National Library of Energy BETA

Sample records for rainbow trout oncorhynchus

  1. Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance

    SciTech Connect (OSTI)

    Hansen, J.A.; Marr, J.C.A.; Lipton, J.; Cacela, D.; Bergman, H.L.

    1999-09-01

    Behavioral avoidance of copper (Cu), cobalt (Co), and a Cu and Co mixture in soft water differed greatly between rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha). Chinook salmon avoided at least 0.7 {micro}g Cu/L, 24 {micro}g Co/L, and the mixture of 1.0 {micro}g Cu/L and 0.9 {micro}g Co/L, whereas rainbow trout avoided at least 1.6 {micro}g Cu/L, 180 {micro}g Co/L, and the mixture of 2.6 {micro}g Cu/L and 2.4 {micro}g Co/L. Chinook salmon were also more sensitive to the toxic effects of Cu in that they failed to avoid {ge}44 {micro}g Cu/L, whereas rainbow trout failed to avoid {ge}180 {micro}g Cu/L. Furthermore, following acclimation to 2 {micro}g Cu/L, rainbow trout avoided 4 {micro}g Cu/L and preferred clean water, but chinook salmon failed to avoid any Cu concentrations and did not prefer clean water. The failure to avoid high concentrations of metals by both species suggests that the sensory mechanism responsible for avoidance responses was impaired. Exposure to Cu concentrations that were not avoided could result in lethality from prolonged Cu exposure or in impairment of sensory-dependent behaviors that are essential for survival and reproduction.

  2. Rainbow trout Oncorhynchus mykiss energetic responses to pulsed flows in the American River, California, assessed

    E-Print Network [OSTI]

    Klimley, A. Peter

    to hydroelectric-power-generation-related pulsed flows, the associated energetic costs are un- known. We implanted consumption rates were estimated for their in-river EMG data, through a complete hydroelectric power . Hydroelectric . Electromyogram . Radio telemetry. Rainbow trout Introduction Human-controlled pulsed flows

  3. Assessment of energetic costs of AhR activation by ?-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect (OSTI)

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  4. Sex-specific vitellogenin production in immature rainbow trout

    SciTech Connect (OSTI)

    Carlson, D.B.; Williams, D.E.

    1999-10-01

    Many xenobiotics interact with hormone systems of animals, potentially leading to a phenomenon commonly called endocrine disruption. Much attention has focused on steroid hormone systems and corresponding receptor proteins, particularly estrogens. Vitellogenin (Vg) was measured in sexually immature rainbow trout (Oncorhynchus mykiss) exposed to 17{beta}-estradiol (E{sub 2}) in the diet. Mixed-sex populations of trout aged 3, 6, 12, or 18 months were maintained separately and fed E{sub 2} at 0.05 or 2.5 mg/kg for 7d. Females fed E{sub 2} at 0.05 mg/kg consistently produced three- to fourfold greater amounts of Vg than similarly aged males. Age- and sex-matched fish fed E{sub 2} at 2.5 mg/kg produced equivalent amounts of Vg. Sex differences in Vg production were apparent only at a dose of E{sub 2} (0.05 mg/kg) that results in submaximal Vg induction. Their results document the importance of considering the sex of juvenile fish when using Vg production as a marker of xenoestrogen exposure.

  5. Rainbow Trout Production in Dystrophic Lakes Author(s): Waldo E. Johnson and Arthur D. Hasler

    E-Print Network [OSTI]

    Notre Dame, University of

    Rainbow Trout Production in Dystrophic Lakes Author(s): Waldo E. Johnson and Arthur D. Hasler://www.jstor.org #12;RAINBOW TROUT PRODUCTION IN DYSTROPHIC LAKES1 Waldo E. Johnson and Arthur D. Hasler Department, and it is well known that these small lakes contribute very little to the sport fishery of this area

  6. Cortisol metabolism in hepatocytes of rainbow trout treated with 3,3{prime},4,4{prime} tetrachlorobiphenyl

    SciTech Connect (OSTI)

    Vijayan, M.M. [EVS Environment Consultants, North Vancouver, British Columbia (Canada); Fiest, G. [Oregon State Univ., Corvallis, OR (United States). Dept. of Fisheries and Wildlife; Otto, D.; Moon, T.W. [Univ. of Ottawa, Ontario (Canada). Dept. Biology

    1995-12-31

    The objective of this study was to investigate the potential of hepatocytes for cortisol uptake and metabolism in 3,3{prime},4,4{prime}-tetrachlorobiphenyl (TCBP) treated trout. Two groups of rainbow trout (Oncorhynchus mykiss) were either given an intraperitoneal implant of peanut oil alone or peanut oil containing TCBP (10 mg.kg{sup {minus}1} body weight) and sampled six weeks later. The toxicant exposed fish had significantly lower condition factor and plasma glucose concentration, whereas plasma cortisol, protein and hepatocyte protein concentration and liver ethoxyresorufin-O-deethylase (EROD) activity were significantly higher in the TCBP compared to the sham group. There was no significant difference in plasma lactate and amino acid concentration, hepatocyte glycogen content or liver cytosolic cortisol binding affinity or capacity between the two groups. The uptake of [{sup 3}H] cortisol was significantly higher in the hepatocytes of TCBP treated fish compared to the sham fish. Also, there was enhanced catabolism of [{sup 3}H] cortisol by hepatocytes of TCBP treated fish; the major metabolite appeared to be tetrahydrocortisone. The results indicate that the potential for cortisol clearance is enhanced in hepatocytes of TCBP treated trout. The data also tend to suggest in vivo regulatory mechanisms that might possibly prevent the increased clearance of the hormone from circulation in toxicant exposed fish.

  7. Lake Roosevelt Fisheries Evaluation Program; Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington, 1999 Annual Report.

    SciTech Connect (OSTI)

    Baldwin, Casey; Polacek, Matt

    2009-03-01

    Hatchery supplementation of kokanee Oncorhynchus nerka and rainbow trout O. mykiss has been the primary mitigation provided by Bonneville Power Administration for loss of anadromous fish to the waters above Grand Coulee Dam (GCD). The hatchery program for rainbow trout has consistently met management goals and provided a substantial contribution to the fishery; however, spawner returns and creel survey results for kokanee have been below management goals. Our objective was to identify factors that limit limnetic fish production in Lake Roosevelt by evaluating abiotic conditions, food limitations, piscivory, and entrainment. Dissolved oxygen concentration was adequate throughout most of the year; however, levels dropped to near 6 mg/L in late July. For kokanee, warm water temperatures during mid-late summer limited their nocturnal distribution to 80-100 m in the lower section of the reservoir. Kokanee spawner length was consistently several centimeters longer than in other Pacific Northwest systems, and the relative weights of rainbow trout and large kokanee were comparable to national averages. Large bodied daphnia (> 1.7 mm) were present in the zooplankton community during all seasons indicating that top down effects were not limiting secondary productivity. Walleye Stizostedion vitreum were the primary piscivore of salmonids in 1998 and 1999. Burbot Lota lota smallmouth bass Micropterus dolomieui, and northern pikeminnow Ptychocheilus oregonensis preyed on salmonids to a lesser degree. Age 3 and 4 walleye were responsible for the majority (65%) of the total walleye consumption of salmonids. Bioenergetics modeling indicated that reservoir wide consumption by walleye could account for a 31-39% loss of stocked kokanee but only 6-12% of rainbow trout. Size at release was the primary reason for differential mortality rates due to predation. Entrainment ranged from 2% to 16% of the monthly abundance estimates of limnetic fish, and could account for 30% of total mortality of limnetic fishes, depending on the contribution of littoral zone fishes. Inflow to GCD forebay showed the strongest negative relationship with entrainment whereas reservoir elevation and fish vertical distribution had no direct relationship with entrainment. Our results indicate that kokanee and rainbow trout in Lake Roosevelt were limited by top down impacts including predation and entrainment, whereas bottom up effects and abiotic conditions were not limiting.

  8. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    SciTech Connect (OSTI)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2010-06-25

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

  9. Relationships among environment, movement, growth and survival of coastal rainbow trout (Oncorhynchus mykiss)

    E-Print Network [OSTI]

    Heady, Walter Nicholas

    2012-01-01

    PM (2006) Estimating the timing of diet shifts using stable isotopes. Oecologia 147:PM (2006) Estimating the timing of diet shifts using stable isotopes. Oecologia 147:

  10. Relationships among environment, movement, growth and survival of coastal rainbow trout (Oncorhynchus mykiss)

    E-Print Network [OSTI]

    Heady, Walter Nicholas

    2012-01-01

    doi: 10.11 Lindley ST, Schick RS, Agrawal A, Goslin M,Science 4:1-19 Lindley ST, Schick RS, Mora E, Adams PB,pp 103–128 Lindley ST, Schick RS, Agrawal A, Goslin M,

  11. Metabolism, Swimming Performance, and Tissue Biochemistry of High Desert Redband Trout (Oncorhynchus mykiss ssp.): Evidence for

    E-Print Network [OSTI]

    Keeley, Ernest R.

    413 Metabolism, Swimming Performance, and Tissue Biochemistry of High Desert Redband Trout (Ucrit) and oxygen consumption in the field at 12 and 24 C; (2) biochemical indices of energy metabolism gradient. Fur- ther, we also examined genetic and morphological character- istics of fish from these two

  12. Distribution and elimination of (/sup 14/C)octachlorostyrene in cod (Gadus morhua), rainbow trout (Salmo gairdneri, and blue mussel (Mytilus edulis)

    SciTech Connect (OSTI)

    Ingebrigtsen, K.; Solbakken, J.E.; Norheim, G.; Nafstad, I.

    1988-01-01

    Cod (Gadus morhua) and rainbow trout (Salmo gairdneri) were given a single oral dose of 100 microCi/kg b.w. of (/sup 14/C)octachlorostyrene ((/sup 14/C)OCS) in peanut oil. Blue mussel (Mytilus edulis) was exposed to (/sup 14/C)OCS in water. The distribution and elimination of the compound was studied by liquid scintillation counting and whole-body autoradiography. The highest degree of radioactivity in the cod and rainbow trout was measured in the liver and the visceral fat, respectively. The degree of radioactivity in the brain of cod exceeded that of the rainbow trout by a factor between 2 and 4 at all survival times. In addition to bile excretion of (/sup 14/C)OCS-derived radioactivity, a possible excretion over the intestinal mucosa was suggested. The rate of elimination was slow in both species, and substantial amounts of radioactivity remained in the tissues 90 d after administration. In the blue mussel, the highest degree of radioactivity was found in the hepatopancreas. Substantial amounts of radioactivity were present in the mussel tissues 60 d after administration.

  13. Radionuclides and heavy metals in rainbow trout from Tsichomo, Nana Ka, Wen Povi, and Pin De Lakes in Santa Clara Canyon

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1998-04-01

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and TI) concentrations were determined in rainbow trout collected from Tsichomo, Nana Ka, Wen Povi, and Pin De lakes in Santa Clara Canyon in 1997. Most radionuclide and heavy metal concentrations in fish collected from these four lakes were within or just above upper limit background concentrations (Abiquiu reservoir), and as a group were statistically (p < 0.05) similar in most parameters to background.

  14. 6 References Allen, D. B, B. J. Flatter, and K. Fite. 1996. Redband Trout (Oncorhynchus mykiss gairdneri)

    E-Print Network [OSTI]

    , Rocky Mountain Bail Batt ise, Behnke, R. J. 1992. Native Trout of Western North America. American Fisheries Society, Benedict, N. G., S. J. Oyler-McCance, S. E. Taylor, C. E. Braun, and T. W. Quinn. 2003. Odocoileus hemionus. Mammalian Species 219 9. Aubry, K. B., Koehler, G. M., and J. R. Squires. 2000. Ecology

  15. Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California

    E-Print Network [OSTI]

    2010-01-01

    Upper American River Hydroelectric Project, FERC Project No.California, Chili Bar Hydroelectric Project, FERC Projectthe night, as part of hydroelectric power generation by the

  16. Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California

    E-Print Network [OSTI]

    2010-01-01

    the night, as part of hydroelectric power generation by theto manage water for hydroelectric power generation. There

  17. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  18. Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-05-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

  19. Fish Bulletin No. 98. The Life Histories of the Steelhead Rainbow Trout (Salmo gairdneri gairdneri) and Silver Salmon (Oncorhynchus kisutch) with Special Reference to Waddell Creek, California, and Recommendations Regarding Their Management

    E-Print Network [OSTI]

    Shapovalov, Leo; Taft, Alan C

    1954-01-01

    A considerable amount of the insect food was composed ofon other foods, such as aquatic insects, and that it is notHowever, insects formed the great bulk of the foods eaten.

  20. Rainbow statistics

    E-Print Network [OSTI]

    Michele Arzano; Dario Benedetti

    2008-09-04

    Non-commutative quantum field theories and their global quantum group symmetries provide an intriguing attempt to go beyond the realm of standard local quantum field theory. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which reflects a non-trivial momentum-dependent statistics. We investigate the properties of this "rainbow statistics" in the particular context of $\\kappa$-quantum fields and discuss the analogies/differences with models with twisted statistics.

  1. Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

    2006-01-26

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

  2. MIGRATION OF JUVENILE SALMON AND TROUT INTO BROWNLEE RESERVOIR, 1962-65

    E-Print Network [OSTI]

    MIGRATION OF JUVENILE SALMON AND TROUT INTO BROWNLEE RESERVOIR, 1962-65 BY RICHARD F. KRCMA. 98102 ABSTRACT Migrations of juvenile chinook salmon (Oncorhynchus tshawytscha), coho salmon (0. kisutch of the reservoir system (Ebel and Koski, 1968), (2) upstream migration of adult chinook salmon (O

  3. Nonsingular rainbow universes

    SciTech Connect (OSTI)

    Awad, Adel; Ali, Ahmed Farag; Majumder, Barun E-mail: ahmed.ali@fsc.bu.edu.eg

    2013-10-01

    In this work, we study FRW cosmologies in the context of gravity rainbow. We discuss the general conditions for having a nonsingular FRW cosmology in gravity rainbow. We propose that gravity rainbow functions can be fixed using two known modified dispersion relation (MDR), which have been proposed in literature. The first MDR was introduced by Amelino-Camelia, et el. in [9] and the second was introduced by Magueijo and Smolin in [24]. Studying these FRW-like cosmologies, after fixing the gravity rainbow functions, leads to nonsingular solutions which can be expressed in exact forms.

  4. Entanglement over the rainbow

    E-Print Network [OSTI]

    Giovanni Ramírez; Javier Rodríguez-Laguna; Germán Sierra

    2015-03-11

    In one dimension the area law for the entanglement entropy is violated maximally by the ground state of a strong inhomogeneous spin chain, the so called concentric singlet phase (CSP), that looks like a rainbow connecting the two halves of the chain. In this paper we show that, in the weak inhomogeneity limit, the rainbow state is a thermofield double of a conformal field theory with a temperature proportional to the inhomogeneity parameter. This result suggests some relation of the CSP with black holes. Finally, we propose an extension of the model to higher dimensions.

  5. Smolt Monitoring Program, Part II, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1985 Annual Report.

    SciTech Connect (OSTI)

    Fish Passage Center

    1986-02-01

    Volume I of this report describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the freeze brand data used in the analysis of travel time for Lower Granite, Rock Island, McNary, and John Day dams. Brand recoveries for Lower Monumental dam also are presented. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data.

  6. A first generation integrated map of the rainbow trout genome

    E-Print Network [OSTI]

    2011-01-01

    1984:1-46. 6. Palti Y, Gahr SA, Hansen JD, Rexroad CE:2001, 54. Coulibaly I, Gahr SA, Palti Y, Yao J, Rexroad CE:7(203):203. 55. Palti Y, Gahr SA, Purcell MK, Hadidi S,

  7. Starobinsky Model in Rainbow Gravity

    E-Print Network [OSTI]

    Chatrabhuti, Auttakit; Channuie, Phongpichit

    2015-01-01

    In this work, we study Starobinsky model of inflation in the context of gravity's rainbow theory. We propose that gravity rainbow functions can be written in the power-law form of the Hubble parameter. We present a detailed derivation of the spectral index of curvature perturbation and the tensor-to-scalar ratio and compare the predictions of our models with Planck 2015 data. We discover, by taking $N_{k}=70$ e-folds and requiring our predictions to agree with the Planck data at the one sigma confidence level, the rainbow parameter would satisfy $\\lambda\\lesssim 1.0$.

  8. Status of Oregon's Bull Trout.

    SciTech Connect (OSTI)

    Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

    1997-10-01

    Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

  9. EA-296-B Rainbow Energy Marketing Corporation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corporation Order authorizing Rainbow Energy to export electric energy to Canada. EA-296-B Rainbow Energy (CN).pdf More Documents & Publications RECORD of Categorical...

  10. Nutrient export from freshwater ecosystems by anadromous sockeye salmon (Oncorhynchus

    E-Print Network [OSTI]

    Nutrient export from freshwater ecosystems by anadromous sockeye salmon (Oncorhynchus nerka that sockeye salmon (Oncorhynchus nerka) imported and exported from four major systems in Bristol Bay, Alaska into fresh waters. The percentage of parental nutrients that smolts exported varied through time and among

  11. RESPONSES OF STREAM BIOFILM TO PACIFIC SALMON (ONCORHYNCHUS SPP.) SPAWNERS

    E-Print Network [OSTI]

    Lamberti, Gary A.

    Pacific Rim. The dynam- ics of salmon runs and environmental conditions of streams in which they spawn canRESPONSES OF STREAM BIOFILM TO PACIFIC SALMON (ONCORHYNCHUS SPP.) SPAWNERS: THE ROLE by Janine R¨uegg 2011 All Rights Reserved #12;RESPONSES OF STREAM BIOFILM TO PACIFIC SALMON (ONCORHYNCHUS

  12. INCLUSION OF FERMENTED SOYBEAN MEAL IN RAINBOW TROUT DIETS MICHAEL E. BARNES

    E-Print Network [OSTI]

    , and supplies. I greatly appreciate the assistance of Timothy Bruce, Amanda Davis, Rici Domenici, Meghan Waugh, Matt Wipf, Christine Wood, and Sarah Zimmerman. I thank my committee members, Bill Gibbons

  13. A first generation BAC-based physical map of the rainbow trout genome

    E-Print Network [OSTI]

    2009-01-01

    Press; 1984:1-46. Palti Y, Gahr SA, Hansen JD, Rexroad CE:Keatley KA, Rexroad C 3rd, Gahr SA, Danzmann RG, Drew RE,1345. Rexroad CE 3rd, Palti Y, Gahr SA, Vallejo RL: A second

  14. Dietary Na does not reduce dietary Cu uptake by juvenile rainbow trout

    E-Print Network [OSTI]

    Grosell, Martin

    Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada. Journal@mcmaster.ca Present address: Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince

  15. Thermodynamics and Luminosities of Rainbow Black Holes

    E-Print Network [OSTI]

    Mu, Benrong; Yang, Haitang

    2015-01-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As a result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is \\textquotedblleft Gravity's rainbow", where the spacetime background felt by a test particle would depend on its energy. Focusing on the \\textquotedblleft Amelino-Camelia dispersion relation" which is $E^{2}=m^{2}+p^{2}\\left[ 1-\\eta\\left( E/m_{p}\\right) ^{n}\\right] $ with $n>0$, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of $\\eta$ and $n$ in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with $\\eta<0$ and $n\\geq2$. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute lum...

  16. Thermodynamics and Luminosities of Rainbow Black Holes

    E-Print Network [OSTI]

    Benrong Mu; Peng Wang; Haitang Yang

    2015-07-14

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As a result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is \\textquotedblleft Gravity's rainbow", where the spacetime background felt by a test particle would depend on its energy. Focusing on the \\textquotedblleft Amelino-Camelia dispersion relation" which is $E^{2}=m^{2}+p^{2}\\left[ 1-\\eta\\left( E/m_{p}\\right) ^{n}\\right] $ with $n>0$, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of $\\eta$ and $n$ in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with $\\eta<0$ and $n\\geq2$. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of $\\eta$ and $n$.

  17. Climate Change and Trout in Wisconsin Streams

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Climate Change and Trout in Wisconsin Streams Photo Matt Mitro W John J. Magnuson Center Climate Change Fishes and Climate Change Adaptation Magnuson Photo #12;The Invisible Present The Invisible in Weather versus Climate Change Magnuson 2009 #12;Magnuson 2006 The Invisible Present The Invisible Place

  18. Emergent rainbow spacetimes: Two pedagogical examples

    E-Print Network [OSTI]

    Matt Visser

    2008-01-03

    There is a possibility that spacetime itself is ultimately an emergent phenomenon, a near-universal "low-energy long-distance approximation", similar to the way in which fluid mechanics is the near-universal low-energy long-distance approximation to quantum molecular dynamics. If so, then direct attempts to quantize spacetime are misguided - at least as far as fundamental physics is concerned. Based on this and other considerations, there has recently been a surge of interest in the notion of energy-dependent and momentum-dependent "rainbow'' geometries. In the present article I will not discuss these exotic ideas in any detail, instead I will present two specific and concrete examples of situations where an energy-dependent "rainbow'' geometry makes perfectly good mathematical and physical sense. These simple examples will then serve as templates suggesting ways of proceeding in situations where the underlying physics may be more complex. The specific models I will deal with are (1) acoustic spacetimes in the presence of nontrivial dispersion, and (2) a mathematical reinterpretation of Newton's second law for a non-relativistic conservative force, which is well-known to be equivalent to the differential geometry of an energy-dependent conformally flat three-manifold. These two models make it clear that there is nothing wrong with the concept of an energy-dependent "rainbow'' geometry per se. Whatever problems may arise in the implementation of any specific quantum-gravity-inspired proposal for an energy-dependent spacetime are related to deeper questions regarding the compatibility of that specific proposal with experimental reality.

  19. Spokane Tribal Hatchery, 2005 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Project are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to rainbow trout catch and harvest rates while the impact on the kokanee fishery was minimal. Success of the Lake Roosevelt kokanee artificial production program appears to be limited primarily owing to predation, precocity and high entrainment rates through Grand Coulee Dam. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue kokanee fry and post-smolt releases, 100% triploid hatchery stock rainbow trout used and adipose fin clip hatchery stock rainbow trout prior to release. The Spokane Tribal Hatchery is funded by the Bonneville Power Administration under directives by the Northwest Power Conservation Council Columbia River Basin Fish & Wildlife Program, Resident Fish Substitution Measures, 1987 to current (Subbasin Plan), as partial mitigation for anadromous and resident fish losses in the blocked areas above Chief Joseph and Grand Coulee Dams.

  20. Black Holes in Gauss-Bonnet Gravity's Rainbow

    E-Print Network [OSTI]

    Seyed Hossein Hendi; Mir Faizal

    2015-08-08

    In this paper, we will generalize the Gauss-Bonnet gravity to an energy dependent Gauss-Bonnet theory of gravity, which we shall call as the Gauss-Bonnet gravity's rainbow. We will also couple this theory to a Maxwell's theory. We will analyze black hole solutions in this energy dependent Gauss-Bonnet gravity's rainbow. We will calculate the modifications to the thermodynamics of black holes in the Gauss-Bonnet's gravity's rainbow. We will demonstrate that even though the thermodynamics of the black holes get modified in the Gauss-Bonnet gravity's rainbow, the first law of thermodynamics still holds for this modified thermodynamics. We will also comment on the thermal stability of the black hole solutions in this theory.

  1. Mechanisms Limiting a Vertebrate Invasion: Brook Trout in Mountain Streams

    E-Print Network [OSTI]

    with channel slopes of 13 % over 67 m. During the summer, brook trout moved upstream more than downstream even, prevented upstream movements. In downstream-directed invasions (originating from headwater lakes), brook trout apparently dispersed downstream through 80 % slopes and over 18-m-high waterfalls and occupied

  2. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    SciTech Connect (OSTI)

    Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

    2014-12-23

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after their release, representing a residualization rate of 12.8% (21 of 164). Snorkeling revealed considerable overlap of habitat use (in space and time) by residual hatchery steelhead and naturally produced O. mykiss in the South Santiam River. Results from our study (and others) also indicated that hatchery steelhead juveniles typically dominate interactions with naturally produced O. mykiss juveniles. The overlap in space and time, combined with the competitive advantage that residual hatchery steelhead appear to have over naturally produced O. mykiss, increases the potential for negative ecological interactions that could have population-level effects on the wild winter steelhead population of the South Santiam River.

  3. RAINBOW RAMSEY SIMPLE STRUCTURES NATASHA DOBRINEN, CLAUDE LAFLAMME, AND NORBERT SAUER

    E-Print Network [OSTI]

    Dobrinen, Natasha

    RAINBOW RAMSEY SIMPLE STRUCTURES NATASHA DOBRINEN, CLAUDE LAFLAMME, AND NORBERT SAUER Abstract. A relational structure R is rainbow Ramsey if for every finite in- duced substructure C of R and every that certain ultrahomogenous binary relational structures, for example the Rado graph, are rainbow Ramsey. Via

  4. Trout Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrailTrosky, Minnesota: Energy ResourcesTrousdaleTrout

  5. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect (OSTI)

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2004-01-01

    This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  6. Spokane Tribal Hatchery, 2004 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2005-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.

  7. Towards flavored bound states beyond rainbows and ladders

    SciTech Connect (OSTI)

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de; Paracha, M. A.

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  8. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    E-Print Network [OSTI]

    Karalidi, T; Hovenier, J W

    2012-01-01

    Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in the planetary signal by covering liquid water clouds. Here, we investigate the strength of the rainbow feature for exoplanets that have liquid and icy water clouds in their atmosphere, and calculate the rainbow feature for a realistic cloud coverage of Earth. We calculate flux and polarization signals of starlight that is reflected by horizontally and vertically inhomogeneous Earth--like exoplanets, covered by patchy clouds consisting of liquid water droplets or water ice crystals. The planetary surfaces are black. On a planet with a significant coverage of liquid water clouds only, the total flux signal shows a weak rainbow feature. Any coverage of the liquid water clouds by ice clouds, however, dampens the rainbow fea...

  9. Extended disformal approach in the scenario of Rainbow Gravity

    E-Print Network [OSTI]

    Carvalho, Gabriel G; Bittencourt, Eduardo

    2015-01-01

    We investigate all feasible mathematical representations of disformal transformations on a space-time metric according to the action of a linear operator upon the manifold's tangent and cotangent bundles. The geometric, algebraic and group structures of this operator and their interfaces are analyzed in detail. Then, we scrutinize a possible physical application, providing a new covariant formalism for a phenomenological approach to quantum gravity known as Rainbow Gravity.

  10. Gravity's Rainbow: a bridge towards Horava-Lifshitz gravity

    E-Print Network [OSTI]

    Remo Garattini; Emmanuel N. Saridakis

    2014-11-25

    We investigate the connection between Gravity's Rainbow and Horava-Lifshitz gravity, since both theories incorporate a modification in the UltraViolet regime which improves their quantum behavior at the cost of the Lorentz invariance loss. In particular, extracting the Wheeler-De Witt equations of the two theories in the case of Friedmann-Lemaitre-Robertson-Walker and spherically symmetric geometries, we establish a correspondence that bridges them.

  11. Spokane Tribal Hatchery, 2003 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L. (Spokane Tribe of Indians, Wellpinit, WA)

    2004-05-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Combined fish stocking by the hatcheries and net pen rearing projects in 2003 included: 899,168 kokanee yearlings released into Lake Roosevelt; 1,087,331 kokanee fry/fingerlings released into Banks Lake, 44,000 rainbow trout fingerlings and; 580,880 rainbow trout yearlings released into Lake Roosevelt. Stock composition of 2003 releases consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2003 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Preliminary results of gonad necropsies indicate a reduced incidence of precocious kokanee produced at the Spokane Tribal Hatchery in 2003. This was a probable attribute of change in hatchery rearing practices employed on 2002 brood year kokanee produced in 2003, primarily thermal manipulation and feed protein source. Kokanee and rainbow trout fingerlings transferred to Lake Roosevelt and Banks Lake net pen rearing operations in the fall of 2003 for subsequent release as yearlings in 2004 consisted of 645,234 rainbow trout and 627,037 kokanee salmon. A total of 590,000 Lake Whatcom kokanee fingerlings were carried over at the Spokane Tribal Hatchery for stocking as yearlings in 2004. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.

  12. Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66- April 4, 2012

    Broader source: Energy.gov [DOE]

    Application from Rainbow Energy Marketing Corp to export electric energy to Canada. Federal Register Notice.

  13. THE STRENGTH OF THE RAINBOW RAMSEY THEOREM BARBARA F. CSIMA AND JOSEPH R. MILETI

    E-Print Network [OSTI]

    Mileti, Joseph

    THE STRENGTH OF THE RAINBOW RAMSEY THEOREM BARBARA F. CSIMA AND JOSEPH R. MILETI July 31, 2008 Abstract. The Rainbow Ramsey Theorem is essentially an "anti-Ramsey" theorem which states that certain). Surprisingly, this version follows easily from Ramsey's Theorem, even in the weak system RCA0 of reverse

  14. Note on Design Criteria for Rainbow-Type Multivariates Jintai Ding1

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Note on Design Criteria for Rainbow-Type Multivariates Jintai Ding1 , Bo-Yin Yang2 , Lei Hu3 , Jiun This was a short note that deals with the design of Rainbow or "stagewise unbalanced oil-and-vinegar" multivariate parameters in current schemes. These can be ameliorated according to an updated list of security design

  15. Brook Trout Angling in Maine 2009 Survey Results

    E-Print Network [OSTI]

    Thomas, Andrew

    Brook Trout Angling in Maine 2009 Survey Results Marc Edwards University of Maine Cooperative Extension Franklin County Office A Cooperative Project between the University of Maine Cooperative Extension and Maine Department of Inland Fisheries and Wildlife #12;2 Background In a meeting at University of Maine

  16. Are trout populations affected by reach-scale stream slope?

    E-Print Network [OSTI]

    ). Reach-scale stream slope and the energy that it helps to gen- erate exert a dominant influenceAre trout populations affected by reach-scale stream slope? Daniel J. Isaak And Wayne A. Hubert Abstract: Reach-scale stream slope and the structure of associated physical habitats are thought to affect

  17. Storage of Dressed Chinook Salmon, Oncorhynchus tshawytscha, in Refrigerated Freshwater, Diluted Seawater, Seawater, and in Ice

    E-Print Network [OSTI]

    Storage of Dressed Chinook Salmon, Oncorhynchus tshawytscha, in Refrigerated Freshwater, Diluted during storage. Iced storage offers several advantages over the water chilling systems, including little by 25 per- cent within four days after transfer to ice, and weight gained during water storage was lost

  18. Release of persistent organic contaminants from carcasses of Lake Ontario Chinook salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    Gross, Mart

    Release of persistent organic contaminants from carcasses of Lake Ontario Chinook salmon from Lake Ontario contribute persistent contaminants to a river ecosystem. Abstract About 20,000 Chinook salmon (Oncorhynchus tshawytscha) from Lake Ontario enter the Credit River, Ontario, Canada every

  19. Temporary Restoration of Bull Trout Passage at Albeni Falls Dam

    SciTech Connect (OSTI)

    Paluch, Mark; Scholz, Allan; McLellan, Holly; Olson, Jason

    2009-07-13

    This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acoustic radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other fish was large enough to be mature, but at the time of capture its sex was unable to be determined, indicating it may not have been mature at the time of capture. These fish are expected to enter their natal tributaries in early summer or fall of 2009.

  20. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2004-08-01

    Despite the substantial declines in distribution and abundance that the Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri has experienced over the past century, quantitative evaluations of existing population sizes over broad portions of its historical range have not been made. In this study, we estimate trout abundance throughout the Upper Snake River basin in Idaho (and portions of adjacent states), based on stratified sample extrapolations of electrofishing surveys conducted at 961 study sites, the vast majority of which (84%) were selected randomly. Yellowstone cutthroat trout were the most widely distributed species of trout (caught at 457 study sites), followed by brook trout Salvelinus fontinalis (242 sites), rainbow trout O. mykiss and rainbow x cutthroat hybrids (136 sites), and brown trout Salmo trutta (70 sites). Of the sites that contained cutthroat trout, more than half did not contain any other species of trout. Where nonnative trout were sympatric with cutthroat trout, brook trout were most commonly present. In the 11 Geographic Management Units (GMUs) where sample size permitted abundance estimates, there were about 2.2 million trout {ge}100 mm, and of these, about one-half were cutthroat trout. Similarly, we estimated that about 2.0 million trout <100 mm were present, of which about 1.2 million were cutthroat trout. The latter estimate is biased low because our inability to estimate abundance of trout <100 mm in larger-order rivers negated our ability to account for them at all. Cutthroat trout were divided into approximately 70 subpopulations but estimates could be made for only 55 subpopulations; of these, 44 subpopulations contained more than 1,000 cutthroat trout and 28 contained more than 2,500 cutthroat trout. Using a logistic regression model to predict the number of spawning cutthroat trout at a given study site, we estimate that an average of about 30% of the cutthroat trout {ge}100 mm are spawners. We compared visually-based phenotypic assessments of hybridization with subsequent genetic analyses from 55 of the study sites and found that: (1) genetic analysis corroborated our visual determination that hybridization was absent at 37 of 55 sites; (2) at the seven sites where we visually failed to discern genetically-detected hybridization, the percent of rainbow trout alleles in the population was low (<1 %) at all but two locations; and (3) where we detected hybridization both visually and genetically (11 sites), levels of introgression were positively correlated between methods (r{sub 2} = 0.65). Based on this strong agreement, we phenotypically classified cutthroat trout as ''pure'' and ''{ge}90% pure'' at 81% and 90%, respectively, of the study sites within these GMUs. Our results suggest that, despite the presence of nonnative threats (genetic and competitive) in much of their current range in Idaho, Yellowstone cutthroat trout populations remain widely distributed and appear healthy in several river drainages in the Upper Snake River basin. Nevertheless, ongoing efforts to secure core cutthroat trout populations, protect areas from further nonnative invasions, and restore disturbed habitat are recommended for further protection of Yellowstone cutthroat trout in Idaho.

  1. EA-375 Rainbow Energy Marketing Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to exportEndure Energy,Vitol Inc to exportRainbow

  2. 56 BULLETIW OF THE UNITED STA'FES FISH COMMISSION. Nowcastle hatchery, Ontario ___..---_.-.-----..._.__.__..salmon trout.. 4,000,000

    E-Print Network [OSTI]

    56 BULLETIW OF THE UNITED STA'FES FISH COMMISSION. Nowcastle hatchery, Ontario ___..---_.-.- ---- ..._.__.__..salmon trout.. 4,000,000 Nemcaktle hatchery, Ontario._---..-...----..----- ..---.speckled trout.. 50,000 iVe\\rcastlo hatchery, Ontario .---....---..--- .----..----.__-.whitefish.. 3,000,000 Smdmich

  3. The Effects of Disease-Induced Juvenile Mortality on the Transient and Asymptotic Population Dynamics of Chinook Salmon (Oncorhynchus tshawytscha) 

    E-Print Network [OSTI]

    Fujiwara, Masami; Mohr, Michael S.; Greenberg, Aaron

    2014-01-10

    The effects of an increased disease mortality rate on the transient and asymptotic dynamics of Chinook salmon (Oncorhynchus tshawytscha) were investigated. Disease-induced mortality of juvenile salmon has become a serious concern in recent years...

  4. Lake Pend Oreille Predation Research, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Bassista, Thomas

    2004-02-01

    During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time and were found in the pelagic area only 35% of the time. Lake trout were found at depths between 10 and 90 m (average was approximately 30 m). Based on hydroacoustic surveys of pelagic fish >406 mm and habitat use of sonic tagged rainbow trout and lake trout during late fall and winter, we conclude that hydroacoustic sampling during those times would be ineffective at acquiring an accurate pelagic predator population estimate and recommend conducting abundance estimates for pelagic predators when Lake Pend Oreille is thermally stratified (i.e. August).

  5. Rainbow Connection Number of Graph Power and Graph Products

    E-Print Network [OSTI]

    Basavaraju, Manu; Rajendraprasad, Deepak; Ramaswamy, Arunselvan

    2011-01-01

    Rainbow connection number, $rc(G)$, of a connected graph G is the minimum number of colors needed to color its edges, so that every pair of vertices is connected by at least one path in which no two edges are colored the same. In this paper we study the rainbow connection number with respect to three important graph product operations (cartesian product, lexicographic product and strong product) and the operation of graph powering. More specifically we show the following: (Here, $r(G)$ denotes the radius of $G$, an obvious lower bound for $rc(G)$) (1.) For a connected graph $G$, let $G^{k}$ be the k-th power of $G$. We show that for $k \\ge 2$, $r(G^{k}) \\le rc(G^{k}) \\le 2r(G^{k}) + 1$. The upper bound is tight up to an additive constant of 1. (2.) For two-connected, non-trivial graphs $G$ and $H$, let $G \\Box H$ be the Cartesian Product of $G$ and $H$. We show that $r(G \\Box H) \\le rc(G \\Box H)$ $\\le$ $2r(G \\Box H)$. The bound is tight. (3.) For two graphs $G$ and $H$ such that $G$ is a connected, non-trivia...

  6. Resolving Carbon's Rainbow from Uplands to the Deep-sea | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolving Carbon's Rainbow from Uplands to the Deep-sea Event Sponsor: Environmental Science Division Seminar Start Date: Sep 17 2015 - 11:00am BuildingRoom: Building 240Room...

  7. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    SciTech Connect (OSTI)

    Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  8. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    SciTech Connect (OSTI)

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  9. In this project, researchers de-veloped alternative feeds for two

    E-Print Network [OSTI]

    Tryon, Michael D.

    that will be infused into pellets for feed for rainbow trout, part of another project. Image: Stephen Ausmus for USDA

  10. EIS-0353: South Fork Flathead Watershed/Westlope Cutthroat Trout Conservation Project, Montana

    Broader source: Energy.gov [DOE]

    In cooperation with Montana, Fish, Wildlife, and Parks, Bonneville Power Administration is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage.

  11. Fish Bulletin No. 114. An Evaluation of Stocking Hatchery-Reared Steelhead Rainbow Trout (Salmo gairdnerii gairdnerii) in the Sacramento River System

    E-Print Network [OSTI]

    Hallock, Richard J; Van Woert, William F; Shapovalov, Leo

    1961-01-01

    California F-7-R, "Sacramento-San Joaquin River Salmon andand steelhead in the Sacramento River. Calif. Fish and Game,Stanford H. 1950. Upper Sacramento River sport fishery. U.

  12. Airy structure in $^{16}$O+$^{14}$C nuclear rainbow scattering

    E-Print Network [OSTI]

    Ohkubo, S

    2015-01-01

    The Airy structure in $^{16}$O+$^{14}$C rainbow scattering is studied with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for $^{16}$O using a density-dependent nucleon-nucleon force. The experimental angular distributions at $E_L$=132, 281 and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum at around $\\theta$=76$^\\circ$ in the angular distribution at $E_L$=132 MeV is assigned as the second order Airy minimum $A2$ in contrast to the recent literature which assigns it as the third order $A3$. The Airy minima in the 90$^\\circ$ excitation function is investigated in comparison with well-known $^{16}$O+$^{16}$O and $^{12}$C+$^{12}$C systems. Evolution of the Airy structure into the molecular resonances with the $^{16}$O+$^{14}$C cluster structure in the low energy region around $E_{c.m.}$=30 MeV is discussed. It is predicted ...

  13. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect (OSTI)

    Pereira, D.; Linares, R.; and others

    2012-10-20

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  14. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2004-04-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  15. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2003-06-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  16. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2005-11-01

    We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tag was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft. above water surface in a helicopter. However, we lost detection capability from 40 ft. water depth when we passed 700 ft. above the water surface in a helicopter. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we reduced the size of the radio tags that we implanted, and delayed most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  17. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Miller, Alan; Soupir, Jim (US Forest Service, Prairie City Ranger District, Prairie City, OR); Schwabe, Lawrence (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2003-08-01

    The Malheur River is a 306-kilometer tributary to the Snake River, which drains 12,950 square kilometers. The Malheur River originates in the Blue Mountains and flows into the Snake River near Ontario, Oregon. The climate of the basin is characterized by hot dry summers, occasionally exceeding 38 C, and cold winters that may drop below -29 C. Average annual precipitation is 30 centimeters in the lower reaches. Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2002. Bull trout Salvelinus confluentus are considered to be cold water species and are temperature-dependant. Due to the interest of bull trout from various state and Federal agencies, a workgroup was formed to develop project objectives related to bull trout. Table 1 lists individuals that participated in the 2002 work group. This report will reflect work completed during the Bonneville Power Administration contract period starting April 1, 2002, and ending March 31, 2003. All tasks were conducted within this timeframe, and a more detailed timeframe may be referred to in each individual report.

  18. Stream Temperature Studies on South River in Augusta County and Waynesboro for Targeting Trout Restoration Efforts

    E-Print Network [OSTI]

    Lawrence, Deborah

    Button) stainless steel screws Polycarbonate plastic capsule cover (top) and back (bottom) Attached to tree root significantly lower summertime water temperatures in South River · Waters from the "springs complex" to Oak Lane bridge fall within trout tolerance limits (i.e. below Wehrly & Wang curve) · Baker Spring acts

  19. Appendix 69 Bull Trout Draft Recovery Plan. Chapter 3: Clark Fork Recovery Unit

    E-Print Network [OSTI]

    Appendix 69 Bull Trout Draft Recovery Plan. Chapter 3: Clark Fork Recovery Unit #12;Chapter 3 State(s): Montana, Idaho, and Washington Recovery Unit Name: Clark Fork River (Including Lake Pend Oreille, Priest and Wildlife Service. 2002. Chapter 3, Clark Fork River Recovery Unit, Montana, Idaho, and Washington. 285 p. U

  20. Short-and long term niche segregation and individual specialization of brown trout (Salmo trutta)

    E-Print Network [OSTI]

    is the `ecological niche'. Hutchinson (1957; 1959) originally defined the ecological niche as a hyper- volume in an n-dimensional on a one- dimensional pelagic-littoral axis. In reality, however, the niche use may be more complex-segregation may be more complex than described on a one- dimensional pelagic-littoral axis. Trout from both

  1. Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands,

    E-Print Network [OSTI]

    Hunt, William F.

    Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands, Wet that the effects of stormwater runoff and urbanization are detrimental to organisms living in streams and rivers. To reduce these negative impacts, a variety of stormwater best management practices (BMPs) have been

  2. THERMAL TOLERANCE OF JUVENILE PACIFIC SALMON AND STEELHEAD TROUT IN RELATION TO SUPERSATURATION OF

    E-Print Network [OSTI]

    : VOL. 69, NO.4, 1971. Several nuclear power plants have been pro- posed for the Columbia River quality criteria for the Columbia River. It therefore contracted the Bureau of Commercial Fisheries (BCF; pres- ently designated as NMFS) to determine the changes in tolerance of juvenile salmon and trout

  3. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    SciTech Connect (OSTI)

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfish Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.

  4. Development of a rapid and efficient microinjection technique for gene insertion into fertilized salmonid eggs

    SciTech Connect (OSTI)

    Chandler, D.P.; Welt, M.; Leung, F.C.

    1990-10-01

    An efficient one-step injection technique for gene insertion into fertilized rainbow trout (Oncorhynchus mykiss) eggs is described, and basic parameters affecting egg survival are reported. Freshly fertilized rainbow trout eggs were injected in the perivitelline space with a recombinant mouse metallothionein-genomic bovine growth hormone (bGH) DNA construct using a 30-gauge hypodermic needle and a standard microinjection system. Relative to control, site of injection and DNA concentration did not affect the egg survival, but injections later than 3--4 hours post fertilization were detrimental. The injection technique permitted treatment of 100 eggs/hr with survivals up to 100%, resulting in a 4% DNA uptake rate as indicated by DNA dot blot analysis. Positive dot blot results also indicated that the injected DNA is able to cross the vitelline membrane and persist for 50--60 days post hatching, obviating the need for direct injection into the germinal disk. Results are consistent with previous transgenic fish work, underscoring the usefulness of the technique for generating transgenic trout and salmonids. 24 refs., 6 figs., 3 tabs.

  5. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2001-08-01

    The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will include the North Fork Malheur River and the Upper Malheur River from Warm Springs Reservoir upstream to the headwaters.

  6. Rainbow: MultiXQuery Optimization Using Materialized Xin Zhang, Katica Dimitrova, Ling Wang, Maged El Sayed, Brian Murphy, Bradford

    E-Print Network [OSTI]

    Rainbow: Multi­XQuery Optimization Using Materialized XML Views Xin Zhang, Katica Dimitrova, Ling) XQuery optimization by query rewriting to use materialized views, (3) Per­ forming multiple query optimization by merging multiple XML queries (XATs) into one global access plan to decide upon materi

  7. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen; Fulton, Carl

    2008-11-20

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  8. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect (OSTI)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found t

  9. Influence of Drought Conditions on Brown Trout Biomass and Size Structure in the Black Hills, South Dakota

    E-Print Network [OSTI]

    of pool habitat can limit the carrying capacity for adult fish (Elliot 1987; Hakala and Hartman 2004). Elliot (2000) found that temperature increased and oxygen decreased as pool size decreased during drought pools during nondrought years (Elliot 2000). The survival of brown trout can be affected by drought

  10. Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta)

    SciTech Connect (OSTI)

    Stubblefield, W.A.; Garrison, T.D.; Hockett, J.R.; Brinkman, S.F.; Davies, P.H.; McIntyre, M.W.

    1997-10-01

    Manganese is a common constituent of point and nonpoint discharges from mining and smelting activities. Available data indicate that Mn is acutely toxic at relatively high aqueous concentrations, when compared with trace metals, and its toxicity is affected by water hardness. Little information is available regarding the chronic toxicity of manganese. Early-life-stage (ELS) tests were conducted to determine the toxicity of manganese to brown trout (Salmo trutta) and to evaluate the extent to which water hardness (ranging from 30 to 450 mg/L as CaCO{sub 3}) affects the chronic toxicity of Mn. Water hardness of significantly affected Mn chronic toxicity, with toxicity decreasing with increasing hardness. Decreased survival was the predominant effect noted in the 30-mg/L hardness experiment, while significant effects on growth (as measured by changes in body weight) were observed in both the 150- and 450-mg/L hardness experiments. Twenty-five percent inhibition concentration (IC25) values, based on the combined endpoints (i.e., survival and body weight), were 4.67, 5.59, and 8.68 mg Mn/L (based on measured Mn concentration) at hardness levels of approximately 30, 150, and 450 mg/L as CaCO{sub 3}, respectively.

  11. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    E-Print Network [OSTI]

    Kwak, Thomas J.

    value to managers due to their potential to maximize intraspecies diversity and species' adaptive capa developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated

  12. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    SciTech Connect (OSTI)

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco x (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation facility to the Imnaha River juvenile migration trap. (3) Monitor the daily catch and biological cha

  13. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    SciTech Connect (OSTI)

    Brannon, E.L.; National Science Foundation (U.S.)

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on promoting the ability for anadromous salmonids to respond to change by assuring that the genetic diversity to facilitate such responses is present. The key in developing an effective recovery program for chinook salmon and steelhead is to recognize that multiple life history forms associated with temperature characterize the species in the Columbia Basin, and recovery measures taken must address the biological requirements of the population unit within the environmental template identified. Unless such measures are given first and highest priority, establishment of biologically self-sustaining populations will be restrained.

  14. Evaluation of behaviour and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen; Bevelhimer, Mark S; Cada, Glenn F; Giza, Daniel; Jacobsen, Paul; McMahon, Brian; Pracheil, Brenda M

    2015-01-01

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmore »turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. Similarly, by combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.« less

  15. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmore »turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.« less

  16. Interannual variation of reach specific migratory success for Sacramento River hatchery yearling late-fall run

    E-Print Network [OSTI]

    Klimley, A. Peter

    a multitude of habitats ­ the more natural run-riffle-pool structure of the upper river, a channelized lowerInterannual variation of reach specific migratory success for Sacramento River hatchery yearling late-fall run Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss

  17. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    SciTech Connect (OSTI)

    Sellman, Jake; Dykstra, Tim

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  18. Department of Art and Art History P.O. Box 248106 Ph: 305-284-2542 Rainbow Building 1540 Levante Ave Coral Gables, Florida 33124-2618 Fax: 305-284-2115

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    UNIVERSITY OF MIAMI Department of Art and Art History P.O. Box 248106 Ph: 305-284-2542 Rainbow art-arh@miami.edu www.miami.edu/art Dear applicant, Thank you for your interest in the University of Miami's Art and Art History department! The department has switched to a new application review process

  19. United States Department of the Interior, Fred A , Seaton, Se.

    E-Print Network [OSTI]

    . Red mouth disease in rainbow trout. !! Headquarters: Eastern Fish Disease Lab" Leetown (PSUL' In and around the rT ,.. ,:rtl r" ,.", #12;be inflamed and even eroded as in the" red mouth" disease in rainbow producing deep necrotic cra- ters lined with red or grayish muscle tissue. In some instances these lesions

  20. Emergence of a secondary rainbow and the dynamical polarization potential for 16O on 12C at 330 MeV

    E-Print Network [OSTI]

    R. S. Mackintosh; Y. Hirabayashi; S. Ohkubo

    2015-02-24

    Background: An anomaly in the elastic scattering of O-16 on C-12 around 300 MeV was resolved by including collective excitations of both nuclei, leading to a secondary rainbow. There is little systematic knowledge of the contribution of collective excitations to the interaction between nuclei, particularly in the overlap region of heavy nuclei. Purpose: To study the dynamic polarization potential (DPP) generated by channel coupling that had been validated for a case where scattering is sensitive to the nuclear potential over a wide radial range; to exhibit evidence of the non-locality due to collective coupling; to validate, or otherwise, the representation of DPPs by uniform renormalization of potentials. Methods: S-matrix to potential inversion yields local potentials reproducing the elastic channel S-matrix of coupled channel calculations. Subtracting the elastic channel uncoupled potential yields a local L-independent representation of the DPP. The dependence of the DPP on the nature of the coupled states and other parameters can be studied. Results: Local DPPs were found due to the excitation of C-12 and the combined excitation of O-16 and C-12. The radial forms found were very different from uniform renormalization of the potential. Full coupling led to a 10 percent increase in the volume integral of the real potential. Evidence for the non-locality of the underlying formal DPP and the effect of direct coupling between the collective states is found. Conclusions: The local DPP generating the secondary rainbow is found. DPPs have forms depending on the specific excitations and cannot be represented by a uniform renormalization of the potential. The method is useful for study of the contribution of collective excitations to internuclear potentials, concerning which remarkably little is known in general.

  1. Lower Flathead System Fisheries Study, 1986 Interim Report.

    SciTech Connect (OSTI)

    Bradshaw, William H.; DosSantos, Joseph M.; Darling, James M.

    1986-08-01

    We believe our results have clearly shown Kerr hydroelectric operations and operational constraints have negatively affected Flathead River trout and northern pike populations and the aquatic habitat which support them. Even so, it is possible to mitigate many of these impacts and develop a very important fishery. Trout abundance in the lower Flathead averaged only 19 fish per kilometer, the lowest abundance of trout for a river of this size in Montana. Little main channel spawning by trout was observed and most spawning probably occurs in tributaries. Lower river tributaries support resident populations of brook, rainbow, brown, and cutthroat trout; and a small resident population of bull trout is present in the South Fork of the Jocko River. Using weirs, spawning runs of rainbow and brown trout from the main river were monitored entering the Jocko River and the Post/Mission Creek system. Utilization of Crow Creek by main river trout stocks of trout was limited to the 6 km segment below Crow Dam. Evaluations of tributary spawning gravels showed high levels of silt which would suggest poor survival of trout eggs. Excessive harvest in the tributaries was indicated by analysis of age class structure and abundance of trout greater than 200 mm.

  2. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    SciTech Connect (OSTI)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.

  3. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    SciTech Connect (OSTI)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  4. Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.

    SciTech Connect (OSTI)

    Sellman, Jake; Perugini, Carol [Department of Fish, Wildlife, and Parks, Shoshone-Paiute Tribes

    2009-02-20

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water quality issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.

  5. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    SciTech Connect (OSTI)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  6. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  7. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat conditions exist for spring chinook in the Touchet River.

  8. Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo [Idaho Department of Fish and Game

    2009-04-09

    This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

  9. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

  10. Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines

    E-Print Network [OSTI]

    Hontela, Alice

    on Reclaimed Coal Mines in Alberta, Canada L. L. Miller · J. B. Rasmussen · V. P. Palace · G. Sterling · A to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout

  11. FY 2008-2009 F&W Program Accords (MOA) Proposal Review Table 1. Proposal Metadata

    E-Print Network [OSTI]

    . The San Poil River before the construction of Grand Coulee Dam supported a large run of summer and fall Chinook and was famous for its summer steelhead runs. Today the river contains mostly rainbow trout with warm groundwater presence, river ice, and other habitat parameters and preliminary investigations

  12. Journey of the Oncorhynchus.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducingJobs HumanImagingJournal Sign Inof the

  13. Protect and Restore the Upper Lochsa : Annual Progress Report, May 2008 – April 2009.

    SciTech Connect (OSTI)

    Lloyd, Rebecca; Forestieri, David

    2009-08-13

    The Upper Lochsa watersheds included in the project contain critical spawning and rearing habitat for anadromous and resident fish (Clearwater National Forest 1999). Species that depend on the tributary habitat include spring chinook salmon (Oncorhynchus tshawytscha), Snake River summer steelhead (Oncorhynchus mykiss), bull trout (Salvelinus confluentes), and westslope cutthroat trout (Oncorhynchus clarki lewisi). Steelhead and bull trout populations are currently listed as Threatened under the Endangered Species Act (ESA), and westslope cutthroat trout has been petitioned for listing. Both out-of-basin and in-basin factors threaten fish populations in the Lochsa Drainage (Clearwater Subbasin Plan 2003). Out-of-basin factors include the hydroelectric system and ocean conditions, while in-basin factors include a variety of management activities leading to habitat degradation. This project is implemented under Bonneville Power Administration's Fish and Wildlife program in order to meet National Marine Fisheries Service requirements to offset losses caused by the operation of the hydrosystem by improving tributary habitats to promote increased productivity of salmon and steelhead. The Clearwater Subbasin Plan (2003) defines limiting factors to fisheries in the area as watershed disturbances, habitat degradation, sediment, temperature, and connectivity.

  14. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2005-08-01

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

  15. Somewhere over the Rainbow: Editorial introduction

    E-Print Network [OSTI]

    Aerts, Diederik

    Fraassen considers the image of the world, in relation to the scientific image. For him, there are striking differences between the scientific theoretical description of the world and the way it appears to us of `scientific image' and `manifest image'. Others say that all world-pictures are transient, evolve, conflict

  16. First report of introduced African Rainbow Lizard

    E-Print Network [OSTI]

    Carranza, Salvador

    Anolis porcatus GRAY, 1840 occurred, its ecological analogue, the native Hispaniolan Green Anole Anolis House Gecko Hemidactylus frenatus SCHLEGEL, 1936 has displaced on the Christmas Island the endemic and House Gecko Hemidactylus mabouia (MOREAU DE JONNÈS, 1818) were introduced a few de- cades ago

  17. Rainbow Energy Marketing Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp Jump to: navigation, search Name:

  18. Rainbow Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp Jump to: navigation, search

  19. Rainbow, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp Jump to: navigation,

  20. Robert Trout 5295 W. 35th

    E-Print Network [OSTI]

    in marketing power produced by the Federal Columbia River Power System (FCRPS). At both hearings opinions were County during last year's energy crisis, you would have seen sign on every block and in virtually every employees have contributed another $300,000.00 through their Contrib Club and plant matching gift program

  1. GASBUBBLE DISEASE: MORTALITIES OF COHO SALMON, ONCORHYNCHUS KISUTCH,

    E-Print Network [OSTI]

    was circulated by a centrifugal pump (2) with a valve (3) on the effluent side to cause a controlled back to be sucked into the intake side of the recirculation pump. Since this gas ratio did not require injection

  2. Pink salmon (Oncorhynchus gorbuscha) are the most abundant Pacific salmon

    E-Print Network [OSTI]

    for some stock sep- aration. Differences between western Kamchatka populations and eastern Sakhalin Island

  3. Landscape characteristics, land use, and coho salmon (Oncorhynchus kisutch) abundance,

    E-Print Network [OSTI]

    Montgomery, David R.

    . The proportion of total adult coho salmon abundance supported by a specific stream reach was consistent among these habitat variables explained al- most half of the variation in the annual distribution of adult coho salmon versant de la Snohomish. La proportion du nombre total de saumons adultes maintenue par chaque section de

  4. FOOD AND GROWTH PARAMETERS OF JUVENILE CHINOOK SALMON, ONCORHYNCHUS TSHAWYTSCHA,

    E-Print Network [OSTI]

    Dam, where it forms the northern and northeastern boundaries of the Atomic Energy Commission's Hanford and 1 This study was supported by Contract AT(45-1)- 1830 with the United States Atomic Energy Commission. p 2.Ecosystems Department, Battelle Memorial Institute, aClfic Northwest Laboratories, Richland

  5. Pacific salmon (Oncorhynchus spp.) experience relatively high mortality

    E-Print Network [OSTI]

    the marine environment, where smaller individu- als are believed to experience higher size at sea, when smaller indi- viduals may not have sufficient energy reserves to survive late fall is proportional to fish body length (Francis, 1990; Ricker, Early marine growth in relation to marine

  6. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.

    SciTech Connect (OSTI)

    Lovrak, Jon (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Ford, WA); Combs, Mitch (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Kettle Falls, WA)

    2004-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2003 Fourth Annual Two Rivers Trout Derby was again a great success. The harvest and data collection were the highest level to date with 1,668 rainbow trout and 416 kokanee salmon caught. The fishermen continue to praise the volunteer net pen program and the hatchery efforts as 90% of the rainbows and 93% of the kokanee caught were of hatchery origin (Lee, 2003).

  7. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program; 2002 Annual Report.

    SciTech Connect (OSTI)

    Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

    2003-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2002 Third Annual Two Rivers Trout Derby was again a great success with 529 rainbow trout and 80 kokanee salmon caught. The fishermen had a lot of praise for the volunteer net pen program and the hatchery efforts as 84% of the rainbows and 62% of the kokanee caught were of hatchery origin (Lee, 2002).

  8. Feeding rates, digestibility, proximate body composition, and metabolism in the gilthead seabream, Sparus aurata L. (Pisces, Sparidae) 

    E-Print Network [OSTI]

    Seidman, Ephraim Ross

    1983-01-01

    . (grams wet weight fish) ' day ' 100% and determined to be negative power functions of weight: C = 22. 09 W ' and C = 2. 23 W ' ". Digesti- ma&nt bility coefficients for food consumed at maximum and intermediate feeding rates were 52. 3 and 58. 3...-unit-weight is proportional to weight (W) to the -0. 25 power. or W ' (Elliott 1976). However, Kato (1970) found an exponent of weight much nearer zero, %. 05, for rainbow trout. Closely related to the concept of C is the idea of C, or maintenance max mala( consumption...

  9. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    SciTech Connect (OSTI)

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in 1997, with 97 percent of tag recoveries from rainbow trout coming from below Grand Coulee Dam. High water years appear to have substantial entrainment impacts on salmonids. The 1998 salmonid harvest has improved from the previous two years, due to the relatively water friendly year of 1998, from the harvest observed in the 1996-1997 high water years, which were particularly detrimental to the reservoir salmonid fisheries. Impacts from those water years are still evident in the reservoir fish populations. Analysis of historical relative species abundance, tagging data and hydroacoustical studies, indicate that hydro-operations have a substantial influence on the annual standing crop of reservoir salmonid populations due to entrainment losses, and limited prey species recruitment, due to reservoir elevation level fluctuation, and corresponding reproductive success.

  10. Kootenay Lake Fertilization Experiment, Year 15 (North Arm) and Year 3 (South Arm) (2006) Report

    SciTech Connect (OSTI)

    Schindler, E.U.; Sebastian, D.; Andrusak, G.F.

    2009-07-01

    This report summarizes results from the fifteenth year (2006) of nutrient additions to the North Arm of Kootenay Lake and three years of nutrient additions to the South Arm. Experimental fertilization of the lake has been conducted using an adaptive management approach in an effort to restore lake productivity lost as a result of nutrient uptake in upstream reservoirs. The primary objective of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are the main food source for Gerrard rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus). The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to the North Arm in 2006 was 44.7 tonnes of P and 248.4 tonnes of N. The total fertilizer load added to the South Arm was 257 tonnes of nitrogen; no P was added. Kootenay Lake has an area of 395 km{sup 2}, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. Kootenay Lake is a monomictic lake, generally mixing from late fall to early spring and stratifying during the summer. Surface water temperatures generally exceed 20 C for only a few weeks in July. Results of oxygen profiles were similar to previous years with the lake being well oxygenated from the surface to the bottom depths at all stations. Similar to past years, Secchi disc measurements at all stations in 2006 indicate a typical seasonal pattern of decreasing depths associated with the spring phytoplankton bloom, followed by increasing depths as the bloom gradually decreases by the late summer and fall. Total phosphorus (TP) ranged from 2-7 {micro}g/L and tended to decrease as summer advanced. Over the sampling season dissolved inorganic nitrogen (DIN) concentrations decreased, with the decline corresponding to nitrate (the dominant component of DIN) being utilized by phytoplankton during summer stratification. Owing to the importance of epilimnetic nitrate that is required for optimal phytoplankton growth discrete depth water sampling occurred in 2006 to measure more accurately changes in the nitrate concentrations. As expected there was a seasonal decline in nitrate concentrations, thus supporting the strategy of increasing the nitrogen loading in both arms. These in-season changes emphasize the need for an adaptive management approach to ensure the nitrogen to phosphorus (N:P) ratio does not decrease below 15:1 (weight:weight) during the fertilizer application period. Phytoplankton composition determined from the integrated samples (0-20m) was dominated by diatoms, followed by cryptophytes and chrysophytes. The contribution of cryptophytes to total biomass was higher in 2006 than in 2005. Cryptophytes, considered being edible biomass for zooplankton and Daphnia spp., increased in 2006. Phytoplankton in the discrete depth samples (2, 5, 10, 15 and 20m) demonstrated a clear north to south gradient in average phytoplankton density and biomass among the three stations sampled, with highest values at the North Arm station (KLF 2) and lowest values in the most southern station in the South Arm (KLF 7). Populations were dominated by flagellates at all stations and depths in June and July, then dominated by diatoms in August and September in the North and South arms of the lake. There were no large bluegreen (cyanobacteria) populations in either arm of the lake in 2006. Seasonal average zooplankton abundance and biomass in both the main body of the lake and in the West Arm increased in 2006 compared to 2005. Zooplankton density was numerically dominated by copepods and biomass was dominated by Daphnia spp. The annual average mysid biomass data at deep stations indicated that the North Arm of Kootenay Lake was more productive than the South Arm in 2006. Mysid densities increased through the summer and declined in the winter; mean whole lake values remain within prefertilization densities. Kokanee escapement to Meadow Creek declined in 2006 to approximately 400,000 spawners. The Lardeau River escapement also declined wit

  11. EA-296-A Rainbow Energy Mrketing Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to export electric energySvcsEmeraTexMex to-AMarketing

  12. EA-296-B Rainbow Energy Marketing Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to export electric energySvcsEmeraTexMex

  13. WHIRLING DISEASE OF TROUTS CAUSED BY Myxosoma cerebralis

    E-Print Network [OSTI]

    Ridge, TN 37831-6036, USA ABSTRACT Hydroelectric power provides a cheap source of electricity with few

  14. Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.

    SciTech Connect (OSTI)

    Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

    1997-05-01

    The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

  15. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    SciTech Connect (OSTI)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  16. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  17. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2000 Annual Report.

    SciTech Connect (OSTI)

    Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

    2001-03-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake.

  18. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.

    SciTech Connect (OSTI)

    Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

    2002-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2001 fishing season has been especially successful with great fishing for both rainbow and kokanee throughout Lake Roosevelt. The results of the Two Rivers Fishing Derby identified 100 percent of the rainbow and 47 percent of the kokanee caught were of hatchery origin.

  19. Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    This report examines the results from the eleventh and twelfth years (2002 and 2003) of the Kootenay Lake fertilization experiment. Experimental fertilization has occurred with an adaptive management approach since 1992 in order to restore productivity lost as a result of upstream dams. One of the main objectives of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are a main food source for Gerrard rainbow trout (Oncorhynchus mykiss). Kootenay Lake is located between the Selkirk and Purcell mountains in southeastern British Columbia. It has an area of 395 km2, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to Kootenay Lake in 2002 and 2003 was similar to that added from 1992 to 1996. After four years of decreased fertilizer loading (1997 to 2000), results indicated that kokanee populations had declined, and the decision was made to increase the loads again in 2001. The total load of fertilizer in 2002 was 47.1 tonnes of phosphorus and 206.7 tonnes of nitrogen. The total fertilizer load in 2003 was 47.1 tonnes of phosphorus and 240.8 tonnes of nitrogen. Additional nitrogen was added in 2003 to compensate for nitrogen depletion in the epilimnion. The fertilizer was applied to a 10 km stretch in the North Arm from 3 km south of Lardeau to 3 km south of Schroeder Creek. The maximum surface water temperature in 2002, measured on July 22, was 22 C in the North Arm and 21.3 C in the South Arm. In 2003, the maxima were recorded on August 5 at 20.6 C in the North Arm and on September 2 at 19.7 C in the South Arm. The maximum water temperature in the West Arm was 18.7 C on September 2, 2003. Kootenay Lake had oxygen-saturated water throughout the sampling season with values ranging from about 11-16 mg/L in 2002 and 2003. In both years, Secchi depth followed the expected pattern for an oligo-mesotrophic lake of decreasing in May, June, and early July, concurrent with the spring phytoplankton bloom, and clearing again as the summer progressed. Total phosphorus (TP) ranged from 2-11 {micro}g/L in 2002 and 2-21 {micro}g/L in 2003. With average TP values generally in the range of 3-10 {micro}g/L, Kootenay Lake is considered to be an oligotrophic to oligo-mesotrophic lake. Total dissolved phosphorus (TDP) followed the same seasonal trends as TP in 2002 and 2003 and ranged from 2-7 {micro}g/L in 2002 and from 2-10 {micro}g/L in 2003. Total nitrogen (TN) ranged from 90-380 {micro}g/L in 2002 and 100-210 {micro}g/L in 2003. During both the 2002 and 2003 sampling seasons, TN showed an overall decline in concentration with mid-summer and fall increases at some stations, which is consistent with previous years results. Dissolved inorganic nitrogen (DIN) concentrations showed a more pronounced declining trend over the sampling season compared with TN, corresponding to nitrate (the dominant component of DIN) being used by phytoplankton during summer stratification. DIN ranged from 7-176 {micro}g/L in 2002 and from 8-147 {micro}g/L in 2003. During 2003, discrete depth sampling occurred, and a more detailed look at the nitrate concentrations in the epilimnion was undertaken. There was a seasonal decline in nitrate concentrations, which supports the principle of increasing the nitrogen loading and the nitrogen to phosphorus (N:P) ratio during the fertilizer application period. Chlorophyll a (Chl a) concentrations in Kootenay Lake were in the range of 1.4-5.1 {micro}g/L in 2002 and 0.5-4.9 {micro}g/L in 2003. Over the sampling season, Chl a at North Arm stations generally increased in spring corresponding with the phytoplankton bloom, decreased during the summer, and increased again in the fall with mixing of the water column. The trend was similar, but less pronounced, at South Arm stations in these years, and spring Chl a concentrations were lower. During 2002, total algal biomass averaged during June, July and August was lower in the North

  20. Application to Export Electric Energy OE Docket No. EA-296-B...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Rainbow Energy Marketing Corp Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp Application from Rainbow Energy Marketing Corp to export...

  1. EFFECTS OF SEEDING DENSITY OF PINK SALMON, ONCORHYNCHUS GORBUSCHA, EGGS ON WATER CHEMISTRY; FRY

    E-Print Network [OSTI]

    ammonia (NHs + NH4 +) production and oxygen consumption rates per alevin generally increased throughout oxygen consumption was 0.028 mg/h per alevin. The rate of ammonia production and oxygen consumption per consumption, 2) ammonia production, 3) physical characteristics of fry, 4) survival of fry, and 5) time

  2. Barriers for steelhead (Oncorhynchus mykiss) smolt migration through the lower flood channel of Alameda Creek

    E-Print Network [OSTI]

    Cervantes-Yoshida, Kristina

    2009-01-01

    and depth levels were not sufficient for smolt migration atmigration (e.g. temperature, cover from predation, depth). Imigration. Upon gathering field data, I plotted my data and noted average temperatures, slopes, and depths

  3. Population genetic structure of Oncorhynchus mykiss in the Santa Ynez River, California John Carlos Garza

    E-Print Network [OSTI]

    microsatellite marker loci were analyzed at multiple scales to investigate ancestry, migration and population significant differentiation between all four of these primary population samples in all analyses. However, migration was evident between Salsipuedes and Hilton Creeks, as well as from Santa Cruz Creek to both

  4. In Asia, there are two distinct types of chum salmon (Oncorhynchus

    E-Print Network [OSTI]

    - ing Kamchatka, the Sea of Okhotsk, the east coast of Sakhalin Island, and the Amur River. Later, and populations from Pri- morye, Sakhalin Island, and north- east Russia were the most distinct. Microsatellite

  5. Fish Bulletin No. 17. Sacramento-San Joaquin Salmon (Oncorhynchus tschawytscha) Fishery of California

    E-Print Network [OSTI]

    Clark, G H

    1929-01-01

    of Salmon by Stations on Sacramento River Fig. 31 Fig. 32Commissioners' Reports. Sacramento, California. Publishedon the Egg Yield of Sacramento River King Salmon. California

  6. TYPE, QUANTITY, AND SIZE OF FOOD OF PACIFIC SALMON (ONCORHYNCHUS) IN

    E-Print Network [OSTI]

    increasing for the larger invertebrate species as predator size increased. Rate of increase in mean length species, with fry of pink salmon, Oncor1tyn- elms gorbuscha, and churn salmon, O. keta, migrating to sea

  7. Spawning Areas and Abundance of Chinook Salmon (Oncorhynchus tsha>vytscha)

    E-Print Network [OSTI]

    of the main river. Over the past 60 years, the construction of dams has inundated, impeded, or blocked access. Important spawning areas are listed and charted in this report according to their past use (before 1965 of the main stem are also given. Former and present levels of abundance are listed according to three major

  8. Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka

    E-Print Network [OSTI]

    Gross, Mart

    and publishes its results on the Red List of Threatened Species. However, the focus is on the species level habitat loss, dams, hatcheries, and changing ocean conditions. Conclusions/Significance: Although sockeye, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation

  9. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect (OSTI)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  10. TIME OF MIGRATION AND AGE GROUP STRUCTURE OF SOCKEYE SALMON (ONCORHYNCHUS NERKA) SPAWNING POPULATIONS IN THE

    E-Print Network [OSTI]

    by age in the run and on the spawning grounds was also studied. Daily tagging on the Naknek River POPULATIONS IN THE NAKNEK RIVER SYSTEM, ALASKA 1 By RICHARD R. STRATY, Fishery Biologist (Research) BUREAU nerka) migration to the Naknek River system, Alaska, was studied to determine to what extent major

  11. Juvenile Chinook Salmon (Oncorhynchus tshawytscha) in and Around the San Francisco Estuary

    E-Print Network [OSTI]

    Williams, John G.

    2012-01-01

    vary strongly by run and river of origin; surprisingly fewplan, Feather River Hatchery spring-run Chinook salmonmostly fall-run, rear to Mokelumne River. Coleman National

  12. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    SciTech Connect (OSTI)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  13. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

    2012-04-01

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, the average fish length remained relatively consistent (132 {+-} 54 mm), after which average lengths increased to 295 {+-} 148 mm for mid-November though early December. From mid-December through January the average fish length decreased to 151 {+-} 76 mm. Milling in front of the WTC tower was the most common fish behavior observed throughout the study period. Traversing along the front of the tower, east-to-west and west-to-east, was the next common behavior. The percentage of fish events showing movement from the forebay to the tower or from the tower to the forebay was generally low throughout the spring, summer, and early fall (0 to 30% for both directions combined, March through early November). From mid-November 2010 through the end of the study (January 31, 2011), the combined percentages of fish moving into and out of the tower were higher (25 to 70%) than during previous months of the study. Schooling behavior was most distinct in the spring. Schooling events were present in 30 to 96% of the fish events during that period, with a peak on May 19. Schooling events were also present in the summer, but at lower numbers. With the exception of some schooling in mid-December, few to no schooling events were observed in the fall and winter months. Diel distributions for schooling fish during spring and fall months indicate schooling was concentrated during daylight hours and no schooling was observed at night. However, in December, schooling occurred at night, after midnight, and during daylight hours. Predator activity, most likely bull trout or rainbow trout according to a USACE biologist, was observed during late spring, when fish abundance index and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months.

  14. Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).

    SciTech Connect (OSTI)

    Polacek, Matt

    2009-07-15

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in the epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371 rainbow trout, and 509 yellow perch were harvested from Banks Lake in 2008. No kokanee were reported in the creel; however, local reports indicated that anglers were targeting and catching kokanee. The economic benefit of the Banks Lake fishery was estimated at $2,288,005 during 2008. Abundance estimates from the hydroacoustic survey in July were 514,435 lake whitefish and 10,662 kokanee, with an overall abundance estimate of 626,061 limnetic fish greater than 100 mm. When comparing spring fry, fall fingerling and yearling net pen release strategies of kokanee, 95% were of hatchery origin, with the highest recaptures coming from the fall fingerling release group.

  15. Coeur d'Alene Tribe Fisheries Program Research, Monitoring and Evaluation Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    SciTech Connect (OSTI)

    Vitale, Angelo; Lamb, Dave; Peters, Ronald

    2002-11-01

    Westslope cutthroat trout (Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) are currently of special concern regionally and are important to the culture and subsistence needs of the Coeur d'Alene Tribe. The mission of the Coeur d'Alene Tribe Fisheries Program is to restore and maintain these native trout and the habitats that sustain them in order to provide subsistence harvest and recreational fishing opportunities for the Reservation community. The adfluvial life history strategy exhibited by westslope cutthroat and bull trout in the Lake Coeur d'Alene subbasin makes these fish susceptible to habitat degradation and competition in both lake and stream environments. Degraded habitat in Lake Coeur d'Alene and its associated streams and the introduction of exotic species has lead to the decline of westslope cutthroat and listing of bull trout under the endangered species act (Peters et al. 1998). Despite the effects of habitat degradation, several streams on the Reservation still maintain populations of westslope cutthroat trout, albeit in a suppressed condition (Table 1). The results of several early studies looking at fish population status and habitat condition on the Reservation (Graves et al. 1990; Lillengreen et al. 1993, 1996) lead the Tribe to aggressively pursue funding for habitat restoration under the Northwest Power Planning Council's (NWPPC) resident fish substitution program. Through these efforts, habitat restoration needs were identified and projects were initiated. The Coeur d'Alene Tribe Fisheries Program is currently involved in implementing stream habitat restoration projects, reducing the transport of sediment from upland sources, and monitoring fish populations in four watersheds on the Coeur d'Alene Reservation (Figure 1). Restoration projects have included riparian plantings, addition of large woody debris to streams, and complete channel reconstruction to restore historical natural channel forms. In addition, ponds have been constructed to trap sediment from rill and gully erosion associated with agricultural practices, and to provide flow enhancement and ameliorate elevated stream temperatures during the summer base flow period. The implementation of restoration efforts that target the key habitats and lifestages for resident westslope cutthroat trout on the Coeur d'Alene Reservation is one means the Tribe is using to partially mitigate for lost anadromous fisheries. In this context, restoration is consistent with the definition provided by Ebersole et al. (1997), who described stream restoration as the reexpression of habitat capacity in a stream system. At the reach scale, habitat capacity is affected by biotic (e.g., riparian vegetation) and physical (e.g., flooding) processes. Superimposed on the natural biotic and physical processes are anthropogenic stressors (e.g., logging, roads and grazing) that suppress habitat capacity and can result in simplified, degraded stream reaches. The effectiveness of habitat restoration, measured as an increase in native trout abundance, is dependent on reducing limiting factors (e.g., passage barriers, high water temperatures, sediment transport from source areas) in areas that are critical for spawning and rearing lifestages. This plan outlines a monitoring strategy to help determine the effectiveness of specific restoration/enhancement treatments and to track the status of trout populations in four target watersheds.

  16. Spokane Tribal Hatchery, 2002 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.

    2003-03-01

    The Spokane Tribal Hatchery (Galbraith Springs) project originated from the Northwest Power Planning Council (NPPC) 1987 Columbia Basin Fish and Wildlife Program. The goal of this project is to aid in the restoration and enhancement of the Lake Roosevelt and Banks Lake fisheries adversely affected by the construction and operation of Grand Coulee Dam. The objective is to produce kokanee salmon and rainbow trout for release into Lake Roosevelt for maintaining a viable fishery. The goal and objective of this project adheres to the NPPC Resident Fish Substitution Policy and specifically to the biological objectives addressed in the NPPC Columbia River Basin Fish and Wildlife Program to mitigate for hydropower related fish losses in the blocked area above Chief Joseph/Grand Coulee Dams.

  17. Sherman Creek Hatchery; 1995-1996 Annual Report.

    SciTech Connect (OSTI)

    Combs, Mitch [Washington Dept. of Fish and Wildlife, Olympia, WA (United States). Hatcheries Program

    1997-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations of the SCH have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were implemented to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary change has been to replace the kokanee fingerling program with a kokanee yearling (post smolt) program. The second significant change has been to rear 120,000 rainbow trout fingerling at SCH from July through October to enable the Spokane Tribal Hatchery (STH) to rear additional kokanee for the yearling program.

  18. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.

    SciTech Connect (OSTI)

    Mendel, Glen Wesley; Trump, Jeremy; Karl, David

    2002-12-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

  19. Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1992 annual report.

  20. Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.

    SciTech Connect (OSTI)

    Lovrak, Jon; Ward, Glen

    2004-01-01

    Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with kokanee production. Fish food, materials, and other supplies associated with this program are also funded by BPA. Other funds from BPA will also improve water quality and supply at the Ford Hatchery, enabling the increased fall kokanee fingerling program. Monitoring and evaluation of the Ford stocking programs will include existing WDFW creel and lake survey programs to assess resident trout releases in trout managed waters. BPA is also funding a creel survey to assess the harvest of hatchery kokanee in Banks Lake.

  1. Dworshak Dam Impacts Assessment and Fisheries Investigation, 1991-1992 Progress Report.

    SciTech Connect (OSTI)

    Maiolie, Melo; Elam, Steve

    1993-11-01

    Lake Pend Oreille, 38,000 hectares, is Idaho`s largest natural lake. Fisheries for kokanee Onchorynchus nerka, rainbow trout Onchorynchus mykiss, and bull trout Salvelinus confluentus have gone through major declines over the last 40 years. To date, the decline in kokanee abundance has not been fully explained. Water level management may be the single largest contributing factor to this decline. Two aspects of water level management appear critical. Dropping water level once kokanee spawning has occurred wall correlated with poor fishery harvest five years later (r = -0.71) (alpha = 0.005). Secondly, dropping the water level more than 2 m immediately before spawning leaves wave-washed gravel high on the bank and forces kokanee to spawn in low quality substrates, which again reduces survival. Changes in water level management coincided with the sharp declines in the kokanee fishery during the 1960s. Although the water level has been stabilized once spawning has occurred, the deep drawdowns resulting in poor spawning substrates continues to cause problems for the kokanee population. Recognizing the importance of these two factors gives hope that changes in water management can reverse the 30-year trend of declining kokanee populations before they are lost from the system. The authors recommend an experimental test of higher winter lake elevation for several years to document potential changes in kokanee abundance.

  2. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d’Alene Reservation : 2007 Annual Report.

    SciTech Connect (OSTI)

    Firehammer, Jon A.; Vitale, Angelo J.; Hallock, Stephanie A.

    2009-09-08

    Historically, the Coeur d'Alene Indian Tribe depended on runs of anadromous salmon and steelhead along the Spokane River and Hangman Creek, as well as resident and adfluvial forms of trout and char in Coeur d'Alene Lake, for survival. Dams constructed in the early 1900s on the Spokane River in the City of Spokane and at Little Falls (further downstream) were the first dams that initially cut-off the anadromous fish runs from the Coeur d'Alene Tribe. These fisheries were further removed following the construction of Chief Joseph and Grand Coulee Dams on the Columbia River. Together, these actions forced the Tribe to rely solely on the resident fish resources of Coeur d'Alene Lake for their subsistence needs. The Coeur d'Alene Tribe is estimated to have historically harvested around 42,000 westslope cutthroat trout (Oncorhynchus clarki lewisi) per year (Scholz et al. 1985). In 1967, Mallet (1969) reported that 3,329 cutthroat trout were harvested from the St. Joe River, and a catch of 887 was reported from Coeur d'Alene Lake. This catch is far less than the 42,000 fish per year the tribe harvested historically. Today, only limited opportunities exist to harvest cutthroat trout in the Coeur d'Alene Basin. It appears that a suite of factors have contributed to the decline of cutthroat trout stocks within Coeur d'Alene Lake and its tributaries (Mallet 1969; Scholz et al. 1985; Lillengreen et al. 1993). These factors included the construction of Post Falls Dam in 1906, major changes in land cover types, impacts from agricultural activities, and introduction of exotic fish species. The decline in native cutthroat trout populations in the Coeur d'Alene basin has been a primary focus of study by the Coeur d'Alene Tribe's Fisheries and Water Resources programs since 1990. The overarching goals for recovery have been to restore the cutthroat trout populations to levels that allow for subsistence harvest, maintain genetic diversity, and increase the probability of persistence in the face of anthropogenic influences and prospective climate change. This included recovering the lacustrine-adfluvial life history form that was historically prevalent and had served to provide both resilience and resistance to the structure of cutthroat trout populations in the Coeur d'Alene basin. To this end, the Coeur d'Alene Tribe closed Lake Creek and Benewah Creek to fishing in 1993 to initiate recovery of westslope cutthroat trout to historical levels. However, achieving sustainable cutthroat trout populations also required addressing biotic factors and habitat features in the basin that were limiting recovery. Early in the 1990s, BPA-funded surveys and inventories identified limiting factors in Tribal watersheds that would need to be remedied to restore westslope cutthroat trout populations. The limiting factors included: low-quality, low-complexity mainstem stream habitat and riparian zones; high stream temperatures in mainstem habitats; negative interactions with nonnative brook trout in tributaries; and potential survival bottlenecks in Coeur d'Alene Lake. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery (NWPPC Program Measures 10.8B.20). These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fisheries habitat; (3) Conduct an educational/outreach program for the general public within the Coeur d'Alene Reservation to facilitate a 'holistic' watershed protection process; (4) Develop an interim fishery for tribal and non-tribal members of the reservation through construction, operation and maintenance of five trout ponds; (5) Design, construct, operate and maintain a trout production facility; and (6) Implement a monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. These activities provide partial mitigation for the extirpation of anadromous fish resources from usual and

  3. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    SciTech Connect (OSTI)

    O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of breakpoints in papillary thyroid cancer (PTC).

  4. Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation

    E-Print Network [OSTI]

    to monitor a target system and its environ- ment, reflect observations into the system's architecture model

  5. Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporation | DepartmentU.S. Subsidiary No.LLC,Marketing

  6. Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporation | DepartmentU.S. Subsidiary

  7. Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporation | DepartmentU.S. SubsidiaryMarketing Corp |

  8. Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department of EnergyDepartment ofEnergy

  9. Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department of EnergyDepartment ofEnergyMarketing

  10. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    due to insufficient instream flow releases. Report preparedhead of Old River barrier on flow and water quality in theeffects of San Joaquin River flows and Delta export rates

  11. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    to the State Water Resources Control Board. Stockton (CA):Central Valley Water Resources Control Board. San Anselmo (the California Water Resources Control Board in compliance

  12. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    was indirectly corroborated by Barnett– Johnson and others (Ca ratios. Collectively Barnett–Johnson Ca and others (2008)Aquatic Science 57:915–927. Barnett–Johnson R, Pearson T,

  13. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    pulse flow of 6,000 (in cfs; U.S. ) for a group of salmoncubic feet per second (cfs; U.S. ) units, simply substitutefor cubic feet per second (cfs; U.S. ) unit calculations.

  14. Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    2013-01-01

    tshawytscha) in the Sacramento–San Joaquin River Delta. [salmon in California’s Sacramento Valley. Climatic ChangeCritical Habitat; Sacramento River Winter-Run Chinook

  15. Nearshore Areas Used by Fry Chinook Salmon, Oncorhynchus tshawytscha, in the Northwestern Sacramento–San Joaquin Delta, California

    E-Print Network [OSTI]

    McLain, Jeff; Castillo, Gonzalo

    2009-01-01

    and survival in the Sacramento-San Joaquin Estuary. In:179. Volume 2. Sacramento (CA): California Department ofFoundation, Davis, CA. Sacramento, (CA): Jones & Stokes,

  16. Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    2013-01-01

    Region. 844 p + appendices. Sommer TR, Nobriga ML, HarrellAquatic Sciences 58:325-333. Sommer T, Harrell W, Nobriga M.Management 26:685-701. Sommer T, Armor C, Baxter R, Breuer

  17. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect (OSTI)

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  18. Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    2013-01-01

    Habitat; Sacramento River Winter-Run Chinook Salmon. VolumeStatus of Sacramento River Winter-run Chinook Salmon. Volumeplasticity in Sacramento River winter-run chinook salmon (

  19. Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)

    E-Print Network [OSTI]

    2012-01-01

    Escaping Adult San Joaquin River Fall-run Chinook Salmon (comparable with Sacramento River fall-run stray rates (i.e.reported a Mokelumne River wild fall-run Chinook stray rate

  20. Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    2013-01-01

    above normal water year brought rain events and winter-runFor example, early rain events in 2006, a wet water year,late-arriving rain events of 2001, a dry water year, showed

  1. Population Genetic Structure and Life History Variability in Oncorhynchus Nerka from the Snake River Basin, 1991-1993 Final Report.

    SciTech Connect (OSTI)

    Waples, Robin S.; Aebersold, Paul B.; Winans, Gary A. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1997-05-01

    A detailed examination of O. nerka from lakes in the Sawtooth Valley of Idaho was undertaken to help guide recovery planning for the endangered Redfish Lake population and to help resolve relationships between resident and anadromous forms.

  2. Irrigation Canals as Sink Habitat for Trout and Other Fishes in a Wyoming Drainage

    E-Print Network [OSTI]

    of mortality for fish in the Rocky Mountain region. Our study looked at how fish were affected by the irrigation canal system in the Smiths Fork, a tributary to the Bear River in western Wyoming. There are two speckled dace Rhinichthys osculus (29% of all fish) and mountain sucker Catostomus platyrhynchus (37

  3. COEUR D'ALENE TRIBE TROUT PRODUCTION FACILITY MASTER PLAN1

    E-Print Network [OSTI]

    The master plan was prepared for Bonneville Power Administration by the Coeur d'Alene Tribe (Project 1990 documents from Bonneville Power Administration's public Web site. Vol. I - www.efw that the Bonneville Power Administration (BPA) implement the proposal in phases to provide interim fishery benefits

  4. Appendix 39 Historic Records of Bull Trout Occurrence in the North and

    E-Print Network [OSTI]

    , Java, Deerlick, Morrison, Lodgepole, Dolly Varden, Schafer, Granite, Long, Strawberry, and Bowl creeks

  5. Imprinting Salmon and Steelhead Trout for Homing, 1979 Annual Report of Research.

    SciTech Connect (OSTI)

    Slatick, Emil

    1980-08-01

    The National Marine Fisheries Service (NMFS), under contract to the Bonneville Power Administration (BPA), is conducting research on imprinting Pacific salmon and steelhead for homing. Imprinting is defined as a rapid and irreversible learning experience that provides fish with the ability to return to natal streams or a preselected site. The ability to activate the imprint mechanism at the proper time should assure a suitable homing cue that coupled with transportation (Park et al. 1979) will result in high smolt survival and ensure adequate returns to the homing site or hatchery. in our study, we use single imprints and sequential imprints. Single imprinting is cueing fish to a unique, single water supply prior to release. Various mechanical stimuli may be used in combination with the unique water source to achieve the single imprint. Sequential imprinting is cueing fish to two or more water sources in a step-by-step process which establishes a series of signposts for the route ''home''. The primary objectives of our homing research are as follows: (1) Determine whether a single imprint or a series of stimuli (sequential imprinting) are necessary to assure homing for various stocks of salmonids. (2) Determine a triggering mechanism to activate the homing imprint in salmonids. (3) Determine the relationship between the physiological condition of fish (gill Na+-K+ ATPase activity , etc.) and their ability to imprint. Our study began in 1978, and the first year's activities were reported by Slatick et al. (1979) and Sovotny and Zaugg (1979). This report covers the research for the second year (1979). The specific activities of the second year's research were divided into three categories: (1) mark and release additional groups of juvenile salmonids to test imprinting techniques; (2) determine health profiles and monitor smoltification status of juvenile test fish; and (3) monitor and evaluate adult returns, from juveniles marked and released in 1978, to determine the efficacy of the imprinting techniques.

  6. Genetic Investigation Of The Pacific Trout Complex: From Pedigrees To Phylogenies

    E-Print Network [OSTI]

    Abadía-Cardoso, Alicia

    2014-01-01

    Rexroad III CE, Palti Y, Gahr SA, Vallejo RL (2008) A secondRexroad III CE, Palti Y, Gahr SA, Vallejo RL (2008) A second

  7. Appendix 67 A Review of Bull Trout Life-History and Habitat Use in Relation to

    E-Print Network [OSTI]

    are about 5-6 mm in diameter and optimal incubation temperature ranges from 2 to 4°C. In the wild, fry and runs. They maintain focal sites near the bottom and are strongly associated with instream cover, and sometimes at an early age. The fluvial form lives as an adult in large rivers but spawns in small tributary

  8. PREDICTING HABITAT RESPONSE TO FLOW USING GENERALIZED HABITAT MODELS FOR TROUT IN ROCKY MOUNTAIN STREAMS

    E-Print Network [OSTI]

    Bledsoe, Brian

    The Nature Conservancy, Fort Collins, Colorado USA ABSTRACT Dams and water diversions can dramatically alter the hydraulic habitats of stream ecosystems. Predicting how water depth and velocity respond to flow alteration is possible using hydraulic models, such as Physical Habitat Simulation (PHABSIM); however, such models

  9. Kalispel Tribe of Indians joins federal agencies to protect bull trout and other species

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducingJobs2015Administration shows

  10. Transactions of the American Fisheries Society 141:907918, 2012 C American Fisheries Society 2012

    E-Print Network [OSTI]

    Neff, Bryan D.

    salmon) Oncorhynchus masou, and Sakhalin taimen (also known as Japanese huchen) Hucho perryi, either

  11. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the fo

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monume

  14. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild Chinook salmon and 2.4-fold for hatchery steelhead as discharge increased between 50 kcfs and

  15. RECORD of Categorical Exclusion (CX) determination: Office of...

    Broader source: Energy.gov (indexed) [DOE]

    of Electricity Delivery and Energy Reliability (OE): Application from Rainbow Energy Marketing Corp to export electric energy to Canada. EA-296-B Rainbow Energy CN.pdf More...

  16. Application to Export Electric Energy OE Docket No. EA-296-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporation Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation Application from Rainbow Energy Marketing Corporation to export...

  17. Experimental observation of acoustic sub-harmonic diffraction...

    Office of Scientific and Technical Information (OSTI)

    it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery...

  18. Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.

    SciTech Connect (OSTI)

    Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

    2002-01-01

    Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or upstream. Fish were also swimming faster and straighter when the lights were on compared to off. (3) The behavioral results were most pronounced for medium- and large-sized fish at night. Medium-sized fish, based on acoustic target strength, were similar to the size of kokanee and rainbow trout released upstream of Grand Coulee Dam. Based on this study and general review of strobe lights, the researchers recommend several modifications and enhancements to the follow-on study in 2002. The recommendations include: (1) modifying the study design to include only the 24-hr on/off treatments, and controlling the discharge at the third powerplant, so it can be included as a design variable; and (2) providing additional data by beginning the study earlier (mid-May) to better capture the kokanee population, deploying an additional splitbeam transducer to sample the region close to the lights, and increasing the number of lights to provide better definition of the lit and unlit region.

  19. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel

    2009-04-03

    A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidly discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.

  20. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  1. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  2. PRESENTATION TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STRONG 303(d) Listing of Broken Bow Tailwaters Impairment Impaired Use Cadmium Fish and Wildlife Propagation - Trout Fishery Lead Fish and Wildlife Propagation - Trout...

  3. Arrow Lakes Reservoir Fertilization Experiment, Technical Report 1999-2004.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973) contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community responded with a shift in species and zooplankton biomass was more favorable for kokanee. With more productive lower trophic levels, the kokanee population increased in abundance and biomass, resulting in improved conditions for bull trout, one of ALR's piscivorous species.

  4. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    SciTech Connect (OSTI)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.

  5. Juvenile Chinook salmon (Oncorhynchus tshawytscha) growth in off-channel and main-channel habitats on the Sacramento River, CA using otolith increment widths

    E-Print Network [OSTI]

    Limm, Michael P.; Marchetti, Michael P.

    2009-01-01

    in both off- channel ponds and non- natal seasonalet al. 2001), off-channel ponds (e.g. Peterson 1982), natalriverine areas, off-channel ponds, and non-natal seasonal

  6. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    SciTech Connect (OSTI)

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmo

  7. Lake Roosevelt Fisheries Evaluation Program : Lake Whatcom Kokanee Salmon (Oncorhynchus nerka kennerlyi) : Investigations in Lake Roosevelt Annual Report 1999-2000.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.; Tilson, Mary Beth

    2001-07-01

    Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creek net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.

  8. POTENTIAL METHODS TO COOL STREAMS CONTAINING APACHE TROUT IN THE WHITE MOUNTAINS OF ARIZONA AND IMPLICATIONS FOR CLIMATE CHANGE

    E-Print Network [OSTI]

    Bonar, Scott A.

    AND IMPLICATIONS FOR CLIMATE CHANGE by Joy Elizabeth Price Copyright © Joy Elizabeth Price 2013 A Thesis Submitted grateful. #12;4 TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 #12;5 LIST OF TABLES TABLE 1 - Sampled average upstream water temperature, estimated average

  9. Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume I of III; Narrative, 1978-1983 Final Report.

    SciTech Connect (OSTI)

    Slatick, Emil; Gilbreath, Lyle G.; Harmon, Jerrel R. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1988-02-01

    The National Marine Fisheries Service began conducting homing research on Pacific salmon and steelhead. Over 4 million juvenile salmon and steelhead were marked and released, and 23 individual experiments were conducted. The research had the following objectives: (1) develop the techniques for imprinting homing cues while increasing survival of hatchery reared salmonids and (2) provide fishery managers with the information necessary to increase the returns of salmon and steelhead to the Columbia River system and to effectively distribute these fish to the various user groups. Our imprint methods were grouped into three general categories: (1) natural migration imprint from a hatchery of origin or an alternate homing site (by allowing fish to volitionally travel downstream through the river on their seaward journey), (2) single exposure imprinting (cueing fish to a single unique water supply with or without mechanical stimuli prior to transport and release), and (3) sequential exposure imprinting (cueing fish to two or more water sources in a step-by-step process to establish a series of signposts for the route ''home''). With variations, all three techniques were used with all salmonid groups tested: coho salmon, spring and fall chinook salmon, and steelhead. For the single and sequential imprint, fish were transported around a portion of their normal migration route before releasing them into the Columbia River.

  10. Relationship between lake trout spawning, embryonic survival, and currents: A case of bet hedging in the face of environmental stochasticity?

    E-Print Network [OSTI]

    Marsden, Ellen

    features could dramatically affect water current velocity and direction, leading to upwelling, locally increased or decreased current velocity, sediment resuspension/scouring and wake zones (Bronte et al., 2007

  11. INVASION BY NONNATIVE BROOK TROUT IN PANTHER CREEK, IDAHO: ROLES OF HABITAT QUALITY, CONNECTIVITY, AND BIOTIC RESISTANCE

    E-Print Network [OSTI]

    DEDICATION To my wife, Stephanie, and daughter, Rhiannon, for your patience, love, and support. #12;iv. #12;vi TABLE OF CONTENTS DEDICATION ....................................................................

  12. California Trout, Inc. v. FERC, 313 F.3d 1131,1134, 1136 (9th Cir. 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpageProject |University

  13. California Trout, Inc. v. FERC, 313 F.3d 1131,1134,1136 (9th Cir. 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpageProject |UniversityOpen Energy

  14. Research Article Effects of spawning salmon on dissolved nutrients and epilithon

    E-Print Network [OSTI]

    Lamberti, Gary A.

    and freshwater ecosystems. Through- out the northern Pacific Rim, millions of Pacific salmon (Oncorhynchus spp migrations of Pacific salmon (Oncorhynchus spp.) represent a significant nutrient pulse to freshwater. Pacific salmon; salmon-derived nutrients; estuaries; streams; water chemistry; epilithon. Introduction

  15. Dictionary of Upriver Halkomelem, Volume I

    E-Print Network [OSTI]

    Galloway, Brent Douglas

    2009-01-01

    fall Harrison/Chehalis River run of Oncorhynchus nerka::fall Harrison/Chehalis River run of Oncorhynchus nerka'],otherwise the Fraser River runs through at high water'],

  16. Created In 1849, the Department of thr lntf~lor-a d partment of consl'TV lon-Is concerned with tb management, conservation, and development of the Nation's water, nsh, wUdllf , rn1n.ral, r e ,and pan

    E-Print Network [OSTI]

    in Siberi a, Kamchatka, and Sakhalin. In Japan there i s a sixth s pecies of salmon (Oncorhynchus masu

  17. Common Name Scientific Name Status Critical Habitat in AK? Humpback Whale Megaptera novaeangliae Endangered No

    E-Print Network [OSTI]

    Threatened No Lower Columbia River Coho Salmon* Oncorhynchus kisutch Threatened No Hood Canal Summer Run Chum Lepidochelys olivacea Threatened No Upper Columbia River Spring Chinook Salmon* Oncorhynchus tshawytscha Endangered No Snake River Sockeye Salmon* Oncorhynchus nerka Endangered No WHALES PINNIPEDS REPTILES FISH

  18. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    SciTech Connect (OSTI)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection procedure. Data are maintained in computer databases housed at the IDFG Nampa Fisheries Research off

  19. A moderately honorable tale of Sir Lancelot

    E-Print Network [OSTI]

    Mitchener, W. Garrett

    of Camelot on a rainbow paisley forklift because its owner refused to dismount and stand trial properly. 1

  20. An Active, Purposeful Machine That Comes Out at Night to Play -New ... http://www.nytimes.com/2007/10/23/health/23memo.html?8dpc=&_r=1... 1 of 5 6/5/2008 5:23 PM

    E-Print Network [OSTI]

    Mednick, Sara C.

    : the aqua egg over the rainbow one, the paisley over the coral one -- and there are just six eggs in all trumped rainbow but does that mean it trumps paisley? It's hazy. It's hazy, that is, until you sleep on it hierarchy that linked the pairs, paisley over aqua over rainbow, and so on. "We think what's happening

  1. ‘These whites never come to our game. What do they know about our soccer?’ Soccer fandom, race, and the Rainbow Nation in South Africa 

    E-Print Network [OSTI]

    Fletcher, Marc William

    2012-11-28

    South African political elites framed the country’s successful bid to host the 2010 FIFA World Cup in terms of nation-building, evoking imagery of South African unity. Yet, a pre-season tournament in 2008 featuring the ...

  2. Volume I: The Musical Nexus between Medieval Christianity and Tibetan Buddhism: The Analysis of Christopher Theofanidis's Rainbow Body Volume II: Inner Voices for Orchestra

    E-Print Network [OSTI]

    Lee, Lawrence

    2014-01-01

    Lurking behind the medieval drones and a series of non-static, with an incessant drone and no harmonic movement,ways: through the use of drones and through tonal ambiguity.

  3. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Simmons, M.; McKinstry, C.; Cook, C.

    2004-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

  4. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

  5. Acute lethal toxicity of some reference chemicals to freshwater fishes of Scandinavia

    SciTech Connect (OSTI)

    Oikari, A.O.J.

    1987-07-01

    Relevance of the choice of a test organism intended to be representative for a given environment seems to be under continual debate in aquatic ecotoxicology. For instance, it is commonly argue that acute toxicity tests with rainbow trout, the species most often recommended as a standard cold water teleost, were not representative for Nordic countries because the species is an alien in local faunas. A comparative study with several freshwater species was therefore initiated to clarify the validity of this assumption. As a first approximation, standard LC 50 assays were conducted. The species used were chosen only on the basis of their local availability, i.e, they randomly represented the fish fauna of Nordic inland waters. Furthermore, inter-species variation of toxicity response was compared with certain other, quantitatively more important, intra-species sources of variability affecting the toxicity of chemicals. Use of reference toxicants has been recommended as a means of standardizing bioassays. Compounds, characteristic of effluents from the pulp and paper industry, were selected for the present study. The toxicity of organic acids such a phenols and resin acids, as well as that of pupmill effluents, strongly depends on water pH. Because of the possibility that species differences could exist in this respect, effects of water acidity on toxicity of these types of substances to a randomly selected local species was investigated. Finally, as an example of the biological source of assay variability, the effect of yolk absorption was studied with a subsequent crisis period due to moderate starvation under laboratory conditions.

  6. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    SciTech Connect (OSTI)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  7. Umatilla Basin Natural Production Monitoring and Evaluation; 1995-1996 Annual Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Kissner, Paul; Volkman, Jed

    1997-08-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1995 to September 29, 1996. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. The goal was to evaluate the implementation of the Umatilla River Basin fisheries restoration plan with respect to natural production, adult passage, and tribal harvest. An estimated 56.1 river miles (RM) of habitat was inventoried on the lower Umatilla River (RM 0--56.1) from June 4, to August 1, 1996. The majority of the lower River was found to be too polluted and physically altered to provide suitable rearing or migration habitat for salmonids during the summer. High water temperatures, irrigation withdrawals, altered channels, and urban and agricultural pollution all contributed to degrade the lower Umatilla River. Small springs provided cooler waters and created small areas that were suitable for salmonid rearing. The river below the mouth of Mckay Creek (RM 27.2 to 50.6) was also cooler and more suitable to salmonid rearing when water was released from Mckay Dam. Two hundred sixty-three of 1,832 (14.4%) habitat units were electrofished from June 19 to August 29, 1996. The number of natural juvenile salmonids captured between RM 1.5--52.4 follow: (1) 141 juvenile steelhead (including resident rainbow trout; Oncoryhnchus mykiss), (2) 13 mountain whitefish (Prosopium williamsoni, including adults), (3) four chinook salmon (O. tshawytscha), and (4) two coho salmon (O. kisutch). The expanded population estimate for the areas surveyed was 2,445 salmonids. Mean density was 0.147 salmonids/100 square meter. Mean density of fast water habitat types was 4.5 times higher than slow water types (0.358 and 0.079 s/100 m{sup 2}).

  8. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    SciTech Connect (OSTI)

    Asotin County Conservation District

    2008-12-10

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  9. Lake Roosevelt Fisheries Monitoring Progam; Thyroid-Induced Chemical Imprinting in Early Life Stages and Assessment of Smoltification in Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1993 Supplement Report.

    SciTech Connect (OSTI)

    Tilson, Mary Beth; Galloway, Heather; Scholz, Allan T. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

    1994-06-01

    In 1991, two hatcheries were built to provide a kokanee salmon and rainbow trout fishery for Lake Roosevelt as partial mitigation for the loss of anadromous salmon and steelhead caused by construction of Grand Coulee Dam. The Sherman Creek Hatchery, located on a tributary of Lake Roosevelt to provide an egg collection and imprinting site, is small with limited rearing capability. The second hatchery was located on the Spokane Indian Reservation because of a spring water source that supplied cold, pure water for incubating and rearing eggs.`The Spokane Tribal Hatchery thus serves as the production facility. Fish reared there are released into Sherman Creek and other tributary streams as 7-9 month old fry. However, to date, returns of adult fish to release sites has been poor. If hatchery reared kokanee imprint to the hatchery water at egg or swim up stages before 3 months of age, they may not be imprinting as 7-9 month old fry at the time of stocking. In addition, if these fish undergo a smolt phase in the reservoir when they are 1.5 years old, they could migrate below Grand Coulee Dam and out of the Lake Roosevelt system. In the present investigation, which is part of the Lake Roosevelt monitoring program to assess hatchery effectiveness, kokanee salmon were tested to determine if they experienced thyroxine-induced chemical imprinting and smoltification similar to anadromous salmonids. Determination of the critical period for olfactory imprinting was determined by exposing kokanee to different synthetic chemicals (morpholine or phenethyl alcohol) at different life stages, and then measuring the ability to discriminate the chemicals as sexually mature adults. Whole body thyroxine content and blood plasma thyroxine concentration was measured to determine if peak thyroid activity coincided with imprinting or other morphological, physiological or behavioral transitions associated with smoltification.

  10. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume II, Steelhead Stock Summaries, Stock Transfer Guidelines, Information Needs.

    SciTech Connect (OSTI)

    Howell, Philip J.

    1985-07-01

    This report presents brief descriptions of wild and hatchery-raised steelhead trout stocks in the Columbia River Basin. (ACR)

  11. NATURALIZATION OF AMERICAN FISHES IN AUSTRIAN By Franz von Pirko

    E-Print Network [OSTI]

    neighbor- hood of factories discharging waste water and refuse, where both the brook trout and the char

  12. www.planetearth.nerc.ac.uk Autumn 2014 Trout in hot water Biodiversity and big data Bioenergy's carbon footprint Sustainable drainage

    E-Print Network [OSTI]

    Brierley, Andrew

    's carbon footprint · Sustainable drainage Intothe #12;Front cover image courtesy Ben Langford About us NERC to account ­ bioenergy's carbon footprint What's the true cost of growing our fuel? 22 The science

  13. 76 BULLETIN OF THE UNITED STATES FISH COMMISSION. SS*-AMERICAN LANIP-LOCWED SALM(PN A N D LAELE TROUT I N

    E-Print Network [OSTI]

    - loclrecl salmon of North America, which is not a migratory iish, and the . concIitions of` mhosc existence the numhcr, I fouud it contained 4,200,000 eggs. My next fish ma8 the Gadus virens, or the coal-fish of Couch that whiting pol~aoksof 20 pounds weight may be expected to give about 7,000,000 eggs, and coal-fish of 30

  14. Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume III of III; Disease and Physiology Supplements, 1978-1983 Final Report.

    SciTech Connect (OSTI)

    Slatick, Emil; Gilbreath, Lyle G.; Harmon, Jerrel R. (Northwest and Alaska Fisheries Science Centr, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1988-02-03

    The main functions of the National Marine Fisheries Service (NMFS) Aquaculture Task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might affect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. The health status of the stocks was quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will affect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. This report contains five previously published papers.

  15. Study of Disease and Physiology in the 1979 Homing Study Hatchery Stocks: A Supplement to "Imprinting Salmon and Steelhead Trout for Homing", 1979 by Slatick, Gilbreath, and Walch.

    SciTech Connect (OSTI)

    Novotny, Anthony J.; Zaugg, Waldo S.

    1981-09-01

    The National Marine Fisheries Service (NMFS), under contract to the Bonneville Power Administration, is conducting research on imprinting salmon and steelhead for homing (Slatick et al. 1979, 1980; Novotny and Zaugg 1979). The studies were begun with little background knowledge of the effects of disease or certain physiological functions on imprinting and homing in salmonids. Consequently, work aimed at filling this void was begun by the authors in 1978 (Novotny and Zaugg 1979) and continued in 1979. In 1979, we examined random samples of normal populations of homing test fish at the hatcheries to determine the physiological readiness to migrate and adapt to seawater and general fish health. At the Manchester Marine Experimental Station, Manchester, Washington, we determined the survival of samples of the test fish maintained in marine net-pens after release from the hatcheries. Hatcheries and stocks sampled are listed in Table 1.

  16. Steelhead and Chinook Salmon Bioenergetics: Temperature, Ration, and Genetic Effects

    E-Print Network [OSTI]

    Cech, Joseph J Jr.; Myrick, Christopher A

    1999-01-01

    Oncorhynchus mykiss) bioenergetics. Ph.D. Dissertation,L . Johnson. 1992. Fish Bioenergetics Model 2: An UpgradeUniversity of Generalized Bioenergetics Model of Fish Growth

  17. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    and Chinook salmon bioenergetics: temperature, ration andOncorhynchus tshawytscha ) bioenergetics model. CanadianAS, Gross, ML. 1985. Bioenergetics of juvenile salmon during

  18. Ecological Applications, 18(3), 2008, pp. 681700 2008 by the Ecological Society of America

    E-Print Network [OSTI]

    . To determine the consequences of avian predation, we used a bioenergetics approach to estimate the consumption; bioenergetics modeling; Columbia River; dams; larids; mergansers; northern pikeminnow; Oncorhynchus spp

  19. GENERAL INDEX. Ambloplites rupestris, distribution and food............ 256,

    E-Print Network [OSTI]

    , mussels...... ,.............................. '09 chinook salmon, early history and seaward migration. . . . . 66 migration 47,48,49,53,57,60,62, '10 mlscellaueous collections '" , . .. . 42 Oncorhynchus. migratory.... . .. .. . . .. . . .. .. .. . . .. .. .. . . . 18 check, primary

  20. EA-1917-FEA-2012-AppendixB-2012.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Species Listing Status Critical Habitat Protective Regulations Marine and Anadromous Fish Chinook salmon (Oncorhynchus tshawytscha) Lower Columbia River T 62805; 70 FR 37160...

  1. Fish Bulletin No. 68. Common Marine Fishes of California

    E-Print Network [OSTI]

    Roedel, Phil M

    1948-01-01

    36 SKIPJACK Katsuwonus pelamis Relationship: Belongs to the63 Katsuwonus pelamis, 20, 63 keta, Oncorhynchus, 1923 paucispinis, Sebastodes, 95 pelamis, Katsuwonus, 20, 63

  2. Fish Bulletin No. 91. Common Ocean Fishes of the California Coast

    E-Print Network [OSTI]

    Roedel, Phil M

    1953-01-01

    SKIPJACK Katsuwonus pelamis (Linnaeus) Range: CosmopolitanKatsuwonidae, 86 Katsuwonus pelamis, 86 keta, Oncorhynchus,Sebastodes, 121 pelamis, Katsuwonus, 86 peruanus,

  3. Lake Roosevelt Fisheries Monitoring Program; Artificial Imprinting of Lake Roosevelt Kokanee Salmon (Oncorhynchus Nerka) with Synthetic Chemicals: Measurement of Thyroxine Content as an Indicator of the Sensitive Period for Imprinting to Olfactory Cues; 1992 Supplement Report.

    SciTech Connect (OSTI)

    Scholz, Allan T.; White, Ronald J.; Tilson, Mary Beth [Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA (United States)

    1993-09-01

    In 1991, we initiated studies to determine the critical period for thyroxine-induced olfactory imprinting in kokanee salmon. In our preliminary investigation we found that thyroxine [T{sub 4}] levels of Lake Whatcom stock, 1990 year class, kokanee were relatively high in eggs and alevins as compared to post-swimup fry, and peaked at hatch and swimup. Here we report on follow-up studies conducted in 1992 designed to determine if our initial results could be replicated. Additionally, in 1992, we initiated experiments to determine if kokanee could be imprinted to synthetic chemicals--morpholine and phenethyl alcohol--at different life stages. In 1991, whole body thyroxine content [T{sub 4}] was measured in 460 Lake Whatcom stock kokanee and 480 Lake Pend Orielle (Cabinet Gorge) stock kokanee to indicate the critical period for imprinting. Lots of 20 kokanee eggs, alevins and fry from both stocks, reared at the Spokane Tribal hatchery, were collected at weekly intervals from November 1991 to August 1992 and assayed for T{sub 4} content by radioimmunoassay. T{sub 4} levels were monitored in Lake Whatcom stock, 1991 year class fish, from eyed egg (33 days post-fertilization) to fry (248 days post-fertilization) stages. T{sub 4} concentration ({+-} SEM) in eggs was 6.7 {+-} 1.3 rig/g body weight. T{sub 4} peaked on the day of hatch at 13.1 {+-} 2.5 ng/g body weight, then declined to 10.3 {+-} 1.1 ng/g body weight in recently post-hatch alevins. T{sub 4} peaked again at 22.1 {+-} 5.2 ng/g body weight during swimup, then steadily decreased to about 1.0 ng/g body weight in 176-248 day old fry. T{sub 4} levels were monitored in Lake Pend Orielle stock, 1991 year class, fish from the day of fertilization (day 0) to 225 days post-fertilization. T{sub 4} content of eggs was 9.5 {+-} 1.7 ng/g body weight and peaked on the day of hatch (day 53 post-fertilization) at 24.2 {+-} 4.5 ng/g body weight. After declining to 13.0 {+-} 2.9 ng/g body weight on day 81 post-fertilization, T{sub 4} peaked a second time during swimup (88-95 days post-fertilization) at 24.3 {+-} 3.8 ng/g body weight. After swimup, T{sub 4} concentration steadily declined to about 0.6 ng/g body weight in 225 day old post-fertilization fry. Thus, results of our 1992 investigations were consistent with our preliminary 1991 study. In all cases: (1) T{sub 4} concentration was relatively high in eggs and alevins as compared to older fry; and (2) T{sub 4} peaks occurred at hatch and swimup. Blood serum T{sub 4} concentration was measured in 9 month to 21 month-old Lake Whatcom stock, 1990 year class, kokanee from July 1991 to August 1992. T{sub 4} concentrations were low in summer, peaked slightly in October, were low in early winter, then peaked several times between January and May 1992. Thus, the 1990 year class Lake Whatcom kokanee evidenced high T{sub 4} activity from egg to swimup stages in their first year and in the winter and spring of their second year of life. The fish appeared to undergo smolt transformation between 16-18 months old. In 1992, Lake Whatcom (1991 cohort) kokanee were exposed to synthetic chemicals--1,072,000 to morpholine and 1,117,000 to phenethyl alcohol--at different life history stages: (1) eye to hatch; (2) hatch; (3) hatch to swimup; (4) swimup; and (5) post-swimup fry (in February, March, April and May-June). Additionally, Lake Whatcom (1990 cohort) kokanee were exposed to synthetic chemicals--36,000 to morpholine and 51,600 to phenethyl alcohol--at age 16-18 months. Most of these fish were marked and released in Lake Roosevelt in July and August 1992 as part of a field test. A portion of the fish from each group was retained at the Spokane Tribal hatchery until August-October 1993, when behavioral tests will be conducted to determine if the fish imprinted to their exposure odor.

  4. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    SciTech Connect (OSTI)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  5. POPULATION RESPONSES OF COHO AND CHINOOK SALMON TO SEDIMENTATION ASSOCIATED WITH FOREST ROADS IN A COASTAL

    E-Print Network [OSTI]

    _____________________________________________ Committee Member: Duncan Knowler Associate Dean, Faculty of Environment Associate Professor, School suspended-sediment events caused by forest road construction and use on populations of chinook (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) in a medium-sized coastal watershed of the lower Fraser

  6. Delineation of phylogenetically and adaptively distinct groups in the dis-

    E-Print Network [OSTI]

    salmon around the Pacific Rim may lead to conserva- tion of genetic diversity through an understanding to investi- gate regional and Pacific Rim varia- tion in chum salmon (Oncorhynchus keta Walbaum). Allozymes of chum salmon (Oncorhynchus keta) across the Pacific Rim, determined from microsatellite analysis Terry D

  7. OPTI 202R Geometrical and Instrumental Optics II Spring 2012

    E-Print Network [OSTI]

    Arizona, University of

    and Relay Lenses Eyepieces Microscopes Vignetting Telecentric Systems Optical Materials and Dispersion Prism Spectrometer Abbe Refractometer Rainbows Thin Prisms Achromatic Thin Prism #12;2 Achromatic Doublet Depth

  8. RECORD of Categorical Exclusion (CX) determination: Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation RECORD of Categorical Exclusion (CX) determination: Office of...

  9. "Do It Again": Comic Repetition, Participatory Reception and Gendered Identity on Musical Comedy's Margins

    E-Print Network [OSTI]

    Baltimore, Samuel Dworkin

    2013-01-01

    Oz Before the Rainbow. Baltimore: Johns Hopkins Universityby Samuel Dworkin Baltimore ABSTRACT OF THE DISSERTATION “DoMargins by Samuel Dworkin Baltimore Doctor of Philosophy in

  10. Application to Export Electric Energy OE Docket No. EA-375-A...

    Energy Savers [EERE]

    Federal Register Notice, Volume 80, No. 80 - April 27, 2015 Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation: Federal...

  11. Application to Export Electric Energy OE Docket No. EA-296-A...

    Broader source: Energy.gov (indexed) [DOE]

    Rainbow Energy Marketing Corporation More Documents & Publications Application to Export Electric Energy OE Docket No. EA-328 RBC Energy Services L.P.: Federal Register Notice...

  12. Application to Export Electric Energy OE Docket No. EA-296-B...

    Office of Environmental Management (EM)

    Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register...

  13. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

    2003-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

  14. Washington Department of Fish and Wildlife Fish Program Hatcheries Division: Ford Hatchery, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Lewis, Mike; Polacek, Matt; Knuttgen, Kamia

    2002-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  15. Microsoft Word - Fish Letter _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

  16. B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

  17. Sacramento River Steelhead: Hatchery vs. Natural Smolt Outmigration

    E-Print Network [OSTI]

    Sandstrom, Phil

    2012-01-01

    DELTA SCIENCE PROGRAM Sacramento River Steelhead: HatcheryUC Davis BACKGROUND The Sacramento River steelhead trout (a tributary of the upper Sacramento River. Smolts are young,

  18. they move toward shore and into the estuary. Two primary factors that seem to affect growth are water

    E-Print Network [OSTI]

    is dammed extensively for hydroelectric generation and irriga- tion, was extremely low during the spring at the hydroelectric projects. Consequently, many migrating juvenile Pacific salmon, Oncorhynchus spp., and steelhead

  19. EIS-0346: Salmon Creek Project, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to fund activities that would restore sufficient water flows to Salmon Creek and rehabilitate its streambed as necessary to provide adequate passage for summer steelhead (Oncorhynchus mykiss) and possibly spring chinook (O. tshawytscha).

  20. Knowledge of an animal's diet is important for understanding its for-

    E-Print Network [OSTI]

    throughout the North Pacific Rim from California to Japan (Loughlin et al., 1984; Pitcher et al., 2007 was Pacific hake (Merluccius productus), followed by salmonids (Oncorhynchus spp.), skates (Rajidae), Pacific

  1. Evaluation of a single nucleotide polymorphism baseline for genetic stock identification of

    E-Print Network [OSTI]

    (Oncorhynchus tshawytscha) are found in rivers from central California around the North Pacific Rim the west coast of North America are a major compo- nent of fisheries in the North Pacific Ocean

  2. Temporal Trends in Hatchery Releases of Fall-Run Chinook Salmon in California's Central Valley

    E-Print Network [OSTI]

    Huber, Eric R.; Carlson, Stephanie M.

    2015-01-01

    in Central Valley rivers, many fall-run Chinook salmon nowrun Chinook salmon, Oncorhynchus tshawytscha, to yearlings at Feather Riverrun Chinook salmon breed and rear in low-elevation mainstem rivers (

  3. Deep-Sea Research II 52 (2005) 757780 Linking oceanic food webs to coastal production and

    E-Print Network [OSTI]

    2005-01-01

    (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon (Oncorhynchus salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic

  4. SECTION 5 Table of Contents 5 Coeur d' Alene Subbasin Overview................................................................2

    E-Print Network [OSTI]

    of the Spokane River, which flows westerly to its confluence with the Columbia River. Water levels in Coeur d emphasis on harvesting big game and resident fish such as westslope cutthroat trout. Adfluvial and fluvial, and over-harvesting has contributed to their declines. Currently bull trout are listed as threatened under

  5. J. Appl. Toxicol. 2009 Copyright 2009 John Wiley & Sons, Ltd. Research Article

    E-Print Network [OSTI]

    Hontela, Alice

    trout and brook trout from selenium-impacted streams in a coal mining region L. L. Miller,a * J. B Science Building, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada. Email, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada b Center for Environmental

  6. Residents lead the way in restoring the River Wandle by Kelly Oakes

    E-Print Network [OSTI]

    the Wandle was a famous trout fishery ­ rumour has it Lord Nelson fished there ­ but industry that sprung up it hard for fish to make their home there. Pollution in the 1930s killed off what was left of the trout a nearby sewage works was accidentally emptied into it, killing two tonnes of fish. "At that time a lot

  7. Influence of a Weak Field of Pulsed DC Electricity on the Behavior and Incidence of Injury in Adult Steelhead and Pacific Lamprey, Final Report.

    SciTech Connect (OSTI)

    Mesa, Matthew

    2009-02-13

    Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys. The effects of electricity on fish have been widely studied and include injury or death (e.g., Sharber and Carothers 1988; Dwyer et al. 2001; Snyder 2003), physiological dysfunction (e.g., Schreck et al. 1976; Mesa and Schreck 1989), and altered behavior (Mesa and Schreck 1989). Much of this work was done to investigate the effects of electrofishing on fish in the wild. Because electrofishing operations would always use more severe electrical settings than those proposed for the pinniped barrier, results from these studies are probably not relevant to the work proposed by SRI. Field electrofishing operations typically use high voltage and amperage settings and a variety of waveforms, pulse widths (PW), and pulse frequencies (PF), depending on conditions and target species. For example, when backpack electrofishing for trout in a small stream, one might use settings such as 500 V pulsed DC, a PW of 1 ms, and a PF of 60 Hz. In contrast, the electrical barrier proposed by SRI will produce electrical conditions significantly lower than those used in electrofishing, particularly for PW and PF (e.g., PW ranging from 300-1,000 {micro}s and PF from 2-3 Hz). Further, voltage gradients (in V/cm) are predicted to be lower in the electric barrier than those produced during typical electrofishing. Although the relatively weak, pulsed DC electric fields to be produced by the barrier may be effective at deterring pinnipeds, little, if anything, is known about the effects of such low intensity electrical fields on fish behavior. For this research, we evaluated the effects of weak, pulsed DC electric currents on the behavior of adult steelhead and Pacific lamprey and the incidence of injury in steelhead only. In a series of laboratory experiments, we: (1) documented the rate of passage of fish over miniature, prototype electric barriers when they were on and off; (2) determined some electric thresholds beyond which fish would not pass over the barrier; and (3) assessed the incidence and severity of injury in steelhead exposed to relatively severe electrical conditions. The results of this study should be useful for making decisions about whether to install electrical barriers in the lower Columbia River, or elsewhere, to reduce predation on upstream migrating salmonids and other fishes by marine pinnipeds.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    SciTech Connect (OSTI)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

  9. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1987 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Nelson, V. Lance

    1990-01-01

    This project monitored the daily passage of smolts during the 1988 spring outmigration at two migrant traps; one each on the Snake and Clearwater rivers. Due to the low runoff year, chinook salmon catch at the Snake River trap was very low. Steelhead trout catch was higher than normal, probably due to trap modifications and because the trap was moved to the east side of the river. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1987. Total cumulative recovery of PIT tagged fish at the three dams, with PIT tag detection systems was: 55% for chinook salmon, 73% for hatchery steelhead trout, and 75% for wild steelhead trout. Travel time through Lower Granite Reservoir for PIT tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three fold, and steelhead trout travel time decreased two fold. There was a statistical difference between estimates of travel time through Lower Granite Reservoir for PIT tagged and freeze branded steelhead trout, but not for chinook salmon. These differences may be related to the estimation techniques used for PIT tagged and freeze branded groups, rather than real differences in travel time. 10 figs, 15 tabs.

  10. MFR PAPER 1216 The Workshop on Molluscan

    E-Print Network [OSTI]

    of Kansas Medical Center, 39th and Rainbow Boulevard, Kansas City, KS 66103. October 1976 DANTE G. SCARPELLI such as a hydrocarbon present in fuel oil, for example, and the ultimate development of a "tumor". The autonomous nature

  11. Sheldon Wu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheldon Wu was fascinated by science, especially astronomy. In one of his earliest optics experiments, he refracted sunlight into a rainbow using a tub of water and a mirror....

  12. Coherent-states dynamics of the H+ + HF reaction at ELab = 30 eV

    E-Print Network [OSTI]

    Morales, Jorge Alberto

    , such as mechanistic details and rainbow angles effects, are discussed. Differential and integral cross sections. The calculated total differential cross section shows an excellent agreement with available experimental results

  13. STAT 2550: Statistics for Science Students Assignment 1 --Solution

    E-Print Network [OSTI]

    Oyet, Alwell

    to display the result on a. in a bar chart. (4 pts) d. Use R to display the result on b. in a pie chart. (4) lbls pie(pct, lbls, col = rainbow(length(lbls)), main = "Pie Chart

  14. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    SciTech Connect (OSTI)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds

  15. -A ----Science Service --Feature :-lrieased on receipt

    E-Print Network [OSTI]

    rain. Sone are caused by fog. The fog-bow i s classed a s a ra.inbow when the cog i n which i of fog-bow is formed in fogs consisting of ice cTystals. Xt is generally pure white, but is at times s l rainbow, by water drops. Lastly, a l i g h t fog occasionally deposits dro?.. l e t s of water on a f i l

  16. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    SciTech Connect (OSTI)

    McLellan, Holly; Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    1999-08-01

    The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large percentage of the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton, zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification

  17. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    SciTech Connect (OSTI)

    Cada, Glenn F; Schweizer, Peter E

    2012-04-01

    One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

  18. From: John Canning Sent: Tuesday, July 24, 2007 11:39 AM

    E-Print Network [OSTI]

    trout was completed in 2006 using mark-and-recapture technique and bioenergetics modeling to determine". Bioenergetics modeling estimated they consumed 108 metric tons of kokanee annually. In addition, predation from

  19. BULLETIN OF THE UNITED STATES FISH COMMISSION. 217 process. On the signal being given, the crane *as set in motion. It

    E-Print Network [OSTI]

    in appearance after being taken out:of the water. The fins aud tail were white, tlic glossy skill appearing trout." I intend to manipulate some of their eggs next year aud ship them to my hatchiug Imse nud ponds

  20. Biological Monitoring at Amchitka Appears to Show Impacts from...

    Office of Environmental Management (EM)

    of the monitoring showed that Dolly Varden (a type of freshwater char, a trout-like fish), rockweed (littoral-zone algae), and to a lesser extent, Irish Lord (a small...

  1. Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from

    E-Print Network [OSTI]

    García-Berthou, Emili

    ´tica, Universidad de Santiago de Compostela, E-27002 Lugo, Spain (Received 10 August 2004, Accepted 4 April 2005' genetic diversity (Berrebi et al., 2000). Native brown trout distributed across rivers draining from Mediterranean rivers and their differenc

  2. DOE/BP-00005043-1 South Fork Flathead Watershed Westslope Cutthroat

    E-Print Network [OSTI]

    DOE/BP-00005043-1 South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program June-01903, 143 electronic pages, (BPA Report DOE/BP-00005043-1) Field37: This report was funded by the Bonneville

  3. CX-005964: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reintroduction of Westslope Cutthroat Trout in the Pend Orielle BasinCX(s) Applied: B1.20Date: 05/19/2011Location(s): Pend Oreille County, WashingtonOffice(s): Bonneville Power Administration

  4. CX-008722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reintroduction of Westslope Cutthroat Trout in the Pend Orielle basin CX(s) Applied: B1.20 Date: 05/07/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  5. Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali

    E-Print Network [OSTI]

    2012-01-01

    and chromosomal forms in Mali Rebecca T Trout Fryxell 1* ,chromo- somal forms in Mali. Natural P. falciparum infectionforms in two villages in Mali where Page 2 of 9 these forms

  6. MFR PAPER 1274 Puget Sound angler proudly displays a fine sea-run cutthroat troul. (Photo courtesy of the

    E-Print Network [OSTI]

    varying from fly casting to worms. In Washington, anglers also use a wide variety of techniques and num'*' 01 p,.--Iou··pawnlng. 01 _run cutthroat trout ta"'n at Sand C.... Oreg·· 194&-41 (Sum.... 1182

  7. Personal Statement I grew up in a log cabin beside a pond in New Hampshire and later in a house on a river in Maine.

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Personal Statement I grew up in a log cabin beside a pond in New Hampshire and later in a house in frosty months. Spurning food stamps, some years our only animal food was venison and brook trout

  8. RETURN TO THE RIVER -2000 Chapter 7 Effectiveness of Mitigation232

    E-Print Network [OSTI]

    deflectors at the dams to reduce nitrogen concentration, we can restore adult steelhead trout to their former (HCPs) jointly with affected parties as a measure to avoid or delay listing of endangered fishes

  9. Gulf of Alaska Coastal Research (July and August 2001) on Juvenile Edward V. Farley, Jr., Bruce L. Wing, Edward D. Cokelet, Christine M. Kondzela,

    E-Print Network [OSTI]

    of Shelikof Strait as a primary migration corridor. This report summarizes the catch data collected during distribution, migration, and growth of juvenile salmon (Oncorhynchus spp.) in relation to oceanographic with the Alaska Coastal Current) as a westward migration corridor rather than the seaward side of Kodiak Island

  10. Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Northwest Chinook salmon

    E-Print Network [OSTI]

    Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Oregon St, Suite 200, Portland, OR 97232, U.S.A. 2 Fisheries and Oceans Canada, Pacific Biological of Washington, Seattle, WA 98195-5020, U.S.A. ABSTRACT Pacific Northwest Chinook, Oncorhynchus tshawytscha, have

  11. EVALUATION OF THE RETURN OF ADULT CHINOOK SALMON TO THE ABERNATHY INCUBATION CHANNEL

    E-Print Network [OSTI]

    -, and 4-yr-old adult fish returning to the hatchery holding pond were examined for fin clips and fluoresEVALUATION OF THE RETURN OF ADULT CHINOOK SALMON TO THE ABERNATHY INCUBATION CHANNEL ALLAN E. THOMAS' ABSTRACT Adult returns of progeny of the 1964 year class of chinook salmon, Oncorhynchus

  12. Nitrogen uptake by plants subsidized by Pacific salmon carcasses: a hierarchical experiment

    E-Print Network [OSTI]

    Reynolds, John D.

    the Pacific Rim. Salmon are born in freshwater, with most popu- lations migrating as juveniles to the oceanNitrogen uptake by plants subsidized by Pacific salmon carcasses: a hierarchical experiment Morgan and transport large numbers of Pacific salmon (Oncorhynchus spp.) to riparian areas beside small coastal streams

  13. June 2014 | Executive Summary S 1 Snake RiverSockeyeSalmon Recovery

    E-Print Network [OSTI]

    (Oncorhynchus nerka). Snake River Sockeye Salmon were listed as an endangered species under the Endangered Species Act (ESA) in 1991. The listing was reaffirmed in 2005. The species remains at risk of extinction these mainstem rivers and through eight major federal dams, four on the Columbia River and four on the lower

  14. INFLUENCE OF ROCKY REACH DAM AND THE TEMPERATURE OF THE OKANOGAN RIVER ON THE UPSTREAM MIGRATION OF SOCKEYE

    E-Print Network [OSTI]

    INFLUENCE OF ROCKY REACH DAM AND THE TEMPERATURE OF THE OKANOGAN RIVER ON THE UPSTREAM MIGRATION Reach Dam, constructed on the Columbia River 7 miles above Wenatchee, Wash.· in 1957-61, has not appreciably increased the time required for adult sockeye salmon (Oncorhynchus nerka) to mi~rate to Zosel Dam

  15. ORIGINAL ARTICLE Big dams and salmon evolution: changes in thermal

    E-Print Network [OSTI]

    Angilletta, Michael

    ORIGINAL ARTICLE Big dams and salmon evolution: changes in thermal regimes and their potential (Oncorhynchus spp.) across portions of their natural range, dams have arguably played a major role in many locations (NRC 1996; Lichatowich 1999; Ruckelshaus et al. 2002). Large dams (>15 m tall)­ designed

  16. Field-based measurements of oxygen uptake and swimming performance with adult Pacific salmon using

    E-Print Network [OSTI]

    Hinch, Scott G.

    swimming; recovery; Oncorhynchus. INTRODUCTION Swimming performance and studies of energy consumption have are capable of carrying a moderate excess post-exercise oxygen consumption without adversely affecting Ucrit years ago (Brett,1965,1971; Beamish,1978).The majority of studies have focused on immature cultured

  17. 37204 Federal Register / Vol. 70, No. 123 / Tuesday, June 28, 2005 / Rules and Regulations Where listed

    E-Print Network [OSTI]

    : the Twisp River, Chewuch River, Methow Composite, Winthrop NFH, Chiwawa River, and White River spring-run Common name Scientific name Upper Columbia spring- run Chinook. Oncorhynchus tshawytscha. U.S.A., WA, including all naturally spawned populations of Chinook salm- on in all river reaches accessible to Chinook

  18. An Examination of Harvest Rates and Brood-Take Rates as

    E-Print Network [OSTI]

    ;iv Abstract The Cowichan River fall-run Chinook salmon (Oncorhynchus tshawytscha) population has been of Cowichan River Chinook Salmon by Athena Dawn Ogden Ph.D., University of British Columbia, 2002 B.A. (Hons-Take Rates as Management Strategies to Assist Recovery of Cowichan River Chinook Salmon Examining Committee

  19. Appendices for: Proposed ESA Recovery Plan for Snake River Fall Chinook Salmon

    E-Print Network [OSTI]

    predominately in the mainstem of the Snake River and some of its major tributaries. Like other fall-run Chinook initiated a 5-year status review for 32 species of salmon and steelhead, including Snake River Fall-RunAppendices for: Proposed ESA Recovery Plan for Snake River Fall Chinook Salmon (Oncorhynchus

  20. ORIGINAL ARTICLE Effective size of a wild salmonid population is greatly

    E-Print Network [OSTI]

    Blouin, Michael S.

    of supplementation on a wild population of steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, by matching 12 run-years of hatchery steelhead back to their broodstock parents. We show that the effective have high reproductive success in the wild. These results emphasize the trade-offs that arise when

  1. Transactions of the American Fisheries Society 129:569583, 2000 Copyright by the American Fisheries Society 2000

    E-Print Network [OSTI]

    ) and Vertebrate (Oncorhynchus nerka) Planktivores: Implications for Trophic Interactions in Oligotrophic Lakes approximately 0.250 kg P·ha 1·year 1 during nighttime migrations into the upper water column, whereas P than 1% of the soluble reactive P typically measured in the upper water column of the lake. Hence

  2. Michael Johnson Oral History

    E-Print Network [OSTI]

    Johnson, Michael; Albin, Tami

    2009-12-16

    support groups or whatever like that and then it just turned into, Well there's Michael Johnson January 4, 2009 5 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas porn online too. (laugh) So it's like—it's like you just kind... stepmother had found my Xanga site as well. Along with that she had found, on his computer, links to porn site—like gay porn Michael Johnson January 4, 2009 7 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas sites, right...

  3. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2001 Annual Report.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2002-11-01

    We investigated factors affecting the distribution and abundance of Yellowstone cutthroat trout (YCT), the abundance of all trout, and species richness in several drainages in the upper Snake River basin in Idaho. A total of 326 randomly selected sites were visited within the four study drainages, and of these, there was sufficient water to inventory fish and habitat in 56 of the sites in the Goose Creek drainage, 64 in the Raft River drainage, 54 in the Blackfoot River drainage, and 27 in the Willow Creek drainage. Fish were captured in 36, 55, 49, and 22 of the sites, respectively, and YCT were present at 17, 37, 32, and 13 of the sites, respectively. There was little consistency or strength in the models developed to predict YCT presence/absence and density, trout density, or species richness. Typically, the strongest models had the lowest sample sizes. In the Goose Creek drainage, sites with YCT were higher in elevation and lower in conductivity. In the Raft River drainage, trout cover was more abundant at sites with YCT than without YCT. In the Blackfoot River drainage, there was less fine substrate and more gravel substrate at sites with YCT than at sites without YCT. In the Willow Creek drainage, 70% of the sites located on public land contained YCT, but only 35% of private land contained YCT. The differences in variable importance between drainages suggests that factors that influence the distribution of YCT vary between drainages, and that for the most part the variables we measured had little influence on YCT distribution. n sites containing YCT, average cutthroat trout density was 0.11/m{sup 2}, 0.08/m{sup 2}, 0.10/m{sup 2}, and 0.08/m{sup 2} in the Goose Creek, Raft River, Blackfoot River, and Willow Creek drainages, respectively. In sites containing trout in general, average total trout density in these same drainages was 0.16/m{sup 2}, 0.15/m{sup 2}, 0.10/m{sup 2}, and 0.10/m{sup 2}. Models to predict YCT density, total trout density, and species richness were either weak (i.e., explained little variation) or contained small sample sizes. Based on our results, it appears that factors other than those we measured are affecting fish populations in these drainages.

  4. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  5. Hidden Pair of Bijection Signature Scheme Masahito Gotaishi and Shigeo Tsujii

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Key Cryptosystem, Digital Signature, Bijection, Rainbow 1 Introduction 1.1 Multivariate Public Key of variants, with about 30 to 40 schemes proposed in the past. Although, according to the classification. Multivariate Public Key Cryptosystem 1.3 MPKC Trapdoors According to the classification of Wolf [24], the basic

  6. Light and Color in Nature -Scattering Effects -

    E-Print Network [OSTI]

    Assarsson, Ulf

    1 Seminar WS 2003/04 Light and Color in Nature - Scattering Effects - Marcus Magnor WS03/04: Light and Color in Nature ­ Scattering Overview · Last Lecture ­ Interference · Today ­ Light scattering: water rendering #12;2 WS03/04: Light and Color in Nature ­ Scattering List of Topics · Rainbow ­ Stephan

  7. AAAS Science Benchmarks Marvelous Martian Mineralogy

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    & Fingerprints The Nature of Science The Scientific Worldview X X Scientific Inquiry X X X X X X The Nature Spectral Data to Explore Saturn & Titan Graphing the Rainbow Patterns & Fingerprints The Mathematical World Abilities Necessary to do Scientific Inquiry X X X X X Understandings About Scientific Inquiry X Content

  8. Northern New Mexico Citizens' Advisory Board Meeting

    Office of Environmental Management (EM)

    2015 1:00 p.m. to 5:15 p.m. Sandia Resort, Eagle Room 30 Rainbow Road Albuquerque, New Mexico 87113 AGENDA Time Action Presenter 1:00 p.m. Call to Order Lee Bishop, DDFO...

  9. 2015 Thanksgiving Break Special Operating Hours

    E-Print Network [OSTI]

    , 12pm-1:30pm Black Women's Circle, 6pm-7:30pm Friday: Jazz, 10am-12pm India Arie: Live in Brazil, 1pm of the Rainbow: Assata Shakur" 5pm-7pm Thursday: African Dance Class, 12pm-1:30pm AA Alumni Meeting, 6:45pm-8pm

  10. S.Dev 1900 Introduction to Sustainable Development Mondays 11:40 am -12:55 pm

    E-Print Network [OSTI]

    Smerdon, Jason E.

    , 12pm-1:30pm Black Women's Circle, 6pm-7:30pm Friday: Jazz, 10am-12pm India Arie: Live in Brazil, 1pm of the Rainbow: Assata Shakur" 5pm-7pm Thursday: African Dance Class, 12pm-1:30pm AA Alumni Meeting, 6:45pm-8pm

  11. 6342 J. Phys. Chem. 1993,97, 6342-6350 State-Resolved Differential Cross Sections for Crossed-BeamAr-NO Inelastic Scattering by

    E-Print Network [OSTI]

    Houston, Paul L.

    ' Department of Chemistry, Cornell University,Ithaca, New York 14853-1301 B.J. Whitaker School of Chemistry, k, even though they were thought to involve two different potential energy surfaces. An alternative into the anisotropy of the potential energy surface. For NO (j'= 18.5), two rainbow peaks are observed. These double

  12. ENVIR 202: EARTH, AIR, WATER 22 Jan 2003 BACKGROUND DISCUSSION FOR THE SCIENCE CORE: ENERGY

    E-Print Network [OSTI]

    . The example below is the heat engine, E4 Notice that some of the energy converting devices in the experiments labs as places where fairly natural basic chemical substances are combined to make lots of toxic waste' brings up a wonderful set of descriptions. E1 Suns and Rainbows: sunlight's colors, its power and energy

  13. Constrained Ramsey Numbers of Graphs

    E-Print Network [OSTI]

    Jiang, Tao

    Constrained Ramsey Numbers of Graphs Robert E. Jamison,1 Tao Jiang,2* and Alan C. H. Ling3 1-like trees. � 2002 Wiley Periodicals, Inc. J Graph Theory 42: 1­16, 2003 Keywords: Ramsey; monochromatic edges have the same color and rainbow iff all of its edges have different colors. In classical Ramsey

  14. ONLINE AND SIZE ANTI-RAMSEY NUMBERS MARIA AXENOVICH, KOLJA KNAUER, JUDITH STUMPP, AND TORSTEN UECKERDT

    E-Print Network [OSTI]

    Felsner, Stefan

    ONLINE AND SIZE ANTI-RAMSEY NUMBERS MARIA AXENOVICH, KOLJA KNAUER, JUDITH STUMPP, AND TORSTEN of a graph H is the size anti-Ramsey number ARs(H) of H. This number in offline and online setting is investigated here. Keywords: Coloring, anti-Ramsey, rainbow, totally multicolored, proper coloring, online

  15. Updated 01/2013 http://ilint.illinois.edu/ 1 Professional Travel in South Africa

    E-Print Network [OSTI]

    Chen, Deming

    Updated 01/2013 http://ilint.illinois.edu/ 1 Professional Travel in South Africa The Rainbow Nation South Africa is one of the most multicultural countries in the world. In urban areas many different ethnic groups make up the population. In addition to the indigenous black peoples of South Africa

  16. Manufacturer's Mixed Pallet Design Problem

    E-Print Network [OSTI]

    fore, the company decided to design a number of mixed or “rainbow” pallets so that its. customers can ... the number of cases of each brand in the pallet depending on her consumption and future. needs. ..... over the planning period, i.e, ?t?T.

  17. OHSU Food & Nutrition Services

    E-Print Network [OSTI]

    Chapman, Michael S.

    Fry Bread with wild huckleberry and apricot preserves Birch Syrup Iced Tea HTHU Turkey & Quinoa Millet and Celeryroot Salad with Autumn leafy greens and berry vinaigrette Roasted Trout with bacon & cornbread dressing Tea Wildflower Honey Ice Cream Bar HTHU Turkey & Quinoa Millet Salad Wellness Meal Tuesday November 18

  18. PO Box 2662, Yakima, WA 98907 Phone (509) 453-4104 Email: info@ybfwrb.org Web: www.ybfwrb.org

    E-Print Network [OSTI]

    is to "to restore sustainable and harvestable populations of salmon, steelhead, bull trout, and other at-risk look forward to continuing to work closely with the Council to emphasize the importance of the subbasin that it will be incorporated into should be recognized by the Council as the primary guide for steelhead recovery work

  19. UNITED STATES DEPARrMENT OF THE mTERIOR FISH AND WILDLIFE SERVICE

    E-Print Network [OSTI]

    the Federal fish hatcheries. All the permanent employees are appointed from lists of qualified Civil Service to a few large plants operated full- time to raise trout for sale as food and for stocking and to sell eggsCing, a superior location and some experience will enjoy better prospects of success. The individual who

  20. 233Copyright ECOLOGICAL BULLETINS, 2004 Ecological Bulletins 51: 233239, 2004

    E-Print Network [OSTI]

    landscapes. ­ Ecol. Bull. 51: 233­239. Large woody debris (LWD) was quantified in 4382 forest stream sites in Sweden. LWD was present at 73% of the sites, but the amount was low with a median number of 1 piece of LWD 100 m­2 . Brown trout was the most frequently occurring fish species and occurred in 82

  1. http://noaa.gov Discover Your World With NOAA

    E-Print Network [OSTI]

    center of ocean commerce and naval power, the Elizabeth River is the most polluted waterway Creek in Sonoma County, California was once alive with salmon and steelhead trout; but after years in the Tampa Bay area grow marsh grasses and seagrasses, and assist with monitoring and plant- ing to restore

  2. PO Box 756 Winthrop, WA 98862 -Phone (509) 422-0300 -Cell (509) 429-1232 Fax (509) 422-1766 -e-mail msrf@communitynet.org

    E-Print Network [OSTI]

    and by the MVID to implement the project and manage all received funding. Our primary focus in undertaking summer push-up dam, which hinders upstream migration of Chinook, steelhead, and bull trout, or even blocks migration completely during exceptionally dry years. The proposed project will eliminate the need

  3. Biocomplexity Project Retreat March 1-3, 2002

    E-Print Network [OSTI]

    , Magnuson) ­ Basement lobby CWD manipulation (Sass, Kitchell) ­ Juday House Ecological economics (Provencher, Evening Social in Juday House *Departure times are subject to change depending on schedules of passengers ­ Biocomplexity Retreat in Main Lab of Trout Lake Station 7:00 am ­ Breakfast in Juday House (bagels, donuts

  4. Biocomplexity Project Retreat February 21-23, 2003

    E-Print Network [OSTI]

    arrives at Trout Lake, Evening Social in Juday House *Each van is responsible for own dinner or food (Carpenter, Kratz) 8:15 am ­ Report on ecological economics (MacPherson, Provencher) 8:45 am ­ Report and discussion #12;1:00 pm ­ Biocomplexity break out groups Ecological economics (Provencher) ­ Merrill Cabin

  5. Foreign Fishery Developments The Polish Fishing Industry

    E-Print Network [OSTI]

    have resisted, preferring freshwater fish (i.e., carp and trout) to unfamiliar marine species. Poland and especially fuel costs will continue to rise. Poland hopes to increase fish supplies for the domestic market to sell privately as the government retail price for fish is heavily subsidized and has not been increased

  6. Enloe Dam Passage Project, Volume I, 1984 Annual Report.

    SciTech Connect (OSTI)

    Fanning, M.L.

    1985-07-01

    This report discusses issues related to the provision of fish passage facilities at Enloe Dam and the introduction of anadromous salmonid fish to the upper Similkameen River basin. The species of fish being considered is a summer run of steelhead trout adapted to the upper Columbia basin. (ACR)

  7. Employment and program opportunities are offered to all people regardless of race, color, national origin, sex, age, or disability. North Carolina State University, North Carolina A&T State University, U.S. Department of Agriculture, and local governments

    E-Print Network [OSTI]

    Hunt, William F.

    origin, sex, age, or disability. North Carolina State University, North Carolina A&T State University, U Temperature in Trout Sensitive Waters Matthew Jones, EI and Bill Hunt, PhD, PE North Carolina State University ............................ 10 Meetings ................................ 10 #12;NWQEP NOTES -- March 2007 2 North Carolina

  8. Santa Monica Mountain Steelhead Assessment Santa Monica Mountains Steelhead Habitat Assessment

    E-Print Network [OSTI]

    Keller, Ed

    Santa Monica Mountain Steelhead Assessment 1 Santa Monica Mountains Steelhead Habitat Assessment identify which basins in the Santa Monica Mountains (SMM) are most capable of supporting steelhead trout watersheds within the SMM. Field Setting Geology of the Santa Monica Mountains The Santa Monica Mountains

  9. Rick's "Top Ten" List of Best Fish Books (books that mesh interesting fish biology with the intricate relationships among the social, economic, and political aspects of human society, fish

    E-Print Network [OSTI]

    Taylor, Eric B. "Rick"

    ! Samantha Weinberg 4. A River Never Sleeps. Seasonal account of the salmon and trout of British Columbia (with the occasional foray to the chalk streams of England) and the rivers that sustain them by a famous tragic battle between man, a poor Cuban fisherman named Santiago, and beast ­ a giant marlin (with sharks

  10. Kootenai River Habitat Restoration Program BPA Project 2002-002-00

    E-Print Network [OSTI]

    River floodplain ecosystem operational loss assessment 200201100 (KTOI) Provides data and information January 18, 2012 #12;#12;KRHRP · Ecosystem-based restoration program in 55- mile reach of Kootenai River redband trout, mountain whitefish and other native fish. #12;Changes to Ecosystem Beaver trapping Logging

  11. HollyMcLellan,ColvilleConfederatedTribes Resident Fish Division Native resident fish persisted after

    E-Print Network [OSTI]

    HollyMcLellan,ColvilleConfederatedTribes Resident Fish Division Native resident fish persistedMcLellan,ColvilleConfederatedTribes Resident Fish Division Surveys document increase in walleye and decrease in native fish abundance Native fish populations affected Sanpoil: wildkokanee and redband trout populations depressed Columbia

  12. Environ Monit Assess DOI 10.1007/s10661-006-9226-5

    E-Print Network [OSTI]

    Tate, Kenneth

    for thermal stratification to provide thermal refuge for red- band trout in stream pools characterized by warm in- termittent flow conditions on arid rangelands. We stud- ied vertical thermal stratification waters. Thermal stratification was dependent upon air temperature with the magnitude of stratification in

  13. Issue Backgrounder : Downstream Fish Migration : Improving the Odds of Survival.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1985-05-01

    Background information is given on the problems caused to anadromous fish migrations, especially salmon and steelhead trout, by the development of hydroelectric power dams on the Columbia River and its tributaries. Programs arising out of the Pacific Northwest Electric Power Planning and conservation Act of 1980 to remedy these problems and restore fish and wildlife populations are described. (ACR)

  14. early 800 native fish species in 36 families inhabit the freshwater rivers, streams, and

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    N early 800 native fish species in 36 families inhabit the freshwater rivers, streams, and lakes of the United States and Canada. North America has the most diverse temperate freshwater fish fauna in the world. Only about 5 percent of these are the familiar sport or game fishes like trout and bass. The remaining

  15. POND CULTURE fishery leaflet 311

    E-Print Network [OSTI]

    TEXTBOOK OF POND CULTURE fishery leaflet 311 Ifish and wildlife service UNITED STATES DEPARTMENT OF THE INTERIOR #12;#12;TEXTBOOK OF POND CULTURE REARING AND KEEPING OF CARP , TROUT AND ALLIED FISHES by Vr'- at the Elsersvfalde Forestry Acadeny and in the Department for Fish Diseases and Pond Management of the Prussian State

  16. Name: Peter A. BissonAddress: USDA Forest Service Birth: August 28, 1945 Olympia Forestry Sciences Laboratory

    E-Print Network [OSTI]

    Biologist, Weyerhaeuser Company, Tacoma, Washington Expertise Structure and function of stream ecosystems Scientific Advisory Board (ISAB), Northwest Power Planning Council, Columbia Basin Fish and Wildlife of a symposium on Sea-Run Cutthroat Trout: Biology, Management, and Future Conservation. Oregon Chapter, American

  17. Toward a Global Lake Ecological Observatory Network Timothy K. Kratz1

    E-Print Network [OSTI]

    understand key issues such as the effects of climate and landuse change on lake function, the role concentration change as a function of time scales from minutes to decades have been made possible by the data Hu8 Fang-Pang Lin9 Donald F. McMullen10 Sameer Tilak6 Chin Wu11 1 Trout Lake Station, Center

  18. PRIMARY RESEARCH PAPER Summer stream temperature metrics for predicting brook

    E-Print Network [OSTI]

    Vermont, University of

    -012-1336-1 #12;affected by warm water temperatures. Long-term stream temperature monitoring is useful biological surveys; thus, using temperature is appealing as a first-cut metric for monitoring fishPRIMARY RESEARCH PAPER Summer stream temperature metrics for predicting brook trout (Salvelinus

  19. ISRAEL JOURNAL OF ECOLOGY & EVOLUTION, Vol. 54, 2008, pp. 345359 DOI: 10.1560/IJEE.54.34.345

    E-Print Network [OSTI]

    Morris, Douglas W.

    Morne National Park of Canada, Rocky Harbour, Newfoundland and Labrador A0K 4N0, Canada. Received 11 densities in adjacent habitats are graphed against each other. We tested the theory by manipulating containing flat and riffle habitats. Brook trout distributions in streams typically reflect a size

  20. Presented May 6, 2013 Blennerhasset Chapter By Gary Berti.

    E-Print Network [OSTI]

    Lawrence, Deborah

    Connecticut Rogue River - Michigan On the Burner: Sea Run Brook Trout (Salters) East Fork of Greenbrier1 Presented May 6, 2013 Blennerhasset Chapter By Gary Berti. TU's Eastern Home River Initiatives Current Home River Initiatives: Potomac Headwaters Shenandoah Headwaters Musconetcong (the Musky) Upper

  1. BULLETIX OP THE UNITED STATES FISH COMMISSION. 309 B 7 4 0 N D I T I O N OF %"E U N I T E D STATES TEEOUT P O N D S .

    E-Print Network [OSTI]

    rains we may get the late run yet, but the weeks and river are very low. The wdter bas been warm of the Warm Springs Agency, This river runs within a few miles of the agency, and for some distance above in the rivers and brooks, and as salmon trout when taken in the sea or river mouths. Sea-run specimens are more

  2. EIS-0263: Interior Columbia Basin Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    The ICBEMP strategy will include direction which will protect and enhance aquatic ecosystems for anadromous fish and inland native trout and terrestrial ecosystems. It will also address the social and economic interactions with these biological variables. (Merged with EIS-262 to become Eastside Ecosystem Management, Washington and Oregon)

  3. Pat Miller Oral History

    E-Print Network [OSTI]

    Miller, Pat; Albin, Tami

    2009-10-28

    Under the Rainbow: Oral Histories of Gay, Lesbian, Bisexual, Transgender, Intersex and Queer People in Kansas Pat Miller Oral History Interviewed by Tami Albin March 21, 2008 http...) for the correct citation style for audio/video interviews or transcripts. Please be sure to include: Narrator’s name e.g. Bill Smith Interviewer’s Name e.g. Tami Albin Date of interview e.g. March 26, 2009 Name of project and location e.g. Under...

  4. Asotin Creek Model Watershed Plan

    SciTech Connect (OSTI)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  5. Idaho Supplementation Studies, 1991-1992 Annual Report.

    SciTech Connect (OSTI)

    Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis

    1993-10-01

    Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

  6. Physical activity across the curriculum: year one process evaluation results

    E-Print Network [OSTI]

    Gibson, Cheryl A.; Smith, Bryan K.; DuBose, Katrina D.; Greene, Leon; Bailey, Bruce W.; Williams, Shannon L.; Ryan, Joseph J.; Schmelzle, Kristin H.; Washburn, Richard A.; Sullivan, Debra K.; Mayo, Matthew S.; Donnelly, Joseph E.

    2008-01-01

    ral International Journal of Behavioral ssBioMed CentNutrition and Physical Activity Open AcceResearch Physical activity across the curriculum: year one process evaluation results Cheryl A Gibson*1, Bryan K Smith2, Katrina D DuBose3, J Leon Greene... of Biostatistics, University of Kansas School of Medicine, 3901 Rainbow Blvd, Mail Stop 1026, Kansas City, KS, 66160, USA Email: Cheryl A Gibson* - cgibson@kumc.edu; Bryan K Smith - smithbr@ku.edu; Katrina D DuBose - dubose@ecu.edu; J Leon Greene - jlg...

  7. Haiti : the orphan chronicles

    E-Print Network [OSTI]

    Etnire, Michelle

    2000-01-01

    vents et marées'9 ("Give me your friendship and I will stand up against winds and tides") This little orphanage in the mountains above Fermathe does indeed cast a spell upon the visitor as does a sky-lit rainbow. The president and general director..., directed by Sr. Donna P. Bélizaire, stands high in the town of Kenscoff, a mountain district above Port-au-Prince. Although Sr. Donna was not present when I visited, there was another sister who gladly showed me around. Sr. Donna mostly resides abroad...

  8. Exodus in Kansas

    E-Print Network [OSTI]

    Landsberg, Melvin

    2000-01-01

    ’re advertising the state as ‘Kansas, Land of Oz,’ but I don’t see any tourists coming.” “Sure lots of them have seen The Wizard of Oz and heard Judy Garland sing ‘Somewhere over the Rainbow,’” said Jeff. “But nobody cares about wizards.” “My girl is a witch... in the house and even climbed into their bed. They sure didn’t think it was funny.” Suddenly Bill said, “A witch burning would bring hordes of tourists into town, and we could build a theme park around it.” “The courts wouldn’t allow witch burning,” Jeff...

  9. Evidence for strong refraction of $^3$He in an alpha-particle condensate

    E-Print Network [OSTI]

    S. Ohkubo; Y. Hirabayashi

    2011-02-09

    We have analyzed $^{3}$He scattering from $^{12}$C at 34.7 and 72 MeV in a coupled channel method with a double folding potential derived from the precise wave functions for the ground 0$^+$ state and $0_2^+$ (7.65 MeV) Hoyle state, which has been suggested to be an $\\alpha$ particle condensate. It is found that strong refraction of $^3$He in the Hoyle state can be clearly seen in the experimental angular distribution at {\\it low} incident energy region as an Airy minimum of the {\\it pre-rainbow oscillations}.

  10. Quantum Gravitational Optics

    E-Print Network [OSTI]

    Graham M Shore

    2003-04-15

    In quantum theory, the curved spacetime of Einstein's general theory of relativity acts as a dispersive optical medium for the propagation of light. Gravitational rainbows and birefringence replace the classical picture of light rays mapping out the null geodesics of curved spacetime. Even more remarkably, {\\it superluminal} propagation becomes a real possibility, raising the question of whether it is possible to send signals into the past. In this article, we review recent developments in the quantum theory of light propagation in general relativity and discuss whether superluminal light is compatible with causality.

  11. Shari T. Oral History

    E-Print Network [OSTI]

    T., Shari; Albin, Tami

    2009-12-17

    of mine in St. Louis, she's not gay or bi or anything, but she Shari T February 25, 2009 10 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas would love to go to Pride. She's (laugh) actually ex-Mormon and because of the whole... Proposition 8 thing, she's finally resigning from the church. And that was the camel that broke—the straw that broke the camel's back. Her dad was like a bishop in the Mormon church for years and years and years. Her whole family is very, very Mormon...

  12. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth PatrickRainbow

  13. The Observation and Study of ELP V5-120 Conformational Changes 

    E-Print Network [OSTI]

    Zhou, Qian

    2012-10-24

    , J. P.; Collinge, J.; Clarke, A. R. Proceedings of the National Academy of Sciences 2009, 106, 5651-5656. (3) Schneider, C. P.; Trout, B. L. The Journal of Physical Chemistry B 2009, 113, 2050-2058. (4) Street, T. O.; Bolen, D. W.; Rose, G. D... stream_source_info ZHOU-THESIS-2012.pdf.txt stream_content_type text/plain stream_size 28016 Content-Encoding ISO-8859-1 stream_name ZHOU-THESIS-2012.pdf.txt Content-Type text/plain; charset=ISO-8859...

  14. Rivers and Streams Survey Appendix 4: Individual Mercury Page 1 of 4 Year Station Name Common Name Result Unit

    E-Print Network [OSTI]

    Trout 0.12 ug/g ww 241 7 5 2011 Pit River at Big Bend Sacramento Pikeminnow 0.13 ug/g ww 259 7 5 2011 Pit River at Big Bend Sacramento Pikeminnow 0.08 ug/g ww 205 7 5 2011 Pit River at Big Bend Sacramento Pikeminnow 0.05 ug/g ww 286 7 5 2011 Pit River at Big Bend Sacramento Pikeminnow 0.03 ug/g ww 174 7 5 2011

  15. A biophysical model of temperature acclimation and thermally-induced death in ectothermic organisms 

    E-Print Network [OSTI]

    Klos, Cheryl Ann

    1978-01-01

    dehydrogenase, in its A4 and B4 forms (a), and its C4 and N forms (b). Data from Hochachka & Somero (1968). ? ? ? ? ? ? ? ? ? ? ? 36 FIG. 7. KH as a function of T for trout brain acetylcholinesterase at 2' and 17' acclimation. Data from Baldwin & Hochachka.... Alabaster (1969) documents two major fish kills at the Goldington power station on the river Ouse in England. The first occurred during normal operation, when temperature at the outfall rose from 30. 5' to 36. 5'C within three hours. Only small fishes...

  16. A catalog of visual-like morphologies in the 5 CANDELS fields using deep-learning

    E-Print Network [OSTI]

    Huertas-Company, M; Cabrera-Vives, G; Pérez-González, P G; Kartaltepe, J S; Barro, G; Bernardi, M; Mei, S; Shankar, F; Dimauro, P; Bell, E F; Kocevski, D; Koo, D C; Faber, S M; Mcintosh, D H

    2015-01-01

    We present a catalog of visual like H-band morphologies of $\\sim50.000$ galaxies ($H_{f160w}\\sim1.25$. The algorithm is trained on GOODS-S for which visual classifications are publicly available and then applied to the other 4 fields. Following the CANDELS main morphology classification scheme, our model retrieves the probabilities for each galaxy of having a spheroid, a disk, presenting an irregularity, being compact or point source and being unclassifiable. ConvNets are able to predict the fractions of votes given a galaxy image with zero bias and $\\sim10\\%$ scatter. The fraction of miss-classifications is less than $1\\%$. Our classification scheme represents a major improvement with respect to CAS (Concentration-Asymmetry-Smoothness)-based methods, which hit a $20-30\\%$ contamination limit at high z. The catalog is released with the present paper via the $\\href{http://rainbowx.fis.ucm.es/Rainbow_navigator_public}{Rainbow\\,database}$

  17. A study on the Fresnel diffraction of {sup 6}He by means of different microscopic density distributions

    SciTech Connect (OSTI)

    Aygun, M.; Boztosun, I.; Sahin, Y.

    2012-08-15

    The elastic scattering of the halo nucleus {sup 6}He from heavy targets such as {sup 197}Au and {sup 208}Pb has been investigated in order to explain the Coulomb rainbow peak due to the Fresnel-type diffraction observed in the experimental data. In order to examine the role of nuclear potential to describe {sup 6}He + {sup 197}Au and {sup 6}He + {sup 208}Pb systems, we have used the no-core shell model, few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear potential have been obtained by using the double-folding model for each of the density distribution and the phenomenological imaginary potentials have been taken as the standard Woods-Saxon shape. We have observed that fewbody and Gaussian-shaped density distributions have given standard Fresnel-type diffraction results, a classical scattering pattern with Coulomb rainbow peak whereas the nuclear potential obtained by using the no-core shell-model density distribution has provided the reduction at Fresnel peak and has given more consistent results with the experimental data.

  18. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    SciTech Connect (OSTI)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

  19. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect (OSTI)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  20. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    SciTech Connect (OSTI)

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  1. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    SciTech Connect (OSTI)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  2. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

    SciTech Connect (OSTI)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-11-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).

  3. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn; Tohtz, Joel

    2008-11-12

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

  4. Model solution for volume reflection of relativistic particles in a bent crystal

    SciTech Connect (OSTI)

    Bondarenco, M. V.

    2010-10-15

    For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.

  5. SPM Bulletin 25

    E-Print Network [OSTI]

    Tsaban, Boaz

    2008-01-01

    Contents: 1. Combinatorial and model-theoretical principles related to regularity of ultrafilters and compactness of topological spaces, I; 2. Frechet-Urysohn fans in free topological groups; 3. Packing index of subsets in Polish groups; 4. Symmetric monochromatic subsets in colorings of the Lobachevsky plane; 5. Structural Ramsey theory of metric spaces and topological dynamics of isometry groups; 6. Distinguishing Number of Countable Homogeneous Relational Structures; 7. Indestructible colourings and rainbow Ramsey theorems; 8. Products of Borel subgroups; 9. Selection theorems and treeability; 10. Combinatorial and model-theoretical principles related to regularity of ultrafilters and compactness of topological spaces, IV; 11. A property of Cp[0, 1]; 12. A Dedekind Finite Borel Set; 13. Aronszajn Compacta; 14. A strong antidiamond principle compatible with CH; 15. On the strength of Hausdorff's gap condition; 16. Nonhomogeneous analytic families of trees; 17. Reasonable non-Radon-Nikodym ideals; 18. Contin...

  6. On the phenomenon of emergent spacetimes: An instruction guide for experimental cosmology

    E-Print Network [OSTI]

    Weinfurtner, Silke; Jain, Piyush; Gardiner, C W

    2008-01-01

    We present a toy model where spacetime is emergent from a more fundamental microscopic system, and investigate the gray area interpolating between the collective and free-particle regimes. For a period of rapid exponential growth in the analogue universe, we argue that the intermediate regime is best described by a coloured potpourri of geometries -- a "rainbow geometry". This can be viewed as an alternative approach towards understanding quantum field theories in the presence of Lorentz-symmetry breaking at ultraviolet scales. Firstly, it is pointed out that cosmological particle production in our emergent FRW-type analogue universe, when compared to conventional semi-classical quantum gravity, is only temporarily robust against model-specific deviations from Lorentz invariance. Secondly, it is possible to carry out a straightforward quantitative analysis to estimate a suitable parameter regime for experimental (analogue) cosmology.

  7. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  8. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  9. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  10. John Day Fish Passage and Screening; 2003 Annual Report.

    SciTech Connect (OSTI)

    Allen, Steve

    2004-02-01

    The primary goal of the Oregon Screens Project was to implement 20 replacement screens projects in the John Day sub-basin and any projects identified in the Umatilla and Walla Walla sub-basins. A secondary goal is to complete a passage project, if one is identified, in any of the above sub-basins. Mid-Columbia ESU listed steelhead and USF&W listed bull trout inhabit these sub-basins and are present at most locations, along with a variety of resident fish species. We also provide assistance to our Enterprise Screen Shop, in the Grande Ronde/Imnaha sub-basins, if needed. All projects were designed and implemented under current National Marine Fisheries Service screening and passage criteria.

  11. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  12. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect (OSTI)

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  13. Steelhead Supplementation in Idaho Rivers, 1993-1999 Summary Report.

    SciTech Connect (OSTI)

    Byrne, Alan

    2001-02-01

    The Steelhead Supplementation Study has conducted field experiments since 1993 that assess the ability of hatchery stocks to reestablish natural populations. We have stocked hatchery adult steelhead Oncorhynchus mykiss trapped at Sawtooth Fish Hatchery in Beaver Creek yearly and Frenchman creeks when enough fish were available. We stocked Dworshak Hatchery stock fingerlings in the South Fork Red River from 1993 to 1996 and smolts in Red River from 1996 to 1999. Although results from all experiments are not complete, preliminary findings indicate that these hatchery stocks will not reestablish natural steelhead populations. We focused most of our effort on monitoring and evaluating wild steelhead stocks. We operated a temporary weir to estimate the wild steelhead escapement in Fish Creek, a tributary of the Lochsa River. We snorkeled streams to monitor juvenile steelhead abundance, captured and tagged steelhead with Passive Integrated Transponder (PIT) tags, and recorded stream temperatures in the Clearwater and Salmon River drainages. We operated screw traps in five to ten streams each year. We have documented growth rates in Fish and Gedney creeks, age of parr in Fish Creek, Gedney Creek, Lick Creek, and Rapid River, and documented parr and smolt migration characteristics. This report summarizes our effort during the years 1993 to 1999.

  14. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  15. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1989 Annual Progress Report.

    SciTech Connect (OSTI)

    Hoelscher, Brian

    1990-04-01

    The kokanee Oncorhynchus nerka rehabilitation program for Lake Pend Oreille continued to show progress during 1989. Estimated kokanee abundance in late August was 7.71 million fish. Decreased population size is the result of lower hatchery and wild fry recruitment and low age 1+ survival. Lower recruitment of wild fry in 1989 resulted from a smaller parental escapement in 1988 and lower wild fry survival. Six fry release strategies were evaluated in 1989. Two groups were released in Clark Fork River to help improve a spawning run to Cabinet Gorge Hatchery. Survival from the mid-summer release, which was barged down Clark Fork River to avoid low flow problems, was not significantly different from the early release. The final assessment of these release strategies will be evaluated when adults return to Cabinet gorge Hatchery in 1992 and 1993. Fry released to support the Sullivan Springs Creek spawning run also survived will in 1989. Two open-water releases were made during early and mid-summer. 30 refs., 26 figs., 2 tabs.

  16. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1986 Annual Progress Report.

    SciTech Connect (OSTI)

    Bowles, Edward C.

    1987-02-01

    Estimated kokanee (Oncorhynchus nerka) abundance in Lake Pend Oreille was 4.3 million during September 1986. This estimate was similar to 1985 and indicates continued suppression of the kokanee population since initial decline in the late 1960s. Atypically high survival of wild fry resulted in similar fry recruitment in 1986 as 1985, whereas hatchery-reared fry contributed only 8% to total fry recruitment as a result of low post-release survival (3%). Fry released into the Clark Fork River from Cabinet Gorge Hatchery had very low survival during emigration to Lake Pend Oreille, resulting from poor flow conditions and potentially high predation. Fry survival during emigration was twice as high during nighttime flows of 16,000 cfs than 7,800 cfs. Emigration also was faster during higher flows. Several marks were tested to differentially mark fry release groups to help determine impacts of flow and other factors on fry survival. Survival of fry marked with tetracycline and fluorescent dye was high (>99%) during the 10-week study. In contrast, survival of fry marked with fluorescent grit marks ranged from 5 to 93%, depending on application pressure and distance from the fry. Retention was high (>96%) for tetracycline and grit marks during the study, whereas dye marks were discernible (100%) for only one week. 23 refs., 20 figs., 10 tabs.

  17. Kokanee Stock Status and Contribution Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1988 Annual Progress Report.

    SciTech Connect (OSTI)

    Bowles, Edward C.

    1989-02-01

    The kokanee Oncorhynchus nerka rehabilitation program for Lake Pend Oreille continued to show progress during 1988. Estimated kokanee abundance in early September was 10.2 million fish. This estimate is 70% higher than 1987 and 140% higher than the populations's low point in 1986. Increased population size over the past two years is the result of two consecutive strong year classes produced from high recruitment of hatchery and wild fry. High recruitment of wild fry in 1988 resulted from good parental escapement (strong year class) in 1987 and relatively high fry survival. Hatchery fry made up 51% of total fry recruitment (73% of total fry biomass), which is the largest contribution since hatchery supplementation began in the 1970s. High hatchery fry abundance resulted from a large release (13 million fry) from Cabinet Gorge Hatchery and excellent fry survival (29%) during their first summer in Lake Pend Oreille. Improved fry release strategies enhanced survival, which doubled from 1987 to 1988 and was ten times higher than survival in 1986. Our research goal is to maintain 30% survival so we are very optimistic, but need to replicate additional years to address annual variability. 27 refs., 24 figs., 3 tabs.

  18. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Tackley, Sean C.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurred in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.

  19. Efficacy of Single-Suture Incision Closures in Tagged Juvenile Chinook Salmon Exposed to Simulated Turbine Passage

    SciTech Connect (OSTI)

    Boyd, James W.; Deters, Katherine A.; Brown, Richard S.; Eppard, M. B.

    2011-09-01

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the use of a shorter incision-one that may warrant only a single suture for closure. However, it is not known whether a single suture will sufficiently hold the incision closed when fish are decompressed and when outward pressure is placed on the surgical site during turbine passage through hydroelectric dams. The objective of this study was to evaluate the effectiveness of single-suture incision closures on five response variables in juvenile Chinook salmon Oncorhynchus tshawytscha that were subjected to simulated turbine passage. An acoustic transmitter (0.43 g in air) and a passive integrated transponder tag (0.10 g in air) were implanted in each fish; the 6-mm incisions were closed with either one suture or two sutures. After exposure to simulated turbine passage, none of the fish exhibited expulsion of transmitters. In addition, the percentage of fish with suture tearing, incision tearing, or mortal injury did not differ between treatments. Expulsion of viscera through the incision was higher among fish that received one suture (12%) than among fish that received two sutures (1%). The higher incidence of visceral expulsion through single-suture incisions warrants concern. Consequently, for cases in which tagged juvenile salmonidsmay be exposed to turbine passage, we do not recommend the use of one suture to close 6-mm incisions associated with acoustic transmitter implantation.

  20. Strobe Light Testing and Kokanee Population Monitoring : Dworshak Dam Impacts Assessment and Fisheries Investigation Project, 97-99 : annual Progress Report for 1998.

    SciTech Connect (OSTI)

    Maiolie, Melo A.; Harryman, Bill; Ament, William J.

    1999-12-01

    We tested the response of kokanee Oncorhynchus nerka to strobe lights. Testing was conducted on wild, free-ranging fish in their natural environment (i.e., the pelagic region of two large Idaho lakes). Split-beam hydroacoustics were used to record the distance kokanee moved away from the lights as well as the density of kokanee in the area near the lights. In control tests, where the strobe lights were lowered into the lake but kept turned off, kokanee remained within a few meters of the lights. Once the lights began flashing, kokanee quickly moved away from the light source. Kokanee were found to move an average of 30 to 136 m away from the lights in waters with Secchi transparencies from 2.8 to 17.5 m (p=0.00 to p=0.04). Kokanee densities near the lights were significantly lower (p=0.00 to p=0.07) when the lights were turned on than in control samples with no lights flashing. Flash rates of 300, 360, and 450 flashes/min elicited strong avoidance responses from the fish. Kokanee remained at least 24 m away from the lights during our longest test that lasted for 5 h 50 min. Kokanee appeared to be responding to flashes that were well less than 0.00016 lux above background lighting.

  1. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    SciTech Connect (OSTI)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmon have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.

  2. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop and test a quantitative index of the early life history diversity of juvenile salmon in the LCRE; (3) assess and, if feasible, develop and test a quantitative index of the survival benefits of tidal wetland habitat restoration (hydrologic reconnection) in the LCRE; and (4) synthesize the results of investigations into the indices for habitat connectivity, early life history diversity, and survival benefits.

  3. Automating valves for low emission: Balance environmental needs with economic realities

    SciTech Connect (OSTI)

    Woll, B.M. [Conbraco Industries, Matthews, NC (United States)

    1997-04-01

    By the late 1980s, quarter-turn valves had become a commodity without much product differentiation. Then, fueled by the Clean Air Act (CAA) of 1990, US valve manufacturers saw an opportunity to capitalize on what was thought to be a revolution in stem-sealing technology. A potential new market for high-end valving would be the pot of gold at the end of the rainbow. R&D departments were ordered to create totally new valves or to enhance existing products. The chemical industry, at the urging of the EPA, was going to revive what had been a highly competitive and saturated market. Today, the chemical industry is nearing the end of the three-phase program to monitor and correct excessive leakage problems. The results have been very good. However, individual company approaches to solving leakage problems have been varied. In most cases, the solutions have been driven by economics rather than by the maximum achievable technology. Much to the chagrin of many valve manufacturers who envisioned a bonanza with fugitive-emission-style valves, the industry seems to have sought out the best product it could afford to meet the 500-ppm leakage-rate requirement. 2 figs.

  4. Accounting for the analytical properties of the quark propagator from Dyson-Schwinger equation

    E-Print Network [OSTI]

    S. M. Dorkin; L. P. Kaptari; B. Kampfer

    2014-12-10

    An approach based on combined solutions of the Bethe-Salpeter (BS) and Dyson-Schwinger (DS) equations within the ladder-rainbow approximation in the presence of singularities is proposed to describe the meson spectrum as quark antiquark bound states. We consistently implement into the BS equation the quark propagator functions from the DS equation, with and without pole-like singularities, and show that, by knowing the precise positions of the poles and their residues, one is able to develop reliable methods of obtaining finite interaction BS kernels and to solve the BS equation numerically. We show that, for bound states with masses $M 1 $ GeV, however, the propagator functions reveal pole-like structures. Consequently, for each type of mesons (unflavored, strange and charmed) we analyze the relevant intervals of $M$ where the pole-like singularities of the corresponding quark propagator influence the solution of the BS equation and develop a framework within which they can be consistently accounted for. The BS equation is solved for pseudo-scalar and vector mesons. Results are in a good agreement with experimental data. Our analysis is directly related to the future physics programme at FAIR with respect to open charm degrees of freedom.

  5. Basic features of the pion valence-quark distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé; Roberts, Craig D.; Rodríguez-Quintero, Jose; Tandy, Peter C.

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore »realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q?(x); namely, at a characteristic hadronic scale, q?(x)~(1-x)2 for x?0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  6. Sketching the pion's valence-quark generalised parton distribution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mezrag, C.; Chang, L.; Moutarde, H.; Roberts, C. D.; Rodríguez-Quintero, J.; Sabatié, F.; Schmidt, S. M.

    2015-02-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD’s Dyson–Schwinger equations and exemplified via the pion’s valence dressed-quark GPD, Hv?(x, ?, t). Our analysis focuses primarily on ?=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting Hv?(x, ?=±1, t)with the pion’s valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to definemore »the pion’s valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for Hv?(x, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for Hv?(x, 0, t) and the associated impact-parameter dependent distribution, qv?(x, |b?|), which provide a qualitatively sound picture of the pion’s dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ? = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.« less

  7. Generalized Landau-level representation: effect of static screening in quantum Hall effect in graphene

    E-Print Network [OSTI]

    Igor A. Shovkovy; Lifang Xia

    2015-08-18

    By making use of the generalized Landau-level representation (GLLR) for the quasiparticle propagator, we study the effect of screening on the properties of the quantum Hall states with integer filling factors in graphene. The analysis is performed in the low-energy Dirac model in the improved rainbow approximation, in which the long-range Coulomb interaction is modified by the one-loop static screening effects in the presence of a background magnetic field. By utilizing a rather general ansatz for the propagator, in which all dynamical parameters are running functions of the Landau-level index $n$, we derive a self-consistent set of the Schwinger-Dyson (gap) equations and solve them numerically. The explicit solutions demonstrate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken $U(4)$ flavor symmetry. The temperature dependence of the energy gaps is also studied. The corresponding results mimic well the temperature dependence of the activation energies measured in experiment. It is also argued that, in principle, the Landau-level running of the quasiparticle dynamical parameters could be measured via optical studies of the integer quantum Hall states.

  8. Generalized Landau-level representation: effect of static screening in quantum Hall effect in graphene

    E-Print Network [OSTI]

    Shovkovy, Igor A

    2015-01-01

    By making use of the generalized Landau-level representation (GLLR) for the quasiparticle propagator, we study the effect of screening on the properties of the quantum Hall states with integer filling factors in graphene. The analysis is performed in the low-energy Dirac model in the improved rainbow approximation, in which the long-range Coulomb interaction is modified by the one-loop static screening effects in the presence of a background magnetic field. By utilizing a rather general ansatz for the propagator, in which all dynamical parameters are running functions of the Landau-level index $n$, we derive a self-consistent set of the Schwinger-Dyson (gap) equations and solve them numerically. The explicit solutions demonstrate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken $U(4)$ flavor symmetry. The temperature dependence of the energy gaps is also studied. The corresponding results mimic well the temperature dependence of the activa...

  9. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect (OSTI)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

  10. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    SciTech Connect (OSTI)

    Ford, Michael J.; Williamson, Kevin S.

    2009-05-28

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries. To better understand this trend, redd microhabitat data was collected from spring Chinook sa

  11. Hanford production reactor heat releases 1951--1971

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1992-04-01

    The purpose of this report is to document and detail the thermal releases from the Hanford nuclear production reactors during the period 1951 through 1971, and to put these releases in historical perspective with respect to changing Columbia River flows and temperatures. This information can also be used as a foundation for further ecological evaluations. When examining Hanford production reactor thermal releases to the Columbia River all related factors affecting the releases and the characteristics of the river should be considered. The major considerations in the present study were the characteristics of the releases themselves (primarily coolant flow rate, temperatures, discharge facilities, period of operation, and level of operation) and the characteristics of the river in that reach (primarily flow rate, temperature and mixing characteristics; the effects of dam construction were also taken into account). In addition, this study addressed ecological effects of thermal releases on aquatic species. Accordingly, this report includes discussion of the reactor cooling system, historical heat releases, thermal mixing and transport studies, hydroelectric power development, and ecologic effects of Hanford production reactor heat releases on salmon and trout. Appendix A contains reactor operating statistics, and Appendix B provide computations of heat added to the Columbia River between Priest Rapids Dam and Richland, Washington.

  12. John Day Fish Passage and Screening; 2002 Annual Report.

    SciTech Connect (OSTI)

    Hartlerode, Ray; Dabashinsky, Annette; Allen, Steve

    2003-01-28

    This project is necessary to insure that replacement of fish screening devices and fishways meet current NMFS design criteria for the protection of all salmonid life stages. The mission of the fish passage program in Northeast Oregon is to protect and enhance fish populations by assisting private landowners, public landowners, irrigation districts and others by maintaining fish screening devices and fishways. These facilities reduce or eliminate fish loss associated with irrigation withdrawals, and as a result insure fish populations are maintained for enjoyment by present and future generations. Assistance is provided through state and federal programs. This can range from basic technical advice to detailed construction, fabrication and maintenance of screening and passage facilities. John Day screens personnel identified 50 sites for fish screen replacement, and one fish passage project. These sites are located in critical spawning, rearing and migration areas for spring chinook, summer steelhead and bull trout. All projects were designed and implemented to meet current NMFS criteria. It is necessary to have a large number of sites identified due to changes in weather, landowner cooperation and access issues that come up as we try and implement our goal of 21 completed projects.

  13. Deschutes River Spawning Gravel Study, Volume I, Final Report.

    SciTech Connect (OSTI)

    Huntington, Charles W.

    1985-09-01

    Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. 53 refs., 40 figs., 21 tabs.

  14. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    SciTech Connect (OSTI)

    Holderman, Charles

    2009-06-26

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  15. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  16. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect (OSTI)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  17. Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.

    SciTech Connect (OSTI)

    Johnson, Bradley J.

    1999-11-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

  18. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  19. Natural Propagation and Habitat Improvement, Volume 2, Idaho, 1984 Final and Annual Reports.

    SciTech Connect (OSTI)

    Hair, Don

    1986-01-01

    In 1984, and under the auspices of the Northwest Power Planning Council, the Clear-water National Forest and the Bonneville Power Administration entered into a contractual agreement to improve anadromous fish habitat in Lolo Creek. This was to be the second and final year of instream enhancement work in Lolo Creek, a major tributary to the Clearwater River. The project was again entitled Lolo Creek Habitat Improvement (No.84-6) which was scheduled from April 1, 1984, through March 31, 1985. Project costs were not to exceed $39,109. The following report is a description of the project objectives, methodology, results, and conclusions of this year's work, based on the knowledge and experience gained through 2 years of enhancement work. The primary objective was to partially mitigate the juvenile and adult anadromous fish losses accrued through hydroelectric development in the Columbia and Snake River systems by enhancing the spawning and rearing habitats of selected Clearwater River tributaries for spring chinook salmon and summer steelhead trout. The enhancement was designed to ameliorate the ''limiting production factors'' by the in-stream placement of habitat structures that would positively alter the pool-riffle structure and increase the quality of over-winter habitat.

  20. Umatilla Satellite and Release Sites Project : Final Siting Report.

    SciTech Connect (OSTI)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  1. Development of a Vaccine for Bacterial Kidney Disease in Salmon, 1987 Annual Report.

    SciTech Connect (OSTI)

    Kaattari, Stephen

    1988-06-01

    Bacterial kidney disease (BKD) has been and remains a chronic contributory problem limiting the productivity of salmon in the Columbia River Basin. Control of this disease will not come easily, but it would lead to a tremendous increase in the health and numbers of salmon populations. Vaccination of salmon to Renibacterium salmoninarum (KDB) is a potentially successful method of controlling this disease. To date, however, no successful vaccine has been developed for general use. A possible solution to this problem, and thus the goal of this research, is to isolate the antigenic components of KDB and enhance their ability to activate the host defenses. This will be accomplished by the chemical modification of these antigens with potent immunomodulatory substances. These modified antigens will then be tested for their effectiveness in inducing immunity to BKD and thereby preventing the disease. The goal of the project's fourth year was to test the immunogenicity and prophylactic value in coho salmon (Oncorhynchus kisutch) of various--chemical conjugates of Renibacterium salmoninarum cell and major antigens. This was accomplished by assessing the serum antibody response, the cellular immune response (chemiluminescence), and the kinetics of mortality after lethal injections of the bacteria. The studies completed this year have: (1) identified immunization procedures which enhance the induction of high levels of antibody; (2) identified functionally distinct serum antibodies which may possess different abilities to protect salmon against BKD; (3) begun the isolation and characterization of anti-R. salmoninarum antibodies which may correlate with varying degrees of protection; (4) identified chemiluminescence as a potential method for assessing cellular immunity to bacterial kidney disease; and (5) characterized two monoclonal antibodies to R. salmoninarum which will be of benefit in the diagnosis of this disease.

  2. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2002.

    SciTech Connect (OSTI)

    Garcia, Aaron P.; Bradbury, S.M.; Arnsberg, Billy D.

    2003-09-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2001; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2002 was funded by the Bonneville Power Administration (Projects 1998-01-003 and 1994-03-400) and the Idaho Power Company.

  3. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    SciTech Connect (OSTI)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie; Murray, Christopher J.

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each year with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.

  4. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    SciTech Connect (OSTI)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  5. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    SciTech Connect (OSTI)

    Wilson, Wayne H.; Schricker, Jaym'e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer steelhead O. mykiss and life history characteristics of summer steelhead.

  6. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1987 Annual Progress Report.

    SciTech Connect (OSTI)

    Bowles, Edward C.

    1988-05-01

    Estimated kokanee Oncorhynchus nerka abundance in Lake Pend Oreille was 6.01 million during late summer 1987. This estimate is 40% higher than the 1986 estimate and is the second largest population estimate since 1977. Higher abundance is predominantly a result of enhanced fry survival and recruitment. Hatchery-reared fry contribution was 22% of total fry recruitment in 1987, compared to 8% in 1986, and resulted from a fivefold increase in survival. Much of this improvement can be attributed to the large (52 mm) fry produced at Cabinet Gorge Hatchery in 1987 and represents the first measurable contribution of the new hatchery to the kokanee rehabilitation program. Survival of hatchery-reared fry released into Clark Fork River was nearly one-half that of fry released into Sullivan Springs due to poor flow conditions and potentially high predation during migration from Cabinet Gorge Hatchery to Lake Pend Oreille. Wild fry survival was enhanced by early availability of forage (cladocern zooplankton) during fry emergence in late spring. Cladoceran production began three weeks earlier in 1987 than 1986, which resulted from reduced Mysis abundance and earlier thermal stratification of Lake Pend Oreille, which helped segregate cladocerans from mysid predation. Kokanee dry otolith coding was evaluated to provide a reliable long-term mark. Analysis of daily growth increments on otoliths was used successfully in 1987 to differentiate fry from various release sites. The technique will be refined during 1988 to include coding fry otoliths with water temperature fluctuations during hatchery residence. 23 refs., 20 figs., 2 tabs.

  7. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (8) assist IDFG with captive broodstock production activities.

  8. HEAD INJURY ASSESSMENT IN JUVENILE CHINOOK USING THE ALPHA II-SPECTRIN BIOMARKER: EFFECTS OF PRESSURE CHANGES AND PASSAGE THROUGH A REMOVABLE SPILLWAY WEIR

    SciTech Connect (OSTI)

    Jonason, C.; Miracle, A.

    2009-01-01

    The cytoskeletal protein alpha II-spectrin has specifi c neurodegenerative mechanisms that allow the necrotic (injury-induced) and apoptotic (non-injury-induced) pathways of proteolysis to be differentiated in an immunoblot. Consequently, ?II-spectrin breakdown products (SBDPs) are potential biomarkers for diagnosing traumatic brain injury (TBI). The purpose of the following investigation, consisting of two studies, was to evaluate the utility of the spectrin biomarker in diagnosing TBI in fi sh that travel through hydroelectric dams in the Columbia and Snake Rivers. The fi rst study used hyperbaric pressure chambers to simulate the pressure changes that affect fi sh during passage through a Federal Columbia River Power System (FCRPS) Kaplan turbine. The second study tested the effect of a removable spillway weir (RSW) on the passage of juvenile chinook (Oncorhynchus tshawytscha). This study was conducted in tandem with a balloon-tag study by the U.S. Army Corps of Engineers. Brain samples from fi sh were collected and analyzed using an immunoblot for SBDPs, and imaging software was used to quantify the protein band density and determine the ratio of cleaved protein to total protein. The biomarker analyses found higher SBDP expression levels in fi sh that were exposed to lower pressure nadirs and fi sh that passed through the RSW at a deep orientation. In general, the incidence of injuries observed after treatment positively correlated with expression levels, suggesting that the biomarker method of analysis is comparable to traditional methods of injury assessment. It was also found that, for some treatments, the 110 kDa spectrin fragment (SBDP 110) correlated more strongly with necrotic head injury incidence and mortality rates than did the total cleaved protein or the 120 kDa fragment. These studies will be informative in future decisions regarding the design of turbines and fi sh passage structures in hydroelectric dams and will hopefully contribute to the development of faster and more accurate techniques for diagnosing TBI in fi sh.

  9. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  10. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  11. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance

    SciTech Connect (OSTI)

    Palmer, M.R. (Bristol Univ. (England)); Sturchio, N.C. (Argonne National Lab., IL (USA))

    1990-10-01

    Boron concentrations and isotope compositions have been measured in fourteen hot spring waters, two drill hole waters, an unaltered rhyolite flow, and hydrothermally altered rhyolite from the geothermal system in Yellowstone National Park, Wyoming. The samples are representative of the major thermal areas within the park and span the range of fluid types. For the fluids, the B concentrations range from 0.043-2.69 mM/kg, and the {delta}{sup 11}B values range from {minus}9.3 to +4.4{per thousand}. There is no relationship between the dissolved B concentrations or isotope compositions with the concentration of any major element (other than Cl) or physical property. Each basin is characterized by a restricted range in B/Cl ratios and {delta}{sup 11}B values. Hot spring waters from the Norris Basin, Upper Geyser Basin, Calcite Springs, and Clearwater have {delta}{sup 11}B values close to that of unaltered rhyolite ({minus}5.2{per thousand}) and are interpreted to have derived their B from this source. Waters from Mammoth Hot Springs, Sheepeater, and Rainbow Springs have lower {delta}{sup 11}B values close to {minus}8{per thousand}. These lower values may reflect leaching of B from sedimentary rocks outside the Yellowstone caldera, but they are similar to the {delta}{sup 11}B value of hydrothermally altered rhyolite ({minus}9.7{per thousand}). Hence, the light boron isotope compositions recorded in these hot spring waters may reflect leaching of previously deposited hydrothermal minerals. Cooler springs along the Yellowstone River just outside the park boundary have lower B concentrations and higher {delta}{sup 11}B values that may reflect mixing with shallow meteoric water.

  12. UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES

    SciTech Connect (OSTI)

    Barro, G.; Perez-Gonzalez, P. G.; Gallego, J.; Villar, V.; Zamorano, J. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kajisawa, M.; Yamada, T. [Astronomical Institute, Tohoku University, Aramaki, Aoba, Sendai 9808578 (Japan); Miyazaki, S. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2011-04-01

    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Paper I), we present a detailed spectral energy distribution (SED) analysis of nearly 80,000 IRAC 3.6 + 4.5 {mu}m selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates (SFRs) separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] {<=} 23.75 (85% completeness level of the IRAC survey) over 0.48 deg{sup 2}. The typical photometric redshift accuracy is {Delta}z/(1 + z) = 0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and initial mass functions in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 {mu}m data available in the Extended Groth Strip. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z {approx}> 1.5 observed when only MIPS 24 {mu}m data are available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the Web interface utility Rainbow-navigator.

  13. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  14. The ecological evaluation of surface water outfalls at a manufacturing plant in New Jersey

    SciTech Connect (OSTI)

    Harman, C.R.; Gilchrist, W.

    1995-12-31

    Historic metal machining operations at a manufacturing plant in northern New Jersey had resulted in the contamination of three surface water outfalls leading from the plant to a second-order stream used for trout fishing. The outfalls were fed by a combination of non-contact cooling water, stormwater runoff and groundwater infiltration. The outfalls ranged in length from 180 meters to 600 meters. All three of the outfalls pass through forested wetland areas and contained emergent wetland pockets. The ecological evaluation consisted of the collection of sediment samples to evaluate the extent of chemical contamination and the evaluation of the biological integrity of a portion of the surface water outfalls. Additionally, an ecological characterization of the surrounding habitat was prepared. Sediment sampling indicated elevated concentrations of antimony, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc. Nickel concentrations were the most significant, with concentrations ranging up to 9,850 mg/kg. PCB concentrations ranged between 0.45 mg/kg and 6.4 mg/kg. Elevated concentrations of metals and PCBs were detected to a sediment depth of 45 centimeters. To evaluate the potential for biological impacts from the metals in the sediments, a modified Rapid Bioassessment Protocol 1 evaluation was conducted on the macroinvertebrate population. The results of the evaluation indicated a very sparse macroinvertebrate community. Those organisms that were identified were typical of highly contaminated surface water system. The surrounding wetland systems appeared to be unaffected by the outfall contamination. Based on the results of the first phase of the ecological evaluation, a program of additional sediment sampling and further biological evaluation was prepared.

  15. Effects of chlorophyll and chlorophyllin on low-dose aflatoxin B1 pharmacokinetics in human volunteers: A pilot study

    SciTech Connect (OSTI)

    Jubert, C; Mata, J; Bench, G; Dashwood, R; Pereira, C; Tracewell, W; Turteltaub, K; Williams, D; Bailey, G

    2009-04-20

    Chlorophyll (Chla) and chlorophyllin (CHL) were shown previously to reduce carcinogen bioavailability, biomarker damage, and tumorigenicity in trout and rats. These findings were partially extended to humans (Proc Natl Acad Sci USA 98, 14601-14606 (2001)), where CHL reduced excretion of aflatoxin B{sub 1} (AFB{sub 1})-DNA repair products in Chinese unavoidably exposed to dietary AFB{sub 1}. However, neither AFB{sub 1} pharmacokinetics nor Chla effects were examined. We conducted a small unblinded crossover study to establish AFB{sub 1} pharmacokinetic parameters in human volunteers, and to explore possible effects of CHL or Chla co-treatment on those parameters. For protocol 1, fasted subjects received an IRB-approved dose of 14C-AFB{sub 1} (30 ng, 5 nCi) by capsule with 100 ml water, followed by normal eating and drinking after hr 2. Blood and cumulative urine samples were collected over 72 hr, and {sup 14}C-AFB{sub 1} equivalents were determined by Accelerator Mass Spectrometry. Protocols 2 and 3 were similar except capsules also contained 150 mg of purified Chla, or CHL, respectively. All protocols were repeated 3 times for each of three volunteers. The study revealed rapid human AFB{sub 1} uptake (plasma ka 5.05 {+-} 1.10 hr-1, Tmax 1.0 hr) and urinary elimination (95% complete by 24 hr) kinetics. Chla and CHL treatment each significantly impeded AFB{sub 1} absorption and reduced Cmax and AUC's (plasma and urine) in one or more subjects. These initial results provide AFB{sub 1} pharmacokinetic parameters previously unavailable for humans, and suggest that Chla or CHL co-consumption may limit the bioavailability of ingested aflatoxin in humans, as they do in animal models.

  16. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

    2014-03-28

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  17. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison H.A.; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; Mcmichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, Xinya; Fu, Tao

    2014-12-15

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  18. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect (OSTI)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

  19. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

  20. Steelhead Kelt Reconditioning and Reproductive Success, 2008 Annul Report.

    SciTech Connect (OSTI)

    Hatch, Douglas R. [Columbia River Inter-Tribal Fish Commission

    2009-04-02

    Iteroparity, the ability to repeat spawn, is a natural life history strategy that is expressed by some species from the family Salmonidae. Current rates of observed steelhead Oncorhynchus mykiss iteroparity rates in the Columbia River Basin are severely depressed due to anthropogenic development which includes operation of the hydropower system and other habitat degradations. Artificial reconditioning, which is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads, is evaluated in this study as method to restore depressed steelhead populations. To test the efficacy of steelhead kelt reconditioning as a management and recovery tool different scenarios were investigated ranging from very low intensity (collect and transport fish) to high intensity (collect and feed fish in captivity until rematuration). Examinations of gamete and progeny viability were performed for first-time spawners and reconditioned kelt steelhead. We have continued to examine reproductive success of reconditioned kelt steelhead in Omak Creek using microsatellite loci to perform parentage analysis on juvenile O. mykiss . The groundwork has also begun on developing a genetic analysis of the Yakima subbasin in order to determine steelhead kelt contribution by utilizing parentage analysis on a larger scale. A research and study plan has been developed cooperatively with the University of Idaho to determine the feasibility of steelhead kelt reconditioning program in the Snake River Basin. Analysis of management scenarios indicated that while no-term and short-term reconditioned kelts continue to perform well outmigrating to the ocean but returns from these groups have been low ranging from 0-12% during 2002-2008. Survival (56%) of fish in the long-term treatment in 2008 was the highest we have observed in this project. Analyzing the three different management scenarios within the Yakima River subbasin we determined that long-term reconditioning contributed the highest numbers of fish to the spawning run, and short-term reconditioning overall was the best of the transport releases to the ocean. However contributions to the spawning run by no-term or short-term groups was low in all years. This is the second successful year of kelt gamete and progeny analysis. Initial limited results suggest that reconditioned kelts may have shown limited improvement in both egg quantity and/or quality. There is further evidence to support the successful spawning of steelhead kelts in the wild at Omak Creek. Yakima kelts have been successfully identified to stream origin using genotypes.

  1. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  2. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    SciTech Connect (OSTI)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one adult Pacific lamprey was trapped and released above the Westland ladder this year. The Threemile Dam west bank juvenile bypass was opened on March 11, 2008 in conjunction with water deliveries and continued through the summer. West Extension Irrigation District (WEID) discontinued diverting live flow on June 24, 2008 but the bypass remained open throughout the project year. The juvenile trap was not operated this project year.

  3. Dworshak Reservoir Kokanee Population Monitoring, Annual Report 2001.

    SciTech Connect (OSTI)

    Maiolie, Melo; Stark, Eric

    2003-03-01

    Onsite testing of strobe lights was conducted to determine if they repelled kokanee Oncorhynchus nerka away from the turbine intakes at Dworshak Dam. We tested a set of nine strobe lights flashing at a rate of 360 flashes/min placed near the intake of a 90 mW turbine. A split-beam echo sounder was used to determine the effect of strobe light operation on fish density (thought to be mostly kokanee) in front of the turbine intakes. On five nights between December 2001 and January 2002, fish density averaged 110 fish/ha when no lights were flashing. Mean density dropped to 13 fish/ha when the strobe lights were turned on during five additional nights of sampling. This 88% decline in density was significant at the P = 0.009 level of significance based on a paired Student's t test. There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicate that a single set of nine lights may be sufficient to repel kokanee from a turbine intake during the night. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2001. Estimated abundance of kokanee has continued to increase since the spring of 1996 when high entrainment losses occurred. Based on hydroacoustic surveys, we estimated 3,276,000 kokanee in Dworshak Reservoir in early July 2001. This included 2,069,000 age-0 kokanee (90% CI {+-} 16.4%), 801,000 age-1 kokanee (90% CI {+-} 17.8%), and 406,000 age-2 kokanee (90% CI {+-} 20.5%). Entrainment sampling was also conducted with split-beam hydroacoustics a minimum of one continuous 24 h period per month. The highest entrainment rates occurred at night with lower discharges and shallower intake depths. Fish movement patterns suggested that they swam 'at will' in front of the intakes and may have chosen to move into the turbine intakes. Based on monthly hydroacoustic sampling in the forebay, we found that kokanee density was low in July and August during a period of high discharge. However, kokanee density was high in late winter when discharge was also high, thus increasing the likelihood of entrainment. Counts of spawning kokanee in four tributary streams used as an index reached 6,079 fish. This spawner count appeared unusually low considering the high population estimate of kokanee in the reservoir and data collected in previous years.

  4. Dworshak Kokanee Population and Engrainment Assessment : 2006 Annual Report, March 1, 2006 - February 28, 2007.

    SciTech Connect (OSTI)

    Stark, Eric J.

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fish counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.

  5. Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, Final Report.

    SciTech Connect (OSTI)

    Paragamian, Vaugh L.

    1994-07-01

    Lake Pend Oreille once provided the most popular kokanee Oncorhynchus nerka fishery in northern Idaho. A dramatic decline in the population occurred from the mid-1960s to 1970s. Restoration efforts included construction of the Cabinet Gorge Fish Hatchery to supplement the wild population and restore the fishery. In this study, hatchery-reared age 0 kokanee were stocked into Lake Pend Oreille from 1986 through 1992. Seven experimental stocking strategies for kokanee were tested using five locations and two time periods (early May through early June or late July). In 1985, the age 3 and older kokanee totaled about 0.35 million, but rose to 0.78 million in 1986, was stable, was then followed by a decline in 1990 to 0.53 million, then improved to 1.75 million in 1992. Much of the annual variation in total numbers of kokanee, ranging from 4.5 million to 10.2 million, was due to hatchery stockings of age 0 fish. Standing stocks of kokanee remained stable and ranged from 8 to 10 kg/hectare de spite dramatic changes in density due to age 0 fish. Prior to this study (1985), standing stocks were substantially higher (mean = 13.6 kg/hectare), indicating that the population may be operating below carrying capacity. The authors found survival of age 0 hatchery kokanee by each release season to range from 3% in 1986 to 39% in 1992, while the mean from 1987 through 1992 was 23%. They found significant (P=0.05) differences in survival between years, but they could not detect differences between stocking locations (P>0.71). Their analysis of survival between time (early vs late) and location was weak and inconclusive because after 1989 they had fewer fish to stock and could not repeat testing of some release strategies. They believe some of the variation in survival between release groups each year was due to the length of time between release in the lake and trawling.

  6. A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures

    SciTech Connect (OSTI)

    Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.; Eppard, M. B.

    2013-07-15

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmon Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the use of a single suture for surgical implantation of transmitters with incisions that are approximately 5 1/2 mm long after tag insertion.

  7. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

  8. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.

    2012-02-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelhead passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through the turbines between March 1 and April 10, 2011. Horizontal distribution data indicated Main Unit 18 passed the majority of fish. Fish passage occurred throughout the day. We conclude that adult steelhead passed through turbines during early spring 2011 at The Dalles Dam.

  9. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    SciTech Connect (OSTI)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and survival ranged from 0% to 96%, although there was evidence that some eggs had died after reaching the eyed stage. Six redds were capped in an attempt to document fry emergence, but none were collected. A final hydraulic sampling of the capped redds yielded nothing from five of the six, but 75 dead eggs and one dead fry were found in the sixth. Smothering by fine sediment is the suspected cause of the observed mortality between the eyed stage and fry emergence.

  10. Entiat 4Mile WELLs Completion Report, 2006.

    SciTech Connect (OSTI)

    Malinowksi, Richard

    2007-01-01

    The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

  11. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    SciTech Connect (OSTI)

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile Chinook and 4,913 steelhead during the spring of 2005. We estimated that 130,144 (95% CL's 97,133-168,409) Chinook emigrated from the upper John Day subbasin past our seining area in the Mainstem John Day River (river kilometers 274-296) between February 4 and June 16, 2005. We also estimated that 32,601 (95% CL's 29,651 and 36,264) Chinook and 47,921 (95% CL's 35,025 and 67,366) steelhead migrated past our Mainstem rotary screw trap at river kilometer (rkm) 326 between October 4, 2004 and July 6, 2005. We estimated that 20,193 (95% CL's 17,699 and 22,983) Chinook and 28,980 (95% CL's 19,914 and 43,705) steelhead migrated past our Middle Fork trap (rkm 24) between October 6, 2004 and June 17, 2005. Seventy three percent of PIT tagged steelhead migrants were age-2 fish, 13.8% were age-3, 12.7% were age-2, and 0.3% were age 4. Spring Chinook SAR for the 2002 brood year was estimated at 2.5% (100 returns of 4,000 PIT tagged smolts). Preliminary steelhead SAR (excluding 2-ocean fish) for the 2004 tagging year was estimated at 1.61% (60 returns of 3,732 PIT-tagged migrants).

  12. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    SciTech Connect (OSTI)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.

    2009-04-10

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

  13. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Harris, Robin; King, Marty

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

  14. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  15. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    SciTech Connect (OSTI)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and Johnson 1997; Pravecek and Kline 1998; Kline and Heindel 1999; Hebdon et al. 2000; Flagg et al. 2001; Kline and Willard 2001; Frost et al. 2002; Hebdon et al. 2002; Hebdon et al. 2003; Kline et al. 2003a; Kline et al. 2003b; Willard et al. 2003a; Willard et al. 2003b; Baker et al. 2004; Baker et al. 2005; Willard et al. 2005; Baker et al. 2006; Plaster et al. 2006; Baker et al. 2007). The immediate goal of the program is to utilize captive broodstock technology to conserve the population's unique genetics. Long-term goals include increasing the number of individuals in the population to address delisting criteria and to provide sport and treaty harvest opportunity. (1) Develop captive broodstocks from Redfish Lake sockeye salmon, culture broodstocks and produce progeny for reintroduction. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program reintroduction efforts. (4) Utilize genetic analysis to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, provide written activity reports, and participate in essential program management and planning activities. Idaho Department of Fish and Game's participation in the Snake River Sockeye Salmon Captive Broodstock Program includes two areas of effort: (1) sockeye salmon captive broodstock culture, and (2) sockeye salmon research and evaluations. Although objectives and tasks from both components overlap and contribute to achieving the same goals, work directly related to sockeye salmon captive broodstock research and enhancement will appear under a separate cover. Research and enhancement activities associated with Snake River sockeye salmon are permitted under NOAA permit numbers 1120, 1124, and 1481. This report details fish

  16. Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

    2008-12-01

    In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific riverbed elevation and providing minimum spawning flows that have the greatest chance of being maintained through egg incubation and fry emergence. However, managing the lower Columbia River for a stable tailwater elevation does not provide much operational flexibility at Bonneville Dam, which has little storage capacity. When river discharges increase due to rain events, the traditional approach has been to pass excess water at night to maintain stable tailwater elevations during the daytime. The underlying assumption of this strategy, referred to as reverse load following, is that fish do not spawn at night. However, Tiffan et al. (2005) showed that this assumption is false by documenting nighttime spawning by chum salmon in the Ives Island area. Similarly, McMichael et al. (2005) reported nighttime spawning by Chinook salmon (O. tshawytscha) in the Columbia River, indicating that diel spawning may be a common occurrence in Pacific salmon. During the latter portion of the chum spawning period in December 2003 and 2004, discharges from Bonneville Dam increased from an average of 3,398 m3/s (tailwater elevation {approx} 3.5 m above mean sea level) during the day to over 5,664 m3/s (tailwater elevation {approx} 5.1 m) at night, with peak discharges of 7,080 m{sup 3}/s (tailwater elevation {approx} 6.1 m). This caused concern among fishery managers regarding the potential effects of these high discharges on this population of spawning chum salmon, which is listed under the Endangered Species Act (National Oceanic and Atmospheric Administration 1999). We hypothesized that increased water velocities associated with elevated tailwaters might alter chum salmon spawning behavior if water velocities at redd locations increased beyond the range of suitability (>0.8 m/s; Salo 1991). In 2005, we investigated the movement and behavioral responses of spawning chum salmon at Ives Island to increased tailwater elevations at Bonneville Dam. We used acoustic telemetry to determine if the higher velocities associated with increased tailwater elevations caused fish to leave their re

  17. Enumeration of Juvenile Salmonids in the Okanogan Basin Using Rotary Screw Traps, Performance Period: March 15, 2006 - July 15, 2006.

    SciTech Connect (OSTI)

    Johnson, Peter N.; Rayton, Michael D.

    2007-05-01

    The Colville Tribes identified the need for collecting baseline census data on the timing and abundance of juvenile salmonids in the Okanogan River basin for the purpose of documenting local fish populations, augmenting existing fishery data and assessing natural production trends of salmonids. This report documents and assesses the pilot year of rotary trap capture of salmonid smolts on the Okanogan River. The project is a component of the Colville Tribes Okanogan Basin Monitoring and Evaluation Program (OBMEP) which began in 2004. Trapping for outmigrating fish began on 14 March 2006 and continued through 11 July 2006. Anadromous forms of Oncorhynchus, including summer steelhead (O. mykiss), Chinook (O. tshawytscha), and sockeye (O. nerka), were targeted for this study; all have verified, natural production in the Okanogan basin. Both 8-ft and 5-ft rotary screw traps were deployed on the Okanogan River from the Highway 20 Bridge and typically fished during evening hours or 24 hours per day, depending upon trap position and discharge conditions. Juvenile Chinook salmon were the most abundant species trapped in 2006 (10,682 fry and 2,024 smolts), followed by sockeye (205 parr and 3,291 smolts) and steelhead (1 fry and 333 smolts). Of the trapped Chinook, all fry were wild origin and all but five of the smolts were hatchery-reared. All trapped sockeye were wild origin and 88% of the steelhead smolts were hatchery-reared. Mark-recapture experiments were conducted using Chinook fry and hatchery-reared steelhead smolts (sockeye were not used in 2006 because the peak of the juvenile migration occurred prior to the onset of the mark-recapture experiments). A total of 930 chinook fry were marked and released across eight separate release dates (numbers of marked Chinook fry released per day ranged from 34 to 290 fish). A total of 11 chinook fry were recaptured for an overall trap efficiency of 1.18%. A total of 710 hatchery-reared steelhead were marked and released across three separate release dates (numbers of steelhead released per day ranged from 100 to 500 fish). A total of 12 steelhead were recaptured for an overall trap efficiency of 1.69%. A pooled Peterson estimator with a Chapman modification was used to produce population estimates for wild Chinook fry and hatchery-reared steelhead based on the results of the mark-recapture experiments. The 2006 populations for Chinook and steelhead were estimated to be 381,554 (95% confidence intervals: 175,731-587,377) and 14,164 (6,999-21,330), respectively. The population estimates were based on the periods in which mark-recapture experiments were initialized through the end of the trapping season (10 May for steelhead and 1 June for Chinook).

  18. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    SciTech Connect (OSTI)

    Connor, William P.

    2008-04-01

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under a surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates are not reported here, but will be presented in future reports written after workshops and input by federal, state, and tribal researchers. In this report, we compared the postrelease performance of natural subyearlings to the postrelease performance of surrogate and production subyearlings. We made this comparison to help the fisheries community determine which of the two hatchery rearing strategies produced fish that were more similar to natural subyearlings. We compared the following attributes of postrelease performance (1) detection dates at dams, (2) detections during the implementation of summer spill, (3) travel times, (4) migrant sizes, and (5) the joint probability of migration and survival. Overall, we found that postrelease performance was more similar between natural and surrogate subyearlings than between natural and production subyearlings. Further, the similarity between natural and surrogate subyearlings was greater in 2006 than in 2005, partly as the result of changes in incubation and early rearing practices we recommended based on 2005 results.

  19. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    SciTech Connect (OSTI)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.; Wagner, Katie A.; Royer, Ida M.; Knox, Kasey M.; Kim, Jin A.; Gay, Marybeth E.; Weiland, Mark A.; Brown, Richard S.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5 mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in indoor circular tanks at the Bonneville Dam Juvenile Monitoring Facility. Overall mortality ranged weekly from 45 to 72% for YCH, 55 to 83% for STH, and 56 to 84% for SYC. The high background mortality in all groups and species made it difficult to discern tag effects. However, for YCH, STH, and SYC, the Tagged treatment groups had the highest overall mean mortality - 62%, 79%, and 76%, respectively. Fungal infections were found on 35% of all fish. Mean tag burden for the Tagged treatment group was relatively low for YCH (1.7%) and moderate for SYC (4.2%), while STH had a very low mean tag burden (0.7%). Tag burden was significantly higher in the Tagged treatment group for all species when compared to the Sham treatment group because of the presence of two tags. Surgeon performance did not contribute to the difference in mortality between the Sham and Tagged treatment groups. Tag expulsion from fish that survived to the end of the 30-day experiment was low but occurred in all species, with only two PIT tags and one AT lost, one tag per species. The high background mortality in this experiment was not limited to a treatment, temperature, or month. The decreased number of surviving fish influenced our experimental results and thus analyses. For future research, we recommend that a more natural exposure to monitor tag effects and other factors, such as swimming ability and predator avoidance, be considered to determine the effects of AT- and PIT- implantation on fishes.

  20. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam 2008-2009

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2009-09-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2008 and early spring 2009, respectively. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). Operating the sluiceway reduces the potential for hydropower production. However, this surface flow outlet may be the optimal non-turbine route for fallbacks in late fall after the sluiceway is typically closed for juvenile fish passage and for overwintering summer steelhead and kelt passage in the early spring before the start of the voluntary spill season. The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines, and their movements in front of the sluiceway at TDA to inform fisheries managers’ and engineers’ decision-making relative to sluiceway operations. The study periods were from November 1 to December 15, 2008 (45 days) and from March 1 to April 9, 2009 (40 days). The study objectives were to 1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA during the two study periods, respectively, and 2) assess the behavior of these fish in front of sluice entrances. We obtained fish passage data using fixed-location hydroacoustics and fish behavior data using acoustic imaging. For the overwintering summer steelhead, fallback occurred throughout the 45-day study period. We estimated that a total of 1790 ± 250 (95% confidence interval) summer steelhead targets passed through the powerhouse intakes and operating sluices during November 1 to December 15, 2008. Ninety five percent of these fish passed through the sluiceway. Therefore, without the sluiceway as a route through the dam, a number of steelhead may have fallen back through turbines. Run timing peaked in late November, but fish continued to pass the dam until the end of the study. Horizontal distribution data indicated that sluice 1 is the preferred route for these fish during fallback through the dam. Diel distribution for overwintering steelhead fallbacks was variable with no apparent distinct patterns. Therefore, sluiceway operations should not be based on diel distribution. For the early spring study, overwintering summer steelhead and early out-migrating steelhead kelt downstream passage occurred throughout the 40-day study period. A total of 1766 ± 277 (95% confidence interval) kelt-size targets were estimated to have passed through the powerhouse intakes and operating sluices. Ninety five percent of these fish passed through the sluiceway. Therefore, as with steelhead fallback, not having the sluiceway as a route through the dam, a number of overwintering steelhead and kelts may use the turbines for downstream passage before the start of the spill season. Run timing peaked in late March; however, relatively large numbers of kelt-sized targets passed the dam on March 2 and March 6 (162 and 188 fish, respectively). Horizontal distribution indicated that sluice 1 is the preferred route for these adult salmonids as they migrate downstream through the dam. Again, no clear pattern was seen for diel distribution of overwintering steelhead and early out-migrating kelt passage.

  1. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam, 2009-2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2010-07-31

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2009 through early spring 2010. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines for fisheries managers and engineers to use in decision-making relative to sluiceway operations. The study was from November 1, 2009 to April 10, 2010. The study was divided into three study periods: Period 1, November 1 - December 15, 2009 for a fall/winter sluiceway and turbine study; Period 2, December 16, 2009 - February 28, 2010 for a turbine only study; Period 3, March 1 - April 10, 2010 for a spring sluiceway and turbine study. Sluiceway operations were scheduled to begin on March 1 for this study; however, because of an oil spill cleanup near the sluice outfall, sluiceway operations were delayed until March 8, 2010, therefore the spring study period did not commence until March 8. The study objectives were to (1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA between November 1 and December 15, 2009 and March 1 and April 10, 2010, and (2) estimate the numbers and distribution of adult steelhead and kelt-sized targets passing into turbine units between December 16, 2009 and February 28, 2010. We obtained fish passage data using fixed-location hydroacoustics. For Period 1, overwintering summer steelhead fallback occurred throughout the 45-day study period. A total of 879 {+-} 165 (95% CI) steelhead targets passed through the powerhouse and sluiceway during November 1 to December 15, 2009. Ninety two percent of these fish passed through the sluiceway. Run timing peaked in early December, but fish continued to pass the dam until the end of the study. Horizontal distribution data indicated that Sluice 1 is the preferred route for these fish during fallback through the dam. Diel distribution for steelhead was variable with no apparent distinct patterns. For Period 2, adult steelhead passage occurred on January 14 and 31 and February 2, 22, and 24. A total of 62 {+-} 40 (95% CI) steelhead targets passed through the powerhouse intakes during December 16, 2009 to March 7, 2010. Horizontal distribution data indicated turbine unit 18 passed the majority of fish. Fish passage occurred during morning periods. Passage did not occur during afternoon or nighttime. For Period 3, the early spring study period, overwintering summer steelhead and early out-migrating steelhead kelt downstream passage occurred throughout the 34-day study period. A total of 1,985 {+-} 234 (95% CI) kelt-size targets were estimated to have passed through the powerhouse sluiceway. Ninety-nine percent of these fish passed through the sluiceway. Run timing peaked in late March and again in early April. Horizontal distribution indicated that Sluice 1 is the preferred route for these adult salmonids as they migrate downstream through the dam. Diel distribution for steelhead was variable with no apparent distinct patterns. The results of this study strongly suggest that operating the TDA sluiceway for steelhead passage (fallbacks and kelts) during the late fall, winter, and early spring months will provide an optimal, non-turbine route for these fishes to pass the dam.

  2. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. • Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. • Run timing for small-size fish (~65-90 mm) peaked (702 fish) on December 18. Downstream passage of small-size juvenile fish was variable, occurring on two days in the spring, eight days in the summer, and at times throughout late fall and winter. A total of 7,017 ± 690 small-size fish passed through the turbine penstock intakes during the study period. • Relatively few fish passed into the ROs when they were open in summer (2 fish/d) and winter (8 fish/d). • Fish were surface-oriented with 62-80% above 10 m deep. The highest percentage of fish (30-60%) was in the 5-10 m depth bin. We draw the following conclusions from the study. • The non-obtrusive hydroacoustic data from this study are reliable because passage estimates and patterns were similar with those observed in the direct capture data from the tailrace screw trap and were consistent with distribution patterns observed in other studies of juvenile salmonid passage at dams. • Fish passage at LOP was apparently affected but not dominated by dam operations and reservoir elevation. • The surface-oriented vertical distribution of fish we observed supports development of surface passage or collector devices. In summary, the high-resolution spatially and temporally data reported herein provide detailed estimates of vertical, horizontal, diel, daily, and seasonal passage and distributions at LOP during March 2010 through January 2011. This information is applicable to management decisions on design and development of surface passage and collections devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above Lookout Point Dam.

  3. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2012-05-31

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to project discharge (P<0.001). This relationship was positive, but there was no relationship between total project passage and forebay elevation (P=0.48) or forebay elevation delta, i.e., day-to-day change in forebay elevation (P=0.16). In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed data well. The multiple regression model indicates a positive trend between expected daily fish passage and each of the three variables in the model-Julian day, log(discharge), and log(abs(forebay delta)); i.e., as any of the environmental variables increase, expected daily fish passage increases. For vertical distribution of fish at the face of the dam, fish were surface-oriented with 62%-80% occurring above 10 m deep. The highest percentage of fish (30%-60%) was found between 5-10-m-deep. During spring and summer, mean target strengths for the analysis periods ranged from -44.2 to -42.1 dB. These values are indicative of yearling-sized juvenile salmon. In contrast, mean target strengths in fall and winter were about -49.0 dB, which are representative of subyearling-sized fish. The high-resolution spatial and temporal data reported herein provide detailed information about vertical, horizontal, diel, daily, and seasonal fish passage rates and distributions at LOP from March 2010 through January 2011. This information will support management decisions on design and development of surface passage and collection devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above LOP.

  4. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Ham, Kenneth D.

    2012-11-15

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and increased somewhat in September 2011. When the spillway was operated simultaneously with the turbines, spillway efficiency (efficiency is estimated as spillway passage divided by total project passage) was 0.72 and effectiveness (fish:flow ratio—proportion fish passage at a route (e.g., spillway) divided by proportion water through that route out of the total project) was 2.69. That is, when the spillway was open, 72% of the fish passing the dam used the spillway and 28% passed into the turbine penstocks. Diel distribution for smolt-size fish at the spillway shows a distinct peak in passage between mid-morning and mid-afternoon and low passage at night. We estimated that 23,339 smolt-size fish (± 572 fish, 95% CI) passed via the Regulating Outlet (RO) when it was open from October 29 through November 12, 2011, January 2-6, and January 20 through February 3, 2012. During the October–November period, RO passage peaked at 1,086 fish on November 5, with a second peak on November 7 (1,075 fish). When the RO was operated simultaneously with the turbines, RO efficiency was 0.33 and effectiveness was 0.89. In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed fish passage data well. The best model included forebay temperature at depth, forebay elevation, total discharge, hours of daylight, and the operation period. The vertical distribution of fish in the forebay near the face of the dam where the transducers sampled showed fish were generally distributed throughout the water column during all four operational periods. During the refill and full pool periods, vertical distribution was bi-modal with surface-layer and mid-water modes. Patterns for day and night distributions were variable. Fish were distributed above and below the thermocline when it was present (full pool and drawdown periods).

  5. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  6. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    SciTech Connect (OSTI)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of the planning effort leading to this Master Plan, a Technical Working Group (TWG) was established that represents most, if not all, fish and wildlife agencies/interests in the subbasin. This TWG met regularly throughout the planning process to provide input and review and was instrumental in the development of this plan. Preparation of this plan included the development of a quantitative prioritization process to rank 40,000 parcels within the Urban Growth Area based on the value of fish and wildlife habitat each parcel provided. Biological and physical criteria were developed and applied to all parcels through a GIS-based prioritization model. In the second-phase of the prioritization process, the TWG provided local expert knowledge and review of the properties. In selecting the most critical areas within the Urban Growth Area for protection, this project assessed the value of fish and wildlife habitat on the Yakima River. Well-developed habitat acquisition efforts (e.g., Yakima River Basin Water Enhancement Project by the Bureau of Reclamation and Yakama Nation acquisition projects) are already underway on the Yakima River mainstem. These efforts, however, face several limitations in protection of floodplain function that could be addressed through the support of the Yakima Habitat Improvement Project. This Master Plan integrates tributary habitat acquisition efforts with those ongoing on the Yakima River to best benefit fish and wildlife in the Urban Growth Area. The parcel ranking process identified 25 properties with the highest fish and wildlife value for habitat acquisition in the Yakima Urban Area. These parcels contain important fish and wildlife corridors on Ahtanum and Wide Hollow Creeks and the Naches River. The fifteen highest-ranking parcels of the 25 parcels identified were considered very high priority for protection of fish and wildlife habitat. These 15 parcels were subsequently grouped into four priority acquisition areas. This Master Plan outlines a four-year schedule for acquisition, protection, and restoration of the 25 highest ranked prop

  7. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and

  8. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    SciTech Connect (OSTI)

    Marmorek, David

    2004-03-01

    Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitat restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi-watershed designs for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design, implementation, and monitoring of prospective habitat restoration programs in the Columbia River Basin (Chapter 8).

  9. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    SciTech Connect (OSTI)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These FY2008 data assessments and others assembled over the years of the CSMEP project can be accessed on the CBFWA public website. The CSMEP web database (http://csmep.streamnet.org/) houses metadata inventories from S&W assessments of Columbia River Basin watersheds that were completed prior to FY2008. These older S&W assessments are maintained by StreamNet, but budget cutbacks prevented us from adding the new FY2008 assessments into the database. Progress was made in FY2008 on CSMEP's goals of collaborative design of improved M&E methods. CSMEP convened two monitoring design workshops in Portland (December 5 and 6, 2007 and February 11 and 12, 2008) to continue exploration of how best to integrate the most robust features of existing M&E programs with new approaches. CSMEP continued to build on this information to develop improved designs and analytical tools for monitoring the status and trends of fish populations and the effectiveness of hatchery and hydrosystem recovery actions within the Columbia River Basin. CSMEP did not do any new work on habitat or harvest effectiveness monitoring designs in FY2008 due to budget cutbacks. CSMEP presented the results of the Snake Basin Pilot Study to the Independent Scientific Review Panel (ISRP) in Portland on December 7, 2008. This study is the finalization of CSMEP's pilot exercise of developing design alternatives across different M&E domains within the Snake River Basin spring/summer Chinook ESU. This work has been summarized in two linked reports (CSMEP 2007a and CSMEP 2007b). CSMEP participants presented many of the analyses developed for the Snake Basin Pilot work at the Western Division American Fisheries Society (AFS) conference in Portland on May 4 to 7, 2008. For the AFS conference CSMEP organized a symposium on regional monitoring and evaluation approaches. A presentation on CSMEP's Cost Integration Database Tool and Salmon Viability Monitoring Simulation Model developed for the Snake Basin Pilot Study was also given to the Pacific Northwest Aquatic monitoring Partnership (PNAMP) stee

  10. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean

    2006-04-01

    2005 was an average to below average flow year at John Day and Bonneville Dams. A large increase in flow in May improved migration conditions for that peak passage month. Spill was provided April through August and averaged about 30% and 48% of river flow at John Day and Bonneville Dams, respectively. Water temperature graphs were added this year that show slightly lower than average water temperature at John Day and slightly higher than average temperatures at Bonneville. The number of fish handled at John Day decreased from 412,797 in 2004 to 195,293 this year. Of the 195,293 fish, 120,586 (61.7%) were collected for researchers. Last year, 356,237 (86.3%) of the fish sampled were for researchers. This dramatic decline is the result of (1) fewer research fish needed (2) a smaller, lighter tag which allowed for tagging of smaller fish, and (3) a larger average size for subyearling chinook. These factors combined to reduce the average sample rate to 10.8%, about half of last year's rate of 18.5%. Passage timing at John Day was similar to previous years, but the pattern was distinguished by larger than average passage peaks for spring migrants, especially sockeye. The large spike in mid May for sockeye created a very short middle 80% passage duration of just 16 days. Other spring migrants also benefited from the large increase in flow in May. Descaling was lower than last year for all species except subyearling chinook and below the historical average for all species. Conversely, the incidence of about 90% of the other condition factors increased. Mortality, while up from last year for all species and higher than the historical average for all species except sockeye, continued to be low, less than 1% for all species. On 6 April a slide gate was left closed at John Day and 718 fish were killed. A gate position indicator light was installed to prevent reoccurrences. Also added this year was a PIT tag detector on the adult return-to-river flume. For the first time this year, we successfully held Pacific lamprey ammocetes. The number of fish sampled at Bonneville Dam was also down this year to 260,742, from 444,580 last year. Reasons for the decline are the same as stated above for John Day. Passage timing at Bonneville Dam was quite similar to previous years with one notable exception, sockeye. Sockeye passage was dominated by two large spikes in late May that greatly condensed the passage pattern, with the middle 80% passing Bonneville in just 18 days. Unlike John Day, passage for the rest of the species was well disbursed from late April through early June. Fish condition was good, with reductions in descaling rates for all species except unclipped steelhead and sockeye. Sockeye mortality matched last year's rate but was considerably lower for all other species. Rare species sampled at Bonneville this year included a bull trout and a eulachon.

  11. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    SciTech Connect (OSTI)

    Rabe, Craig D.; Nelson, Douglas D.

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.

  12. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, average fish length remained relatively consistent (132 {+-} 39 mm), after which average lengths increased to 294 {+-} 145 mm for mid-November though early December. Fish behavior analysis indicates milling in front of the intake tower was the most common behavior observed throughout the study period (>50% of total fish events). The next most common movement patterns were fish traversing along the front of the tower, east-to-west and west-to-east. The proportion of fish events seen moving into (forebay to tower) or out of (tower to forebay) the tower was generally low throughout the spring, summer, and early fall for both directions combined. From mid-December 2010 through the end of the study, the combined proportions of fish moving into and out of the tower were higher than previous months of this study. Schooling behavior was most distinct in the spring from late April through mid-June. Schooling events were present in 30 - 96% of the fish events during that period, with a peak in mid-May. Schooling events were also present in the summer, but at lower numbers. Diel distributions for schooling fish during spring, fall, and winter months indicate schooling was concentrated during daylight hours. No schooling was observed at night. Predator activity was observed during late spring, when fish abundance and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months. For the two days of BlueView data analyzed for vertical distribution in the forebay, a majority of fish (>50%) were present in the middle of the water column (10 - 20 m deep). Between 20 and 41 % of total fish abundance were found in the bottom of the water column (20 - 30 m deep). Few fish were observed in the top 10 m of the water column.

  13. Hangman Restoration Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Coeur d'Alene Tribe

    2003-10-01

    Progress has been made in defining the level of work that needs to be accomplished in the Hangman Watershed in order to restore a viable riparian system and hydrology. The end goal is to use wildlife habitat to protect streams and provide water for instream fish habitats. In order to define the most expedient means of attaining that goal an Instream Flow/Watershed Hydrology Study was initiated. The study is intended to be comprehensive in order to determine the potential of increasing base flow with Hangman Watershed Streams and predict available fish habitats for the range of flow level possibilities. The Study Plan and work for the first field season was contracted and the Plan and end of field season reports are included with this Annual Report. The initial draft of the wildlife portion of the Monitoring and Evaluation Plan was completed and presented to the Columbia Basin Fish and Wildlife Authority Wildlife Committee. The Committee felt that the Basin Hydrology Study needed to be closer to completion before the bulk of wildlife monitoring should be implemented. The extent of the landscape that must be restored in order to facilitate the needed stream flows may not be large enough to affect the population levels of the Plan's target species. The main result of the Committee review of the Monitoring and Evaluation Plan however, was that since the Hangman Restoration Project is not a HU driven wildlife mitigation project than the Wildlife Committee does not have a role to play since their focus is wildlife HU crediting projects. Further work on the wildlife portion of the Monitoring and Evaluation Plan is suspended until the crediting issues surrounding the Hangman Restoration Project are settled. Certain aspects of the Plan, such as the land bird, amphibian, reptile and beaver monitoring can be implemented in the spring of the coming year because monitoring these species and groups needs to be accomplished regardless of crediting status and baseline data is needed for these. Data from the Hangman Creek Watershed from portions upstream and east of the Coeur d'Alene Indian Reservation were included in the Second Iteration of the Habitat Prioritization Plan. These data were gathered both by the Coeur d'Alene Tribe and Idaho's Department of Environmental Quality. The addition of this portion of the Watershed in the Prioritization Plan fills a gap that the lack of data left in the first draft of the Plan. The streams in these upper headwaters support remnant salmonid populations and are close enough to be integrated with the streams and trout populations on the Reservation. The addition of this area strengthens the base from which the Hangman Restoration Project can work to secure and expand resident fish populations. An extensive 2-year search for historic photos of the upper portion of the Hangman Watershed was completed during this annual funding cycle. The disappointing result is that few photographs were acquired. One excellent panoramic view of the Upper Hangman Watershed from Tekoa Mountain was recovered and photos of this view were taken for comparison. The task of finding historic photos has been removed from future Scopes of Work, however search for photos will continue as part of the Project's public outreach. The notable exception to the lack of historic photos is the purchase, digitizing and GIS registry of 1947 aerial photo coverage of the entire Hangman Creek Watershed east of the Washington/Idaho State Boarder. In addition, 1933 aerial photo coverage of most of this same area is being registered to our GIS system. These 1933 photos were available to the Tribe prior to the initiation of this Project; however these photos are being registered partly as a result of requests made from this Project. The process of developing a map of potential vegetation types for the Hangman Watershed has benefited from establishment of an Interagency Agreement with the U.S. Geologic Survey to hire a Scientific Advisor. The Scientific Advisor has assisted with the design of a scheme to sample remnant native vegetation within an