Har- ig and Fausch 2002) and demographic and envi

Hilderbrand, Robert H.

279

I-5project08-18parcelsdetailc.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 0 1 2 0.5 Miles LEGEND draftsegmentsNEW83TroutBuffer2 Proposed Route Segment Areas BPA Substation Non-BPA Substation BPA Transmission Lines Dam Cities and Towns County...

280

Independent Scientific Review Panel for the Northwest Power & Conservation Council  

E-Print Network (OSTI)

to the phosphorous eutrophication problem. We suggested that an adequate future proposal should explore potential-term treatment of the phosphorous eutrophication problem than oxygenation · include trout survival measurements

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The effect of dietary nitrogen content on trophic level 15N enrichment  

Science Journals Connector (OSTI)

as food, which ranged in C : N (atomic) from 7.3 to 24.8. ..... rats. However, Kiriluk et al. (1995) found no correlation be- tween 15N values and age of lake trout, ...

2000-04-13T23:59:59.000Z

282

Reviews in Fish Biology and Fisheries 12: 373391, 2002. 2003 Kluwer Academic Publishers. Printed in the Netherlands.  

E-Print Network (OSTI)

in the Netherlands. 373 Alien invasions in aquatic ecosystems: Toward an understanding of brook trout invasions College Ave., Columbia, MO 65201, USA Accepted 7 January 2003 Contents Abstract page 373 Introduction 374

283

Michael J. Farrell Colonel, U.S. Army  

E-Print Network (OSTI)

National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE West Coast Region 650 Valley spring-run Chinook salmon (Oncorhynchus tshawytscha), threatened California Central Valley and Central Valley Spring-Run Chinook Salmon, and the Distinct Population Segment ofCentral Valley Steelhead

US Army Corps of Engineers

284

The relationship between pink salmon biomass and the body condition of short-tailed shearwaters in the Bering Sea: can fish compete with seabirds?  

Science Journals Connector (OSTI)

...60 The relationship between pink salmon biomass and the body condition of short-tailed...pink salmon (Oncorhynchus gorbuscha) biomass in the central Bering Sea (23 times greater...or prey composition, the pink salmon biomass showed a negative and significant relationship...

2011-01-01T23:59:59.000Z

285

ORIGINAL PAPER Chinook salmon invade southern South America  

E-Print Network (OSTI)

ORIGINAL PAPER Chinook salmon invade southern South America Cristia´n Correa � Mart R. Gross We document the invasion of Chinook salmon (Oncorhynchus tshawytscha) to southern South America. This is the first anadromous salmon species to have invaded such a large range in South America, and it raises many

Gross, Mart

286

Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon  

Science Journals Connector (OSTI)

...cause of mortality in fall Chinook (Oncorhynchus...sampling in the lower Klamath River, CA. Bars...fish exposures. KR Fall Chinook and coho...Each exposure group was held in a 25...population dynamics of Klamath fall-run Chinook salmon...

Sascha L. Hallett; R. Adam Ray; Charlene N. Hurst; Richard A. Holt; Gerri R. Buckles; Stephen D. Atkinson; Jerri L. Bartholomew

2012-03-09T23:59:59.000Z

287

Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Northwest Chinook salmon  

E-Print Network (OSTI)

Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Oregon St, Suite 200, Portland, OR 97232, U.S.A. 2 Fisheries and Oceans Canada, Pacific Biological of Washington, Seattle, WA 98195-5020, U.S.A. ABSTRACT Pacific Northwest Chinook, Oncorhynchus tshawytscha, have

288

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network (OSTI)

-Columbia Recovery Plan Lynn Hatcher and Scott Rumsey, NOAA Fisheries, Bill Sharp, Yakama Nation and Alex Conley of the Yakima Basin Fish & Wildlife Recovery Board will present an overview of implementation progress under the recovery plan for the protection and restoration of Middle Columbia River steelhead (Oncorhynchus mykiss

289

The Auk 125(1):5159, 2008 c The American Ornithologists' Union, 2008.  

E-Print Network (OSTI)

OF SALMON INCREASES PASSERINE DENSITY ON PACIFIC NORTHWEST STREAMS KATIE S. CHRISTIE AND THOMAS E. REIMCHEN1, Canada ABSTRACT.--The annual migration of Pacific salmon (Oncorhynchus spp.) to freshwater streams or below the falls and proximity to the stream were the major predictors of songbird abundance. Each

Reimchen, Thomas E.

290

Can. J. Fish. Aquat. Sci. 56: 17001706 (1999) 1999 NRC Canada PERSPECTIVE  

E-Print Network (OSTI)

Pacifique (Oncorhynchus spp.) de la côte nord-ouest de l'Amérique du Nord ont connu des déclins régionaux et straying from their natal streams during spawning migrations. Management efforts aimed at expediting freshwater habitat in streams w

291

March 2014 ECOLOGICAL RESTORATION 32:1 59 Ecological Restoration Vol. 32, No. 1, 2014  

E-Print Network (OSTI)

knowledge. Keywords: aquatic restoration, exotics, introduced species, Oncorhynchus clarkii, protected areas decide to restore the native ecosystems by eliminating introduced salmonid populations. GillnettingMarch 2014 ECOLOGICAL RESTORATION 32:1 � 59 Ecological Restoration Vol. 32, No. 1, 2014 ISSN 1522

Fraser, Dylan J.

292

Field-based measurements of oxygen uptake and swimming performance with adult Pacific salmon using  

E-Print Network (OSTI)

swimming; recovery; Oncorhynchus. INTRODUCTION Swimming performance and studies of energy consumption have are capable of carrying a moderate excess post-exercise oxygen consumption without adversely affecting Ucrit is limited. Some studies have trans- ported wild adult salmonids to a laboratory for study (Jones et al

Hinch, Scott G.

293

Historic Surface Faulting and Paleoseismicity in the Area of the 1954  

Open Energy Info (EERE)

Historic Surface Faulting and Paleoseismicity in the Area of the 1954 Historic Surface Faulting and Paleoseismicity in the Area of the 1954 Rainbow Mountain-Stillwater Earthquake Sequence, Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Historic Surface Faulting and Paleoseismicity in the Area of the 1954 Rainbow Mountain-Stillwater Earthquake Sequence, Central Nevada Abstract The Rainbow Mountain area was the site of three surface-rupturing earthquakes on 6 July and 23 August 1954. More than 50 field measurements of surface offsets constrain the distribution of slip along the discontinuous and distributed rupture zone that formed during the earthquake sequence. Vertical offsets reach a maximum of ~0.8 m with the average vertical offset being ~0.2 m. In contrast to original reports, we

294

CX-006592: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Categorical Exclusion Determination 2: Categorical Exclusion Determination CX-006592: Categorical Exclusion Determination Vermont Biofuels Initiative: Rainbow Valley Biodiesel CX(s) Applied: B5.1 Date: 08/29/2011 Location(s): Brandon County, Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Department of Energy is proposing to provide federal funding to the Vermont Sustainable Jobs Fund, sub-recipient Rainbow Valley Biodiesel (Rainbow Valley), to increase grain storage and oilseed pressing capacity at the existing biodiesel farm in order to expand the scale of oilseed production in Addison and Rutland counties. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006592.pdf More Documents & Publications CX-006597: Categorical Exclusion Determination CX-006589: Categorical Exclusion Determination

295

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

296

CX-009406: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

406: Categorical Exclusion Determination 406: Categorical Exclusion Determination CX-009406: Categorical Exclusion Determination Rainbow Energy Marketing Corporation CX(s) Applied: B4.2 Date: 09/18/2012 Location(s): CX: none Offices(s): Electricity Delivery and Energy Reliability Rainbow Energy Marketing Corporation has applied to the Office of Electricity Delivery & Energy Reliability for an electricity export authorization which will allow it to export electricity to Canada pursuant to Section 202(e) of the Federal Power Act. CX-009406.pdf More Documents & Publications CX-009236: Categorical Exclusion Determination CX-004746: Categorical Exclusion Determination RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing

297

EA-0307-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-SA-01: Supplement Analysis 7-SA-01: Supplement Analysis EA-0307-SA-01: Supplement Analysis Colville Resident Trout Hatchery Project Supplement Analysis The Bonneville Power Administration prepared an Environmental Assessment (EA-0307) for the Colville Resident Hatchery Project (Project) and published a Finding of No Significant Impact (FONSI) in the Federal Register on September 8, 1986 (Vol. 51, No.173). The Project involved the design, site selection, construction, operation and maintenance of a resident trout hatchery on the Colville Indian Reservation to partially mitigate for anadromours and other fish losses resulting from the the construction and operation of the Chief Joseph Dam and Grand Coulee Dam hydroelectric projects. Colville Resident Trout Hatchery Project Supplement Analysis

298

EIS-0353: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Final Environmental EPA Notice of Availability of the Final Environmental Impact Statement EIS-0353: EPA Notice of Availability of the Final Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program In cooperation with MFWP, BPA is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage. The South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program constitutes a portion of the Hungry Horse Mitigation Program. The purpose of the Hungry Horse Mitigation Program is to mitigate for the construction and operation of Hungry Horse Dam through restoring habitat, improving fish passage, protecting and recovering native fish populations, and

299

Panther Creek, Idaho, Habitat Rehabilitation, Final Report.  

SciTech Connect

The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

Reiser, Dudley W.

1986-01-01T23:59:59.000Z

300

SM@RT: Applying Architecture-based Runtime Management into Internetware Systems  

E-Print Network (OSTI)

Engineering and Computer Science, Peking University, Beijing, 100871, China huanggang@sei.pku.edu.cn, songhui the RAI implementation code without any modification on the source code of the target system on Eclipse GUI and Android, C2 arc- hitectural models on JOnAS, Rainbow C/S style on PLASTIC and UML models

Boyer, Edmond

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation  

E-Print Network (OSTI)

of Education School of Electronics Engineering and Computer Science Peking University, Beijing, 100871, PRC rules in Plastic [1] and [14], strategies/tactics in Rainbow [11,7], ar- chitectural aspects by Morin et modifications and consequently the estimation of their s

Paris-Sud XI, Université de

302

Nuclear Power Development in the United States  

Science Journals Connector (OSTI)

...seem the most prom-ising for meeting our objective of pro-ducing...at Commission sites, one at Hanford (Washington) and the other...trivial matters in reports and public statements of the Bureau of...nearest road ends, most of the 2000-odd annual visitors to Rainbow...

Frank K. Pittman

1961-05-19T23:59:59.000Z

303

Oxley Creek Common Brisbane, Australia  

E-Print Network (OSTI)

right about 100 m after the bridge over Oxley Creek. The gate is always open. Amenities The main and turn left before the bridge crossing Oxley Creek. If approaching from the west (Sherwood side) turn. Both Rainbow and Scaly-breasted Lorikeets fly over in small screeching flocks. Golden-headed Cisticola

Queensland, University of

304

David Ollington Oral History  

E-Print Network (OSTI)

Under the Rainbow: Oral Histories of GLBTQ People in Kansas David Ollington Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Return to David Ollington...

Ollington, David; Albin, Tami

2010-01-11T23:59:59.000Z

305

George Paris Oral History  

E-Print Network (OSTI)

Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Part 6 video platform video... Under the Rainbow: Oral Histories of GLBTQ People in Kansas George Paris Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player...

Paris, George; Albin, Tami

2010-01-11T23:59:59.000Z

306

Steven Brown Oral History  

E-Print Network (OSTI)

Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Part 6 video platform video management video solutionsvideo player Part 7 video platform video... Under the Rainbow: Oral Histories of GLBTQ People in Kansas Steven Brown Oral History Part 2 video platform video management video solutionsvideo player Part 3 video platform video management video solutionsvideo player...

Brown, Steven; Albin, Tami

2010-11-24T23:59:59.000Z

307

A Comprehensive Theory of Volumetric Radiance Estimation using Photon Points and Beams  

E-Print Network (OSTI)

a camera ray, with the standard photon particle representation used in previous work. Furthermore, we gen map, particle tracing, participating media 1. INTRODUCTION Participating media is responsible for some, rainbows, crepuscular "god" rays, and all I. Sadeghi was funded in part by NSF grant CPA 0701992. W. Jarosz

Meyer, Gary

308

Full Length Article: Color-appearance-model based fusion of gray and pseudo-color images for medical applications  

Science Journals Connector (OSTI)

Fusion of gray and pseudo-color images presents more information of biological tissues in a single image and facilitates the interpretation of multimodalities in medical practice. However, fused results are hampered by the problems of blurred details, ... Keywords: Biomedical image fusion, CIECAM02, Color appearance model (CAM), Magnetic resonance imaging (MRI), Rainbow palette, Ultrasound

Tianjie Li, Yuanyuan Wang, Cai Chang, Na Hu, Yongping Zheng

2014-09-01T23:59:59.000Z

309

Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps  

Science Journals Connector (OSTI)

...3056 m), TAG (26 N; 3655 m) and Snake Pit (23 N; 3660 m). Clade III (clade 1...Antarctic Ridge; R, Rainbow; SP, Snake Pit; SWP, southwest Pacific basins; TAG...004 ) 50 Hebert, PD , EH Penton, JM Burns, DH Janzen, and W Hallwachs. 2004 Ten...

2013-01-01T23:59:59.000Z

310

Compatible Hamilton cycles in random graphs Michael Krivelevich  

E-Print Network (OSTI)

Compatible Hamilton cycles in random graphs Michael Krivelevich Choongbum Lee Benny Sudakov, there exists a properly colored Hamilton cycle. Furthermore, our proof can be easily modified to show, there exists a Hamilton cycle in which all edges have distinct colors (i.e., a rainbow Hamilton cycle). 1

Sudakov, Benjamin

311

FOUNDATIONS OF SPECTROSCOPY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improve-  

E-Print Network (OSTI)

STALEY Diffraction Grating RetinaRetina Virtual Spectrum Incandescent Bulb Real SpectrumReal Spectrum Eye Fluorescent Lights 14 Continuous Emission 15 The Origins Of Band Spectra 16 Origins Of band Spectra 17 a region of the elec- tromagnetic spectrum. A rainbow and light from a light bulb are examples

Hardy, Darel

312

A laboratory experiment from the Little Shop of Physics at  

E-Print Network (OSTI)

1 A laboratory experiment from the Little Shop of Physics at Colorado State University CMMAP Reach of colors from red to violet is the spread of different wavelengths that makes up visible light. Of course different parts of the spectrum: Wavelength and energy. The red end of the rainbow corresponds to long

Hardy, Darel

313

"Light" or the Electromagnetic spectrum www.nasa.gov  

E-Print Network (OSTI)

(absorbed then emitted light) · About the solar atmosphere · About comet tails · About our galaxy · About#12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed through a prism or grating, light is separated into its component wavelengths · This looks like a rainbow

Mojzsis, Stephen J.

314

Comparative bioaccumulation of trace elements between Nautilus pompilius and N.1 macromphalus (Cephalopoda: Nautiloidea) from Vanuatu and New-Caledonia2  

E-Print Network (OSTI)

clearly highlighted that the digestive gland32 played a key role in the bioaccumulation and storage of Ag are exposed to trace elements that are present in their diet and dissolved in49 seawater. This double exposure bioavailability of53 the metal in diet and seawater (Rainbow and Wang, 2001). Comparative analysis of trace54

Paris-Sud XI, Université de

315

Oecologia (1994) 97:326-332 ORIGINAL PAPER  

E-Print Network (OSTI)

zone of Africa; P. agamae is sometimes found as a soli- tary malaria species in populations of the rainbow lizard, Agama agama, in West Africa were studied to determine the nature of any interspecific. Mixed infections occurred 2-5 times more often than expected by chance. Parasite density within

Schall, Joseph J.

316

Time delay of light signals in an energy-dependent spacetime metric  

E-Print Network (OSTI)

In this note we review the problem of time delay of photons propagating in a spacetime with a metric that explicitly depends on the energy of the particles (Gravity-Rainbow approach). We show that corrections due to this approach -- which is closely related to DSR proposal -- produce for small redshifts ($z<<1$) smaller time delays than in the generic Lorentz Invariance Violating case.

A. F. Grillo; E. Luzio; F. Mendez

2008-08-16T23:59:59.000Z

317

his summer marked the grand re-opening  

E-Print Network (OSTI)

trout and Kokanee salmon and other fish desired for planting in the Lake Tahoe Basin. Dr. Charles 2400 Lake Forest Road Tahoe City, CA 96145 Phone: (530) 583-3279 Fax: (530) 583-2417 http://terc.ucdavis.edu Dedication of the UC Davis Tahoe City Field Station Dr. Charles Goldman addresses a crowd of 180 at the Tahoe

Schladow, S. Geoffrey

318

Volume II, Chapter 5 Elochoman Subbasin  

E-Print Network (OSTI)

.2.2 Fall Chinook--Elochoman Subbasin (Mill/Abernathy/Germany)....................... 5-7 5.2.3 Coho (Mill/Abernathy/Germany) ................................. 5-13 5.2.5 Chum--Elochoman Subbasin.2.7 Winter Steelhead--Elochoman Subbasin (Mill/Abernathy/Germany) .............. 5-21 5.2.8 Cutthroat Trout

319

Volunteers begin transforming Rock Creek-Clark Fork land back to prairie http://missoulian.com/news/state-and-regional/volunteers-begin-process-of-transforming-rock-creek-clark-fork-land/article_0a662764-afa2-11e2-bfb5-0019bb2963f4.html[4/28/2013 8:41:30  

E-Print Network (OSTI)

and Wildlife Conservation Trust, Trout Unlimited, Resources Legacy Fund and private donors. But getting is only recorded a telephone conversation in 2011 in which one of the Boston bombing s... Bangladesh Factory Collapse Death Toll Nears 350 Police in Bangladesh took six people into custody in connection

Vonessen, Nikolaus

320

Montana Fish Wildlife and Parks 490 North Meridian Road  

E-Print Network (OSTI)

Proposal, Secure and Protect Core Fisheries Habitats within the Swan River Valley (#2008 Valley in recovery, management, or sub-basin plans; and metrics to evaluate the consequences in Montana west of the continental divide. This RU is deemed by the USFWS to be essential to bull trout

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Flathead Lake Angler Survey; Monitoring Activities for the Hungry Horse Fisheries Mitigation Plan, 1992-1993 Final Report.  

SciTech Connect

A roving creel survey was conducted on Flathead Lake in northwestern Montana from May 17, 1992 to May 19, 1993. The primary objective of the survey was to quantify the baseline fishery and exploitation rates existing prior to Hungry Horse Dam mitigation efforts. Anglers were counted on 308 occasions, comprising 5,618 fishing boats, 515 shore anglers, and 2,191 ice anglers. The party interviews represented 4,410 anglers, made up of 2,613 boat anglers, 787 shore anglers, and 1,010 ice anglers. A total of 47,883 angler days (190,108 angler hours) of pressure and a harvest of 42,979 fish (including lake trout, lake whitefish, yellow perch, bull trout, and westslope cutthroat trout) were estimated. Pressure was distributed between shore, boat, and ice anglers as 4%, 87%, and 9%, respectively. Seventynine percent of the total effort was directed at lake trout during the study period. Limited comparisons were made to previous creel surveys on Flathead Lake due to differences in methods and radical changes in the fishery. Potential sources of bias are explained in detail. Future creel surveys must employ methods consistent with this survey to obtain estimates that are statistically distinguishable.

Evarts, Les; Hansen, Barry; DosSantos, Joe (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

1994-02-01T23:59:59.000Z

322

early 800 native fish species in 36 families inhabit the freshwater rivers, streams, and  

E-Print Network (OSTI)

N early 800 native fish species in 36 families inhabit the freshwater rivers, streams, and lakes of the United States and Canada. North America has the most diverse temperate freshwater fish fauna in the world. Only about 5 percent of these are the familiar sport or game fishes like trout and bass. The remaining

Liskiewicz, Maciej

323

EIS-0263: Interior Columbia Basin Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

The ICBEMP strategy will include direction which will protect and enhance aquatic ecosystems for anadromous fish and inland native trout and terrestrial ecosystems. It will also address the social and economic interactions with these biological variables. (Merged with EIS-262 to become Eastside Ecosystem Management, Washington and Oregon)

324

Independent Scientific Review Panel for the Northwest Power & Conservation Council  

E-Print Network (OSTI)

, nutrient addition, and invasive species removal. The ISRP did find the emphasis placed on food web response with carcass analogs. In addition, one of the study sites (Hancock Springs) also will evaluate food web response to habitat restoration and removal of brook trout. Unfortunately, in the ISRP's judgment

325

Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, First Annual Progress Report (Covering Field Season July-November 1982).  

SciTech Connect

This fisheries study is to determine the potential cumulative biological and economic effects of 20 small or micro-hydro-electric facilities (less than 5 megawatts) proposed to be constructed on tributaries to the Swan River, a 1738 square kilometer (671 square mile) drainage located in northwestern Montana. The study addresses portions of measure 1204 (b) (2) of the Norwthwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. Aerial pre-surveys conducted during 1982 identified 102 stream reaches that may support fish populations in the Swan drainage between Swan and Lindbergh lakes. These reaches were located in 49 tributary streams and constituted 416 kilometers (258 miles) of potential fish habitat. Construction of all proposed small hydro projects would divert water from 54 kilometers (34 miles) or about 13 percent of the tributary system. Only two of the 20 proposed hydro sites did not support trout populations and most were populated by migratory bull trout and westslope cutthroat trout. Potential cumulative habitat losses that could result from dewatering of all proposed project areas were predicted using a stream reach classification scheme involving stream gradient, drainage ara, and fish population data. Preliminary results of this worst case analysis indicate that 23, 19 and 6 percent of the high quality rearing habitat for cutthroat, bull, and brook trout respectively would be lost.

Leathe, Stephen A.; Graham, Patrick J.

1984-03-01T23:59:59.000Z

326

Council Document ISRP 2000-1 Independent Scientific Review Panel  

E-Print Network (OSTI)

Council Document ISRP 2000-1 Independent Scientific Review Panel for the Northwest Power Planning Council Review of Coeur d'Alene Tribe Trout Production Facility Master Plan Step One of the Northwest Power Planning Council's Three-Step Review Process Charles C. Coutant Daniel Goodman Susan S. Hanna

327

MEETING OF THE MAZAMAS AT CRATER LAKE, OREGON  

Science Journals Connector (OSTI)

...Ashland, Medford and Klamath Falls, but there are no regular...Large trout abound in Klamath Lake, at the south foot...afford excellent fishing. Klamath Lake is also the resort...Sieger then describing a group of them on the peninsula...

C. H. M.

1896-09-25T23:59:59.000Z

328

CURRENT NOTES ON PHYSIOGRAPHY  

Science Journals Connector (OSTI)

...meat. Large trout abound in Klamath Lake, at the south foot of...and afford excellent fishing. Klamath Lake is also the resort of thousands...foreland; Sieger then describing a group of them on the peninsula between...Antonelli states that above the falls the river is expanded to a breadth...

W. M. DAVIS

1896-09-25T23:59:59.000Z

329

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE  

E-Print Network (OSTI)

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC, and steelhead trout on the West Coast of the United States. PacifiCorp's 169-megawatt Klamath Hydroelectric Hydroelectric Project is the only thorough, objective and transparent assessment tool that analyzes the cost

330

Forthelatestresearchpublishedby Naturevisit  

E-Print Network (OSTI)

viewed papers in science ASTRONOMY Dark galaxies revealed `Dark' galaxies contain no stars, making them BIOPHYSICS Trout nose yields magnetic cells Certain animals, including some birds and fish, are guided by magnetic fields, and researchers have isolated magnetic cells that could be at the root of this internal

331

Pennsylvania Fish and Boat Commission 2008 Approved Triploid Grass Carp Dealers  

E-Print Network (OSTI)

person Street City State Zip Code Phone Number Dealer # Angelo Trout Farm John A. Angelo 181 Rogers Mill-08 Frey's Fish Ponds Mark W. Frey 820 Pine Hill Road Gulph Mills PA 19406 (610)995-2700 217-08 Hilltop Melkovitz P. O. Box 166, 6444 Hwy. Keo AR 72083 (501)842-2872 216-08 Keystone Aquaculture, Inc. John M

Boyer, Elizabeth W.

332

12 | Spring 2011 Hookin Women into  

E-Print Network (OSTI)

and enhance recreational 2010 MSU Fly Gals Au Sable brook troutLearning to tie flies Fly image above from www from a brand new fly fisher to someone who can actually catch a fish with a rod. It's made me confident

333

EMT and EHSC 2012 RESEARCH DAY PROGRAM 8:00 -8:30 Registration & Poster Setup  

E-Print Network (OSTI)

Simonich Environmental Chemistry "What Goes Around Comes Around ­ Chasing Air Pollution in the Western U-Madison " Linking Recruitment Failure of Great Lakes Lake Trout to Dioxin Exposure". 11:30 - 1:00 Lunch:00-1:15 EMT Trainee Lecture Will Backe Analysis of new and legacy fluorinated contaminants in groundwater

Tullos, Desiree

334

Overview of WICCI's First Adaptive  

E-Print Network (OSTI)

/Co-Chairs of 15 Working Groups 220 Working Group Members #12;Chapter 1: Climate Change in Wisconsin: Past, Present contaminated (28%) · Raw sewage overflows (90 million gallons from 161 wastewater treatment plants) · FEMA paid due to a warming climate. WICCI Wildlife & Climate Working Groups #12;Brook trout Projected changes

Sheridan, Jennifer

335

Functional significance of genotoxicity in fish germ cells Alain Devaux 1  

E-Print Network (OSTI)

of the ecological risks associated with environmental genotoxic exposure is usually based on individual responses. Three different fish species were chosen based either on their ecological importance mg MMS / kg fresh body weight, control receiving vehicle alone (trout n=16, charr n=18). After 3

Paris-Sud XI, Université de

336

Independent Scientific Review Panel for the Northwest Power Planning Council  

E-Print Network (OSTI)

Independent Scientific Review Panel for the Northwest Power Planning Council Preliminary Review to ISRP comments requested Report Page # 24001 Lake Pend Oreille Predation Research Idaho Fish and Game No and conserve high priority bull and westslope cutthroat trout habitat in Trestle Creek. Idaho Department

337

FW 400 Conservation of Fish in Aquatic Ecosystems Lectures: TR 10-10:50 am 132 Wagar Building  

E-Print Network (OSTI)

FW 400 Conservation of Fish in Aquatic Ecosystems Fall 2011 Lectures: TR 10-10:50 am 132 Wagar Building Field trips: Two Saturday field trips are required: 24 Sept. or October 1 (plains fishes); 8 October (native trout and transition zone fishes) Instructor: Dr. James Roberts 102 Wagar Building 491

338

EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s Bonneville Power Administration is preparing an EIS that will assess potential environmental impacts of funding a proposal of the Shoshone-Bannock Tribes of the Fort Hall Reservation of Idaho to construct and operate a hatchery for spring/summer Chinook salmon in the Salmon River subbasin and Yellowstone cutthroat trout in the Upper Snake River subbasin on Fort Hall Reservation.

339

HollyMcLellan,ColvilleConfederatedTribes Resident Fish Division Native resident fish persisted after  

E-Print Network (OSTI)

HollyMcLellan,ColvilleConfederatedTribes Resident Fish Division Native resident fish persistedMcLellan,ColvilleConfederatedTribes Resident Fish Division Surveys document increase in walleye and decrease in native fish abundance Native fish populations affected Sanpoil: wildkokanee and redband trout populations depressed Columbia

340

Characterizing Heavy Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Solar Decathlon: Santa Clara University: Using and Reusing  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Clara University's Ripple House on campus with a rainbow in the sky behind it. Santa Clara University's Ripple House on campus with a rainbow in the sky behind it. Enlarge image The sun shines on Santa Clara's Ripple House after a rain storm passes. (Courtesy of Timothy Hight) Who: Santa Clara University What: Ripple House Where: Santa Clara University campus 500 El Camino Santa Clara, CA 95053 Map This House Public tours: Not available Solar Decathlon 2007 Santa Clara University: Using and Reusing After the U.S. Department of Energy Solar Decathlon 2007, the Santa Clara University team returned to campus to reconstruct Ripple House next to the Bannan Engineering Building. More than 100 sensors are now contributing to the collection of real-time data in Ripple House and benchmarking its performance on a daily basis. The decathletes from Santa Clara University demonstrated an extraordinary

342

A Key Step in Repairing DNA Double-Strand Breaks | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Rainbow X-ray Rainbow An Insulating Breakthrough Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Key Step in Repairing DNA Double-Strand Breaks JANUARY 10, 2007 Bookmark and Share The atomic structure of the protein 53BP1 identified by Mayo researchers. (Courtesy: Mayo Clinic) A team of Mayo Clinic researchers has uncovered a key step in the molecular pathway of repairing DNA double-strand breaks. The studies were carried out using the 19-ID beamline (SBC-CAT) at the Advanced Photon Source (APS, Argonne) and the X12-C beamline at the National Synchrotron Light Source (NSLS, Brookhaven National Laboratory). Both the APS and the NSLS are funded by the U.S. Department of Energy's Office of Basic Energy

343

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

344

Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution  

SciTech Connect

A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)] [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)] [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

2014-01-14T23:59:59.000Z

345

Portsmouth Paducah Project Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Paducah Project Office Portsmouth Paducah Project Office Portsmouth Paducah Project Office A rainbow appears over the Paducah Site's East End Smelter, a 21,000-square-foot complex used until the 1980s to smelt metal. Recovery Act workers used heavy equipment to demolish the smelter in September 2010, a year ahead of schedule and $10 million under budget. A rainbow appears over the Paducah Site's East End Smelter, a 21,000-square-foot complex used until the 1980s to smelt metal. Recovery Act workers used heavy equipment to demolish the smelter in September 2010, a year ahead of schedule and $10 million under budget. Second-shift Recovery Act workers at the Paducah Site use scissor lifts and metal saws to remove the outer cover of old uranium hexafluoride process tie lines linking C-410 with other parts of the Paducah Gaseous Diffusion Plant.

346

Ryan Campbell Oral History  

E-Print Network (OSTI)

Under the Rainbow: Oral Histories of GLBTQ People in Kansas Ryan Campbell Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Lawrence, KS 66045 Requestors must identify: 1. Type of publication 2. Proposed title 3. Specific passages to be quoted 4. Anticipated uses of the passages 5. Publisher's name 6. Expected date of publication ...

Campbell, Ryan; Albin, Tami

2009-12-16T23:59:59.000Z

347

Book Review: The Science of Imaging - An Introduction  

Science Journals Connector (OSTI)

BOOK REVIEWS (269) The Science of Imaging - An Introduction Northern Lights Vacuum Bazookas, Electric Rainbow Jelly, and 27 other Saturday Science Projects Physics and Engineering in Medicine in the New Millennium CD-ROM REVIEWS (272) I fell in love with a STARBase trooper Aber - greatest hits... WEB WATCH (273) 'Here is the guess of their true strength and forces' Gary Williams EDITOR'S NOTE (275) Reviews of Christopher Bishop's Astrophysics (John Murray, 2000) PHYSICS TEASER (276) Why or How, Sophistry and Guestimation

348

EIS-0265-SA-67: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0265-SA-67: Supplement Analysis EIS-0265-SA-67: Supplement Analysis EIS-0265-SA-67: Supplement Analysis Watershed Management Program - Install Fish Screens to Protect ESA Listed Steelhead and Bull Trout in the Walla Walla Basin Bonneville Power Administration is proposing to provide cost share for a program that will protect ESA-listed salmonid species in the Walla Walla River Basin through the installation of Washington Department of Fish and Wildlife (WDFW) and National Marine Fisheries Service (NMFS) approved fish screens on up to 197 irrigation diversions in the basin. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-67) (10/4/01) - Install Fish Screens to Protect ESA Listed Steelhead and Bull Trout in the Walla Walla Basin More Documents & Publications

349

DOE/EIS-0342; Wanapa Energy Center Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WILDLIFE SURVEY AND ASSESSMENTS A-1 Biological Assessment for Anadromous Fish Species The following are excerpts from the Biological Assessment conducted by NMFS. Section numbering reflects the format of the original document. 1.4 Analysis Summary The NMFS and USFWS provided a list of threatened, endangered, and proposed candidate species that may occur within the Wanapa Energy Center study area in letters dated July 23, 2003. The list included bald eagle (Haliaeetus leucocephalus), bull trout (Salvelinus confluentus), and seven anadromous fish species. This BA addresses potential impacts on the Pacific salmon and steelhead species. NMFS is responsible for endangered, threatened, and candidate anadromous fish species under NOAA Fisheries' jurisdiction in Oregon. Bull trout and the bald eagle are addressed in a

350

CX-002773: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2773: Categorical Exclusion Determination 2773: Categorical Exclusion Determination CX-002773: Categorical Exclusion Determination Idaho Department of Fish and Game Purchase of Crystal Springs Trout Farm - Snake River Sockeye Captive Propagation Program CX(s) Applied: A7 Date: 06/04/2010 Location(s): Springfield, Idaho Office(s): Bonneville Power Administration Bonneville Power Administration is proposing to provide funding to Idaho Department of Fish and Game (IDFG) to purchase the existing Crystal Springs Trout Farm situated on 72.53 acres of land in Bingham County, Idaho. IDFG plans to use this existing facility for the rearing of Snake River sockeye salmon - a Federally-listed salmonid species. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-002773.pdf More Documents & Publications EA-1913: Finding of No Significant Impact

351

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Erosion and Sedimentation Act (Georgia) Georgia Erosion and Sedimentation Act (Georgia) The Georgia Erosion and Sedimentation Act (GESA) is designed to protect vegetated buffers. GESA establishes a minimum undisturbed, vegetated buffer of 25 feet for all streams in Georgia (measured from where vegetation is wrested by normal stream flow). Trout streams, both primary and secondary, require a minimum 50 foot undisturbed vegetated buffer. These buffer requirements are also incorporated into the General Construction Permit. Small trout streams with an annual flow of less than 24 gallons per minute (GPM) are exempt from the buffer requirements. October 16, 2013 Georgia Commercial Laboratory Act (Georgia) The Georgia Commercial Laboratory Act requires all commercial environmental laboratories submitting data to the Environmental Protection Division (EPD)

352

CX-006574: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Categorical Exclusion Determination 74: Categorical Exclusion Determination CX-006574: Categorical Exclusion Determination Purchase of the Diamond B Conservation Easement CX(s) Applied: B1.25 Date: 08/16/2011 Location(s): Flathead County, Montana Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to acquire a conservation easement of 192-acres along the mainstream Flathead River. The Diamond B property conservation easement will help protect one mile of important migratory habitat for bull trout, which are listed as threatened under the Endangered Species Act, as well as resident west slope cutthroat trout, which are considered a species of concern by Montana Fish, Wildlife and Parks. BPA will be granted a perpetual conservation easement over the 192-acres. Funding this conservation easement will provide BPA with credits

353

Natural Production Monitoring and Evaluation; Idaho Department of Fish and Game, 2003-2004 Annual Report.  

SciTech Connect

This report covers the following 3 parts of the Project: Part 1--Monitoring age composition of wild adult spring and summer Chinook salmon returning to the Snake River basin in 2003 to predict smolt-to-adult return rates Part 2--Development of a stock-recruitment relationship for Snake River spring/summer Chinook salmon to forecast natural smolt production Part 3--Improve the precision of smolt-to-adult survival rate estimates for wild steelhead trout by PIT tagging additional juveniles.

Copeland, Timothy; Johnson, June; Bunn, Paul (Idaho Department of Fish and Game, Boise, ID)

2004-12-01T23:59:59.000Z

354

Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan  

Science Journals Connector (OSTI)

Publication Date (Web): November 5, 2014 ... This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. ... The food web model matched measurements of heavier PAHs (?5 rings) in lake trout, but lighter PAHs (?4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. ...

Lei Huang; Stuart A. Batterman

2014-11-05T23:59:59.000Z

355

Intercollegiate Athletics and Escalation of Commitment  

E-Print Network (OSTI)

. Brand positioning is defined as how potential buyers see the product (Ries & Trout, 1981) and how marketers create an image for a product. Roy, Greaff, and Harmon (2008) define brand positioning as the part of a brand?s identity actively communicated... but also a top academic school. College Athletics and Branding Roy, Greaff, and Harmon (2008) note that college athletics has been credited as being instrumental in shaping institutional image, the image of its students and graduates, and building...

Bouchet, Frank Adrien

2012-07-16T23:59:59.000Z

356

Idaho Supplementation Studies, 1991-1992 Annual Report.  

SciTech Connect

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis (Idaho Department of Fish and Game, Boise, ID)

1993-10-01T23:59:59.000Z

357

Wild Steelhead Studies, 1993 Annual Report.  

SciTech Connect

Significant progress was attained in implementing the complex and challenging studies of wild steelhead Oncorhynchus mykiss production in Idaho. Study sites were selected and techniques were developed to collect the needed data in remote wilderness locations. Cursory examination of existing data provides indication that most wild steelhead stocks are under escaped, especially the Group B stocks. Abundance of wild steelhead is generally declining in recent years. The portable weir concept and electronic fish counting developed through this project have been well received by land owners and reviewing governmental agencies with less impact to the land, stream, and fishery resources than conventional permanent weirs.

Holubetz, Terry B.

1995-11-01T23:59:59.000Z

358

Analysis of Historic Data for Juvenile and Adult Salmonid Production. Phase 1, Final Report.  

SciTech Connect

Survival of hatchery reared Columbia River chinook (Oncorhynchus tshawytscha) salmon from release to return is highly variable and thought to be related to river flow during juvenile outmigration in the spring. The purpose of this project is to examine the relationship between survival of coded-wire-tagged (CWT) Columbia River salmonids and in-river flow and other freshwater factors. This report covers Phase 1, in which two methods to estimate survival were developed and evaluated, and criteria for data selection were established.

Hilborn, Ray; Pascual, Miguel; Donnelly, Robert; Coronado-Hernadez, Claribel

1993-11-01T23:59:59.000Z

359

Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.  

SciTech Connect

This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

Rondorf, Dennis W.; Miller, William H.

1994-03-01T23:59:59.000Z

360

Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.  

SciTech Connect

Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

Park, Donn L.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

University Calendar, June 26, 2012  

E-Print Network (OSTI)

group. 5 p.m. 341 Fraser Hall. Cost $30/8 sessions. Sponsored by Department of Psychology. Call 785-864-4121. 28 Thursday Workshop. KCART Autism Training Program- AS Training. Debra Kamps, Jill Koertner, Claudia Dozier. 8:30 a.m. CCHD G020..., KU Medical Center, 3901 Rainbow Blvd. Free. Sponsored by Kansas Center for Autism Research andTraining. Call 913-945-6845. Also Friday. Workshop. KCART Autism Training Program- IIS Training. Jill Koertner, Debra Kamps. 8:30 a.m. CCHD G020, KU...

2012-06-26T23:59:59.000Z

362

A Portfolio of Poetry and Portraits  

E-Print Network (OSTI)

~'.e Wagner 1 A Rose By Any Other Name ? by Ruth Kurz 2 My Harry ? by Jackie Wagner 3 That Smile ? by Ruth Kurz 4 Rebirth ? by Pam Jensen and Jean Clissold (D.C.C.) 5 Johnny ? by Jean Clissold 6 Sanctuary ? by Pam Jensen and Jean Clissold (D.C.C.) 7... Harry ? by Jean Clissold 8 Harry!s Choice ? by Ruth Kurz 9 ...Dream ? by Jane Firmstone-Rafferty 10 Harryfs Friend ? by Ruth Kurz 11 Rainbow... ? by Jane Firmstone-Rafferty 12 First Time Hurt ? by Jackie Wagner 13 Johnny Blue ? by Marie Patrick 14...

Multiple Contributors

1981-01-01T23:59:59.000Z

363

Pure Maple Syrup Issue 3  

E-Print Network (OSTI)

Benny Mona Moore: 45 meanings Quill , 47 jealousy Gillian Middleton 51 chasing rainbows Laurie Taylor 64 oblivion Gillian Middleton 90 rosewell Julien 96 deal with the devil Gillian Middleton 99 staying Julien 108 lazy days Quill...; 121..., that despite all the women in the cop's life, the mountie is Ray's One True Love... DUE SOUTH is a quality TV show, created by Paul Haggis, and produced at various times by Paul Haggis, Kathy Slevin and/or Jeff King. The three main characters are Constable...

Multiple Contributors

1996-01-01T23:59:59.000Z

364

Haiti : the orphan chronicles  

E-Print Network (OSTI)

. The orphanage receives aid from many countries, including Canada, Germany, and the U.S. They usually depend on word-of-mouth as a means of publicity and fund-raising. The Rainbow House hopes to be on the Internet soon. They send letters to many organizations... for the orphanage. He must pay for the three persons who care for the babies and small children. The physical upkeep of the school takes a large percentage of the budget as well. The financial situation is ever so tight. When one wants to help a 'Third...

Etnire, Michelle

2000-01-01T23:59:59.000Z

365

Environmental Impact Statements (EIS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 25, 2005 November 25, 2005 EIS-0372: Final Environmental Impact Statement Bangor Hydro-Electric Company (BHE) Northeast Reliability Interconnect September 1, 2005 EIS-0351: Final Environmental Impact Statement Operation of Flaming Gorge Dam August 26, 2005 EIS-0372: Draft Environmental Impact Statement Bangor Hydro-Electric Company (BHE) Northeast Reliability Interconnect August 5, 2005 EIS-0355: Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah July 1, 2005 EIS-0353: Final Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program April 29, 2005 EIS-0348: Final Site-wide Environmental Impact Statement Continued Operation of Lawrence Livermore National Laboratory and

366

Investigation of Immunoglobulin Heavy Chain Isotypes in an Ancestral Mucosal Immune Model  

E-Print Network (OSTI)

enzymes including AID (the activation induced cytidine deaminase), and create nicks in the DNA. The two switch regions are brought together and the coding regions and DNA between the regions are deleted. For example, the B cell with a heavy chain VDJ...1 trout IgT 4 AAW66981.1 Fugu Takifugu rubripes H fugu IgH 2 BAD89297 Iberian ribbed newt Pleurodeles waltl M C1 newt IgM 4 CAE02685 X C1 newt IgX/P 4 CAL25718 Y C1 newt IgY 4 CAE02686 Mexican axolotl Ambystoma mexicanum M C1 axolotl Ig...

Du, Christina

2012-10-19T23:59:59.000Z

367

The use of fishes in cages as biological monitors of the quality of water passing through a power plant  

E-Print Network (OSTI)

-tar epoxy (Ir terna tI Gnal Paint Co. ) . Polyurethane blocks treated with Lagotex were originally used for flotation. Four blocks, each 10. 2 x 15. 2 x 30. 5 cln, supported the sluviv- l cages, ard fire blocks, each 10. 2 x 30. 5 x 30. 5 cm, strpported... is standard length in millimeters. ~Fd' dF dC ' Vf All fish were fed Floating Purina Trout Chow pellets (Ralston Pur'na Co. , St. Louis, Mo. ) at various rates when hydrological data was taken (Appendix A, Tables 1 and 2). These pellets were large i...

Hammerschmidt, Paul C

1973-01-01T23:59:59.000Z

368

Experimental observation of acoustic sub-harmonic diffraction by a grating  

SciTech Connect

A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expands our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.

Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu [Laboratory for Ultrasonic Nondestructive Evaluation “LUNE,” Georgia Tech Lorraine, Georgia Tech-CNRS UMI2958, Georgia Institute of Technology, 2, rue Marconi, Metz 57070 (France)

2014-06-28T23:59:59.000Z

369

EA-1917-FEA-2012-AppendixB-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B: Agency Correspondence B: Agency Correspondence Subject: OSU MHK Species List From: "Bridgette.Lohrman" Date: 5/26/2010 1:24 PM To: Christopher Earle CC: "Moelter, Christopher" Chris, OSU requested a species list for the proposed MHK facility 1.5 to 3.0 miles offshore of Newort, Oregon. Here is a list of species that may occur in the project area. This response will be followed up with a formal letter. Species Listing Status Critical Habitat Protective Regulations Marine and Anadromous Fish Chinook salmon (Oncorhynchus tshawytscha) Lower Columbia River T 6/28/05; 70 FR 37160 9/02/05; 70 FR 52630 6/28/05; 70 FR 37160 Upper Willamette River T 6/28/05; 70 FR 37160 9/02/05; 70 FR 52630

370

Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report  

SciTech Connect

In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

2012-09-10T23:59:59.000Z

371

Snake River Sockeye Salmon Captive Broodstock Program : Hatchery Element : Annual Progress Report, 2000.  

SciTech Connect

On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report.

Kline, Paul A.; Willard, Catherine

2001-04-01T23:59:59.000Z

372

Effects of Summer Flow Augmentation on the Migratory Behavior and Survival of Juvenile Snake River Fall Chinook Salmon; 2002-2003 Annual Report.  

SciTech Connect

This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

Tiffan, Kenneth F.; Haskell, Craig A. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA); Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

2003-10-01T23:59:59.000Z

373

Effects of Summer Flow Augmentation on the Migratory Behavior and Survival of Juvenile Snake River Fall Chinook Salmon; 2004-2005 Annual Report.  

SciTech Connect

This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

Tiffan, Kenneth F. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA); Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

2006-03-01T23:59:59.000Z

374

Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.  

SciTech Connect

This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

Rondorf, Dennis W.; Miller, William H.

1993-07-01T23:59:59.000Z

375

Concentration and toxicity of sea-surface contaminants in Puget Sound  

SciTech Connect

The Marine Research Laboratory conducted studies during CY 1985 to evaluate the effects of sea-surface contamination on the reproductive success of a valued marine species. Microlayer and bulk water samples were collected from a rural bay, central Puget Sound, and three urban bays and analyzed for a number of metal and organic contaminants as well as for densities of neuston and plankton organisms. Fertilized neustonic eggs of sand sole (Psettichthys melanostictus) were exposed to the same microlayer samples during their first week of embryonic and larval development. Also, we evaluated the effects of microlayer extracts on the growth of trout cell cultures. Compared to rural sites, urban bays generally contained lower densities of neustonic flatfish eggs during the spawning season. Also, in contrast to the rural sites or the one central Puget Sound site, approximately half of the urban bay microlayer samples resulted in significant increases in embryo mortality (up to 100%), kyphosis (bent spine abnormalities) in hatched larvae, increased anaphase aberrations in developing embryos, and decreased trout cell growth. The toxic samples generally contained high concentrations of polycyclic aromatic and/or chlorinated hydrocarbons and/or potentially toxic metals. In some cases, concentrations of contaminants on the sea surface exceeded water-quality criteria by several orders of magnitude. Several samples of subsurface bulk water collected below highly contaminated surfaces showed no detectable contamination or toxicity.

Hardy, J.T.; Crecelius, E.A.; Kocan, R.

1986-04-01T23:59:59.000Z

376

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

SciTech Connect

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

377

Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.  

SciTech Connect

The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

2008-11-12T23:59:59.000Z

378

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

4: 4: Vol. 5, No. 4 Cool Colors Project: Improved Materials for Cooler Roofs BVAMP: Simplifying Assessment of Building Vulnerability NARAC Expands its Reach: Minimize Chemical-Biological Weapons Casualties How to Buy Green Power New Federal Efficiency Standards for Residential Furnaces and Boilers: EETD Researchers Estimate Potential Impacts Research Highlights Sources and Credits PDF of EETD News Cool Colors Project: Improved Materials for Cooler Roofs Drawing of a house with a cool roof Roofs and the rainbow of colors used in roofing materials are getting cooler and cooler, thanks to research by scientists in the Lawrence Berkeley National Laboratory (Berkeley Lab) Environmental Energy Technologies Division (EETD). The cooler roofs get, the more energy and money they save. A new research program in cool materials is developing the

379

Sol Solution | Open Energy Information  

Open Energy Info (EERE)

Solution Solution Jump to: navigation, search Name Sol Solution Place Los Gatos, California Zip 95030 Sector Solar Product Rainbow Concentrator, Current matching multijunction Solar Cell Year founded 2008 Website http://www.Sol-Solution.net Coordinates 37.216351719361°, -121.9694852829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.216351719361,"lon":-121.9694852829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Nanowire Micronetworks from Carbon-Black Nanoparticles | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

A Key Step in Repairing DNA Double-Strand Breaks A Key Step in Repairing DNA Double-Strand Breaks An X-ray Rainbow An Insulating Breakthrough Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Nanowire Micronetworks from Carbon-Black Nanoparticles JANUARY 11, 2007 Bookmark and Share Fig. 1. Diagram showing CB segregation to triple junctions during press sintering. Inset: USAXS image acquired from a press-sintered CB/PMMA sample with 1% CB mass fraction. Self-assembly is likely to play a decisive role in producing nanoscale elements for three dimensional (3D) electronic and nanoscale electro-mechanical systems. Until now, however, the difficult problem of fabricating a complex, interconnected 3D system of conductive nanoscale

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Photon Sciences | About Photon Sciences | Information for the General  

NLE Websites -- All DOE Office Websites (Extended Search)

About Photon Sciences About Photon Sciences The human eye can see only visible light. It comes in the form of different wavelengths. These wavelengths are what create the colors of the rainbow. Other wavelengths of lights are not visible to the human eye. Although, we cannot see them, these types of light are also used in our everyday life. For example, a TV remote control uses infrared light to adjust the volume or change the channel of the TV. Airport scanners use x-rays to scan luggage. Tanning lamps use ultraviolet light to tan the skin. Microwave ovens use microwaves to cook your food. A synchrotron is a huge machine that produces very bright light of many different wavelengths. The light is much brighter than that found in your TV remote, microwave oven, or dentist's x-ray machine because the

382

Cells Forming Blood Vessels Send Their Copper to the Edge | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

A Molecular Cause for One Form of Deafness A Molecular Cause for One Form of Deafness Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles A Key Step in Repairing DNA Double-Strand Breaks An X-ray Rainbow Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Cells Forming Blood Vessels Send Their Copper to the Edge FEBRUARY 20, 2007 Bookmark and Share Areas at the tips of HMVEC filopodia extensions were scanned by XFM at high resolution. The optical image is shown to the right and metal maps are shown to the left. False color images of P, Cu, and Zn are shown in the red, green and blue images respectively, and their overlay is shown to the lower right, demonstrating a transfer of cellular copper across the cell

383

 

NLE Websites -- All DOE Office Websites (Extended Search)

Sixue Qin Sixue Qin Peking U., Beijing QCD Phase Transition and Hadron Phenomenology Abstract: I will describe a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential--temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. At temperatures above but near that for which chiral symmetry is restored, I found that in addition to the normal and plasmino modes the dressed-quark spectral function also exhibits an essentially nonperturbative zero mode. This long-wavelength mode gives a hint that the system may fairly be described as a strongly-coupled state of matter. In addition, I will explain a form for the rainbow-ladder kernel whose

384

It's Elemental - The Element Iridium  

NLE Websites -- All DOE Office Websites (Extended Search)

Osmium Osmium Previous Element (Osmium) The Periodic Table of Elements Next Element (Platinum) Platinum The Element Iridium [Click for Isotope Data] 77 Ir Iridium 192.217 Atomic Number: 77 Atomic Weight: 192.217 Melting Point: 2719 K (2446°C or 4435°F) Boiling Point: 4701 K (4428°C or 8002°F) Density: 22.42 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 9 Group Name: none What's in a name? From the Latin word for rainbow, iris. Say what? Iridium is pronounced as i-RID-ee-em. History and Uses: Iridium and osmium were discovered at the same time by the British chemist Smithson Tennant in 1803. Iridium and osmium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

385

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 350 of 8,172 results. 41 - 350 of 8,172 results. Download CX-009406: Categorical Exclusion Determination Rainbow Energy Marketing Corporation CX(s) Applied: B4.2 Date: 09/18/2012 Location(s): CX: none Offices(s): Electricity Delivery and Energy Reliability http://energy.gov/nepa/downloads/cx-009406-categorical-exclusion-determination Download CX-010369: Categorical Exclusion Determination Alterations to Existing Buildings Construction of Small-Scale Support Structures and Relocation of Machinery and Equipment CX(s) Applied: B1.11; B1.15; B1.31 Date: 11/09/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office http://energy.gov/nepa/downloads/cx-010369-categorical-exclusion-determination Download CX-010382: Categorical Exclusion Determination Joint Center for Artificial Photosynthesis

386

Abstract for Mandar Bhagwat  

NLE Websites -- All DOE Office Websites (Extended Search)

Bhagwat Bhagwat Kent State University Modeling QCD for Hadron Phenomenology In seeking to improve QCD modeling of hadron physics, we have determined the amount of infrared enhancement, above that exhibited by the gluon two-point function, necessary to correlate quenched-lattice QCD data for the dressed-quark propagator and the dressed gluon propagator via the rainbow gap equation. The solution of this gap equation is used as input for a model of the dressed quark-gluon vertex at zero gluon momentum, formed from a non-perturbative extension of the two Feynman diagrams that contribute at one loop in perturbation theory. Comparison is made with recent quenched-lattice QCD data. Possible implications for hadron physics are discussed. Back to the theory seminar page.

387

Federal Register Notice for the Waste Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Register Notice for the Waste Determination Federal Register Notice for the Waste Determination Federal Register Notice for the Waste Determination Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) provides that certain waste from reprocessing spent nuclear fuel is not considered high-level waste (HLW) if the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), determines that the waste meets the statutory criteria set forth in Section 3116(a). Federal Register Notice for the Waste Determination More Documents & Publications EIS-0287: Amended Record of Decision Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 SRS FTF Section 3116 Basis for Determination

388

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA DEIJ!R1,fiNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEIJ!R1,fiNATION DEIJ!R1,fiNATION RECIPIENT:Vermont Sustainable Jobs Fund PROJECf TITLE: Vermont 810ruels Initiative: Rainbow Valley Biodiesel Page 1 of2 STATE: VT Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE4FG36-0BG088182 GFO-G088182-031 0 Based on my review orlhe information concnniDg the proposed action, as NEPA CompliJlDce Officer (authorized under DOE Order 4SI.IA), I have made the following detennination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy. demonstrate potential energy conservation, and promote energy-efficiency that do nol increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organiZatiOns (such as utilities), and state

389

Application to Export Electric Energy OE Docket No. EA-98-M WSPP Inc:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc: Federal Register Notice, Volume 77, No. 65 - April 4, 2012 Inc: Federal Register Notice, Volume 77, No. 65 - April 4, 2012 Application to Export Electric Energy OE Docket No. EA-98-M WSPP Inc: Federal Register Notice, Volume 77, No. 65 - April 4, 2012 Application from WSPP Inc. to export electric energy to Canada. Federal Register Notice. EA-98-M WSPP CN.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 Application to Export Electric Energy OE Docket No. EA-321-A to EA-325-A Emera Energy Svcs. Subsidiaries: Federal Register Notice, Volume 77, No. 102 - May 25, 2012 Application to Export Electric Energy OE Docket No. EA-327-A DC Energy LLC: Federal Register Notice, Volume 77, No. 102 - May 25, 2012

390

Theoretical study on collision dynamics of H{sup +} + CH{sub 4} at low energies  

SciTech Connect

In this work we make an investigation on collision dynamics of H{sup +} + CH{sub 4} at 30 eV by using time-dependent density functional theory coupled with molecular dynamics approach. All possible reactions are presented based on 9 incident orientations. The calculated fragment intensity is in nice agreement with experimental results. The mechanism of reaction transition for dissociation and proton exchange processes is explained by the intra-molecule energy transfer. However, the energy loss of the proton is in poor agreement with experimental results. The discrepancy is attributed to the mean-field treatment of potential surface. We also studied the dependence on initial velocity of both proton and methane. In addition, we find that for dynamical evolution a different self-interaction correction (SIC) may lead to different results, but with respect to the position of rainbow angle, average-density SIC seems to have reasonable correction.

Gao, Cong-Zhang [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Laboratoire de Physique Théorique-IRSAMC, Université Paul Sabatier, F-31062 Toulouse Cedex, France and CNRS, UMR5152, F-31062 Toulouse Cedex (France); Wang, Jing [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Wang, Feng [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)] [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Feng-Shou, E-mail: fszhang@bnu.edu.cn [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 (China)

2014-02-07T23:59:59.000Z

391

Pion cloud effects on baryon masses  

E-Print Network (OSTI)

In this work we explore the effect of pion cloud contributions to the mass of the nucleon and the delta baryon. To this end we solve a coupled system of Dyson-Schwinger equations for the quark propagator, a Bethe-Salpeter equation for the pion and a three-body Faddeev equation for the baryons. In the quark-gluon interaction we explicitly resolve the term responsible for the back-coupling of the pion onto the quark, representing rainbow-ladder like pion cloud effects in bound states. We study the dependence of the resulting baryon masses on the current quark mass and discuss the internal structure of the baryons in terms of a partial wave decomposition. We furthermore determine values for the nucleon and delta sigma-terms.

Helios Sanchis-Alepuz; Christian S. Fischer; Stanislav Kubrak

2014-04-14T23:59:59.000Z

392

Categorical Exclusion Determinations: Office of Electricity Delivery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Delivery and Energy Reliability Categorical Exclusion Determinations: Office of Electricity Delivery and Energy Reliability Categorical Exclusion Determinations issued by Electricity Delivery and Energy Reliability. DOCUMENTS AVAILABLE FOR DOWNLOAD September 18, 2012 CX-009236: Categorical Exclusion Determination Dynasty Power, Inc. Export Authorization CX(s) Applied: B4.2 Date: 09/18/2012 Location(s): Canada Offices(s): Electricity Delivery and Energy Reliability September 18, 2012 CX-009406: Categorical Exclusion Determination Rainbow Energy Marketing Corporation CX(s) Applied: B4.2 Date: 09/18/2012 Location(s): CX: none Offices(s): Electricity Delivery and Energy Reliability June 12, 2012 CX-008821: Categorical Exclusion Determination NRG Power Marketing, LLC Docket EA-384

393

A Molecular Cause for One Form of Deafness | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Theory is Watertight Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles A Key Step in Repairing DNA Double-Strand Breaks An X-ray Rainbow An Insulating Breakthrough Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Molecular Cause for One Form of Deafness FEBRUARY 12, 2007 Bookmark and Share Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at Illinois, and colleagues have found an underlying molecular cause for one form of deafness, while exploring the physics of hearing. (Photo by L. Brian Stauffer) Scientists exploring the physics of hearing have found an underlying molecular cause for one form of deafness, and a conceptual connection

394

Structural analysis of fish versus mammalian hemoglobins: Effect of the heme pocket environment on autooxidation and hemin loss  

SciTech Connect

The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin {approx}50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian {alpha} and {beta} chains. The larger IleE11 side chain sterically hinders bound O{sub 2} and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in {alpha} subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near {beta} CD3 in the perch Hb ({approx}8 {angstrom}) compared with trout IV Hb ({approx}6 {angstrom}) which in turn is significantly higher than that in bovine Hb ({approx}4 {angstrom}) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation.

Aranda IV, Roman; Cai, He; Worley, Chad E.; Levin, Elena J.; Li, Rong; Olson, John S.; Phillips, Jr., George N.; Richards, Mark P.; (Rice); (UW)

2010-01-07T23:59:59.000Z

395

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 5550 of 26,764 results. 41 - 5550 of 26,764 results. Download EA-0307-SA-01: Supplement Analysis Colville Resident Trout Hatchery Project Supplement Analysis http://energy.gov/nepa/downloads/ea-0307-sa-01-supplement-analysis Download CX-002951: Categorical Exclusion Determination Florida Hydrogen Initiative- 3 Letter of Interest (LOI) Projects CX(s) Applied: B3.6 Date: 07/12/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-002951-categorical-exclusion-determination Download Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010Jody K. Nelson http://energy.gov/lm/downloads/vascular-flora-rocky-flats-area-jefferson-county-colorado-usa Download EIS-0323: Record of Decision

396

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-67) (10/4/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2001 4, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-67) Jay Marcotte Fish and Wildlife Project Manager Proposed Action: Install Fish Screens to Protect ESA Listed Steelhead and Bull Trout in the Walla Walla Basin. Project No: 2001-039-00 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.15 Fish Passage Enhancement - Fishways. Location: Various Walla Walla River Basin Irrigation Diversions, Washington Proposed by: Bonneville Power Administration (BPA), the Walla Walla County Conservation District. Description of the Proposed Action: BPA is proposing to provide cost share for a program that

397

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 6150 of 28,560 results. 41 - 6150 of 28,560 results. Download CX-003642: Categorical Exclusion Determination Removal of the Building 370 Felix Magnet CX(s) Applied: B3.6 Date: 09/02/2010 Location(s): DuPage County, Illinois Office(s): Science, Argonne Site Office http://energy.gov/nepa/downloads/cx-003642-categorical-exclusion-determination Download CX-008722: Categorical Exclusion Determination Reintroduction of Westslope Cutthroat Trout in the Pend Orielle basin CX(s) Applied: B1.20 Date: 05/07/2012 Location(s): Washington Offices(s): Bonneville Power Administration http://energy.gov/nepa/downloads/cx-008722-categorical-exclusion-determination Download CX-008832: Categorical Exclusion Determination Hills Creek-Lookout Point No. 1 Wood Pole Replacements CX(s) Applied: B1.3 Date: 07/19/2012

398

EIS-0353: Notice of Intent to Prepare an Environmental Impact Statement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Intent to Prepare an Environmental Impact Notice of Intent to Prepare an Environmental Impact Statement EIS-0353: Notice of Intent to Prepare an Environmental Impact Statement South Fork Flathead Watershed/Westslope Cutthroat Trout Conservation Program This notice announces BPA's intention to prepare an EIS on removal of all fish from selected lakes in the South Fork of the Flathead River drainage that harbor non-native species that threaten to genetically contaminate native fish in streams leading from those lakes, down into the South Fork Flathead River and Hungry Horse Reservoir. The specific lakes proposed for treatment are located in the Montana Counties of Flathead, Missoula, and Powell. This proposed action would take place within floodplains and waters located directly adjacent to and below the high water marks of these lakes.

399

Microsoft Word - WCT_CX_5.4.12.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Lee Watts Project Manager - KEWM-4 Proposed Action: Reintroduction of westslope cutthroat trout in the Pend Orielle basin. Fish and Wildlife Project No.: 2007-149-00, Contract #BPA-57129 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.20 Small-scale activities undertaken to protect, restore, or improve fish and wildlife habitat, fish passage facilities (such as fish ladders or minor diversion channels), or fisheries. Location: Two Creeks would be included in the project: ï‚· Cee Cee Ah Creek: Township 34 North, Range 44 East, Section 28, Pend Oreille County, WA ï‚· East Fork Smalle Creek: Township 33 North, Range 43 East, Section 6, Pend Oreille County, WA

400

CX-003622: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22: Categorical Exclusion Determination 22: Categorical Exclusion Determination CX-003622: Categorical Exclusion Determination Fiscal Year 2010 Secure and Restore Fish and Wildlife Habitat CX(s) Applied: B1.25 Date: 08/16/2010 Location(s): Sanders County, Montana Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to fund the acquisition of 35 acres of property along the Jocko River by the Confederated Salish and Kootenai Tribes. BPA will be granted a perpetual conservation easement over the entire property as a condition of funding the acquisition. The property is being acquired because of the opportunity it provides to protect and enhance the habitat for important resident fish species. The Jocko River is part of a watershed designated as critical habitat for bull trout, resident

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 4580 of 28,560 results. 71 - 4580 of 28,560 results. Download EIS-0353: EPA Notice of Availability of the Final Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program http://energy.gov/nepa/downloads/eis-0353-epa-notice-availability-final-environmental-impact-statement Download Independent Oversight Activity Report, Hanford Tank Farms- June 2013 Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03] http://energy.gov/hss/downloads/independent-oversight-activity-report-hanford-tank-farms-june-2013 Download LWZ-0023- In the Matter of Universities Research Association, Inc. Universities Research Association, Inc. (URA) is the management and operating contractor for the Department of Energy's (the DOE)

402

EIS-0265-SA-101: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Supplement Analysis 1: Supplement Analysis EIS-0265-SA-101: Supplement Analysis Watershed Management Program BPA proposes to fund a project to enhance fish habitat on Hawley Creek, tributary to the Lemhi River in Idaho, by leasing 7 cubic feet per second (cfs) of water per year for twenty years. The water will be dedicated to instream flow through an agreement with the water right holders and all junior water users. Due partially to irrigation withdrawals, Hawley Creek is often hydrologically disconnected from the Lemhi River. The goal of the proposed project is to leave water instream, to reconnect Hawley Creek to the Lemhi River, to improve habitat and provide passage for chinook salmon, steelhead, and bull trout, and other aquatic species. Supplement Analysis for the Watershed Management Program EIS, DOE/EIS-0265

403

Categorical Exclusion Determinations: Bonneville Power Administration |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 8, 2010 June 8, 2010 CX-003092: Categorical Exclusion Determination Ross-Lexington Number 1 New Access Road Construction: 15/1 to 15/2 CX(s) Applied: B1.13 Date: 06/08/2010 Location(s): Clark County, Washington Office(s): Bonneville Power Administration June 8, 2010 CX-002771: Categorical Exclusion Determination Marion and Sand Springs Substations Radio Tower Projects CX(s) Applied: B1.19 Date: 06/08/2010 Location(s): Marion, Oregon Office(s): Bonneville Power Administration June 4, 2010 CX-002773: Categorical Exclusion Determination Idaho Department of Fish and Game Purchase of Crystal Springs Trout Farm - Snake River Sockeye Captive Propagation Program CX(s) Applied: A7 Date: 06/04/2010 Location(s): Springfield, Idaho Office(s): Bonneville Power Administration June 3, 2010

404

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

84 results: 84 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Michael G. Apte [Clear All Filters] 2013 Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte. "Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools." Indoor Air (2013). 2012 Singer, Brett C., William W. Delp, Michael G. Apte, and Phillip N. Price. "Performance of Installed Cooking Exhaust Devices." Indoor Air 22, no. 3 (2012): 224-234. Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan. "Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in

405

DOE/EIS-0312; Bonneville Power Administration, Fish and Wildlife Implementation Plan Draft EIS (5/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River Basin Columbia River Basin BPA Service Area NZ20027a April 02, 2001 Columbia River Basin BPA Service Area than 10 micrometers ) Maintenance Moderate Serious Maintenance Moderate Serious Maintenance Federal Class I Area Coal Oil Gas Biomass* Nuclear Municipal Solid Waste Black Liquor Raw Sulfur Biogas / Methane Multiple types Solar Wind Gas Solar Wind Geothermal * Some biomass can be considered renewable. * Locations of proposed plants are approximate and not intended represent legal or claimed locations. NZ20027b April 03, 2001 Columbia River Basin BPA Service Area Flow Limited Temperature Limited Flow and Temperature Limited NZ20027j April 03, 2001 Columbia River Basin BPA Service Area Anadromous Fish Extinct Listed Anadromous Fish Species Listed Resident Fish - Bull Trout

406

CX-007360: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7360: Categorical Exclusion Determination 7360: Categorical Exclusion Determination CX-007360: Categorical Exclusion Determination Provision of Funds To The Idaho Department of Fish and Game (IDFG) To Purchase the Rapid Lightening Creek Conservation Easement CX(s) Applied: B1.25 Date: 12/01/2011 Location(s): Idaho Offices(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to provide funds to IDFG for the purchase of approximately 27 acres of land adjacent to the Rapid Lightning and Trout Creek Habitat Segments of the Pend Oreille River Wildlife Management Area (WMA). The subject property is located in Bonner County, Idaho, approximately 0.25 mile east of the Pack River. Acquisition of this property would add to the land base of the Pend Oreille River WMA and would protect a wetland area, and associated waterfowl habitat, on the

407

Microsoft Word - Springfield_CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Greg Baesler Project Manager - KEWU-4 Proposed Action: Provision of funds to Idaho Department of Fish and Game for purchase of 72.53 acres known as the Crystal Springs Trout Farm property under the Snake River Sockeye Captive Propagation Program. Fish and Wildlife Project Number: 2007-402-00, Contract # BPA-005203 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): A.7 - Transfer, lease, disposition or acquisition of interests in personal property (e.g., equipment and materials) or real property (e.g., permanent structures and land), if property use is to remain unchanged i.e., the type and magnitude of impacts would remain essentially the same.

408

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 16, 2004 January 16, 2004 EIS-0246-SA-37: Supplement Analysis Wildlife Mitigation Program, On the Spokane Indian Reservation, near Wellpinit, Stevens County, Washington November 10, 2003 EIS-0349: Record of Decision Electrical Interconnection of the BP Cherry Point Cogeneration Project October 2, 2003 EA-0307-SA-01: Supplement Analysis Colville Resident Trout Hatchery Project Supplement Analysis September 5, 2003 EIS-0349: Draft Environmental Impact Statement BP Cherry Point Cogeneration Project July 21, 2003 EIS-0317: Record of Decision Kangley-Echo Lake Transmission Line Project July 14, 2003 EIS-1069-SA-07: Supplement Analysis Yakima/Kilickitat Fisheries Project, Noxious Weed Control at Cle Elum and Jack Creek, Cle Elum Supplementation and Research Facility and Jack Creek

409

CX-006293: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination 3: Categorical Exclusion Determination CX-006293: Categorical Exclusion Determination Provision of Funds to the Confederated Salish and Kootenai Tribes for Purchase of the Pistol Creek Property CX(s) Applied: B1.25 Date: 07/26/2011 Location(s): Lake County, Montana Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to fund the acquisition of the 20 acre Pistol Creek property by the Confederated Salish and Kootenai Tribes (CSKT). The property is being acquired as partial mitigation for the construction and operation of the Hungry Horse Dam on the South Fork of the Flathead River, and because of its riparian and natural resource values. The property includes approximately one-quarter mile of Pistol Creek, which is largely important for providing habitat to westslope cutthroat trout and

410

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern Duty Locations Southwestern Duty Locations The City of Gore, Oklahoma, established in 1903 at the southern edge of the Cherokee Nation in eastern Oklahoma, is known as the "Trout Capital of Oklahoma" owing to its location near many pristine lakes and rivers. In addition to year-round fishing, the area offers camping, hunting, scuba diving, and many other outdoor activities. The city itself boasts a number of antique stores and sponsors annual events such as car shows, arts and crafts festivals, and music festivals. With a population of approximately 1,000, Gore offers country living within easy highway driving of the larger cities of Tulsa, Oklahoma (74 miles) and Fort Smith, Arkansas (45 miles). back to top The City of Jonesboro, Arkansas, established in 1859, is the farming,

411

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-66) (10/4/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04, 2001 04, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-66) John Baugher - KEW-4 Tom Morse - KEW-4 Fish and Wildlife Project Managers Proposed Action: Water Right Acquisition Program Project No: 2001-023-00 (Fifteenmile Subbasin Water Right Acquisition Program) 1999-008-00 (Columbia Plateau Water Right Acquisition Program) 2001-056-00 (Trout Creek 2001 Streamflow Enhancement) 2001-069-00 (John Day Basin Stream Enhancement Project, Summer 2001) Watershed Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Watershed Management Program EIS): 4.18 Purchase / Negotiate Water Right; 4.19 File for Instream Water Right.

412

EA-1932-DEA-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-mailed E-mailed Region One 490 North Meridian Road Kalispell, MT 59901 (406) 752-5501 Fax: 406-257-0349 Ref: JS062-12 August 9, 2012 Ladies and Gentlemen: Fish, Wildlife & Parks (FWP), Region One, is seeking public comment for the proposed Bass Lake Restoration Project for the purpose of removing northern pike from Bass Lake and Mud Creek and restocking the lake with westslope cutthroat trout. This project would be conducted within the Mud Creek watershed located approximately 6 miles southeast of the city of Eureka, Montana. The removal of northern pike would help restore native fish populations in the Tobacco River and Lake Koocanusa, which Bass Lake and Mud Creek feed. The Bonneville Power Administration (BPA) is proposing to fund the Bass Lake

413

CX-002438: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

438: Categorical Exclusion Determination 438: Categorical Exclusion Determination CX-002438: Categorical Exclusion Determination Rocky Reach-Maple Valley Number-1 Transmission Line Bridge Replacement Project CX(s) Applied: B1.3 Date: 05/03/2010 Location(s): Kittitas County, Washington Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) has a need to construct a bridge across Cold Creek. Although a bridge once stood at this location, currently the only access to mile 47 of BPA?s Rocky Reach-Maple Valley Number- 1 transmission line is through an existing ford. Cold Creek provides habitat for Middle Columbia River Basin bull trout, a listed threatened species. As a result, future access to mile 47 of the Rocky Reach-Maple Valley transmission line may be greatly restricted or eliminated. Abandoning the

414

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2, 2003 October 2, 2003 EA-0307-SA-01: Supplement Analysis Colville Resident Trout Hatchery Project Supplement Analysis August 27, 2003 EIS-0246-SA-35: Supplement Analysis Wildlife Mitigation Program, seven miles east of Juntura, Oregon, Malheur County August 22, 2003 EIS-0246-SA-34: Supplement Analysis Wildlife Mitigation Program, Flathead County, Montana July 14, 2003 EIS-1069-SA-07: Supplement Analysis Yakima/Kilickitat Fisheries Project, Noxious Weed Control at Cle Elum and Jack Creek, Cle Elum Supplementation and Research Facility and Jack Creek Acclimation Site, Kittitas County, Washington May 21, 2003 EIS-0246-SA-33: Supplement Analysis Wildlife Mitigation Program, Flathead County, Montana May 20, 2003 EIS-0246-SA-32: Supplement Analysis Wildlife Mitigation Program

415

Microsoft Word - WCT_CX_draft1_5.18.11.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lee Watts Project Manager - KEWM-4 Proposed Action: Reintroduction of westslope cutthroat trout in the Pend Orielle basin. Fish and Wildlife Project No.: 2007-149-00, Contract #BPA-52530 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.20 Small-scale activities undertaken to protect, restore, or improve fish and wildlife habitat, fish passage facilities (such as fish ladders or minor diversion channels), or fisheries. Location: Four Creeks will be included in the project: ï‚· Cee Cee Ah Creek: Township 34 North, Range 44 East, Section 28, Pend Oreille County, WA ï‚· Middle Creek: Township 35 North, Range 44 East, Section 15, Pend Oreille County, WA ï‚· Upper West Branch: Township 35 North, Range 45 East, Section 25, Pend Oreille

416

EIS-0265-SA-75: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0265-SA-75: Supplement Analysis EIS-0265-SA-75: Supplement Analysis EIS-0265-SA-75: Supplement Analysis Watershed Management Program - Gourlay Creek Fish Ladder Project Bonneville Power Administration proposes to fund the construction of a fish passage facility at the Gourlay Creek Dam/water reservoir in Columbia County, Oregon. The City of Scappoose owns and manages close to half of the Gourlay Creek Watershed including high quality habitat above and below the Gourlay Creek Dam. Gourlay Creek Dam has been identified as a key limiting factor in the re-generation of salmon and trout in the Gourlay Creek Watershed. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-75) - Gourlay Creek Fish Ladder Project (February 2002) More Documents & Publications EIS-0265-SA-59: Supplement Analysis

417

CX-001202: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

02: Categorical Exclusion Determination 02: Categorical Exclusion Determination CX-001202: Categorical Exclusion Determination Cushman North Fork Skokomish Powerhouse CX(s) Applied: A9 Date: 03/21/2010 Location(s): Tacoma, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This project will focus on the design and construction a new North Fork Skokomish Powerhouse, which will include an integral fish collection facility and fish handling and sorting device. The new powerhouse, which will produce about 23,500 megawatts hours of energy, increasing electrical generation capacity by 14 percent, requires design, engineering and construction. A fish transport system will be included as part of the design. Which will allow federally listed salmonids and trout that are swimming upstream to be trapped, sorted, and then released in the upper

418

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 1770 of 29,416 results. 61 - 1770 of 29,416 results. Download EIS-0353: Draft Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program http://energy.gov/nepa/downloads/eis-0353-draft-environmental-impact-statement Download VEE-0060- In the Matter of Blakeman Propane, Inc. On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its... http://energy.gov/oha/downloads/vee-0060-matter-blakeman-propane-inc Download Lessons Learned Quarterly Report, June 2004 Welcome to the 39th quarterly report on lessons learned in the NEPA process. In this issue we are continuing a multi-part examination of lessons learned from Lessons Learned.

419

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 8760 of 31,917 results. 51 - 8760 of 31,917 results. Download EA-1087: Final Environmental Assessment Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California http://energy.gov/nepa/downloads/ea-1087-final-environmental-assessment Download EIS-0353: Final Environmental Impact Statement South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program http://energy.gov/nepa/downloads/eis-0353-final-environmental-impact-statement Download EA-1442: Final Environmental Assessment Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, CA http://energy.gov/nepa/downloads/ea-1442-final-environmental-assessment Download CX-006180: Categorical Exclusion Determination

420

Power plant waste heat utilization in aquaculture. Volume II. Final report, 1 November 1976-1 November 1979  

SciTech Connect

A three-year research study on the constructive use of electric generating station waste heat in cooling effluents for fish production is presented. This volume specifically describes that part of the research conducted by Trenton State College. Water temperatures from the discharge canal of the Mercer Generating Station in New Jersey were blended with those from the Delaware River by pumps installed in strategic locations to achieve desired temperatures. The report further describes how recirculation is controlled during chlorination periods by activating and de-activating certain pumps. As a result of this procedure, plus an oxygen injection system, trout density was greatly increased. Techniques for growing and maintaining shrimp larvae and early juveniles in nursery systems are described. Harvest densities of the shellfish did not compare with those obtained for finfish.

Eble, A.F.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 21440 of 28,905 results. 31 - 21440 of 28,905 results. Download Public Outreach Fact Sheet LM's goal is to ensure that stakeholders are adequately involved in the process and informed of LM's plans and actions. http://energy.gov/lm/downloads/public-outreach-fact-sheet Download Green Button Sample from Texas These files contain sample Green Button data from two example households in Texas. Unlike the California sample data, these customers receive cost data along with usage information. For details on... http://energy.gov/downloads/green-button-sample-texas Download EA-0307-SA-01: Supplement Analysis Colville Resident Trout Hatchery Project Supplement Analysis http://energy.gov/nepa/downloads/ea-0307-sa-01-supplement-analysis Download Audit Report: ER-B-97-02 Audit of the Department of Energy's Grant for Economic Development at the

422

EA-1913: Preliminary Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Preliminary Environmental Assessment 3: Preliminary Environmental Assessment EA-1913: Preliminary Environmental Assessment Springfield Sockeye Hatchery Program, Springfield, Bingham County, Idaho This EA evaluates the potential environmental impacts of a proposal by BPA to fund the modification of an existing IDFG trout hatchery near Springfield, Idaho, to provide a facility that would be capable of rearing up to 1 million Snake River sockeye salmon juveniles. Modifications would include demolishing several existing structures, constructing new hatchery facilities in the same footprint, constructing three new residences for hatchery personnel northwest of the hatchery site, and constructing up to six pumps at existing wellheads and a piping system to convey water to hatchery facilities. EA-1913-PEA-2011.pdf

423

Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.  

SciTech Connect

Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

Griswold, Jim

2007-01-01T23:59:59.000Z

424

Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.  

SciTech Connect

On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish La