National Library of Energy BETA

Sample records for rainbow trout oncorhynchus

  1. Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance

    SciTech Connect (OSTI)

    Hansen, J.A.; Marr, J.C.A.; Lipton, J.; Cacela, D.; Bergman, H.L.

    1999-09-01

    Behavioral avoidance of copper (Cu), cobalt (Co), and a Cu and Co mixture in soft water differed greatly between rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha). Chinook salmon avoided at least 0.7 {micro}g Cu/L, 24 {micro}g Co/L, and the mixture of 1.0 {micro}g Cu/L and 0.9 {micro}g Co/L, whereas rainbow trout avoided at least 1.6 {micro}g Cu/L, 180 {micro}g Co/L, and the mixture of 2.6 {micro}g Cu/L and 2.4 {micro}g Co/L. Chinook salmon were also more sensitive to the toxic effects of Cu in that they failed to avoid {ge}44 {micro}g Cu/L, whereas rainbow trout failed to avoid {ge}180 {micro}g Cu/L. Furthermore, following acclimation to 2 {micro}g Cu/L, rainbow trout avoided 4 {micro}g Cu/L and preferred clean water, but chinook salmon failed to avoid any Cu concentrations and did not prefer clean water. The failure to avoid high concentrations of metals by both species suggests that the sensory mechanism responsible for avoidance responses was impaired. Exposure to Cu concentrations that were not avoided could result in lethality from prolonged Cu exposure or in impairment of sensory-dependent behaviors that are essential for survival and reproduction.

  2. Assessment of energetic costs of AhR activation by ?-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect (OSTI)

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  3. Sex-specific vitellogenin production in immature rainbow trout

    SciTech Connect (OSTI)

    Carlson, D.B.; Williams, D.E.

    1999-10-01

    Many xenobiotics interact with hormone systems of animals, potentially leading to a phenomenon commonly called endocrine disruption. Much attention has focused on steroid hormone systems and corresponding receptor proteins, particularly estrogens. Vitellogenin (Vg) was measured in sexually immature rainbow trout (Oncorhynchus mykiss) exposed to 17{beta}-estradiol (E{sub 2}) in the diet. Mixed-sex populations of trout aged 3, 6, 12, or 18 months were maintained separately and fed E{sub 2} at 0.05 or 2.5 mg/kg for 7d. Females fed E{sub 2} at 0.05 mg/kg consistently produced three- to fourfold greater amounts of Vg than similarly aged males. Age- and sex-matched fish fed E{sub 2} at 2.5 mg/kg produced equivalent amounts of Vg. Sex differences in Vg production were apparent only at a dose of E{sub 2} (0.05 mg/kg) that results in submaximal Vg induction. Their results document the importance of considering the sex of juvenile fish when using Vg production as a marker of xenoestrogen exposure.

  4. Avoidance responses of salmon and trout to air-supersaturated water

    SciTech Connect (OSTI)

    Stevens, D.G.; Nebeker, A.V.; Baker, R.J.

    1980-11-01

    Coho (Oncorhynchus kisutch), sockeye (O. nerka), and chinook (O. tschawystcha) salmon smolts, and rainbow trout (Salmo gairdneri) avoided air-supersaturated water when tested in a shallow round tank. Steelheads (S. gairdneri) did not consistently avoid the supersaturated water and died from gas bubble disease. The salmon and rainbow trout generally avoided 145 and 125% saturation but did not always avoid 115%. Territorial activity reduced avoidance by steelheads and rainbow trout.

  5. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the green river downstream of Flaming Gorge Dam.

    SciTech Connect (OSTI)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2009-01-09

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less correlated with the fall condition values than the spring condition values and did not show the same relationships to flows, to macroinvertebrates, or across years as the above-mentioned spring relative weight values. We found that the condition ratio of rainbow trout at Tailrace was positively correlated with within-day flow variability but was not correlated with flow volume, between-day-, or within-season flow variability. The condition ratios of rainbow trout at Little Hole and of both trout species at Tailrace were not correlated to any of the measured flow variables. The condition ratios of both trout species were positively correlated with the abundance of January benthic macroinvertebrates at the Little Hole site and with January dipterans (brown trout) or total coleopterans (rainbow trout) at the Tailrace site. The relationships among flows, macroinvertebrates, and trout condition were varied among species and locations.

  6. Lake Roosevelt Fisheries Evaluation Program; Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington, 1999 Annual Report.

    SciTech Connect (OSTI)

    Baldwin, Casey; Polacek, Matt

    2009-03-01

    Hatchery supplementation of kokanee Oncorhynchus nerka and rainbow trout O. mykiss has been the primary mitigation provided by Bonneville Power Administration for loss of anadromous fish to the waters above Grand Coulee Dam (GCD). The hatchery program for rainbow trout has consistently met management goals and provided a substantial contribution to the fishery; however, spawner returns and creel survey results for kokanee have been below management goals. Our objective was to identify factors that limit limnetic fish production in Lake Roosevelt by evaluating abiotic conditions, food limitations, piscivory, and entrainment. Dissolved oxygen concentration was adequate throughout most of the year; however, levels dropped to near 6 mg/L in late July. For kokanee, warm water temperatures during mid-late summer limited their nocturnal distribution to 80-100 m in the lower section of the reservoir. Kokanee spawner length was consistently several centimeters longer than in other Pacific Northwest systems, and the relative weights of rainbow trout and large kokanee were comparable to national averages. Large bodied daphnia (> 1.7 mm) were present in the zooplankton community during all seasons indicating that top down effects were not limiting secondary productivity. Walleye Stizostedion vitreum were the primary piscivore of salmonids in 1998 and 1999. Burbot Lota lota smallmouth bass Micropterus dolomieui, and northern pikeminnow Ptychocheilus oregonensis preyed on salmonids to a lesser degree. Age 3 and 4 walleye were responsible for the majority (65%) of the total walleye consumption of salmonids. Bioenergetics modeling indicated that reservoir wide consumption by walleye could account for a 31-39% loss of stocked kokanee but only 6-12% of rainbow trout. Size at release was the primary reason for differential mortality rates due to predation. Entrainment ranged from 2% to 16% of the monthly abundance estimates of limnetic fish, and could account for 30% of total mortality of limnetic fishes, depending on the contribution of littoral zone fishes. Inflow to GCD forebay showed the strongest negative relationship with entrainment whereas reservoir elevation and fish vertical distribution had no direct relationship with entrainment. Our results indicate that kokanee and rainbow trout in Lake Roosevelt were limited by top down impacts including predation and entrainment, whereas bottom up effects and abiotic conditions were not limiting.

  7. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    SciTech Connect (OSTI)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2010-06-25

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

  8. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 1999.

    SciTech Connect (OSTI)

    Jones, Charles D.

    2000-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI) and the Washington Department of Fish and Wildlife initiated the project fieldwork in 1990. Phase II included only the Confederated Tribes of the Colville Reservation and the Spokane Tribe of Indians. Phase III is being completed by the Confederated Tribes of the Colville Reservation.

  9. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project : Annual Report 1998.

    SciTech Connect (OSTI)

    Jones, Charles D.

    1999-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Personnel of three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI) and the Washington Department of Fish and Wildlife initiated the project fieldwork in 1990. Phase II included only the Confederated Tribes of the Colville Reservation and the Spokane Tribe of Indians. Phase III is being done by the Confederated Tribes of the Colville Reservation.

  10. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 2000.

    SciTech Connect (OSTI)

    Sear, Sheri

    2001-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI) and the Washington Department of Fish and Wildlife initiated the project fieldwork in 1990. Phase II included only the Confederated Tribes of the Colville Reservation and the Spokane Tribe of Indians. Phase III is being completed by the Confederated Tribes of the Colville Reservation.

  11. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

  12. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

  13. Radionuclides and heavy metals in rainbow trout from Tsichomo, Nana Ka, Wen Povi, and Pin De Lakes in Santa Clara Canyon

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1998-04-01

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and TI) concentrations were determined in rainbow trout collected from Tsichomo, Nana Ka, Wen Povi, and Pin De lakes in Santa Clara Canyon in 1997. Most radionuclide and heavy metal concentrations in fish collected from these four lakes were within or just above upper limit background concentrations (Abiquiu reservoir), and as a group were statistically (p < 0.05) similar in most parameters to background.

  14. Lake Roosevelt Volunteer Net Pens, Lake Roosevelt Rainbow Trout Net Pens, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Smith, Gene

    2003-11-01

    The completion of Grand Coulee Dam for power production, flood control, and irrigation resulted in the creation of a blocked area above the dam and in the loss of anadromous fish. Because of lake level fluctuations required to meet the demands for water release or storage, native or indigenous fish were often threatened. For many years very little effort was given to stocking the waters above the dam. However, studies by fish biologists showed that there was a good food base capable of supporting rainbow and kokanee (Gangmark and Fulton 1949, Jagielo 1984, Scholz etal 1986, Peone etal 1990). Further studies indicated that artificial production might be a way of restoring or enhancing the fishery. In the 1980's volunteers experimented with net pens. The method involved putting fingerlings in net pens in the fall and rearing them into early summer before release. The result was an excellent harvest of healthy fish. The use of net pens to hold the fingerlings for approximately nine months appears to reduce predation and the possibility of entrainment during draw down and to relieve the hatcheries to open up available raceways for future production. The volunteer net pen program grew for a few years but raising funds to maintain the pens and purchase food became more and more difficult. In 1995 the volunteer net pen project (LRDA) was awarded a grant through the Northwest Power Planning Council's artificial production provisions.

  15. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  16. Relative potencies of individual polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners and congener mixtures based on induction of cytochrome P4501A mRNA in a rainbow trout gonadal cell line (RTG-2)

    SciTech Connect (OSTI)

    Zabel, E.W.; Pollenz, R.; Peterson, R.E.

    1996-12-01

    Cytochrome P450-catalyzed enzyme activity in cell culture was investigated as a bioassay for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents in environmental mixtures of polychlorinated dibenzo-p-dioxin (PCDD), dibenzofuran (PCDF), and biphenyl (PCB) congeners. A problem with the use of enzyme induction is that certain congeners are unable to induce P4501A enzyme activity to the same maximal level as TCDD. The authors sought to eliminate this problem by measuring mRNA induction rather than enzyme activity. Rainbow trout gonadal cells (RTG-2) were exposed to PCDD, PCDF, and PCB congeners and congener mixtures, and induction of cytochrome P4501A mRNA was measured. A high level of induction in cells treated with only a medium change was seen and was due to a component of the fresh medium, 2,3,7,8-Substituted PCDD and PCDF congeners and four-non-ortho-substituted PCBs caused significant induction. Toxic equivalency factors determined in RTG-2 cells were generally higher than those in rainbow trout early life stages. Rainbow trout gonadal cell (RTG-2) bioassay TCDD equivalents (TEqs) for three environmental extracts were lower than predicted by addition of individual congener TEqs, and the synthetic congener mixture acted additively.

  17. Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-05-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.

  18. Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

    2006-01-26

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

  19. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    SciTech Connect (OSTI)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  20. Nonsingular rainbow universes

    SciTech Connect (OSTI)

    Awad, Adel; Ali, Ahmed Farag; Majumder, Barun E-mail: ahmed.ali@fsc.bu.edu.eg

    2013-10-01

    In this work, we study FRW cosmologies in the context of gravity rainbow. We discuss the general conditions for having a nonsingular FRW cosmology in gravity rainbow. We propose that gravity rainbow functions can be fixed using two known modified dispersion relation (MDR), which have been proposed in literature. The first MDR was introduced by Amelino-Camelia, et el. in [9] and the second was introduced by Magueijo and Smolin in [24]. Studying these FRW-like cosmologies, after fixing the gravity rainbow functions, leads to nonsingular solutions which can be expressed in exact forms.

  1. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    SciTech Connect (OSTI)

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  2. EA-375 Rainbow Energy Marketing Corporation | Department of Energy

    Energy Savers [EERE]

    5 Rainbow Energy Marketing Corporation EA-375 Rainbow Energy Marketing Corporation Order authorizing Rainbow Energy Marketing Corporation to export electric energy to Mexico PDF icon EA-375 Rainbow Energy Marketing Corporation More Documents & Publications EA-370 Vitol Inc. Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation EA-296-B Rainbow Energy Marketing Corporation

  3. EA-296-A Rainbow Energy Mrketing Corporation | Department of Energy

    Energy Savers [EERE]

    A Rainbow Energy Mrketing Corporation EA-296-A Rainbow Energy Mrketing Corporation Order authorizing Rainbow Energy Marketing Corporation to export electric energy to Canada PDF icon EA-296-A Rainbow Energy Mrketing Corporation More Documents & Publications Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation EA-296-B Rainbow Energy Marketing Corporation EA-375 Rainbow Energy Marketing Corporation

  4. EA-296-B Rainbow Energy Marketing Corporation | Department of Energy

    Energy Savers [EERE]

    B Rainbow Energy Marketing Corporation EA-296-B Rainbow Energy Marketing Corporation Order authorizing Rainbow Energy to export electric energy to Canada. PDF icon EA-296-B Rainbow Energy (CN).pdf More Documents & Publications RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp EA-368-A Brookfield

  5. Rainbow Energy Marketing Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Marketing Corp Jump to: navigation, search Name: Rainbow Energy Marketing Corp Place: North Dakota Phone Number: (701) 222-2290 Website: www.rainbowenergy.com Facebook:...

  6. Rainbow, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rainbow, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3101806, -120.5085396 Show Map Loading map... "minzoom":false,"mappings...

  7. Rainbows and Leprechauns: Finding Gold in Partnerships (101)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rainbows and Leprechauns: Finding Gold in Partnerships (101) Rainbows and Leprechauns: Finding Gold in Partnerships (101) March 17, 2016 1:00PM to 2:30PM EDT

  8. Rainbows and Leprechauns: Finding Gold in Partnerships (101) | Department

    Energy Savers [EERE]

    of Energy Rainbows and Leprechauns: Finding Gold in Partnerships (101) Rainbows and Leprechauns: Finding Gold in Partnerships (101) March 17, 2016 1:00PM to 2:30PM EDT

  9. Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corporation | Department of Energy A Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation Application from Rainbow Energy Marketing Corporation to export electric energy to Canada PDF icon Application to Export Electric Energy EA-296-A Rainbow Energy Marketing Corporation More Documents & Publications EA-296-A Rainbow Energy Mrketing Corporation Application to Export Electric Energy OE Docket No.

  10. Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corp | Department of Energy B Rainbow Energy Marketing Corp Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp Application from Rainbow Energy Marketing Corp to export electric energy to Canada. PDF icon EA-296-B Rainbow Energy CN app.pdf More Documents & Publications EA-296-B Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-326-A Citigroup Energy Canada ULC Application to export Electric Energy

  11. Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corporation | Department of Energy 75-A Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation Application from Rainbow to transmit electric energy to Mexico. PDF icon EA-375-A Rainbow Energy (MX).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 Application

  12. Spokane Tribal Hatchery, 2005 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Project are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to rainbow trout catch and harvest rates while the impact on the kokanee fishery was minimal. Success of the Lake Roosevelt kokanee artificial production program appears to be limited primarily owing to predation, precocity and high entrainment rates through Grand Coulee Dam. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue kokanee fry and post-smolt releases, 100% triploid hatchery stock rainbow trout used and adipose fin clip hatchery stock rainbow trout prior to release. The Spokane Tribal Hatchery is funded by the Bonneville Power Administration under directives by the Northwest Power Conservation Council Columbia River Basin Fish & Wildlife Program, Resident Fish Substitution Measures, 1987 to current (Subbasin Plan), as partial mitigation for anadromous and resident fish losses in the blocked areas above Chief Joseph and Grand Coulee Dams.

  13. Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy

    Energy Savers [EERE]

    Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 | Department of Energy 75-A Rainbow Energy Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 Application from Rainbow to transmit electric energy to Mexico. Federal Register Notice. PDF icon EA-375-A Rainbow Energy.pdf

  14. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    SciTech Connect (OSTI)

    Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

    2014-12-23

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after their release, representing a residualization rate of 12.8% (21 of 164). Snorkeling revealed considerable overlap of habitat use (in space and time) by residual hatchery steelhead and naturally produced O. mykiss in the South Santiam River. Results from our study (and others) also indicated that hatchery steelhead juveniles typically dominate interactions with naturally produced O. mykiss juveniles. The overlap in space and time, combined with the competitive advantage that residual hatchery steelhead appear to have over naturally produced O. mykiss, increases the potential for negative ecological interactions that could have population-level effects on the wild winter steelhead population of the South Santiam River.

  15. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect (OSTI)

    Johnson, Robert L.; Simmons, Mary Ann; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2005-02-25

    This report documents the fourth year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  16. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect (OSTI)

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2004-01-01

    This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  17. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    SciTech Connect (OSTI)

    Abernethy, Cary S.; Amidan, Brett G.; Cada, G F.

    2001-03-23

    The objective of this study was to examine the relative importance of pressure changes as a source of turbine-passage injury and mortality. Specific tests were designed to quantify the response of fish to rapid pressure changes typical of turbine passage, with and without the complication of the fish being acclimated to gas supersaturated water. We investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon (O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in combination.

  18. Spokane Tribal Hatchery, 2004 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.

    2005-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.

  19. Towards flavored bound states beyond rainbows and ladders

    SciTech Connect (OSTI)

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de; Paracha, M. A.

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  20. California Trout, Inc. v. FERC, 313 F.3d 1131,1134,1136 (9th...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal CaseHearing: California Trout, Inc. v. FERC, 313 F.3d 1131,1134,1136 (9th Cir. 2002)Legal Hearing California Trout, Inc. v....

  1. Spokane Tribal Hatchery, 2003 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.

    2004-05-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Combined fish stocking by the hatcheries and net pen rearing projects in 2003 included: 899,168 kokanee yearlings released into Lake Roosevelt; 1,087,331 kokanee fry/fingerlings released into Banks Lake, 44,000 rainbow trout fingerlings and; 580,880 rainbow trout yearlings released into Lake Roosevelt. Stock composition of 2003 releases consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2003 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Preliminary results of gonad necropsies indicate a reduced incidence of precocious kokanee produced at the Spokane Tribal Hatchery in 2003. This was a probable attribute of change in hatchery rearing practices employed on 2002 brood year kokanee produced in 2003, primarily thermal manipulation and feed protein source. Kokanee and rainbow trout fingerlings transferred to Lake Roosevelt and Banks Lake net pen rearing operations in the fall of 2003 for subsequent release as yearlings in 2004 consisted of 645,234 rainbow trout and 627,037 kokanee salmon. A total of 590,000 Lake Whatcom kokanee fingerlings were carried over at the Spokane Tribal Hatchery for stocking as yearlings in 2004. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.

  2. Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66- April 4, 2012

    Broader source: Energy.gov [DOE]

    Application from Rainbow Energy Marketing Corp to export electric energy to Canada. Federal Register Notice.

  3. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2004-08-01

    Despite the substantial declines in distribution and abundance that the Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri has experienced over the past century, quantitative evaluations of existing population sizes over broad portions of its historical range have not been made. In this study, we estimate trout abundance throughout the Upper Snake River basin in Idaho (and portions of adjacent states), based on stratified sample extrapolations of electrofishing surveys conducted at 961 study sites, the vast majority of which (84%) were selected randomly. Yellowstone cutthroat trout were the most widely distributed species of trout (caught at 457 study sites), followed by brook trout Salvelinus fontinalis (242 sites), rainbow trout O. mykiss and rainbow x cutthroat hybrids (136 sites), and brown trout Salmo trutta (70 sites). Of the sites that contained cutthroat trout, more than half did not contain any other species of trout. Where nonnative trout were sympatric with cutthroat trout, brook trout were most commonly present. In the 11 Geographic Management Units (GMUs) where sample size permitted abundance estimates, there were about 2.2 million trout {ge}100 mm, and of these, about one-half were cutthroat trout. Similarly, we estimated that about 2.0 million trout <100 mm were present, of which about 1.2 million were cutthroat trout. The latter estimate is biased low because our inability to estimate abundance of trout <100 mm in larger-order rivers negated our ability to account for them at all. Cutthroat trout were divided into approximately 70 subpopulations but estimates could be made for only 55 subpopulations; of these, 44 subpopulations contained more than 1,000 cutthroat trout and 28 contained more than 2,500 cutthroat trout. Using a logistic regression model to predict the number of spawning cutthroat trout at a given study site, we estimate that an average of about 30% of the cutthroat trout {ge}100 mm are spawners. We compared visually-based phenotypic assessments of hybridization with subsequent genetic analyses from 55 of the study sites and found that: (1) genetic analysis corroborated our visual determination that hybridization was absent at 37 of 55 sites; (2) at the seven sites where we visually failed to discern genetically-detected hybridization, the percent of rainbow trout alleles in the population was low (<1 %) at all but two locations; and (3) where we detected hybridization both visually and genetically (11 sites), levels of introgression were positively correlated between methods (r{sub 2} = 0.65). Based on this strong agreement, we phenotypically classified cutthroat trout as ''pure'' and ''{ge}90% pure'' at 81% and 90%, respectively, of the study sites within these GMUs. Our results suggest that, despite the presence of nonnative threats (genetic and competitive) in much of their current range in Idaho, Yellowstone cutthroat trout populations remain widely distributed and appear healthy in several river drainages in the Upper Snake River basin. Nevertheless, ongoing efforts to secure core cutthroat trout populations, protect areas from further nonnative invasions, and restore disturbed habitat are recommended for further protection of Yellowstone cutthroat trout in Idaho.

  4. Temporary Restoration of Bull Trout Passage at Albeni Falls Dam

    SciTech Connect (OSTI)

    Paluch, Mark; Scholz, Allan; McLellan, Holly; Olson, Jason

    2009-07-13

    This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acoustic radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other fish was large enough to be mature, but at the time of capture its sex was unable to be determined, indicating it may not have been mature at the time of capture. These fish are expected to enter their natal tributaries in early summer or fall of 2009.

  5. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1988 Annual Report.

    SciTech Connect (OSTI)

    Barber, Michael R.; Willms, Roger A.; Scholz, Allan T.

    1989-10-01

    The purpose of this study is to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This report contains the findings of the first year of the study. Chinook salmon (Oncorhynchus tshawytscha (Walbaum)) and steelhead (Oncorhynchus mykiss (Richardson)) were present in the Pend Oreille River prior to the construction of Grand Coulee Dam. The river also contained native cutthroat trout (Oncorhynchus clarki (Richardson)), bull trout (Salvelinus confluentus (Walbaum)) and mountain whitefish (Prosopium williamsoni (Girard)). Rainbow trout were planted in the river and some grew to lengths in excess of 30 inches. With the construction of Box Canyon Dam, in 1955, the most productive section of the river was inundated. Following the construction of the dam the trout fishery declined and the populations of spiny ray fish and rough fish increased. The objectives of the first year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in fish in the river and four selected tributaries; fish growth rates; the feeding habits and abundance of preferred prey; the migration patterns; and the total fishing pressure, catch per unit effort, and total harvest by conducting a year-round creel survey. 132 refs.

  6. Resolving Carbon's Rainbow from Uplands to the Deep-sea | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolving Carbon's Rainbow from Uplands to the Deep-sea Event Sponsor: Environmental Science Division Seminar Start Date: Sep 17 2015 - 11:00am BuildingRoom: Building 240Room...

  7. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2000.

    SciTech Connect (OSTI)

    Baxter, James S.; Baxter, Jeremy

    2001-02-01

    An enumeration fence and traps were installed on Skookumchuck Creek from September 7 th to October 16 th to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 252 bull trout were sampled through the enumeration fence. Length, weight, and sex were determined for all but one of the 252 bull trout captured. In total, one fish of undetermined sex, 63 males and 188 females were processed through the fence. A total of 67 bull trout were observed on a snorkel survey prior to the fence being removed on October 16 th . Coupled with the fence count, the total bull trout count during this project was 319 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout, Rocky Mountain whitefish, kokanee, sucker, and Eastern brook trout. Redds were observed during ground surveys in three different locations (river km 27.5- 28.5, km 29-30, and km 24-25). The largest concentration of redds were noted in the upper two sections which have served as the index sections over the past four years. A total of 197 bull trout redds were enumerated on the ground on October 4 th . The majority of redds (n=189) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past four years. The additional 8 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Skookumchuck Creek at km 39.5, and Skookumchuck Creek at the fence site suggested that water temperatures were within the range preferred by bull trout for spawning, egg incubation, and rearing.

  8. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2004 Annual Report.

    SciTech Connect (OSTI)

    Hatch, Douglas R.; Branstetter, Ryan; Whiteaker, John

    2004-11-01

    Iteroparity, the ability to repeat spawn, is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of three study groups (direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 15 March to 21 June 2004. In total, 842 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.5% (842 of 2,755) of the entire 2003-2004 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially or for the duration of the experiment. All steelhead kelts received hw-wiegandt multi vit dietary supplement as a means to improve initial nutrition. Long-term steelhead kelts received Moore-Clark pellets to provide essential minerals and nutrients necessary for gonadal redevelopment. Oxytetracycline was administered to all reconditioned fish to boost immune system response following the stress of initial capture. To control parasitic infestations two methods were used, first, after initial capture an intubation of Ivermectin{trademark} was administered to control internal parasites (e.g., Salmincola spp.). Next, a Formalin drip was used for the duration of reconditioning to prevent fungal outbreaks. Captured kelts were separated into three experimental groups: short-term reconditioning, long-term reconditioning, and direct transport and release. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were reconditioned for 3 to 5 weeks. Surviving specimens were released for natural spawning on May 11, 2004. Survival-to-release was good for the short-term experiment, with a rate of 79.0%. Long-term steelhead kelts are currently being held for a 6-9 month period with a scheduled release in December 2004. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. Survival and rematuration for long-term kelts has not been determined and will be presented in the 2005 annual report. Direct transport and release kelts and short-term reconditioned kelts were radio or acoustic tagged to assess their travel time and migratory behaviors below Bonneville Dam. A total of 29 direct-transport and release kelts and 29 short-term reconditioned kelts received surgically implanted radio tags, and a total of 28 direct-transport/release and 26 short-term reconditioned fish received surgically implanted hydro acoustic tags. These tags will allow us to determine outm

  9. Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation: Federal Register Notice Volume 72, No. 158- Aug. 16, 2007

    Broader source: Energy.gov [DOE]

    Application from Rainbow Energy Marketing Corporation to export energy to Canada. Federal Register Notice  Vol 72 No 158

  10. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    SciTech Connect (OSTI)

    Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  11. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    SciTech Connect (OSTI)

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  12. EIS-0353: South Fork Flathead Watershed/Westlope Cutthroat Trout Conservation Project, Montana

    Broader source: Energy.gov [DOE]

    In cooperation with Montana, Fish, Wildlife, and Parks, Bonneville Power Administration is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage.

  13. California Trout, Inc. v. FERC, 313 F.3d 1131,1134, 1136 (9th...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal CaseHearing: California Trout, Inc. v. FERC, 313 F.3d 1131,1134, 1136 (9th Cir. 2002)Legal Abstract Ninth Circuit case that...

  14. Fish behavior, migration and environmental assessment

    SciTech Connect (OSTI)

    Gray, R.H.

    1988-02-01

    Studies at the Pacific Northwst Laboratory have evaluated fish behavior and migration in response to thermal discharge, gas supersaturated water, water-soluble fractions of coal liquids, and other environmental stresses. Major findings including thermal discharges did not block upstream migration of sonic-tagged adult chinook salmon (Oncorhynchus tschawytscha) and a rainbow trout (Salmo gairdneri) in the Columbia River. Juvenile chinook slamon avoided thermal discharges in the laboratory when ..delta..ts exceeded 9 to 11)degree)C above ambient. However juvenile salmon were more susceptible to predation at 10 to 20% of the thermal dose causing loss of equilibrium. Radio-tagged adult chinook salmon swam deeper in supersaturated water than in normally saturated water in the Snake River and, thereby, avoided the upper, critical zone. Carp (Cyprinus carpio) and black bullhead (Ictalurus melas) did not always avoid lethal gas levels in the laboratory and some fish died in the test apparatus. Fathead minnow (Pimephales promelas) avoided the water soluble fraction (WSF) of a coal liquid at concentrations causing acute effects but not at those causing chronic effects. Rainbow trout did not avoid coal liquid WSFs although they reportedly avid the major constituent, phenol, tested a as pure compound. Susceptibility to predation of juvenile rainbow trout did not increase until phenol concentrations reached the acute LC/sub 50/. 67 refs., 11 figs., 1 tab.

  15. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect (OSTI)

    Pereira, D.; Linares, R.; and others

    2012-10-20

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  16. RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion (CX) Determination, Office of Electricity Delivery and  Energy Reliability (OE): Application from Rainbow Energy Marketing Corp to export electric energy to Canada.

  17. Comparative responses of speckled dace and cutthroat trout to air-supersaturated water

    SciTech Connect (OSTI)

    Nebeker, A.V.; Hauck, A.K.; Baker, F.D.; Weitz, S.L.

    1980-11-01

    Speckled dace (Rhinichthys osculus) are more tolerant of air-supersaturated water than adult or juvenile cutthroat trout (Salmo clarki). Speckled dace were tested in concentrations from 110 to 142% saturation and had a 96-hour median lethal concentration (LC50) of 140%, a 7-day LC50 of 137%, and 2-week LC50's of 129 and 131% saturation. The estimated mean threshold concentration, based on time to 50% death (TM50), was 123% saturation. The speckled dace also exhibited consistent external signs of gas bubble disease. Cutthroat trout were tested from 111 to 130% saturation and had 96-hour LC50's of 119 and 120% (adults) and 119 and 119% (juveniles) saturation. Estimated mean threshold concentrations (from TM50 values) were 117% (adults) and 114% (juveniles) saturation. Signs of gas bubble disease exhibited by the cutthroat trout were similar to those seen with other salmonids examined in earlier studies.

  18. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2004-04-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  19. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2003-06-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  20. Absorbing More of the Rainbow with Polymer-Based Organic Photovoltaics |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Absorbing More of the Rainbow with Polymer-Based Organic Photovoltaics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  1. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2005-11-01

    We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tag was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft. above water surface in a helicopter. However, we lost detection capability from 40 ft. water depth when we passed 700 ft. above the water surface in a helicopter. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we reduced the size of the radio tags that we implanted, and delayed most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  2. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    SciTech Connect (OSTI)

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfish Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.

  3. Simulation analysis of within-day flow fluctuation effects on trout below flaming Gorge Dam.

    SciTech Connect (OSTI)

    Railsback, S. F.; Hayse, J. W.; LaGory, K. E.; Environmental Science Division; EPRI

    2006-01-01

    In addition to being renewable, hydropower has the advantage of allowing rapid load-following, in that the generation rate can easily be varied within a day to match the demand for power. However, the flow fluctuations that result from load-following can be controversial, in part because they may affect downstream fish populations. At Flaming Gorge Dam, located on the Green River in northeastern Utah, concern has been raised about whether flow fluctuations caused by the dam disrupt feeding at a tailwater trout fishery, as fish move in response to flow changes and as the flow changes alter the amount or timing of the invertebrate drift that trout feed on. Western Area Power Administration (Western), which controls power production on submonthly time scales, has made several operational changes to address concerns about flow fluctuation effects on fisheries. These changes include reducing the number of daily flow peaks from two to one and operating within a restricted range of flows. These changes significantly reduce the value of the power produced at Flaming Gorge Dam and put higher load-following pressure on other power plants. Consequently, Western has great interest in understanding what benefits these restrictions provide to the fishery and whether adjusting the restrictions could provide a better tradeoff between power and non-power concerns. Directly evaluating the effects of flow fluctuations on fish populations is unfortunately difficult. Effects are expected to be relatively small, so tightly controlled experiments with large sample sizes and long study durations would be needed to evaluate them. Such experiments would be extremely expensive and would be subject to the confounding effects of uncontrollable variations in factors such as runoff and weather. Computer simulation using individual-based models (IBMs) is an alternative study approach for ecological problems that are not amenable to analysis using field studies alone. An IBM simulates how a population responds to environmental changes by representing how the population's individuals interact with their environment and each other. IBMs represent key characteristics of both individual organisms (trout, in this case) and the environment, thus allowing controlled simulation experiments to analyze the effects of changes in the key variables. For the flow fluctuation problem at Flaming Gorge Dam, the key environmental variables are flow rates and invertebrate drift concentrations, and the most important processes involve how trout adapt to changes (over space and time) in growth potential and mortality risk. This report documents simulation analyses of flow fluctuation effects on trout populations. The analyses were conducted in a highly controlled fashion: an IBM was used to predict production (survival and growth) of trout populations under a variety of scenarios that differ only in the level or type of flow fluctuation.

  4. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

  5. Using 3D Acoustic Telemetry to Assess the Response of Resident Salmonids to Strobe Lights in Lake Roosevelt, Washington; Chief Joseph Kokanee Enhancement Feasibility Study, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Perry, Russlee; Farley, M.; Hansen, Gabriel

    2003-01-01

    In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse. In response to finding high entrainment at Grand Coulee Dam, the Independent Scientific Review Panel (ISRP) recommended investigating the use of strobe lights to repel fish from the forebay of the third powerhouse. Therefore, our study focused on the third powerhouse and how strobe lights affected fish behavior in this area. The primary objective of our study was to assess the behavioral response of kokanee and rainbow trout to strobe lights using 3D acoustic telemetry, which yields explicit spatial locations of fish in three dimensions. Our secondary objectives were to (1) use a 3D acoustic system to mobile track tagged fish in the forebay and upriver of Grand Coulee Dam and (2) determine the feasibility of detecting fish using a hydrophone mounted in the tailrace of the third powerhouse. Within the fixed hydrophone array located in the third powerhouse cul-de-sac, we detected 50 kokanee and 30 rainbow trout, accounting for 47% and 45% respectively, of the fish released. Kokanee had a median residence time of 0.20 h and rainbow trout had a median residence time of 1.07 h. We detected more kokanee in the array at night compared to the day, and we detected more rainbow trout during the day compared to the night. In general, kokanee and rainbow trout approached along the eastern shore and the relative frequency of kokanee and rainbow trout detections was highest along the eastern shoreline of the 3D array. However, because we released fish near the eastern shore, this approach pattern may have resulted from our release location. A high percentage of rainbow trout (60%) approached within 35 m of the eastern shore, while fewer kokanee (40%) approached within 35 m of the eastern shore and were more evenly distributed across the entrance to the third powerhouse cul-de-sac area. During each of the strobe light treatments there were very few fish detected within 25 m of the strobe lights. The spatial distribution of fish detections showed relatively few tagged fish swam through the center of the array where the strobe lights were located. We detected 11 kokanee and 12 rainbow trout within 25 m of the strobe lights, accounting for 10% and 18% respectively, of the fish released. Both species exhibited very short residence times within 25 m of the strobe lights No attraction or repulsion behavior was observed within 25 m of the strobe lights. Directional vectors of both kokanee and rainbow trout indicate that both species passed the strobe lights by moving in a downstream direction and slightly towards the third powerhouse. We statistically analyzed fish behavior during treatments using a randomization to compare the mean distance fish were detected from the strobe lights. We compared treatments separately for day and night and with the data constrained to three distances from the strobe light (< 85m, < 50 m, and < 25 m). For kokanee, the only significant randomization test (of 10 tests) occurred with kokanee during the day for the 3-On treatment constrained to within 85 m of the strobe lights, where kokanee were significantly further away from the strobe lights than during the Off treatment (randomization test, P < 0.004, Table 1.5). However, one other test had a low P-value (P = 0.064) where kokanee were closer to the lights during the 3-On treatment at night within 85 m of the strobe lights compared to the Off treatment. For rainbow trout, none of the 11 tests were significant, but one test had a low P-value (P = 0.04), and fish were further away from the strobe lights during

  6. Stratigraphy and petroleum potential of Trout Creek and Twentymile sandstones (Upper Cretaceous), Sand Wash Basin, Colorado

    SciTech Connect (OSTI)

    Siepman, B.R.

    1985-05-01

    The Trout Creek and Twentymile Sandstones (Mesaverde Group) in Moffat and Routt Counties, Colorado, are thick, upward-coarsening sequences that were deposited along the western margin of the Western Interior basin during Campanian time. These units trend northeast-southwest and undergo a facies change to coal-bearing strata on the northwest. Surface data collected along the southeastern rim of the Sand Wash basin were combined with well-log data from approximately 100 drill holes that have penetrated the Trout Creek or Twentymile in the subsurface. The sandstones exhibit distinctive vertical profiles with regard to grain size, sedimentary structures, and biogenic structures. A depositional model that incorporates the key elements of the modern Nile River (northeast Africa) and Nayarit (west-central Mexico) coastal systems is proposed for the Trout Creek and Twentymile sandstones and associated strata. The model depicts a wave-dominated deltaic, strand-plain, and barrier-island system. Depositional cycles are asymmetrical in cross section as they are largely progradational and lack significant transgressive deposits. Source rock-reservoir rock relationships are ideal as marine shales underlie, and coal-bearing strata overlie sheetlike reservoir sandstones. Humic coal, the dominant source of Mesaverde gas, generates major quantities of methane upon reaching thermal maturity. Existing Mesaverde gas fields are largely structural traps, but stratigraphic and combination traps may prove to be equally important. The sparsely drilled deeper part of the basin warrants testing as large, overpressured-gas accumulations in tight-sandstone reservoirs are likely to be found.

  7. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect (OSTI)

    Faler, Michael P.; Mendel, Glen; Fulton, Carl

    2008-11-20

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  8. EIS-0246-SA-27: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flathead County, Montana BPA proposes to fund a fishery enhancement project where a fish passage barrier will be installed in Abbot Creek to remove introduced rainbow trout and...

  9. Lake Roosevelt Fisheries Monitoring Program; 1990 Annual Report.

    SciTech Connect (OSTI)

    Griffith, Janelle R.; Scholz, Allan T.

    1991-09-01

    As partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam, the Northwest Power Planning Council directed Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries on Lake Roosevelt (NPPC 1987 [Section 903 (g)(l)(C)]). The hatcheries are to produce 8 million kokanee salmon fry or 3.2 million adults for outplanting into Lake Roosevelt as well as 500,000 rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen programs. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) conduction of a year-round creel census survey to determine angler pressure, catch rates and composition, growth and condition of fish caught by anglers, and economic value of the fishery. Comparisons will be made before and after hatcheries are on-line to determine hatchery effectiveness; (2) conduct an assessment of kokanee, rainbow trout, and walleye feeding habits, growth rates, and densities of their preferred prey at different locations in the reservoir and how reservoir operations affect population dynamics of preferred prey organisms. This information will be used to determine kokanee and rainbow trout stocking locations, stocking densities and stocking times; (3) conduct a mark-recapture study designed to assess effectiveness of various release times and locations for hatchery-raised kokanee and net-pen raised rainbow so fish-loss over Grand Coulee Dam will be minimized, homing to egg collection sites will be improved and angler harvest will be increased. The above measures were adopted by the Council based on a management plan developed by Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and the National Park Service. This plan examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program and continue research through 1995. This report contains the results of the monitoring program from January to December 1990.

  10. Emergency Fish Restoration Project; Final Report 2002.

    SciTech Connect (OSTI)

    LeCaire, Richard

    2003-03-01

    Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleye (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.

  11. South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Annual Report 2002.

    SciTech Connect (OSTI)

    Grisak, Grant; Marotz, Brian

    2003-06-01

    In 1999, Montana Fish, Wildlife & Parks (MFWP) began a program aimed at conserving the genetically pure populations of westslope cutthroat trout in the South Fork Flathead River drainage. The objective of this program is to eliminate all of the exotic and hybrid trout that threaten the genetically pure westslope cutthroat populations in the South Fork Flathead. The exotic and hybrid trout populations occur in several headwater lakes and their outflow streams. In 2001 MFWP released a draft environmental assessment, pursuant to the Montana Environmental Policy Act (MEPA), that addressed the use of motorized equipment to deliver personnel and materials to some of these lakes in the Bob Marshall and Great Bear Wildernesses (Grisak 2001). After a 30-day public comment period, MFWP determined that the complexity of issues was too great and warranted a more detailed analysis. These issues included transportation options for personnel, equipment and materials, the use of motorized equipment in wilderness, fish removal methods, fish stocking, and the status and distribution of amphibian populations in the project area. Because the program also involves the U.S. Forest Service (USFS) and Bonneville Power Administration (BPA), the environmental analysis needs to comply with the National Environmental Policy Act (NEPA). In October 2001, pursuant to NEPA, MFWP, along with the USFS and BPA initiated an environmental assessment to address these issues. In June 2002, the three agencies determined that the scope of these issues warranted an Environmental Impact Statement. This specialist report describes the logistical, technical and biological issues associated with this project and provides an analysis of options for fish removal, transportation and fish stocking. It further analyzes issues and concerns associated with amphibian populations and creating new domesticated stocks of westslope cutthroat trout. Finally, this document provides a description of each lake, the best method of fish removal that would achieve the goals of the project, logistics for carrying out the fish removal, and the immediate management direction for each lake following fish removal. The USFS is preparing a specialist report detailing land management issues that relate to National Forest, designated Hiking Areas, and Wilderness. Information from these two documents will be used by BPA to prepare an Environmental Impact Statement.

  12. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect (OSTI)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ({approx}1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).

  13. Laboratory studies of the effects of pressure and dissolved gas supersaturation on turbine-passed fish

    SciTech Connect (OSTI)

    Abernethy, C. S.; Amidan, B. G.; Cada, G. F.

    2001-03-01

    Designing advanced turbine systems requires knowledge of environmental conditions that injure or kill fish such as the stresses associated with hydroelectric power production, including pressure changes fish experience during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The objective of this study was to examine the relative importance of pressure changes as a source of turbine-passage injury and mortality. Specific tests were designed to quantify the response of fish to rapid pressure changes typical of turbine passage, with and without the complication of the fish being acclimated to gas supersaturated water. The study investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon (O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in combination.

  14. Distorting general relativity: gravity's rainbow and f(R) theories at work

    SciTech Connect (OSTI)

    Garattini, Remo

    2013-06-01

    We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift the Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.

  15. Identifying the Effects on Fish of Changes in Water Pressure during Turbine Passage

    SciTech Connect (OSTI)

    Becker, James M.; Abernethy, Cary S.; Dauble, Dennis D.

    2003-09-01

    Migratory and resident fish in the Columbia River are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage and dissolved gas supersaturation. We investigated the responses of fall Chinook salmon (Oncorhynchus tshawytscha), rainbow trout (Oncorhynchus mykiss), and bluegill sunfish (Lepomis macrochirus) to these two stresses, singly and in combination, in the laboratory. Fish were exposed to total dissolved gas levels of 100%, 120%, or 135% of saturation while being held at either surface or 30 ft of pressure. Some of these fish were then subjected to decreases in pressure simulating passage through a Kaplan turbine under “worst case” (to 0.1 atmospheres) or more “fish friendly” (to 0.5 atmospheres) scenarios. Surface- and depth-acclimated Chinook salmon and bluegill, with no exposure to dissolved gas above ambient levels, were subjected to decreases in pressure simulating passage through a bulb turbine under “worst case” (to 0.68 atmospheres) or more “fish friendly” (to 1.0 atmospheres) scenarios. Bluegill, the most pressure-sensitive among the three species, incurred injuries that ranged from mild (internal hemorrhaging) (bulb turbine) to death (Kaplan turbine). For each type of turbine passage, bluegill acclimated to 30 ft depth and subjected to the more severe pressure nadir were more susceptible to injury/death. However, even control bluegill (i.e., not subjected to simulated turbine passage) experienced mild to moderate injury from rapidly ascending from 30 ft of pressure to surface pressure. The dissolved gas level had only a small additive effect on the injury/death rate of bluegill subjected to simulated Kaplan turbine passage. Thus, while physoclistous fish, such as bluegill, appear to be susceptible to injury from any rapid pressure decrease, those that are most severe (e.g., Kaplan turbine passage) are likely to be most injurious. Chinook salmon and rainbow trout were much less susceptible than bluegill to death/injury from simulated Kaplan turbine passage, and Chinook salmon incurred no visible injuries from simulated bulb turbine passage under any scenario. Acclimation to 30 ft depth had little additional effect on the injury/death rate of Chinook salmon and rainbow trout subjected to Kaplan turbine passage. However, these species were much more susceptible to acute gas bubble trauma than bluegill, particularly those acclimated at surface pressure at 120% or 135% of saturation. Consequently, it would be advantageous to develop advanced turbines that operate efficiently under more “fish friendly” pressure regimes and to reduce the amount of gas supersaturation.

  16. Coeur d'Alene Tribe Fish, Water and Wildlife Program : Coeur d'Alene Tribe Trout Production Facility Master Plan.

    SciTech Connect (OSTI)

    Peters, Ronald L.; Woodward-Lilengreen, Kelly L.; Vitale, Angelo J.

    1999-09-01

    The Northwest Power Planning Council (Council) receives and reviews proposals to mitigate for fish and wildlife losses and refers approved measures to Bonneville Power Administration (BPA) for funding. The Northwest Power Act (Act) calls on the Council to include measures in its Columbia River Basin Fish and Wildlife Program (Program) to address system-wide fish and wildlife losses. The Act further states that the Council may include in its Program measures that provide off-site mitigation--mitigation physically removed from the hydro project(s) that caused the need to mitigate. The Program includes a goal ''to recover and preserve the health of native resident fish injured by the hydropower system, where feasible, and, where appropriate, to use resident fish to mitigate for anadromous fish losses in the system.'' Among those recommended measures are off-site mitigation for losses of anadromous fisheries including the measure under analysis in this Coeur d'Alene Tribe Trout Production Facility Master Plan, proposed by the Coeur d'Alene Tribe. To meet the need for off-site mitigation for anadromous fish losses in the Columbia River Basin in a manner consistent with the objectives of the Council's Fish and Wildlife Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operations and maintenance of a trout production facility on the Coeur d'Alene Indian Reservation. Measures for establishing a Coeur d'Alene fish production facility have been a part of the Council's Program since 1987. The Coeur d'Alene Tribe Trout Production Facility is intended to rear and release westslope cutthroat trout into rivers and streams with the express purpose of increasing the numbers of fish spawning, incubating and rearing in the natural environment. It will use the modern technology that hatcheries offer to overcome the mortality resulting from habitat degradation in lakes, rivers, and streams after eggs are laid in the gravel. Supplementation of native fish stocks in conjunction with effective habitat restoration will be the primary means of achieving these biological goals. Overarching goals for the program include: (1) Protection, mitigation, and enhancement of Columbia River Basin native resident fish resources. (2) Develop, increase, and/or reintroduce natural spawning populations of westslope cutthroat trout into reservation waters. (3) Provide both short and long-term harvest opportunities for the reservation community. (4) Sustain long-term fitness and genetic integrity of targeted fish populations. (5) Keep ecological and genetic impacts to non-targeted fish populations to a minimum.

  17. Colville Resident Trout Hatchery Project Supplement Analysis (DOE/EA-0307-SA-01)

    SciTech Connect (OSTI)

    N /A

    2003-10-02

    The Bonneville Power Administration prepared an Environmental Assessment (DOE/EA-0307) for the Colville Resident Hatchery Project (Project) and published a Finding of No Significant Impact (FONSI) in the Federal Register on September 8, 1986 (Vol. 51, No.173). The Project involved the design, site selection, construction, operation and maintenance of a resident trout hatchery on the Colville Indian Reservation to partially mitigate for anadromours and other fish losses resulting from the construction and operation of the Chief Joseph Dam and Grand Coulee Dam hydroelectric projects. Since the hatchery was constructed, ongoing Operation and Maintenance (O&M) and Monitoring and Evaluation (M&E) activities have been funded by BPA. The O&M and M&E activities examined in the EA were very general in nature due to the fact the project was in the conceptual stage. Since that time the hatchery has refined the need for specific O&M and M&E activities, proposed for fiscal year 2004, (funding for projects runs from October 2003 to September 2004). The purpose of this Supplement Analysis (SA) is to determine if a supplemental EA is needed to analyze the environmental impacts that would result from the specific O&M and M&E activities proposed for fiscal year 2004.

  18. Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta)

    SciTech Connect (OSTI)

    Stubblefield, W.A.; Garrison, T.D.; Hockett, J.R.; Brinkman, S.F.; Davies, P.H.; McIntyre, M.W.

    1997-10-01

    Manganese is a common constituent of point and nonpoint discharges from mining and smelting activities. Available data indicate that Mn is acutely toxic at relatively high aqueous concentrations, when compared with trace metals, and its toxicity is affected by water hardness. Little information is available regarding the chronic toxicity of manganese. Early-life-stage (ELS) tests were conducted to determine the toxicity of manganese to brown trout (Salmo trutta) and to evaluate the extent to which water hardness (ranging from 30 to 450 mg/L as CaCO{sub 3}) affects the chronic toxicity of Mn. Water hardness of significantly affected Mn chronic toxicity, with toxicity decreasing with increasing hardness. Decreased survival was the predominant effect noted in the 30-mg/L hardness experiment, while significant effects on growth (as measured by changes in body weight) were observed in both the 150- and 450-mg/L hardness experiments. Twenty-five percent inhibition concentration (IC25) values, based on the combined endpoints (i.e., survival and body weight), were 4.67, 5.59, and 8.68 mg Mn/L (based on measured Mn concentration) at hardness levels of approximately 30, 150, and 450 mg/L as CaCO{sub 3}, respectively.

  19. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    SciTech Connect (OSTI)

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco x (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation facility to the Imnaha River juvenile migration trap. (3) Monitor the daily catch and biological cha

  20. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    SciTech Connect (OSTI)

    RH Visser

    2000-03-16

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.

  1. Statistical assessment of fish behavior from split-beam hydro-acoustic sampling

    SciTech Connect (OSTI)

    McKinstry, Craig A.; Simmons, Mary Ann; Simmons, Carver S.; Johnson, Robert L.

    2005-04-01

    Statistical methods are presented for using echo-traces from split-beam hydro-acoustic sampling to assess fish behavior in response to a stimulus. The data presented are from a study designed to assess the response of free-ranging, lake-resident fish, primarily kokanee (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) to high intensity strobe lights, and was conducted at Grand Coulee Dam on the Columbia River in Northern Washington State. The lights were deployed immediately upstream from the turbine intakes, in a region exposed to daily alternating periods of high and low flows. The study design included five down-looking split-beam transducers positioned in a line at incremental distances upstream from the strobe lights, and treatments applied in randomized pseudo-replicate blocks. Statistical methods included the use of odds-ratios from fitted loglinear models. Fish-track velocity vectors were modeled using circular probability distributions. Both analyses are depicted graphically. Study results suggest large increases of fish activity in the presence of the strobe lights, most notably at night and during periods of low flow. The lights also induced notable bimodality in the angular distributions of the fish track velocity vectors. Statistical summaries are presented along with interpretations on fish behavior.

  2. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    SciTech Connect (OSTI)

    Brannon, E.L.; National Science Foundation

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on promoting the ability for anadromous salmonids to respond to change by assuring that the genetic diversity to facilitate such responses is present. The key in developing an effective recovery program for chinook salmon and steelhead is to recognize that multiple life history forms associated with temperature characterize the species in the Columbia Basin, and recovery measures taken must address the biological requirements of the population unit within the environmental template identified. Unless such measures are given first and highest priority, establishment of biologically self-sustaining populations will be restrained.

  3. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Cook, C.

    2005-02-01

    This report documents a four-year study(a) to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss) at the entrance to the forebay of the third powerplant at Grand Coulee Dam. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). In this report, emphasis is placed on the methodology and results associated with the fourth project year and compared with findings from the previous years to provide an overall project summary. Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power and Conservation Council Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph dams on the Columbia River (Figure S.1). A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish, including kokanee and rainbow trout, were entrained annually at Grand Coulee Dam. Analysis of the data found that 85% of the total entrainment occurred at the dam's third powerplant. Because these entrainment rates represent a significant loss to the tribal fisheries upstream of the dam, they have been judged unacceptable to fishery managers responsible for perpetuating the fishery in Lake Roosevelt. In an effort to reduce fish entrainment rates, the scope of work for the Chief Joseph Kokanee Enhancement Project was modified in 2001 to include a multiyear study of the efficacy of using strobe lights to deter fish from entering the third powerplant forebay. Pacific Northwest National Laboratory initiated the four-year study in collaboration with Colville Tribal Fisheries. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions.

  4. Evaluation of behaviour and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen; Bevelhimer, Mark S; Cada, Glenn F; Giza, Daniel; Jacobsen, Paul; McMahon, Brian; Pracheil, Brenda M

    2015-01-01

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmore »turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. Similarly, by combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.« less

  5. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmore »turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.« less

  6. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    SciTech Connect (OSTI)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HK turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.

  7. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    SciTech Connect (OSTI)

    Sellman, Jake; Dykstra, Tim

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  8. Kalispel Resident Fish Project, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Olson, Jason; Andersen, Todd

    2006-07-01

    In 2005 the Kalispel Natural Resource Department (KNRD) monitored its current enhancement projects for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Largemouth Bass (Micropterus salmoides) enhancement projects were also monitored. Additional baseline fish population and habitat assessments were conducted, in East River and several of its tributaries.

  9. Kalispel Resident Fish Project, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Olson, Jason; Andersen, Todd

    2005-06-01

    In 2004 the Kalispel Natural Resource Department (KNRD) implemented a new enhancement monitoring project for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Largemouth bass (Micropterus salmoides) enhancement projects were also monitored. Additional baseline fish population and habitat assessments were conducted, in tributaries to the Pend Oreille River.

  10. Lower Flathead System Fisheries Study, 1986 Interim Report.

    SciTech Connect (OSTI)

    Bradshaw, William H.; DosSantos, Joseph M.; Darling, James M.

    1986-08-01

    We believe our results have clearly shown Kerr hydroelectric operations and operational constraints have negatively affected Flathead River trout and northern pike populations and the aquatic habitat which support them. Even so, it is possible to mitigate many of these impacts and develop a very important fishery. Trout abundance in the lower Flathead averaged only 19 fish per kilometer, the lowest abundance of trout for a river of this size in Montana. Little main channel spawning by trout was observed and most spawning probably occurs in tributaries. Lower river tributaries support resident populations of brook, rainbow, brown, and cutthroat trout; and a small resident population of bull trout is present in the South Fork of the Jocko River. Using weirs, spawning runs of rainbow and brown trout from the main river were monitored entering the Jocko River and the Post/Mission Creek system. Utilization of Crow Creek by main river trout stocks of trout was limited to the 6 km segment below Crow Dam. Evaluations of tributary spawning gravels showed high levels of silt which would suggest poor survival of trout eggs. Excessive harvest in the tributaries was indicated by analysis of age class structure and abundance of trout greater than 200 mm.

  11. Fish behavior: applied studies to assess environmental effects of energy-related activities

    SciTech Connect (OSTI)

    Gray, R.H.

    1985-04-01

    Studies at the Battelle Pacific Northwest Laboratories have evaluated fish response to thermal discharge, gas supersaturated water, water soluble fractions of coal liquids and other environmental stresses. Approaches have included biotelemetry in the field, and avoidance/attraction and predator prey studies in the laboratory. Sonic-tracking studies in the Columbia River indicated that thermal discharges did not block upstream migration of adult salmonids (Oncorhynchus tshawytscha, Salmo gairdneri). Laboratory studies showed that juvenile O. tshawytscha avoided thermal discharges when ..delta..ts exceed 9 to 11/sup 0/C above ambient. However, juvenile salmon were more susceptible to predation at 10 to 20% of the thermal dose causing loss of equilibrium. Radio-tracking studies showed that adult O. tshawytscha swam deeper in supersaturated water than normally saturated water in the Snake River and thereby avoided the upper, critical zone. Laboratory studies showed that carp (Cyprinus carpio), and black bullhead (Ictalurus melas) did not always avoid lethal gas levels and some fish died in the test apparatus. Fathead minnow (Pimephales promelas) avoided the water soluble fraction (WSF) of a coal liquid at concentrations causing acute effects, but not at those causing chronic effects. Rainbow trout (S. gairdneri) did not avoid coal liquid WSFs although they did avoid the major constituent, phenol, tested as a pure compound. Other studies with phenol showed that susceptibility to predation did not increase until phenol concentrations reached the acute LC/sub 50/. 10 figs., 1 tab.

  12. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    SciTech Connect (OSTI)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.

  13. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    SciTech Connect (OSTI)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  14. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.

    SciTech Connect (OSTI)

    Sellman, Jake; Dykstra, Tim

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality (specifically dissolved oxygen and temperature) is the main limiting factor in our fisheries.

  15. Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.

    SciTech Connect (OSTI)

    Sellman, Jake; Perugini, Carol

    2009-02-20

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water quality issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.

  16. Kalispel Resident Fish Project Annual Report, 2003.

    SciTech Connect (OSTI)

    Olson, Jason; Andersen, Todd

    2004-04-01

    In 2003 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2003, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented.

  17. Kalispel Resident Fish Project : Annual Report, 2002.

    SciTech Connect (OSTI)

    Andersen, Todd; Olson, Jason

    2003-03-01

    In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

  18. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    SciTech Connect (OSTI)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  19. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  20. Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Peters, Ronald; Kinkead, Bruce; Stanger, Mark

    2003-07-01

    Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

  1. Biomarker responses in cyprinids of the middle stretch of the River Po, Italy

    SciTech Connect (OSTI)

    Vigano, L.; Arillo, A.; Melodia, F.; Arlati, P.; Monti, C.

    1998-03-01

    Fish belonging to three species of cyprinids, that is, barbel (Barbus plebejus), chub (Leuciscus cephalus), and Italian nase (Chondrostoma soeetta), were collected from two sites of the River Po, located upstream and downstream from the confluence of one of its middle-reach polluted tributaries, the River Lambro. The two groups of individuals caught for each species were analyzed and compared for several microsomal and cytosolic biochemical markers. The enzymatic activities assayed in fish liver included ethoxyresorufin O-deethylase (EROD), aminopyrine-N-demethylase (APDM), uridine diphosphate glucuronyltransferase (UDPGT), glutathione S-transferase (GST), glutathione reductase, and glutathione peroxidase. In addition, the contents of reduced glutathione and nonprotein thiols were measured. Despite some differences among species, all microsomal activities (EROD, APDM, UDPGT) were found to be significantly induced in fish living downstream the River Lambro. With the exception of a higher GST enzyme activity of barbel from the downstream reach, no significant modification was evident in any of the tested cytosolic biomarkers. Results showed that barbel and nase better discriminated the two reaches of the River Po. In general, the alterations observed in feral fish are consistent with the results found in previous studies conducted with rainbow trout (Oncorhynchus mykiss) under both laboratory and field conditions in the same middle reach of the River Po. All of the data indicate that the downstream tract of the main river is exposed to the load of pollutants transported by the River Lambro, including known inducers such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs). The latter were analyzed in sediments sampled at the two sites of fish collection, and the downstream sediment showed the highest concentrations of PAHs, although their levels are comparable to those present in moderately polluted locations. Regardless of the site of exposure, barbel seem to be characterized by more efficient antioxidant defenses.

  2. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat conditions exist for spring chinook in the Touchet River.

  3. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

  4. Kalispel Resident Fish Project : Annual Report, 1995.

    SciTech Connect (OSTI)

    Maroney, Joseph; Donley, Christopher; Scott, Jason; Lockwood, Jr., Neil

    1997-06-01

    In 1995 the Kalispel Natural Resource Department (KNRD) in conjunction with the Washington Department of Fish and Wildlife (WDFW) initiated the implementation of a habitat and population enhancement project for bull trout (Salvelinus confluentus), westslope cutthroat trout (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Habitat and population assessments were conducted in seven tributaries of the Box Canyon reach of the Pend Oreille River. Assessments were used to determine the types and quality of habitat that were limiting to native bull trout and cutthroat trout populations. Assessments were also used to determine the effects of interspecific competition within these streams. A bull trout and brook trout (Salvelinus fontinalis) hybridization assessment was conducted to determine the degree of hybridization between these two species. Analysis of the habitat data indicated high rates of sediment and lack of wintering habitat. The factors that contribute to these conditions have the greatest impact on habitat quality for the tributaries of concern. Population data suggested that brook trout have less stringent habitat requirements; therefore, they have the potential to outcompete the native salmonids in areas of lower quality habitat. No hybrids were found among the samples, which is most likely attributable to the limited number of bull trout. Data collected from these assessments were compiled to develop recommendations for enhancement measures. Recommendations for restoration include riparian planting and fencing, instream structures, as well as, removal of non-native brook trout to reduce interspecific competition with native salmonids in an isolated reach of Cee Cee Ah Creek.

  5. Journey of the Oncorhynchus.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stones in the shallow water of a cold, clear stream at the foot of Mt. Hood. A nest of fish eggs is called a redd. Cool water gently washes over the eggs in the redd. If you look...

  6. Protect and Restore the Upper Lochsa : Annual Progress Report, May 2008 – April 2009.

    SciTech Connect (OSTI)

    Lloyd, Rebecca; Forestieri, David

    2009-08-13

    The Upper Lochsa watersheds included in the project contain critical spawning and rearing habitat for anadromous and resident fish (Clearwater National Forest 1999). Species that depend on the tributary habitat include spring chinook salmon (Oncorhynchus tshawytscha), Snake River summer steelhead (Oncorhynchus mykiss), bull trout (Salvelinus confluentes), and westslope cutthroat trout (Oncorhynchus clarki lewisi). Steelhead and bull trout populations are currently listed as Threatened under the Endangered Species Act (ESA), and westslope cutthroat trout has been petitioned for listing. Both out-of-basin and in-basin factors threaten fish populations in the Lochsa Drainage (Clearwater Subbasin Plan 2003). Out-of-basin factors include the hydroelectric system and ocean conditions, while in-basin factors include a variety of management activities leading to habitat degradation. This project is implemented under Bonneville Power Administration's Fish and Wildlife program in order to meet National Marine Fisheries Service requirements to offset losses caused by the operation of the hydrosystem by improving tributary habitats to promote increased productivity of salmon and steelhead. The Clearwater Subbasin Plan (2003) defines limiting factors to fisheries in the area as watershed disturbances, habitat degradation, sediment, temperature, and connectivity.

  7. Kalispel Resident Fish Project : Annual Report, 2008.

    SciTech Connect (OSTI)

    Andersen, Todd

    2009-07-08

    In 2008, the Kalispel Natural Resource Department (KNRD) continued to implement its habitat enhancement projects for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Baseline fish population and habitat assessments were conducted in Upper West Branch Priest River. Additional fish and habitat data were collected for the Granite Creek Watershed Assessment, a cooperative project between KNRD and the U.S. Forest Service Panhandle National Forest (FS) . The watershed assessment, funded primarily by the Salmon Recovery Funding Board of the State of Washington, will be completed in 2009.

  8. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2005-08-01

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

  9. Kalispel Resident Fish Project : Annual Report, 2001.

    SciTech Connect (OSTI)

    Andersen, Todd

    2002-01-01

    In 2001 the Kalispel Natural Resource Department (KNRD) continued assessing habitat and population enhancement projects for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Habitat enhancement measures, as outlined in recommendations from the 1996, 1997, and 1998 annual reports, were monitored during field season 1999, 2000, and 2001. Post assessments were used to evaluate habitat quality, stream morphology and fish populations where enhancement projects were implemented.

  10. Lake Roosevelt Fisheries Evaluation Program, Part C; Lake Roosevelt Pelagic Fish Study: Washington Department of Fish and Wildlife, 1998 Annual Report.

    SciTech Connect (OSTI)

    Baldwin, Casey; Polacek, Matt; Bonar, Scott

    2002-11-01

    Pelagic fishes, such as kokanee and rainbow trout, provide an important fishery in Lake Roosevelt; however, spawner returns and creel results have been below management goals in recent years. Our objective was to identify factors that potentially limit pelagic fish production in Lake Roosevelt including entrainment, food limitation, piscivory, and other abiotic factors. We estimated the ratio of total fish entrained through Grand Coulee Dam to the pelagic fish abundance for September and October, 1998. If the majority of these fish were pelagic species, then entrainment averaged 10-13% of pelagic fish abundance each month. This rate of entrainment could impose considerable losses to pelagic fish populations on an annual basis. Therefore, estimates of species composition of entrained fish will be important in upcoming years to estimate the proportion of stocked pelagic fish lost through the dam. Food was not limiting for kokanee or rainbow trout populations since growth rates were high and large zooplankton were present in the reservoir. Estimates of survival for kokanee were low (< 0.01 annual) and unknown for rainbow trout. We estimated that the 1997 standing stock biomass of large (>1.1 mm) Daphnia could have supported 0.08 annual survival by kokanee and rainbow trout before fish consumption would have exceeded available biomass during late winter and early spring. Therefore, if recruitment goals are met in the future there may be a bottleneck in food supply for pelagic planktivores. Walleye and northern pikeminnow were the primary piscivores of salmonids in 1996 and 1997. Predation on salmonid prey was rare for rainbow trout and not detected for burbot or smallmouth bass. Northern pikeminnow had the greatest individual potential as a salmonid predator due to their high consumptive demand; however, their overall impact was limited because of their low relative abundance. We modeled the predation impact of 273,524 walleye in 1996, and 39,075 northern pikeminnow in 1997 because diet data revealed predation on salmonids during these years. We could not determine the absolute impact of piscivores on each salmonid species because identification of fish prey was limited to families. Our estimate of salmonid consumption by walleye in 1996 and northern pikeminnow in 1997 shows that losses of stocked kokanee and rainbow trout could be substantial (up to 73% of kokanee) if piscivores were concentrating on one salmonid species, but were most likely lower, assuming predation was spread among kokanee, rainbow trout, and whitefish. Dissolved oxygen was never limiting for kokanee or rainbow trout, but temperatures were up to 6 EC above the growth optimum for kokanee from July to September in the upper 33 meters of water. Critical data needed for a more complete analysis in the future include species composition of entrainment estimates, entrainment estimates expanded to include unmonitored turbines, seasonal growth of planktivorous salmonids, species composition of salmonid prey, piscivore diet during hatchery releases of salmonids, and collection of temperature and dissolved oxygen data throughout all depths of the reservoir during warm summer months.

  11. Rainbow Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nimbin, New South Wales, Australia Zip: 2480 Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Manufacturer, distributor and retailer of renewable energy products,...

  12. EA-296-A_Rainbow_CN.pdf

    Office of Environmental Management (EM)

  13. EA-375-A Rainbow Energy.pdf

    Office of Environmental Management (EM)

  14. Trout Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  15. Colville Tribal Fish Hatchery, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Arteburn, John; Christensen, David

    2003-03-01

    Federal hydropower projects as well as private power utility systems have had a devastating impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas were completely blocked to anadromous fish by dams, causing the native people who's number one food resource was salmon to rely entirely upon resident fish to replace lost fisheries resources. The Colville Tribal Fish Hatchery is an artificial production program to partially mitigate for anadromous fish losses in the ''Blocked Area'' above Chief Joseph and Grand Coulee Dams pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 as a resident fish substitution measure and the hatchery was completed in 1990. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout. To achieve this quota the Colville Tribal Hatchery was scheduled to produce 174,000 fingerling rainbow trout (5 grams/fish), 330,000 sub-yearling rainbow trout (15 grams/fish), 80,000 legal size rainbow trout (90 grams/fish), 196,000 fingerling brook trout (5 grams/fish), 330,000 subyearling brook trout (15 grams/fish) and 60,000 lahontan cutthroat trout (15 grams/fish) in 2001. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence /recreational fishery for Colville Tribal members as well as a successful non-member sport fishery. The majority of the fish distributed from the facility are intended to provide a ''carry-over'' fishery. Fish produced at the facility are intended to be capable of contributing to the natural production component of the reservation fish populations. Contribution to the natural production component will be achieved by producing and releasing fish of sufficient quality and quantity for fish to survive to spawning maturity, to spawn naturally in existing and future available habitat (i.e. natural supplementation), while meeting other program objectives. In addition to the hatchery specific goals detailed above, hatchery personnel will actively participate in the Northwest Power Planning Council program, participate in the Columbia Basin Fish and Wildlife Foundation, Resident Fish Committee, and other associated committees and Ad Hoc groups that may be formed to address resident fish issues in the blocked area above Chief Joseph and Grand Coulee Dams.

  16. Wigwam River McNeil Substrate Sampling Program : 1998-2002 Summary Report.

    SciTech Connect (OSTI)

    Tepper, Herb

    2003-01-01

    The Wigwam River is an important fisheries stream in the East Kootenay region of British Columbia that supports healthy populations of both bull trout (Salvelinus confluentus) and Westslope cutthroat trout (Oncorhynchus clarki lewisi). The river has been characterized as the single most important bull trout spawning steam in the Kootenay Region (Baxter and Westover 2000), and thus has been the focus of numerous studies in the last ten years (Cope 1998; Cope and Morris 2001; Cope, Morris and Bisset 2002; Kohn Crippen Consultants Ltd. 1998; Westover 1999a; Westover 1999b; Westover and Conroy 1997). Although bull trout populations in the East Kootenay region remain healthy, bull trout populations in other parts of British Columbia and within their traditional range in northwestern United States have declined. Thus, bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Centre (Cannings 1993) and remain a species of special concern. Bull trout in the north-western United States, within the Columbia River watershed, were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. In 1999, the Ministry of Water, Land and Air Protection applied and received funding from the Bonneville Power Administration (BPA) to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. The purpose of this report is to summarize one of the many studies undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00). Three permanent sampling sites were established on the Wigwam River in April 1998. At each site, substrate samples were obtained using a McNeil Core sampler in April of each year from 1998 to 2002. The objectives of this study were to assess the quality of stream-bed substrates used by bull trout for spawning prior to major resource development in the Wigwam watershed, thus providing one potential measure of future impact to bull trout spawning habitat.

  17. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.

    SciTech Connect (OSTI)

    Lovrak, Jon; Combs, Mitch

    2004-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2003 Fourth Annual Two Rivers Trout Derby was again a great success. The harvest and data collection were the highest level to date with 1,668 rainbow trout and 416 kokanee salmon caught. The fishermen continue to praise the volunteer net pen program and the hatchery efforts as 90% of the rainbows and 93% of the kokanee caught were of hatchery origin (Lee, 2003).

  18. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program; 2002 Annual Report.

    SciTech Connect (OSTI)

    Combs, Mitch

    2003-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2002 Third Annual Two Rivers Trout Derby was again a great success with 529 rainbow trout and 80 kokanee salmon caught. The fishermen had a lot of praise for the volunteer net pen program and the hatchery efforts as 84% of the rainbows and 62% of the kokanee caught were of hatchery origin (Lee, 2002).

  19. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    SciTech Connect (OSTI)

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in 1997, with 97 percent of tag recoveries from rainbow trout coming from below Grand Coulee Dam. High water years appear to have substantial entrainment impacts on salmonids. The 1998 salmonid harvest has improved from the previous two years, due to the relatively water friendly year of 1998, from the harvest observed in the 1996-1997 high water years, which were particularly detrimental to the reservoir salmonid fisheries. Impacts from those water years are still evident in the reservoir fish populations. Analysis of historical relative species abundance, tagging data and hydroacoustical studies, indicate that hydro-operations have a substantial influence on the annual standing crop of reservoir salmonid populations due to entrainment losses, and limited prey species recruitment, due to reservoir elevation level fluctuation, and corresponding reproductive success.

  20. Chief Joseph Kokanee Enhancement Project -- Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect (OSTI)

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Anglea, Steven M.; Simmons, Carver S.; Thorsten, Susan L.; Lecaire, R; Francis, S

    2002-01-29

    This report describes the work conducted during the first year of a long-term study to assess the efficacy of a prototype strobe light system in eliciting a negative phototactic response in kokanee and rainbow trout. The strobe light system is being evaluated as a means to prevent entrainment (and subsequent loss) of fish at the entrance to the forebay adjacent to the third powerplant at Grand Coulee Dam. Pacific Northwest National Laboratory and the Colville Confederated Tribes are collaborating on the three-year study being conducted for the Bonneville Power Administration and the Northwest Power Planning Council.

  1. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect (OSTI)

    Johnson, Robert L. ); Simmons, Mary Ann ); Simmons, Carver S. ); McKinstry, Craig A. ); Cook, Chris B. ); Thorsten, Susan L. ); Lecaire, Richard; Francis, Stephen

    2003-01-29

    This report describes the work conducted during the second year of a multi-year study to assess the efficacy of a prototype strobe light system in eliciting a negative phototactic response in kokanee and rainbow trout. The strobe light system is being evaluated as a means to prevent entrainment (and subsequent loss) of fish at the entrance to the forebay adjacent to the third powerplant at Grand Coulee Dam. Pacific Northwest National Laboratory and the Confederated Tribes of the Colville Reservation are collaborating on the three-year study being conducted for the Bonneville Power Administration and the Northwest Power Planning Council.

  2. Hoopa Valley Tribe - Small Hydro Project

    Office of Environmental Management (EM)

    Hydro Power Feasibility Study Hoopa Valley Tribe Curtis Miller cmiller@hoopa-nsn.gov (530)-625-5515 There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon, Steelhead and Rainbow trout. 50-60 inches of rainfall /year In the beginning In FY 2005 the Hoopa Tribal EPA received a grant from DOE to conduct a 2 year feasibility study for small scale hydropower on 7 major tributaries of the Reservation that flow into the Trinity River Concept of

  3. Hoopa Valley Tribe - Small Hydropower Feasibility Study

    Office of Environmental Management (EM)

    Micro-Hydro Feasibility Study Hoopa Valley Tribe Curtis Miller The Hoopa Valley Reservation was established in 1868 by executive order of Ulysses S. Grant and contains the aboriginal homeland of the Hupa People. It encompasses approximately 100,000 acres and is 96% owned by the Hoopa Tribe. Salmon are the life blood of the Hupa and Yurok and Karuk people There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon and Rainbow trout. 50-60 inches of

  4. Kootenay Lake Fertilization Experiment, Year 15 (North Arm) and Year 3 (South Arm) (2006) Report

    SciTech Connect (OSTI)

    Schindler, E.U.; Sebastian, D.; Andrusak, G.F.

    2009-07-01

    This report summarizes results from the fifteenth year (2006) of nutrient additions to the North Arm of Kootenay Lake and three years of nutrient additions to the South Arm. Experimental fertilization of the lake has been conducted using an adaptive management approach in an effort to restore lake productivity lost as a result of nutrient uptake in upstream reservoirs. The primary objective of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are the main food source for Gerrard rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus). The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to the North Arm in 2006 was 44.7 tonnes of P and 248.4 tonnes of N. The total fertilizer load added to the South Arm was 257 tonnes of nitrogen; no P was added. Kootenay Lake has an area of 395 km{sup 2}, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. Kootenay Lake is a monomictic lake, generally mixing from late fall to early spring and stratifying during the summer. Surface water temperatures generally exceed 20 C for only a few weeks in July. Results of oxygen profiles were similar to previous years with the lake being well oxygenated from the surface to the bottom depths at all stations. Similar to past years, Secchi disc measurements at all stations in 2006 indicate a typical seasonal pattern of decreasing depths associated with the spring phytoplankton bloom, followed by increasing depths as the bloom gradually decreases by the late summer and fall. Total phosphorus (TP) ranged from 2-7 {micro}g/L and tended to decrease as summer advanced. Over the sampling season dissolved inorganic nitrogen (DIN) concentrations decreased, with the decline corresponding to nitrate (the dominant component of DIN) being utilized by phytoplankton during summer stratification. Owing to the importance of epilimnetic nitrate that is required for optimal phytoplankton growth discrete depth water sampling occurred in 2006 to measure more accurately changes in the nitrate concentrations. As expected there was a seasonal decline in nitrate concentrations, thus supporting the strategy of increasing the nitrogen loading in both arms. These in-season changes emphasize the need for an adaptive management approach to ensure the nitrogen to phosphorus (N:P) ratio does not decrease below 15:1 (weight:weight) during the fertilizer application period. Phytoplankton composition determined from the integrated samples (0-20m) was dominated by diatoms, followed by cryptophytes and chrysophytes. The contribution of cryptophytes to total biomass was higher in 2006 than in 2005. Cryptophytes, considered being edible biomass for zooplankton and Daphnia spp., increased in 2006. Phytoplankton in the discrete depth samples (2, 5, 10, 15 and 20m) demonstrated a clear north to south gradient in average phytoplankton density and biomass among the three stations sampled, with highest values at the North Arm station (KLF 2) and lowest values in the most southern station in the South Arm (KLF 7). Populations were dominated by flagellates at all stations and depths in June and July, then dominated by diatoms in August and September in the North and South arms of the lake. There were no large bluegreen (cyanobacteria) populations in either arm of the lake in 2006. Seasonal average zooplankton abundance and biomass in both the main body of the lake and in the West Arm increased in 2006 compared to 2005. Zooplankton density was numerically dominated by copepods and biomass was dominated by Daphnia spp. The annual average mysid biomass data at deep stations indicated that the North Arm of Kootenay Lake was more productive than the South Arm in 2006. Mysid densities increased through the summer and declined in the winter; mean whole lake values remain within prefertilization densities. Kokanee escapement to Meadow Creek declined in 2006 to approximately 400,000 spawners. The Lardeau River escapement also declined wit

  5. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Simmons, M.; Johnson, Robert; McKinstry, C.

    2006-03-01

    The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. However, the distribution of swimming directions for fish detected by the transducer immediately to the north of the lights was bimodal, with some fish swimming south toward the lighted region. This behavior was similar to that seen at night when the lights were on. Fourth, kokanee, rainbow trout, and walleye were detected near the strobe lights. Data were obtained from three sources: fish size from the hydroacoustic sensors and fish species from gill netting and video recording. Fish ranging in length from 30 to 600 mm (averaging 125 mm) were detected by the splitbeam transducers. There was little difference in target strength for fish detected above 25 m depth with respect to time of day or light treatment. Below 25 m and closer to the strobe lights, larger fish were present when the lights were on during the night, and smaller fish were present during the day.

  6. Tuning Into the Right Wavelength: Quantum Dot Rainbow Increases...

    Office of Science (SC) Website

    Sequentially deposited green, orange, and red-emitting quantum dots serve as sensitizers ... converted more light than expected into energy compared with solar cells containing only ...

  7. EA-296-B Rainbow Energy (CN).pdf

    Office of Environmental Management (EM)

  8. EA-296-B Rainbow Energy CN.pdf

    Office of Environmental Management (EM)

  9. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  10. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    SciTech Connect (OSTI)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  11. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.

    SciTech Connect (OSTI)

    Combs, Mitch

    2002-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2001 fishing season has been especially successful with great fishing for both rainbow and kokanee throughout Lake Roosevelt. The results of the Two Rivers Fishing Derby identified 100 percent of the rainbow and 47 percent of the kokanee caught were of hatchery origin.

  12. Application to Export Electric Energy OE Docket No. EA-375-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    75-A Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation Application from Rainbow to transmit ...

  13. Application to Export Electric Energy OE Docket No. EA-296-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Rainbow Energy Marketing Corporation Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation Application from Rainbow Energy Marketing ...

  14. Application to Export Electric Energy OE Docket No. EA-296-B...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Rainbow Energy Marketing Corp Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp Application from Rainbow Energy Marketing Corp to export ...

  15. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    SciTech Connect (OSTI)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  16. Journey of the Oncorhynchus: A Story of the Pacific Northwest Salmon.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-06-01

    This report tells the story of the Pacific Northwest salmon in words that children can understand. The life cycle of chinook salmon is depicted through pictures and elementary language from the egg to juvenile fish in fresh water, to maturing fish in the ocean, and the adults migrating back up to spawning grounds in the Columbia River. This can be very useful in the education of children.

  17. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect (OSTI)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  18. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

    2012-04-01

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, the average fish length remained relatively consistent (132 {+-} 54 mm), after which average lengths increased to 295 {+-} 148 mm for mid-November though early December. From mid-December through January the average fish length decreased to 151 {+-} 76 mm. Milling in front of the WTC tower was the most common fish behavior observed throughout the study period. Traversing along the front of the tower, east-to-west and west-to-east, was the next common behavior. The percentage of fish events showing movement from the forebay to the tower or from the tower to the forebay was generally low throughout the spring, summer, and early fall (0 to 30% for both directions combined, March through early November). From mid-November 2010 through the end of the study (January 31, 2011), the combined percentages of fish moving into and out of the tower were higher (25 to 70%) than during previous months of the study. Schooling behavior was most distinct in the spring. Schooling events were present in 30 to 96% of the fish events during that period, with a peak on May 19. Schooling events were also present in the summer, but at lower numbers. With the exception of some schooling in mid-December, few to no schooling events were observed in the fall and winter months. Diel distributions for schooling fish during spring and fall months indicate schooling was concentrated during daylight hours and no schooling was observed at night. However, in December, schooling occurred at night, after midnight, and during daylight hours. Predator activity, most likely bull trout or rainbow trout according to a USACE biologist, was observed during late spring, when fish abundance index and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months.

  19. Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).

    SciTech Connect (OSTI)

    Polacek, Matt

    2009-07-15

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in the epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371 rainbow trout, and 509 yellow perch were harvested from Banks Lake in 2008. No kokanee were reported in the creel; however, local reports indicated that anglers were targeting and catching kokanee. The economic benefit of the Banks Lake fishery was estimated at $2,288,005 during 2008. Abundance estimates from the hydroacoustic survey in July were 514,435 lake whitefish and 10,662 kokanee, with an overall abundance estimate of 626,061 limnetic fish greater than 100 mm. When comparing spring fry, fall fingerling and yearling net pen release strategies of kokanee, 95% were of hatchery origin, with the highest recaptures coming from the fall fingerling release group.

  20. Coeur d'Alene Tribe Fisheries Program Research, Monitoring and Evaluation Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    SciTech Connect (OSTI)

    Vitale, Angelo; Lamb, Dave; Peters, Ronald

    2002-11-01

    Westslope cutthroat trout (Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) are currently of special concern regionally and are important to the culture and subsistence needs of the Coeur d'Alene Tribe. The mission of the Coeur d'Alene Tribe Fisheries Program is to restore and maintain these native trout and the habitats that sustain them in order to provide subsistence harvest and recreational fishing opportunities for the Reservation community. The adfluvial life history strategy exhibited by westslope cutthroat and bull trout in the Lake Coeur d'Alene subbasin makes these fish susceptible to habitat degradation and competition in both lake and stream environments. Degraded habitat in Lake Coeur d'Alene and its associated streams and the introduction of exotic species has lead to the decline of westslope cutthroat and listing of bull trout under the endangered species act (Peters et al. 1998). Despite the effects of habitat degradation, several streams on the Reservation still maintain populations of westslope cutthroat trout, albeit in a suppressed condition (Table 1). The results of several early studies looking at fish population status and habitat condition on the Reservation (Graves et al. 1990; Lillengreen et al. 1993, 1996) lead the Tribe to aggressively pursue funding for habitat restoration under the Northwest Power Planning Council's (NWPPC) resident fish substitution program. Through these efforts, habitat restoration needs were identified and projects were initiated. The Coeur d'Alene Tribe Fisheries Program is currently involved in implementing stream habitat restoration projects, reducing the transport of sediment from upland sources, and monitoring fish populations in four watersheds on the Coeur d'Alene Reservation (Figure 1). Restoration projects have included riparian plantings, addition of large woody debris to streams, and complete channel reconstruction to restore historical natural channel forms. In addition, ponds have been constructed to trap sediment from rill and gully erosion associated with agricultural practices, and to provide flow enhancement and ameliorate elevated stream temperatures during the summer base flow period. The implementation of restoration efforts that target the key habitats and lifestages for resident westslope cutthroat trout on the Coeur d'Alene Reservation is one means the Tribe is using to partially mitigate for lost anadromous fisheries. In this context, restoration is consistent with the definition provided by Ebersole et al. (1997), who described stream restoration as the reexpression of habitat capacity in a stream system. At the reach scale, habitat capacity is affected by biotic (e.g., riparian vegetation) and physical (e.g., flooding) processes. Superimposed on the natural biotic and physical processes are anthropogenic stressors (e.g., logging, roads and grazing) that suppress habitat capacity and can result in simplified, degraded stream reaches. The effectiveness of habitat restoration, measured as an increase in native trout abundance, is dependent on reducing limiting factors (e.g., passage barriers, high water temperatures, sediment transport from source areas) in areas that are critical for spawning and rearing lifestages. This plan outlines a monitoring strategy to help determine the effectiveness of specific restoration/enhancement treatments and to track the status of trout populations in four target watersheds.

  1. Spokane Tribal Hatchery, 2002 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.

    2003-03-01

    The Spokane Tribal Hatchery (Galbraith Springs) project originated from the Northwest Power Planning Council (NPPC) 1987 Columbia Basin Fish and Wildlife Program. The goal of this project is to aid in the restoration and enhancement of the Lake Roosevelt and Banks Lake fisheries adversely affected by the construction and operation of Grand Coulee Dam. The objective is to produce kokanee salmon and rainbow trout for release into Lake Roosevelt for maintaining a viable fishery. The goal and objective of this project adheres to the NPPC Resident Fish Substitution Policy and specifically to the biological objectives addressed in the NPPC Columbia River Basin Fish and Wildlife Program to mitigate for hydropower related fish losses in the blocked area above Chief Joseph/Grand Coulee Dams.

  2. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.

    SciTech Connect (OSTI)

    Mendel, Glen Wesley; Trump, Jeremy; Karl, David

    2002-12-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

  3. Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1992 annual report.

  4. Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.

    SciTech Connect (OSTI)

    Lovrak, Jon; Ward, Glen

    2004-01-01

    Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agency program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with kokanee production. Fish food, materials, and other supplies associated with this program are also funded by BPA. Other funds from BPA will also improve water quality and supply at the Ford Hatchery, enabling the increased fall kokanee fingerling program. Monitoring and evaluation of the Ford stocking programs will include existing WDFW creel and lake survey programs to assess resident trout releases in trout managed waters. BPA is also funding a creel survey to assess the harvest of hatchery kokanee in Banks Lake.

  5. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d’Alene Reservation : 2007 Annual Report.

    SciTech Connect (OSTI)

    Firehammer, Jon A.; Vitale, Angelo J.; Hallock, Stephanie A.

    2009-09-08

    Historically, the Coeur d'Alene Indian Tribe depended on runs of anadromous salmon and steelhead along the Spokane River and Hangman Creek, as well as resident and adfluvial forms of trout and char in Coeur d'Alene Lake, for survival. Dams constructed in the early 1900s on the Spokane River in the City of Spokane and at Little Falls (further downstream) were the first dams that initially cut-off the anadromous fish runs from the Coeur d'Alene Tribe. These fisheries were further removed following the construction of Chief Joseph and Grand Coulee Dams on the Columbia River. Together, these actions forced the Tribe to rely solely on the resident fish resources of Coeur d'Alene Lake for their subsistence needs. The Coeur d'Alene Tribe is estimated to have historically harvested around 42,000 westslope cutthroat trout (Oncorhynchus clarki lewisi) per year (Scholz et al. 1985). In 1967, Mallet (1969) reported that 3,329 cutthroat trout were harvested from the St. Joe River, and a catch of 887 was reported from Coeur d'Alene Lake. This catch is far less than the 42,000 fish per year the tribe harvested historically. Today, only limited opportunities exist to harvest cutthroat trout in the Coeur d'Alene Basin. It appears that a suite of factors have contributed to the decline of cutthroat trout stocks within Coeur d'Alene Lake and its tributaries (Mallet 1969; Scholz et al. 1985; Lillengreen et al. 1993). These factors included the construction of Post Falls Dam in 1906, major changes in land cover types, impacts from agricultural activities, and introduction of exotic fish species. The decline in native cutthroat trout populations in the Coeur d'Alene basin has been a primary focus of study by the Coeur d'Alene Tribe's Fisheries and Water Resources programs since 1990. The overarching goals for recovery have been to restore the cutthroat trout populations to levels that allow for subsistence harvest, maintain genetic diversity, and increase the probability of persistence in the face of anthropogenic influences and prospective climate change. This included recovering the lacustrine-adfluvial life history form that was historically prevalent and had served to provide both resilience and resistance to the structure of cutthroat trout populations in the Coeur d'Alene basin. To this end, the Coeur d'Alene Tribe closed Lake Creek and Benewah Creek to fishing in 1993 to initiate recovery of westslope cutthroat trout to historical levels. However, achieving sustainable cutthroat trout populations also required addressing biotic factors and habitat features in the basin that were limiting recovery. Early in the 1990s, BPA-funded surveys and inventories identified limiting factors in Tribal watersheds that would need to be remedied to restore westslope cutthroat trout populations. The limiting factors included: low-quality, low-complexity mainstem stream habitat and riparian zones; high stream temperatures in mainstem habitats; negative interactions with nonnative brook trout in tributaries; and potential survival bottlenecks in Coeur d'Alene Lake. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery (NWPPC Program Measures 10.8B.20). These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fisheries habitat; (3) Conduct an educational/outreach program for the general public within the Coeur d'Alene Reservation to facilitate a 'holistic' watershed protection process; (4) Develop an interim fishery for tribal and non-tribal members of the reservation through construction, operation and maintenance of five trout ponds; (5) Design, construct, operate and maintain a trout production facility; and (6) Implement a monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. These activities provide partial mitigation for the extirpation of anadromous fish resources from usual and

  6. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    SciTech Connect (OSTI)

    O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of breakpoints in papillary thyroid cancer (PTC).

  7. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect (OSTI)

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  8. Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Caudill, Christopher C.; keefer, matthew L.; Peery, Christopher A.; Richmond, Marshall C.

    2010-04-01

    Adult steelhead tagged with archival transmitters primarily migrated through a large river corridor at depths > 2 m, interspersed with frequent but short (< 5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the encountered supersaturated dissolved gas conditions and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon study, except steelhead experienced greater seasonal variability and were more likely to have depth-uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.

  9. Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.

    SciTech Connect (OSTI)

    Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

    2002-01-01

    Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or upstream. Fish were also swimming faster and straighter when the lights were on compared to off. (3) The behavioral results were most pronounced for medium- and large-sized fish at night. Medium-sized fish, based on acoustic target strength, were similar to the size of kokanee and rainbow trout released upstream of Grand Coulee Dam. Based on this study and general review of strobe lights, the researchers recommend several modifications and enhancements to the follow-on study in 2002. The recommendations include: (1) modifying the study design to include only the 24-hr on/off treatments, and controlling the discharge at the third powerplant, so it can be included as a design variable; and (2) providing additional data by beginning the study earlier (mid-May) to better capture the kokanee population, deploying an additional splitbeam transducer to sample the region close to the lights, and increasing the number of lights to provide better definition of the lit and unlit region.

  10. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at

  11. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the fo

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monume

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild Chinook salmon and 2.4-fold for hatchery steelhead as discharge increased between 50 kcfs and

  14. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel

    2009-04-03

    A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidly discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.

  15. Radionuclide concentrations in fish collected from Jemez, Nambe, and San Ildefonso Tribal Lakes

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1995-02-01

    Radionuclide concentrations ({sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu,and total uranium) were determined in fish collected from Jemez, Nambe, and San Ildefonso tribal lakes. With the exception of {sup 137}Cs, all other radionuclides were not significantly different in (stocked) rainbow trout collected from Jemez and Nambe as compared with game fish collected from Abiquiu, Heron, and El Vado Reservoirs. Although {sup 137}Cs levels in trout from Jemez (3.2 {times} 10{sup -2} pCi per dry gram) and Nambe (7.5 {times} 10{sup -2} pCi per dry gram) were significantly higher than {sup 137}Cs concentrations in fish from Abiquiu, Heron, and El Vado, they were still well below the regional statistical (worldwide fallout) reference level (i.e., < 28 {times} 10{sup -2} pCi per dry gram). Game and nongame fish collected from San Ildefonso contained higher and significantly higher concentrations of uranium, respectively, as compared with fish collected from Abiquiu, Heron, and El Vado. The higher uranium concentrations in fish from San Ildefonso as compared with fish from Abiquiu, Heron, and El Vado were attributed to the higher natural soil uranium contents in the area as compared with the geology of the area upstream of San Ildefonso. The effective (radiation) dose equivalent (EDE) from consuming 46 lb of game fish from Jemez, Nambe, and San Ildefonso lakes, after natural background has been subtracted, was 0.013 ({+-}0.002), 0.019 ({+-}0.012), and 0.017 ({+-}0.028) mrem/yr, respectively. Similarly, the EDE from consuming nongame fish from San Ildefonso was 0.0092 ({+-}0.0084) mrem/yr. The highest calculated dose, based on the mean + 2 standard deviation (95% confidence level), was 0.073 mrem/yr; this was <0.08% of the International Commission on Radiological Protection permissible dose limit for protecting members of the public.

  16. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  17. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  18. Arrow Lakes Reservoir Fertilization Experiment, Technical Report 1999-2004.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973) contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community responded with a shift in species and zooplankton biomass was more favorable for kokanee. With more productive lower trophic levels, the kokanee population increased in abundance and biomass, resulting in improved conditions for bull trout, one of ALR's piscivorous species.

  19. Lake Roosevelt Fisheries Evaluation Program : Lake Whatcom Kokanee Salmon (Oncorhynchus nerka kennerlyi) : Investigations in Lake Roosevelt Annual Report 1999-2000.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.; Tilson, Mary Beth

    2001-07-01

    Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creek net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.

  20. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    SciTech Connect (OSTI)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.

  1. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    SciTech Connect (OSTI)

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmo

  2. Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume II of III; Data Summaries, 1978-1983 Final Report.

    SciTech Connect (OSTI)

    Slatick, Emil; Ringe, R.R.; Zaugg, Waldo S.

    1988-02-02

    The main functions of the National Marine Fisheries Service (NMFS) aquaculture task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might affect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. The health status or the stocks were quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will affect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. This report contains the data for the narratives in Volume I.

  3. EIS-0353: DOE Notice of Availability of the Record of Decision

    Broader source: Energy.gov [DOE]

    South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Flathead County, Montana

  4. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rainbow Bay Amphibian Reserve This 87.5-acre (35.4 ha) Set-Aside Area is comprised of Rainbow Bay, a 200-m forested buffer area that encircles the entire bay, and a wedge-shaped...

  5. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    SciTech Connect (OSTI)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.

  6. Banks Lake Fishery Evaluation Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

    2003-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  7. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Simmons, M.; McKinstry, C.; Cook, C.

    2004-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

  8. Lake Roosevelt Fisheries Monitoring Progam; Thyroid-Induced Chemical Imprinting in Early Life Stages and Assessment of Smoltification in Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1993 Supplement Report.

    SciTech Connect (OSTI)

    Tilson, Mary Beth; Galloway, Heather; Scholz, Allan T.

    1994-06-01

    In 1991, two hatcheries were built to provide a kokanee salmon and rainbow trout fishery for Lake Roosevelt as partial mitigation for the loss of anadromous salmon and steelhead caused by construction of Grand Coulee Dam. The Sherman Creek Hatchery, located on a tributary of Lake Roosevelt to provide an egg collection and imprinting site, is small with limited rearing capability. The second hatchery was located on the Spokane Indian Reservation because of a spring water source that supplied cold, pure water for incubating and rearing eggs.`The Spokane Tribal Hatchery thus serves as the production facility. Fish reared there are released into Sherman Creek and other tributary streams as 7-9 month old fry. However, to date, returns of adult fish to release sites has been poor. If hatchery reared kokanee imprint to the hatchery water at egg or swim up stages before 3 months of age, they may not be imprinting as 7-9 month old fry at the time of stocking. In addition, if these fish undergo a smolt phase in the reservoir when they are 1.5 years old, they could migrate below Grand Coulee Dam and out of the Lake Roosevelt system. In the present investigation, which is part of the Lake Roosevelt monitoring program to assess hatchery effectiveness, kokanee salmon were tested to determine if they experienced thyroxine-induced chemical imprinting and smoltification similar to anadromous salmonids. Determination of the critical period for olfactory imprinting was determined by exposing kokanee to different synthetic chemicals (morpholine or phenethyl alcohol) at different life stages, and then measuring the ability to discriminate the chemicals as sexually mature adults. Whole body thyroxine content and blood plasma thyroxine concentration was measured to determine if peak thyroid activity coincided with imprinting or other morphological, physiological or behavioral transitions associated with smoltification.

  9. Umatilla Basin Natural Production Monitoring and Evaluation; 1995-1996 Annual Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Kissner, Paul; Volkman, Jed

    1997-08-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1995 to September 29, 1996. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. The goal was to evaluate the implementation of the Umatilla River Basin fisheries restoration plan with respect to natural production, adult passage, and tribal harvest. An estimated 56.1 river miles (RM) of habitat was inventoried on the lower Umatilla River (RM 0--56.1) from June 4, to August 1, 1996. The majority of the lower River was found to be too polluted and physically altered to provide suitable rearing or migration habitat for salmonids during the summer. High water temperatures, irrigation withdrawals, altered channels, and urban and agricultural pollution all contributed to degrade the lower Umatilla River. Small springs provided cooler waters and created small areas that were suitable for salmonid rearing. The river below the mouth of Mckay Creek (RM 27.2 to 50.6) was also cooler and more suitable to salmonid rearing when water was released from Mckay Dam. Two hundred sixty-three of 1,832 (14.4%) habitat units were electrofished from June 19 to August 29, 1996. The number of natural juvenile salmonids captured between RM 1.5--52.4 follow: (1) 141 juvenile steelhead (including resident rainbow trout; Oncoryhnchus mykiss), (2) 13 mountain whitefish (Prosopium williamsoni, including adults), (3) four chinook salmon (O. tshawytscha), and (4) two coho salmon (O. kisutch). The expanded population estimate for the areas surveyed was 2,445 salmonids. Mean density was 0.147 salmonids/100 square meter. Mean density of fast water habitat types was 4.5 times higher than slow water types (0.358 and 0.079 s/100 m{sup 2}).

  10. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    SciTech Connect (OSTI)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  11. Organotin intake through fish consumption in Finland

    SciTech Connect (OSTI)

    Airaksinen, Riikka; Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu; Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune; Mannio, Jaakko; Hallikainen, Anja

    2010-08-15

    Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

  12. Hangman Restoration Project : Annual Report, August 1, 2001 - July 31, 2002.

    SciTech Connect (OSTI)

    Green, Gerald I.; Coeur D'Alene Tribe.

    2002-06-01

    The construction of hydroelectric facilities in the Columbia Basin resulted in the extirpation of anadromous fish stocks in Hangman Creek and its tributaries within the Coeur d'Alene Reservation. Thus, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as redband trout (Oncorhynchus mykiss garideini), westslope cutthroat trout (O. clarki lewisii) and bull trout (Salvelinus confluentus) as well as local wildlife populations. Additionally, the Tribe was forced to convert prime riparian habitat into agricultural lands to supply sustenance for their changed needs. Wildlife habitats within the portion of the Hangman Creek Watershed that lies within the Coeur d'Alene Indian Reservation have been degraded from a century of land management practices that include widespread conversion of native habitats to agricultural production and intensive silvicultural practices. Currently, wildlife and fish populations have been marginalized and water quality is significantly impaired. In the fall of 2000 the Coeur d'Alene Tribe Wildlife Program, in coordination with the Tribal Fisheries Program, submitted a proposal to begin addressing the degradations to functioning habitats within the Coeur d'Alene Reservation in the Hangman Watershed. That proposal led to the implementation of this project during BPA's FY2001 through FY2003 funding cycle. The project is intended to protect, restore and/or enhance priority riparian, wetland and upland areas within the headwaters of Hangman Creek and its tributaries in order to promote healthy self-sustaining fish and wildlife populations. A key goal of this project is the implementation of wildlife habitat protection efforts in a manner that also secures areas with the potential to provide stream and wetland habitats essential to native salmonid populations. This goal is critical in our efforts to address both resident fish and wildlife habitat needs in the Hangman Watershed. All proposed implementation activities are conducted in the headwaters of the system and are expected to prove beneficial to the natural functions of the entire Hangman Watershed. The following is the FY2001 annual report of Project activities and is submitted as partial fulfillment of Operation and Maintenance Task 2.a. The Objectives and Tasks for this first year were designed to position this Project for a long-term habitat restoration effort. As such, efforts were largely directed at information gathering and project orientation. The major task for this first year was development of a Habitat Prioritization Plan (attached) to guide implementation efforts by selecting areas that will be of greatest benefit to the native ecology. Completion of the first year tasks has positioned the project to move forward with implementing restoration activities using the latest information to accomplish the greatest possible results. The Project will be looking to implement on-the-ground protection and restoration efforts in the coming fiscal year using the data and information gathered in the last fiscal year. Continually refining our understanding of the natural watershed functions and fish and wildlife habitats within the Project Area will result in an increase in the efficiency of project implementation. Research and data gathering efforts will remain a strong emphasis in the coming fiscal year, as it will throughout the life of this Project.

  13. Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 2002 Annual Report.

    SciTech Connect (OSTI)

    Vitale, Angelo, Lamb, Dave; Scott, Jason

    2003-12-01

    Historically, the Coeur d'Alene Indian Tribe depended on runs of anadromous salmon and steelhead along the Spokane River and Hangman Creek, as well as resident and adfluvial forms of trout and char in Coeur d'Alene Lake, for survival. Dams constructed in the early 1900s on the Spokane River in the City of Spokane and at Little Falls (further downstream) were the first dams that initially cut-off the anadromous fish runs from the Coeur d'Alene Tribe. These fisheries were further removed by the construction of Chief Joseph and Grand Coulee Dams on the Columbia River. Together, these actions forced the Tribe to rely solely on the resident fish resources of Coeur d'Alene Lake (Staff Communication). The Coeur d'Alene Tribe is estimated to have historically harvested around 42,000 westslope cutthroat trout (Oncorhynchus clarki) per year (Scholz et al. 1985). In 1967, Mallet (1969) reported that 3,329 cutthroat were harvested from the St. Joe River, and a catch of 887 was reported from Coeur d'Alene Lake. This catch is far less than the 42,000 fish per year the tribe harvested historically. Today, only limited opportunities exist to harvest cutthroat trout in the Coeur d'Alene Basin. The declines in native salmonid fish populations, particularly cutthroat and bull trout (Salvelinus confluentus), in the Coeur d'Alene basin have been the focus of study by the Coeur d' Alene Tribe's Fisheries and Water Resources programs since 1990. It appears that there are a number of factors contributing to the decline of resident salmonid stocks within Coeur d'Alene Lake and its tributaries (Ellis 1932; Oien 1957; Mallet 1969; Scholz et. al. 1985, Lillengreen et. al. 1993). These factors include: construction of Post Falls Dam in 1906; major changes in land cover types, agricultural activities and introduction of exotic fish species. Over 100 years of mining activities in the Coeur d'Alene River drainage have had devastating effects on the quality of the water in the Coeur d'Alene River and Coeur d'Alene Lake. Effluents from tailings and mining waste have contributed vast quantities of trace heavy metals to the system. Poor agricultural and forest practices have also contributed to the degradation of water quality and habitat suitability for resident salmonids. Increased sediment loads from agricultural runoff and recent and recovering clearcuts, and increases in water temperature due to riparian canopy removal may be two of the most important problems currently affecting westslope cutthroat trout. Increases in water temperature have reduced the range of resident salmonids to a fraction of its historic extent. Within this new range, sediment has reduced the quality of both spawning and rearing habitats. Historically, municipal waste contributed large quantities of phosphates and nitrogen that accelerated the eutrophication process in Coeur d'Alene Lake. However, over the last 25 years work has been completed to reduce the annual load of these materials. Wastewater treatment facilities have been established near all major municipalities in and around the basin. Species interactions with introduced exotics as well as native species are also acting to limit cutthroat trout populations. Two mechanisms are at work: interspecific competition, and species replacement. Competition occurs when two species utilize common resources, the supply of which is short; or if the resources are not in short supply, they harm each other in the process of seeking these resources. Replacement occurs when some environmental or anthropogenic change (e.g., habitat degradation, fishing pressure, etc.) causes the decline or elimination of one species and another species, either native or introduced, fills the void left by the other. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery. These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fis

  14. Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation; Coeur d'Alene Tribe Fish, Water, and Wildlife Program, REVISED 2002 Annual Report.

    SciTech Connect (OSTI)

    Vitale, Angelo; Lamb, Dave; Scott, Jason

    2004-04-01

    Historically, the Coeur d'Alene Indian Tribe depended on runs of anadromous salmon and steelhead along the Spokane River and Hangman Creek, as well as resident and adfluvial forms of trout and char in Coeur d'Alene Lake, for survival. Dams constructed in the early 1900s on the Spokane River in the City of Spokane and at Little Falls (further downstream) were the first dams that initially cut-off the anadromous fish runs from the Coeur d'Alene Tribe. These fisheries were further removed by the construction of Chief Joseph and Grand Coulee Dams on the Columbia River. Together, these actions forced the Tribe to rely solely on the resident fish resources of Coeur d'Alene Lake (Staff Communication). The Coeur d'Alene Tribe is estimated to have historically harvested around 42,000 westslope cutthroat trout (Oncorhynchus clarki) per year (Scholz et al. 1985). In 1967, Mallet (1969) reported that 3,329 cutthroat were harvested from the St. Joe River, and a catch of 887 was reported from Coeur d'Alene Lake. This catch is far less than the 42,000 fish per year the tribe harvested historically. Today, only limited opportunities exist to harvest cutthroat trout in the Coeur d'Alene Basin. The declines in native salmonid fish populations, particularly cutthroat and bull trout (Salvelinus confluentus), in the Coeur d'Alene basin have been the focus of study by the Coeur d' Alene Tribe's Fisheries and Water Resources programs since 1990. It appears that there are a number of factors contributing to the decline of resident salmonid stocks within Coeur d'Alene Lake and its tributaries (Ellis 1932; Oien 1957; Mallet 1969; Scholz et. al. 1985, Lillengreen et. al. 1993). These factors include: construction of Post Falls Dam in 1906; major changes in land cover types, agricultural activities and introduction of exotic fish species. Over 100 years of mining activities in the Coeur d'Alene River drainage have had devastating effects on the quality of the water in the Coeur d'Alene River and Coeur d'Alene Lake. Effluents from tailings and mining waste have contributed vast quantities of trace heavy metals to the system. Poor agricultural and forest practices have also contributed to the degradation of water quality and habitat suitability for resident salmonids. Increased sediment loads from agricultural runoff and recent and recovering clearcuts, and increases in water temperature due to riparian canopy removal may be two of the most important problems currently affecting westslope cutthroat trout. Increases in water temperature have reduced the range of resident salmonids to a fraction of its historic extent. Within this new range, sediment has reduced the quality of both spawning and rearing habitats. Historically, municipal waste contributed large quantities of phosphates and nitrogen that accelerated the eutrophication process in Coeur d'Alene Lake. However, over the last 25 years work has been completed to reduce the annual load of these materials. Wastewater treatment facilities have been established near all major municipalities in and around the basin. Species interactions with introduced exotics as well as native species are also acting to limit cutthroat trout populations. Two mechanisms are at work: interspecific competition, and species replacement. Competition occurs when two species utilize common resources, the supply of which is short; or if the resources are not in short supply, they harm each other in the process of seeking these resources. Replacement occurs when some environmental or anthropogenic change (e.g., habitat degradation, fishing pressure, etc.) causes the decline or elimination of one species and another species, either native or introduced, fills the void left by the other. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery. These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fis

  15. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume II, Steelhead Stock Summaries, Stock Transfer Guidelines, Information Needs.

    SciTech Connect (OSTI)

    Howell, Philip J.

    1985-07-01

    This report presents brief descriptions of wild and hatchery-raised steelhead trout stocks in the Columbia River Basin. (ACR)

  16. EIS-0265-SA-67: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Watershed Management Program - Install Fish Screens to Protect ESA Listed Steelhead and Bull Trout in the Walla Walla Basin

  17. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    SciTech Connect (OSTI)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  18. Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River

    SciTech Connect (OSTI)

    DR Geist; RP Mueller

    1999-10-19

    In 1997, the National Marine Fisheries Service (NMFS) listed upper Columbia River steelhead trout (Oncorhynchus znykiss) as endangered. This action affected management of land-use activities along and within the Hanford Reach of the Columbia River, which flows through the U.S. Department of Energy (DOE) Hanford Site. Steelhead covered in this listing include all naturally spawned populations of steel-head and their progeny in streams in the Columbia River Basin upstream from the Yakima River to the United States/Canada border. The NMFS has identified a general listing of activities that could potentially result in harm to steelhead (62 FR 43937, August 18, 1997). One of these concerns includes land-use changes resulting in mass wasting or surface erosion. Landslide activity along the White Bluffs on the east ,side of Locke Island has redirected river flow into the island where substantial erosion has occurred. This erosion has exposed important anthropological and archaeological resources that were previously buried on the island. The DOE is working with affected tribes and other agencies to develop a plan for addressing the erosion of Locke Island. As part of this effort, the U.S. Army Corps of Engineers has prepared an assessment of potential alternatives to stabilize the erosion, including a no-action alternative. Steelhead historically spawned in the vicinity of Locke Island, but recent information on the occurrence of steelhead spawning or availability of spawning habitat was lacking. Therefore, the purpose of this study was to determine if steelhead spawned in the vicinity of Locke Island erosion and to evaluate the composition of substrate in the affected area. Surveys to document the occurrence of steelheads redds were conducted in Spring 1999. The surveys were conducted from the air as well as with the use of an underwater video camera. Neither aerial nor underwater surveys documented steelhead spawning within the survey area. Habitat surveys were conducted in July 1999. The survey area was divided into an area adjacent to the erosion zone and an area immediately upstream of this zone. The majority of the survey area was composed of gravel and medium cobble (particle sizes 0.6 to 15.2 cm). Aquatic vegetation (milfoil) was found in the upstream section, indicating lower water velocities not conducive to steelhead spawning. Based on the available substrate within the entire survey area, we estimate 81% of survey site could be used by adult steelhead for spawning.

  19. RECORD of Categorical Exclusion (CX) determination: Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corporation RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing ...

  20. Application to Export Electric Energy OE Docket No. EA-375-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing ...

  1. Application to Export Electric Energy OE Docket No. EA-296-A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2007 Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation: Federal Register Notice Volume 72, No. 158 - Aug. 16, 2007 Application...

  2. Record of Categorical Exclusion (CX) Determination: Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynasty Power, Inc. RECORD of Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation

  3. Sol Solution | Open Energy Information

    Open Energy Info (EERE)

    Solution Jump to: navigation, search Name: Sol Solution Place: Los Gatos, California Zip: 95030 Region: Bay Area Sector: Solar Product: Rainbow Concentrator, Current matching...

  4. Application to Export Electric Energy OE Docket No. EA-98-M WSPP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012...

  5. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  6. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Simmons, C.

    2003-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

  7. Washington Department of Fish and Wildlife Fish Program Hatcheries Division: Ford Hatchery, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Lewis, Mike; Polacek, Matt; Knuttgen, Kamia

    2002-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

  8. PRESENTATION TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STRONG ® Projects Impacting Federal Power Tulsa District Dan Brueggenjohann 9 June 2010 BUILDING STRONG ® 303(d) Listing of Broken Bow Tailwaters Impairment Impaired Use Cadmium Fish and Wildlife Propagation - Trout Fishery Lead Fish and Wildlife Propagation - Trout Fishery Water Temperature* Fish and Wildlife Propagation - Trout Fishery The 303(d) List reports on waters identified as impaired. These waters: Have elevated portions of one or more pollutants. Do not meet one or more water

  9. Julie A. Smith and Christopher Lawrence Office of Electricity Delivery and Energy Reliability

    Office of Environmental Management (EM)

    christopher.lawrence@hq.doe.gov RE: Comments on a Draft Integrated, Interagency Pre-Application (IIP) Process Dear Ms. Smith and Mr. Lawrence: Please accept these Trout Unlimited (TU) comments on the draft Integrated, Interagency Pre-Application (IIP) Process. Trout Unlimited is concerned with expediting renewable development in a thoughtful and deliberate manner in order to protect and conserve fish and wildlife resources and sportsmen's interests. Trout Unlimited routinely participates in the

  10. Microsoft PowerPoint - SWL HPConf2015.pptx [Read-Only

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLEARWATER RESERVOIR MISSOURI ARKANSAS Lock and Dam No 1 10 CACHE RIVER LEGEND EXISTING ... M&I Water Supply Reallocation Studies Beaver Lake * Completed Studies * Beaver Dam Trout ...

  11. Microsoft PowerPoint - Vicksburg District Federal Power Projects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mountain Water * Supply Storage Reallocation - MAWA Supply Storage Reallocation MAWA * Dam Safety Issues i * Interior Least Tern Narrows Hydro l h Pulsing Operations For The Trout

  12. EIS-0353: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watershed Westslope Cutthroat Trout Conservation Program In cooperation with Montana, Fish, Wildlife and Parks, Bonneville Power Administration is proposing to implement a...

  13. EIS-0265-SA-88: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Warm Springs Reservation of Oregon (CTWSRO), propose to complete seven types of fish habitat enhancement projects. The projects are located within bull trout and Middle...

  14. EIS-0353: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watershed Westslope Cutthroat Trout Conservation Program In cooperation with Montana, Fish, Wildlife, and Parks, Bonneville Power Administration is proposing to implement a...

  15. BPA-2015-00273-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minutes and other correspondence between the Bonneville Power Administration and U.S. Fish and Wildlife Service regarding dam operations in bull trout critical habitat since...

  16. BPA-2014-01504-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and all associated decision documents, to include any that implement Inland Native Fish Strategy management direction. She also asks for bull trout specific biological...

  17. B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    habitat and hatchery actions that effectively and efficiently advance the recovery of fish, including salmon, steelhead, sturgeon and bull trout . 6. Increase operational...

  18. B O N N E V I L L E P O W E R A D M I N I S T R A T I O N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

  19. Microsoft Word - Fish Letter _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

  20. FY 2015 FOIA Requests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to bull trout critical habitat Nov 2010 - present Requester: Arlene Montgomery Comments: Released in its entirety. CLOSED Date Received: 1232014 Date Due: 130...

  1. EA-0307-SA-01: Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Colville Resident Trout Hatchery Project Supplement Analysis The Bonneville Power Administration prepared an Environmental Assessment (EA-0307) for the Colville Resident Hatchery...

  2. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    SciTech Connect (OSTI)

    McLellan, Holly; Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    1999-08-01

    The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large percentage of the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton, zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification of seasonal distributions, standing crop, and habitat use of fish food organisms; (3) examination of variations in fish growth and abundance in relation to reservoir operations, prey abundance and predator/prey relationships; and (4) quantification of habitat alterations due to hydrooperations. The second goal of the LRMP is to evaluate the impacts of hatchery kokanee salmon and rainbow trout on the ecosystem and to determine stocking strategies that maximize angler harvest and return of adult kokanee salmon to egg collection facilities. Major tasks of the hatchery evaluation portion of the project include conducting a year round reservoir wide creel survey, sampling the fishery during spring, summer and fall via electro-fishing and gillnet surveys, and collecting information on diet, growth, and age composition of various fish species in Lake Roosevelt.

  3. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur during passage through a Welka UPG turbine at ambient current velocities less than about 2.5 m/s. Survival and Behavior of Juvenile Atlantic Salmon and Adult American Shad on Exposure to a Hydrokinetic Turbine This report describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon and upstream migrating adult American shad. Studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded in the presence of the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine the extent to which observed effects are likely to influence fish in riverine environments. Analysis is needed to assess the potential for multiple units to lead to greater mortality rates or impacts on fish movements and migrations. Additionally, future research should focus on expanding the existing data by developing better estimates of encounter and avoidance probabilities.

  4. EIS-0346: Salmon Creek Project, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to fund activities that would restore sufficient water flows to Salmon Creek and rehabilitate its streambed as necessary to provide adequate passage for summer steelhead (Oncorhynchus mykiss) and possibly spring chinook (O. tshawytscha).

  5. A Literature Review, Bibliographic Listing, and Organization of Selected References Relative to Pacific salmon (Oncorhynchus spp.) and Abiotic and Biotic Attributes of the Columbia River Estuary and Adjacent Marine and Riverine Environs for Various Historical Periods : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 4 of 4, Final Report.

    SciTech Connect (OSTI)

    Costello, Ronald J.

    1996-05-01

    This report contains the results of a literature review on the carrying capacity of Pacific salmon in the Columbia River Basin. The objective of the review was to find the information gaps relative to the determinants of salmon carrying capacity in the Columbia River Basin. The review was one activity designed to answer questions asked in Measure 7.1A of the Councils Fish and Wildlife Program. Based, in part, on the information learned during the literature review and the other work accomplished during this study the Pacific Northwest National Laboratory (PNNL) state concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. To increase understanding of ecology, carring capacity, and limiting factors, it is necessary to deal with the complexity of the sustained performance of salmon in the Columbia River Basin. The PNNL team suggests that the regions evaluated carrying capacity from more than one view point. The PNNL team recommends that the region use the contextualistic view for evaluating capacity.

  6. Influence of a Weak Field of Pulsed DC Electricity on the Behavior and Incidence of Injury in Adult Steelhead and Pacific Lamprey, Final Report.

    SciTech Connect (OSTI)

    Mesa, Matthew

    2009-02-13

    Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys. The effects of electricity on fish have been widely studied and include injury or death (e.g., Sharber and Carothers 1988; Dwyer et al. 2001; Snyder 2003), physiological dysfunction (e.g., Schreck et al. 1976; Mesa and Schreck 1989), and altered behavior (Mesa and Schreck 1989). Much of this work was done to investigate the effects of electrofishing on fish in the wild. Because electrofishing operations would always use more severe electrical settings than those proposed for the pinniped barrier, results from these studies are probably not relevant to the work proposed by SRI. Field electrofishing operations typically use high voltage and amperage settings and a variety of waveforms, pulse widths (PW), and pulse frequencies (PF), depending on conditions and target species. For example, when backpack electrofishing for trout in a small stream, one might use settings such as 500 V pulsed DC, a PW of 1 ms, and a PF of 60 Hz. In contrast, the electrical barrier proposed by SRI will produce electrical conditions significantly lower than those used in electrofishing, particularly for PW and PF (e.g., PW ranging from 300-1,000 {micro}s and PF from 2-3 Hz). Further, voltage gradients (in V/cm) are predicted to be lower in the electric barrier than those produced during typical electrofishing. Although the relatively weak, pulsed DC electric fields to be produced by the barrier may be effective at deterring pinnipeds, little, if anything, is known about the effects of such low intensity electrical fields on fish behavior. For this research, we evaluated the effects of weak, pulsed DC electric currents on the behavior of adult steelhead and Pacific lamprey and the incidence of injury in steelhead only. In a series of laboratory experiments, we: (1) documented the rate of passage of fish over miniature, prototype electric barriers when they were on and off; (2) determined some electric thresholds beyond which fish would not pass over the barrier; and (3) assessed the incidence and severity of injury in steelhead exposed to relatively severe electrical conditions. The results of this study should be useful for making decisions about whether to install electrical barriers in the lower Columbia River, or elsewhere, to reduce predation on upstream migrating salmonids and other fishes by marine pinnipeds.

  7. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    SciTech Connect (OSTI)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

  8. CX-006592: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vermont Biofuels Initiative: Rainbow Valley BiodieselCX(s) Applied: B5.1Date: 08/29/2011Location(s): Brandon County, VermontOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office of Electricity Delivery and Energy Reliability Rainbow Energy Marketing Corporation Docket No. EA-375 Order Authorizing Electricity Exports to Mexico Order No. EA-375 December 15, 2010

  10. CX-009406: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rainbow Energy Marketing Corporation CX(s) Applied: B4.2 Date: 09/18/2012 Location(s): CX: none Offices(s): Electricity Delivery and Energy Reliability

  11. Application to Export Electric Energy OE Docket No. EA-296-B...

    Office of Environmental Management (EM)

    4, 2012 Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 Application from...

  12. Application to Export Electric Energy OE Docket No. EA-410 CWP...

    Energy Savers [EERE]

    No. EA-410 CWP Energy Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy Marketing Corporation: Federal Register Notice, Volume 80, No. 80 - April 27,...

  13. Application to Export Electric Energy OE Docket No. EA-328 RBC...

    Broader source: Energy.gov (indexed) [DOE]

    RBC Energy Services L.P. Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation: Federal Register Notice Volume 72, No. 158 - Aug. 16,...

  14. Microsoft Word - Draft NNMCAB Meeting Agenda for 032614 R4

    Office of Environmental Management (EM)

    March 26 th , 2014 1:00 p.m. to 5:00 p.m. Sandia Resort Hummingbird Room 30 Rainbow Road Albuquerque, New Mexico 87113 Note: There will be a networking lunch for NNMCAB Members...

  15. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1987 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Nelson, V. Lance

    1990-01-01

    This project monitored the daily passage of smolts during the 1988 spring outmigration at two migrant traps; one each on the Snake and Clearwater rivers. Due to the low runoff year, chinook salmon catch at the Snake River trap was very low. Steelhead trout catch was higher than normal, probably due to trap modifications and because the trap was moved to the east side of the river. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1987. Total cumulative recovery of PIT tagged fish at the three dams, with PIT tag detection systems was: 55% for chinook salmon, 73% for hatchery steelhead trout, and 75% for wild steelhead trout. Travel time through Lower Granite Reservoir for PIT tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three fold, and steelhead trout travel time decreased two fold. There was a statistical difference between estimates of travel time through Lower Granite Reservoir for PIT tagged and freeze branded steelhead trout, but not for chinook salmon. These differences may be related to the estimation techniques used for PIT tagged and freeze branded groups, rather than real differences in travel time. 10 figs, 15 tabs.

  16. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect (OSTI)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

  17. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    SciTech Connect (OSTI)

    Cada, Glenn F; Schweizer, Peter E

    2012-04-01

    One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

  18. CX-002773: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho Department of Fish and Game Purchase of Crystal Springs Trout Farm - Snake River Sockeye Captive Propagation ProgramCX(s) Applied: A7Date: 06/04/2010Location(s): Springfield, IdahoOffice(s): Bonneville Power Administration

  19. BPA-2014-00407-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pend d'Oreille and its tributaries, bull trout in Lake Pend d'Oreille and aquatic invasive species in Lake Pend d'Oreille related to the ongoing operations of Albeni Falls Dam....

  20. CX-005964: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reintroduction of Westslope Cutthroat Trout in the Pend Orielle BasinCX(s) Applied: B1.20Date: 05/19/2011Location(s): Pend Oreille County, WashingtonOffice(s): Bonneville Power Administration

  1. CX-008722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reintroduction of Westslope Cutthroat Trout in the Pend Orielle basin CX(s) Applied: B1.20 Date: 05/07/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  2. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern Duty Locations The City of Gore, Oklahoma, established in 1903 at the southern edge of the Cherokee Nation in eastern Oklahoma, is known as the "Trout Capital of ...

  3. Box Canyon Model Watershed Project : Annual Report 1997/1998.

    SciTech Connect (OSTI)

    Kalispel Natural Resource Department

    1998-01-01

    In 1997, the Kalispel Natural Resource Department (KNRD) initiated the Box Canyon Watershed Project. This project will concentrate on watershed protection and enhancement from an upland perspective and will complement current instream restoration efforts implemented through the Kalispel Resident Fish Project. Primary focus of this project is the Cee Cee Ah Creek watershed due to its proximity to the Reservation, importance as a traditional fishery, and potential for bull trout and west-slope cutthroat trout recovery.

  4. Characterizing Heavy Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on

  5. EA-370 Vitol Inc. | Department of Energy

    Energy Savers [EERE]

    70 Vitol Inc. EA-370 Vitol Inc. Order authorizing Vitol Inc to export electric energy to Canada PDF icon EA-370 Vitol CN.pdf More Documents & Publications EA-375 Rainbow Energy Marketing Corporation EA-264-C ENMAX Energy Marketing Inc. EA-385 Dynasty Power

  6. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T A P O O R O I N R D O R Y A D W E E W A L T M O C R M R N S N O W M A N A C S A N I U M C C S I W R Cloud Hail Icy Mittens Puddles Rain Rainbow Sleet Snow Snowman Storm Umbrella...

  7. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. Carstoiu, C.A. Gagliardi, V. Kroha, A.M. Mukhamedzhanov, L. Trache, R.E. Tribble Rainbow Elastic Scattering of 16O on 12C at 300 MeV L. Trache, H.L. Clark, A. Azhari, C.A....

  8. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2001 Annual Report.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2002-11-01

    We investigated factors affecting the distribution and abundance of Yellowstone cutthroat trout (YCT), the abundance of all trout, and species richness in several drainages in the upper Snake River basin in Idaho. A total of 326 randomly selected sites were visited within the four study drainages, and of these, there was sufficient water to inventory fish and habitat in 56 of the sites in the Goose Creek drainage, 64 in the Raft River drainage, 54 in the Blackfoot River drainage, and 27 in the Willow Creek drainage. Fish were captured in 36, 55, 49, and 22 of the sites, respectively, and YCT were present at 17, 37, 32, and 13 of the sites, respectively. There was little consistency or strength in the models developed to predict YCT presence/absence and density, trout density, or species richness. Typically, the strongest models had the lowest sample sizes. In the Goose Creek drainage, sites with YCT were higher in elevation and lower in conductivity. In the Raft River drainage, trout cover was more abundant at sites with YCT than without YCT. In the Blackfoot River drainage, there was less fine substrate and more gravel substrate at sites with YCT than at sites without YCT. In the Willow Creek drainage, 70% of the sites located on public land contained YCT, but only 35% of private land contained YCT. The differences in variable importance between drainages suggests that factors that influence the distribution of YCT vary between drainages, and that for the most part the variables we measured had little influence on YCT distribution. n sites containing YCT, average cutthroat trout density was 0.11/m{sup 2}, 0.08/m{sup 2}, 0.10/m{sup 2}, and 0.08/m{sup 2} in the Goose Creek, Raft River, Blackfoot River, and Willow Creek drainages, respectively. In sites containing trout in general, average total trout density in these same drainages was 0.16/m{sup 2}, 0.15/m{sup 2}, 0.10/m{sup 2}, and 0.10/m{sup 2}. Models to predict YCT density, total trout density, and species richness were either weak (i.e., explained little variation) or contained small sample sizes. Based on our results, it appears that factors other than those we measured are affecting fish populations in these drainages.

  9. Enloe Dam Passage Project, Volume I, 1984 Annual Report.

    SciTech Connect (OSTI)

    Fanning, M.L.

    1985-07-01

    This report discusses issues related to the provision of fish passage facilities at Enloe Dam and the introduction of anadromous salmonid fish to the upper Similkameen River basin. The species of fish being considered is a summer run of steelhead trout adapted to the upper Columbia basin. (ACR)

  10. Issue Backgrounder : Downstream Fish Migration : Improving the Odds of Survival.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1985-05-01

    Background information is given on the problems caused to anadromous fish migrations, especially salmon and steelhead trout, by the development of hydroelectric power dams on the Columbia River and its tributaries. Programs arising out of the Pacific Northwest Electric Power Planning and conservation Act of 1980 to remedy these problems and restore fish and wildlife populations are described. (ACR)

  11. EIS-0263: Interior Columbia Basin Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    The ICBEMP strategy will include direction which will protect and enhance aquatic ecosystems for anadromous fish and inland native trout and terrestrial ecosystems. It will also address the social and economic interactions with these biological variables. (Merged with EIS-262 to become Eastside Ecosystem Management, Washington and Oregon)

  12. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect (OSTI)

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  13. April 2007 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Ames Lab employees taught students about the principle of capillary action through a chromatography experiment. Students marked black ink onto filter paper, exposed the filter paper to water and watched as the water and ink traveled through the paper, revealing the different colors that make up the color black. Different types of black ink created different "rainbow" patterns of color according to their chemical makeup

  14. ERG 1-Research-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-Energy Research Group 1 Polymer-based Architectures, Design & Synthesis Three students lab photo rainbow vials This webpage is provided for legacy archive purposes only, as of 30 April 2015. ERG 1 was coordinated by Prof. Todd Emrick (PSE), with Prof. Paul M. Lahti (Chemistry) as co-coordinator. Researchers associated with ERG 1 synthesize new polymers and nanocomposite materials with well-defined structures and architectures, that are capable of harvesting light and generating

  15. Paducah Cleanup Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Paducah Cleanup Progress Since 1990, DOE has invested $1.9 billion in successful Paducah site cleanup projects to protect human health and the environment. The Environmental Management (EM) cleanup mission will continue through GDP transition and decontamination and decommissioning. Significant Paducah Site Cleanup Progress since 1990: Paducah leanup Progress graphic Recent Progress A panoramic view of the east end of the C-410 complex shows a rainbow forming as sunlight passes through

  16. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    SciTech Connect (OSTI)

    Steward, C.R.

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  17. Asotin Creek Model Watershed Plan

    SciTech Connect (OSTI)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  18. DOE/RL-2000-27

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0-27 Revision 2 Approved for Public Release; Further Dissemination Unlimited Threatened and Endangered Species Management Plan: Salmon, Steelhead, and Bull Trout Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management P.O. Box 550 Richland, Washington 99352 DOE/RL-2000-27 Revision 2 This page intentionally left blank DOE/RL-2000-27 Revision 2 Approved for Public Release; Further Dissemination Unlimited Threatened and Endangered Species Management Plan: Salmon,

  19. EA-1913: Preliminary Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    3: Preliminary Environmental Assessment EA-1913: Preliminary Environmental Assessment Springfield Sockeye Hatchery Program, Springfield, Bingham County, Idaho This EA evaluates the potential environmental impacts of a proposal by BPA to fund the modification of an existing IDFG trout hatchery near Springfield, Idaho, to provide a facility that would be capable of rearing up to 1 million Snake River sockeye salmon juveniles. Modifications would include demolishing several existing structures,

  20. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    SciTech Connect (OSTI)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  1. Idaho Supplementation Studies, 1991-1992 Annual Report.

    SciTech Connect (OSTI)

    Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis

    1993-10-01

    Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

  2. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    SciTech Connect (OSTI)

    Nugent, John; Newsome, Todd; Nugent, Michael

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  3. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    SciTech Connect (OSTI)

    Nugent, John; Nugent, Michael; Brock, Wendy

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  4. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2001 Annual Report.

    SciTech Connect (OSTI)

    Nugent, John; Nugent, Michael; Brock, Wendy

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach of the Columbia River. The evaluation, in the fifth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2001 field season.

  5. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    SciTech Connect (OSTI)

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  6. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    SciTech Connect (OSTI)

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. The Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in the river is stunted and therefore not popular with anglers. Pumpkinseed composed 16% of the total catch, followed by tenth (9%), largemouth bass (8%), mountain whitefish (6%), largescale sucker (5%), northern squawfish (4%) and longnose sucker (3%).

  7. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 [Data Announcements] New VAP Yields Aerosol Optical Depth from Irradiance Measurements Bookmark and Share This plot shows spectral AOD versus time of day from the SASHE at the AMF1 Cape Cod site. The plot shows a cloudy morning (gray symbols) followed by cloud-free conditions (colored symbols in a "rainbow" pattern) with aerosol burden evolving over the course of the day. This plot shows spectral AOD versus time of day from the SASHE at the AMF1 Cape Cod site. The plot shows a

  8. Application to Export Electric Energy OE Docket No. EA-326-A Citigroup

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Canada ULC | Department of Energy 6-A Citigroup Energy Canada ULC Application to Export Electric Energy OE Docket No. EA-326-A Citigroup Energy Canada ULC Application from Citigroup Energy Canada ULC to export electric energy to Canada. PDF icon EA-326-A Citigroup (CECU) CN app.pdf More Documents & Publications EA-326-A Citigroup Energy Canada ULC Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp Application to export Electric Energy OE

  9. Northern New Mexico Citizens' Advisory Board Meeting

    Office of Environmental Management (EM)

    May 20, 2015 1:00 p.m. to 5:15 p.m. Sandia Resort, Eagle Room 30 Rainbow Road Albuquerque, New Mexico 87113 AGENDA Time Action Presenter 1:00 p.m. Call to Order Lee Bishop, DDFO Establishment of a Quorum (11 needed) a. Roll Call William Alexander b. Excused Absences Welcome and Introductions Doug Sayre, Chair Approval of Agenda Approval of Minutes of March 25, 2015 1:10 p.m. Old Business a. Written Reports - See Packet Enclosures (5 minutes) b. Other items 1:20 p.m. New Business a. Appointment

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You wrote: Why is the sky blue? Does it have something to do with the Cerenkov effect? Mr. Knight, The reason that the sky is blue is due to the scattering of light by the atmosphere. It is not due to the Cerenkov effect. I discuss both effects below. The light from the sun is all colors. You can verify this by taking light from the sun and putting it through a prism. You see all of the colors of the rainbow. These colors are actually different wavelengths of light. Red light has a wavelength of

  11. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additional areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.

  12. A study on the Fresnel diffraction of {sup 6}He by means of different microscopic density distributions

    SciTech Connect (OSTI)

    Aygun, M.; Boztosun, I.; Sahin, Y.

    2012-08-15

    The elastic scattering of the halo nucleus {sup 6}He from heavy targets such as {sup 197}Au and {sup 208}Pb has been investigated in order to explain the Coulomb rainbow peak due to the Fresnel-type diffraction observed in the experimental data. In order to examine the role of nuclear potential to describe {sup 6}He + {sup 197}Au and {sup 6}He + {sup 208}Pb systems, we have used the no-core shell model, few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear potential have been obtained by using the double-folding model for each of the density distribution and the phenomenological imaginary potentials have been taken as the standard Woods-Saxon shape. We have observed that fewbody and Gaussian-shaped density distributions have given standard Fresnel-type diffraction results, a classical scattering pattern with Coulomb rainbow peak whereas the nuclear potential obtained by using the no-core shell-model density distribution has provided the reduction at Fresnel peak and has given more consistent results with the experimental data.

  13. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect (OSTI)

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  14. CNS supports teaching children to fish | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports teaching ... CNS supports teaching children to fish Posted: June 24, 2015 - 3:32pm Fly-fishing enthusiast and Y-12 engineer Denise Jenkins hooks a large trout on the Holston River in Tennessee. "Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime." -Maimonides Granted, preventing starvation was not the primary focus of Kids Fish Free Day on the Clinch River, but the event did expose some children to a sport that may become a

  15. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    SciTech Connect (OSTI)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

  16. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    SciTech Connect (OSTI)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  17. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    SciTech Connect (OSTI)

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  18. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect (OSTI)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  19. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    SciTech Connect (OSTI)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  20. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

    SciTech Connect (OSTI)

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-11-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).

  1. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn; Tohtz, Joel

    2008-11-12

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

  2. ${{\\bar{d}} - {\\bar{u}}}$ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    SciTech Connect (OSTI)

    Salamu, Y.; Ji, Cheung-Ryong; Melnitchouk, Wally; Wang, P.

    2015-09-01

    The ${\\bar d - \\bar u}$ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. The calculation includes both nucleon and ? intermediate states, and uses both the fully relativistic and heavy baryon frameworks. The x dependence of ${\\bar d - \\bar u}$ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of ${\\bar d-\\bar u}$ .

  3. Model solution for volume reflection of relativistic particles in a bent crystal

    SciTech Connect (OSTI)

    Bondarenco, M. V.

    2010-10-15

    For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.

  4. Analyzing task-based user study data to determine colormap efficiency

    SciTech Connect (OSTI)

    Ashton, Zoe Charon Maria; Wendelberger, Joanne Roth; Ticknor, Lawrence O.; Turton, Terece; Samsel, Francesca

    2015-07-23

    Domain scientists need colormaps to visualize their data and are especially useful for identifying areas of interest, like in ocean data to identify eddies or characterize currents. However, traditional Rainbow colormap performs poorly for understanding details, because of the small perceptual range. In order to assist domain scientists in recognizing and identifying important details in their data, different colormaps need to be applied to allow higher perceptual definition. Visual artist Francesca Samsel used her understanding of color theory to create new colormaps to improve perception. While domain scientists find the new colormaps to be useful, we implemented a rigorous and quantitative study to determine whether or not the new colormaps have perceptually more colors. Color count data from one of these studies will be analyzed in depth in order to determine whether or not the new colormaps have more perceivable colors and what affects the number of perceivable colors.

  5. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  6. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  7. Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.

    SciTech Connect (OSTI)

    Anders, Paul

    2003-01-01

    In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4 provides a chronological account of previous ISRP reviews, official Coeur d'Alene fisheries program responses to a series of ISRP reviews, master planning documentation, and annual reports dating back to 1990. Collectively, the materials provided by the Coeur d'Alene Tribe in this Step-1 submission package comprehensively assesses key research, habitat improvement activities, and hatchery production issues to best protect and enhance native cutthroat trout populations and the historically and culturally important tribal fisheries they support.

  8. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  9. John Day Fish Passage and Screening; 2003 Annual Report.

    SciTech Connect (OSTI)

    Allen, Steve

    2004-02-01

    The primary goal of the Oregon Screens Project was to implement 20 replacement screens projects in the John Day sub-basin and any projects identified in the Umatilla and Walla Walla sub-basins. A secondary goal is to complete a passage project, if one is identified, in any of the above sub-basins. Mid-Columbia ESU listed steelhead and USF&W listed bull trout inhabit these sub-basins and are present at most locations, along with a variety of resident fish species. We also provide assistance to our Enterprise Screen Shop, in the Grande Ronde/Imnaha sub-basins, if needed. All projects were designed and implemented under current National Marine Fisheries Service screening and passage criteria.

  10. 2005 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Wilson, Jeremy; Duston, Reed A.

    2006-01-01

    During mid-1990s, Pacific States Marine Fisheries Commission (PSMFC) and Washington Department of Fish and Wildlife (WDFW) identified several populations of salmon spawning approximately three miles downstream of Bonneville Dam on the Columbia River. These populations are exposed to rapidly changing flow regimes associated with Bonneville Dam's operation. This study investigated the relationship between changing water levels and stranding or entrapment of juvenile salmon in the Ives Island area. Walking surveys of the Ives Island and Pierce Island shorelines were conducted every one to three days throughout the juvenile emigration period. The nearby shorelines of the Washington and Oregon mainland were also surveyed. Between January and June of 2005, surveyors examined 21 substantial entrapments and 20 stranding sites. A total of 14,337 salmonids, made up of three species, were found either entrapped or stranded. Nearly 92% of the salmonids were chinook salmon (Oncorhynchus tshawytscha), 4.5% were federally listed chum salmon (Oncorhynchus keta), and 3.8% were coho salmon (Oncorhynchus kisutch). When compared to the 2004 study year, 2005 showed an 83% increase in the overall number of observed entrapped or stranded juvenile salmon. Much of this increase can be attributed to one entrapment found along the north shore of Pierce Island (identified as E501). E501 has historically been known to contain relatively large numbers of entrapped salmon. Even so, the number of entrapped salmon observed during 2005 was a 732% increase (5926) over any prior study years. Over 83% of all chum, 63.1% of all chinook, and 63.2% of all coho sampled during 2005 were retrieved from entrapments that were likely to have formed when Bonneville Dam tailwater levels dropped to elevations between 11.5 and 12.9 feet. Peak numbers of chum and chinook were sampled in mid-April when tailwater levels ranged between 11.6ft and 15.6ft. Peak numbers of coho were sampled during the last week of February, mid-March, and mid-April when tailwater level ranged between 11.4 and 14.3 feet, 11.5 and 15.3 ft, and 11.6 and 15.6 feet, respectively. The fork length data indicate that the majority of the entrapped and stranded salmon are in the 35-50 mm range. Stranded members of all three salmon species had mean fork lengths that were 8% to 30% shorter than those of their entrapped counterparts. The locations and habitat attributes of entrapments containing the majority of the observed juvenile salmon remain fairly constant from year to year. Changes in entrapment rankings appear to be more reflective of changes in prevailing tailwater levels than they are of changes in geography, vegetation, or fish behavior. Data collected over the past six study years indicates that there are entrapments that are capable of entrapping large numbers of salmon as various tailwater levels. Avoiding specific tailwater ranges may not minimize the impact of juvenile stranding. The only way to substantially minimize the impact of stranding is to allow no tailwater fluctuations or to only allow a steady increase of the tailwater level throughout the juvenile emigration period.

  11. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  12. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect (OSTI)

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  13. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect (OSTI)

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  14. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    SciTech Connect (OSTI)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities within wetland habitats fell to low levels by July, similar to the pattern observed at mainstem beach-seining sites and coincident with high water temperatures that approached or exceeded 19 C by mid-summer. Wetland habitats were used primarily by small subyearling Chinook salmon, with the smallest size ranges (i.e., rarely exceeding 70 mm by the end of the wetland rearing season) at scrub/shrub forested sites above rkm 50. Wetland sites of all types were utilized by a diversity of genetic stock groups, including less abundant groups such as Interior Summer/Fall Chinook.

  15. A Study to Determine the Biological Feasability of a New Fish Tagging System : Annual Report, 1986-1987.

    SciTech Connect (OSTI)

    Prentice, Earl F.; Flagg, T.A.

    1987-12-01

    In 1983, a multi-year project to evaluate the technical and biological feasibility of adapting a new identification system to salmonids was established. The system is based upon a miniaturized passive integrated transponder (PIT) tag. This report discusses the work completed and is divided into laboratory studies, field studies, and systems development. All studies were conducted using a glass-encapsulated tag implanted into the body cavity of test fish via a 12-gauge hypodermic needle. Laboratory studies with juvenile chinook salmon, Oncorhynchus tshawytscha, showed that retention of glass-encapsulated PIT tags was 99-100% in fish weighing 3 g (mean weight) or larger. No adverse tissue response to the tag was noted. The survival of fish 5 g (mean weight) or larger was usually greater than 99%. However, fish ranging in weight from 2 to 4 g, or fish undergoing a physiological change such as smoltification may have a low mortality (usually less than 5.0%) after tagging. The mortality rate in the smaller fish was dependent upon tagging skill whereas mortality in smolting fish seemed dependent upon the level of stress. Growth comparisons between tagged and control fish indicated PIT-tagged fish had a slightly depressed growth rate at some measurement periods. The operational life of glass-encapsulated PIT tags implanted in fish was good, with 100% of the tags operating after 401 days. No tags were rejected from the fish during the observation period.

  16. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1991-1995 Progress Report.

    SciTech Connect (OSTI)

    Maynard, Desmond J.; Flagg, Thomas A.; Mahnken, Conrad V.W.

    1996-08-01

    In this report, the National Marine Fisheries Service (NMFS), in collaboration with the Bonneville Power Administration (BPA), the Washington State Department of Fish and Wildlife (WDFW), and the US Fish and Wildlife Service (USFWS), presents research findings and guidelines for development and evaluation of innovative culture techniques to increase postrelease survival of hatchery fish. The Natural Rearing Enhancement System (NATURES) described in this report is a collection of experimental approaches designed to produce hatchery-reared chinook salmon (Oncorhynchus tshawytscha) that exhibit wild-like behavior, physiology, and morphology. The NATURES culture research for salmonids included multiple tests to develop techniques such as: raceways equipped with cover, structure, and natural substrates to promote development of proper body camouflage coloration; feed-delivery systems that condition fish to orient to the bottom rather than the surface of the rearing vessel; predator conditioning of fish to train them to avoid predators; and supplementing diets with natural live foods to improve foraging ability. The underlying assumptions are that NATURES will: (1) promote the development of natural cryptic coloration and antipredator behavior; (2) increase postrelease foraging efficiency; (3) improve fish health and condition by alleviating chronic, artificial rearing habitat-induced stress; and (4) reduce potential genetic selection pressures induced by the conventional salmon culture environment. A goal in using NATURES is to provide quality fish for rebuilding depleted natural runs.

  17. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Tackley, Sean C.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurred in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.

  18. Efficacy of Single-Suture Incision Closures in Tagged Juvenile Chinook Salmon Exposed to Simulated Turbine Passage

    SciTech Connect (OSTI)

    Boyd, James W.; Deters, Katherine A.; Brown, Richard S.; Eppard, M. B.

    2011-09-01

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the use of a shorter incision-one that may warrant only a single suture for closure. However, it is not known whether a single suture will sufficiently hold the incision closed when fish are decompressed and when outward pressure is placed on the surgical site during turbine passage through hydroelectric dams. The objective of this study was to evaluate the effectiveness of single-suture incision closures on five response variables in juvenile Chinook salmon Oncorhynchus tshawytscha that were subjected to simulated turbine passage. An acoustic transmitter (0.43 g in air) and a passive integrated transponder tag (0.10 g in air) were implanted in each fish; the 6-mm incisions were closed with either one suture or two sutures. After exposure to simulated turbine passage, none of the fish exhibited expulsion of transmitters. In addition, the percentage of fish with suture tearing, incision tearing, or mortal injury did not differ between treatments. Expulsion of viscera through the incision was higher among fish that received one suture (12%) than among fish that received two sutures (1%). The higher incidence of visceral expulsion through single-suture incisions warrants concern. Consequently, for cases in which tagged juvenile salmonidsmay be exposed to turbine passage, we do not recommend the use of one suture to close 6-mm incisions associated with acoustic transmitter implantation.

  19. Assessment and Analysis of Smolt Condition in the Columbia River Basin, 1999 Technical Report.

    SciTech Connect (OSTI)

    Schrock, Robin M.; Jones, Ray

    1999-12-01

    The primary objective of the study was to increase the number of summer steelhead (Oncorhynchus mykiss) from Dworshak National Fish Hatchery that outmigrate by promoting smoltification in a larger proportion of the production release. To achieve this goal, growth was reduced during the winter to produce a smaller size range of fish to eliminate the production of large fish that residualize. A period of accelerated growth prior to release was designed to promote smoltification in all fish, regardless of size. Decreased winter growth was achieved with a combination of reduced ration and short, intermittent feeding periods. Growth rates were not reduced to the expected level in the modified feeding schedule treatment group, control group, or general production fish reared in the same system. Although significant differences in length, weight and condition factor developed between treatment and control groups during December and January, compensatory growth of the treatment fish after return to full rations resulted in fish of the same size from both groups for release. Migration rates of the treatment group were higher than that of the control group, although the difference was not significant. Growth and survival during extended seawater rearing did not differ between the two groups. Smoltification, as measured by gill Na{sup +}, K{sup +}-ATPase and seawater survival, were unaffected by a reduction in feed during winter months.

  20. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  1. The Magnificent Journey.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-01-01

    The annual run of Northwest salmon--from the vast Pacific Ocean to the mountain streams where their lives began--is one of Nature`s most awe-inspiring events. Now that modern science has discovered some of the salmon`s secrets, their journey seems even more miraculous. So unlikely is the survival of a single returning salmon that Nature compensates heavily. Of the other 3,000 to 7,000 eggs in a nest, only one spawning pair, on average, will make it back. Too much or too little water at hatching can wipe out great swarms of young fish life. Bigger fish, bears, seals--all take their share of salmon. Nature allows for these natural events. But Nature alone cannot make up for what people have done. Dams in the Columbia River Basin have blocked huge areas of the wild salmon`s spawning grounds. Roads and towns sprouted up along rivers and streams. Logging and farming practices fouled rivers and creeks. So did pollution from the cities. And it became too easy to catch fish. Salmon runs became smaller and smaller. Some types of salmon disappeared forever. Having nearly destroyed the salmon, people are now coming to their rescue. Still, important runs of Northwest native salmon are in real danger of extinction. Much remains to be done. This brochure presents a close look at the life of a wild salmon, Oncorhynchus tshawystcha.

  2. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    SciTech Connect (OSTI)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmon have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.

  3. Basic features of the pion valence-quark distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé; Roberts, Craig D.; Rodríguez-Quintero, Jose; Tandy, Peter C.

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore »realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q?(x); namely, at a characteristic hadronic scale, q?(x)~(1-x)2 for x?0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  4. Sketching the pion's valence-quark generalised parton distribution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mezrag, C.; Chang, L.; Moutarde, H.; Roberts, C. D.; Rodríguez-Quintero, J.; Sabatié, F.; Schmidt, S. M.

    2015-02-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD’s Dyson–Schwinger equations and exemplified via the pion’s valence dressed-quark GPD, Hv?(x, ?, t). Our analysis focuses primarily on ?=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting Hv?(x, ?=±1, t)with the pion’s valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to definemore »the pion’s valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for Hv?(x, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for Hv?(x, 0, t) and the associated impact-parameter dependent distribution, qv?(x, |b?|), which provide a qualitatively sound picture of the pion’s dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ? = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.« less

  5. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop and test a quantitative index of the early life history diversity of juvenile salmon in the LCRE; (3) assess and, if feasible, develop and test a quantitative index of the survival benefits of tidal wetland habitat restoration (hydrologic reconnection) in the LCRE; and (4) synthesize the results of investigations into the indices for habitat connectivity, early life history diversity, and survival benefits.

  6. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    SciTech Connect (OSTI)

    Ford, Michael J.; Williamson, Kevin S.

    2009-05-28

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries. To better understand this trend, redd microhabitat data was collected from spring Chinook sa

  7. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect (OSTI)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

  8. Survival Estimates for the Passage of Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Muir, William D.; Smith, Steven G.; Zabel, Richard W.

    2003-07-01

    In 2002, the National Marine Fisheries Service and the University of Washington completed the tenth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,891 hatchery steelhead at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''Single-Release Model''). Primary research objectives in 2002 were to (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2002 for PIT-tagged yearling chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Results for summer-migrating chinook salmon will be reported separately.

  9. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M.

    2006-05-01

    In 2005, the National Marine Fisheries Service and the University of Washington completed the thirteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 18,439 hatchery steelhead, 5,315 wild steelhead, and 6,964 wild yearling Chinook salmon at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''single-release model''). Primary research objectives in 2005 were: (1) Estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. (2) Evaluate relationships between survival estimates and migration conditions. (3) Evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2005 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here.

  10. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    SciTech Connect (OSTI)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  11. Trapping and Transportation of Adult and Juvenile Salmon in the Lower Umatilla River in Northeast Oregon, 1996-1997 : Umatilla River Basin Trap and Haul Program : Annual Progress Report, October 1996-September 1997.

    SciTech Connect (OSTI)

    Zimmerman, Brian C.; Duke, Bill B.

    1997-12-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 30, 1996 to August 26, 1997. A total of 2,477 summer steelhead (Oncorhynchus mykiss); 646 adult, 80 jack, and 606 subjack fall chinook (O. tshawytscha); 618 adult and 24 jack coho (O. kisutch); and 2,194 adult and four jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 22 summer steelhead; 18 adult and two jack fall chinook; five adult coho; and 407 adult and three jack spring chinook were hauled upstream from Threemile Dam. There were 2,245 summer steelhead; 70 adult, 51 jack and 520 subjack fall chinook; 593 adult and 24 jack coho; and 1,130 adult spring chinook released at Threemile Dam I In addition, 110 summer steelhead; 551 adult and 25 jack fall chinook; and 600 adult spring chinook were collected for broodstock. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts, The canal was open for a total of 210 days between December 16, 1996 and July 30, 1997. During that period, fish were bypassed back to the river 175 days and were trapped on 35 days, An estimated 1,675 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5), Approximately 80% of the juveniles transported were salmonids, No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was operated from October 4 to November 1, 1996 and from March 26 to July 7, 1997. The juvenile trap was not operated this year. 6 refs., 6 figs., 6 tabs.

  12. Estimating Adult Chinook Salmon Exposure to Dissolved Gas Supersaturation Downstream of Hydroelectric Dams Using Telemetry and Hydrodynamic Models

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.

    2007-11-01

    Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.

  13. HEAD INJURY ASSESSMENT IN JUVENILE CHINOOK USING THE ALPHA II-SPECTRIN BIOMARKER: EFFECTS OF PRESSURE CHANGES AND PASSAGE THROUGH A REMOVABLE SPILLWAY WEIR

    SciTech Connect (OSTI)

    Jonason, C.; Miracle, A.

    2009-01-01

    The cytoskeletal protein alpha II-spectrin has specifi c neurodegenerative mechanisms that allow the necrotic (injury-induced) and apoptotic (non-injury-induced) pathways of proteolysis to be differentiated in an immunoblot. Consequently, ?II-spectrin breakdown products (SBDPs) are potential biomarkers for diagnosing traumatic brain injury (TBI). The purpose of the following investigation, consisting of two studies, was to evaluate the utility of the spectrin biomarker in diagnosing TBI in fi sh that travel through hydroelectric dams in the Columbia and Snake Rivers. The fi rst study used hyperbaric pressure chambers to simulate the pressure changes that affect fi sh during passage through a Federal Columbia River Power System (FCRPS) Kaplan turbine. The second study tested the effect of a removable spillway weir (RSW) on the passage of juvenile chinook (Oncorhynchus tshawytscha). This study was conducted in tandem with a balloon-tag study by the U.S. Army Corps of Engineers. Brain samples from fi sh were collected and analyzed using an immunoblot for SBDPs, and imaging software was used to quantify the protein band density and determine the ratio of cleaved protein to total protein. The biomarker analyses found higher SBDP expression levels in fi sh that were exposed to lower pressure nadirs and fi sh that passed through the RSW at a deep orientation. In general, the incidence of injuries observed after treatment positively correlated with expression levels, suggesting that the biomarker method of analysis is comparable to traditional methods of injury assessment. It was also found that, for some treatments, the 110 kDa spectrin fragment (SBDP 110) correlated more strongly with necrotic head injury incidence and mortality rates than did the total cleaved protein or the 120 kDa fragment. These studies will be informative in future decisions regarding the design of turbines and fi sh passage structures in hydroelectric dams and will hopefully contribute to the development of faster and more accurate techniques for diagnosing TBI in fi sh.

  14. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  15. Natural Propagation and Habitat Improvement, Washington, Volume IIA, Tumwater Falls and Dryden Dam Fish Passage, 1983 Final Report.

    SciTech Connect (OSTI)

    Unknown Author

    1984-05-01

    This engineering feasibility and predesign report on the Tumwater Falls and Dryden Dam Fish Passage Project provides BPA with information for planning purposes and will serve as a discussion document for interested agencies. Tumwater Falls and Dryden Dams, both on the Wenatchee River, were built in the early 1900's as diversions for hydropower, and irrigation and hydropower, respectively. The present fishway facilities at both sites are inadequate to properly pass the anadromous fish runs in the Wenatchee River. These runs include spring and summer chinook salmon, sockeye salmon, coho salmon and steelhead trout. Predesign level drawings are provided in this report that represent fishway schemes capable of adequately passing present and projected fish runs. The effects of present passage facilities on anadromous fish stocks is addressed both quantitatively and qualitatively. The quantitative treatment assesses losses of adult migrants due to the structures and places an estimated value on those fish. The dollar figure is estimated to be between $391,000 and $701,000 per year for both structures. The qualitative approach to benefits deals with the concept of stock vigor, the need for passage improvements to help ensure the health of the anadromous fish stock. 29 references, 27 figures, 5 tables.

  16. Umatilla Satellite and Release Sites Project : Final Siting Report.

    SciTech Connect (OSTI)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  17. Hanford production reactor heat releases 1951--1971

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1992-04-01

    The purpose of this report is to document and detail the thermal releases from the Hanford nuclear production reactors during the period 1951 through 1971, and to put these releases in historical perspective with respect to changing Columbia River flows and temperatures. This information can also be used as a foundation for further ecological evaluations. When examining Hanford production reactor thermal releases to the Columbia River all related factors affecting the releases and the characteristics of the river should be considered. The major considerations in the present study were the characteristics of the releases themselves (primarily coolant flow rate, temperatures, discharge facilities, period of operation, and level of operation) and the characteristics of the river in that reach (primarily flow rate, temperature and mixing characteristics; the effects of dam construction were also taken into account). In addition, this study addressed ecological effects of thermal releases on aquatic species. Accordingly, this report includes discussion of the reactor cooling system, historical heat releases, thermal mixing and transport studies, hydroelectric power development, and ecologic effects of Hanford production reactor heat releases on salmon and trout. Appendix A contains reactor operating statistics, and Appendix B provide computations of heat added to the Columbia River between Priest Rapids Dam and Richland, Washington.

  18. John Day Fish Passage and Screening; 2002 Annual Report.

    SciTech Connect (OSTI)

    Hartlerode, Ray; Dabashinsky, Annette; Allen, Steve

    2003-01-28

    This project is necessary to insure that replacement of fish screening devices and fishways meet current NMFS design criteria for the protection of all salmonid life stages. The mission of the fish passage program in Northeast Oregon is to protect and enhance fish populations by assisting private landowners, public landowners, irrigation districts and others by maintaining fish screening devices and fishways. These facilities reduce or eliminate fish loss associated with irrigation withdrawals, and as a result insure fish populations are maintained for enjoyment by present and future generations. Assistance is provided through state and federal programs. This can range from basic technical advice to detailed construction, fabrication and maintenance of screening and passage facilities. John Day screens personnel identified 50 sites for fish screen replacement, and one fish passage project. These sites are located in critical spawning, rearing and migration areas for spring chinook, summer steelhead and bull trout. All projects were designed and implemented to meet current NMFS criteria. It is necessary to have a large number of sites identified due to changes in weather, landowner cooperation and access issues that come up as we try and implement our goal of 21 completed projects.

  19. Deschutes River Spawning Gravel Study, Volume I, Final Report.

    SciTech Connect (OSTI)

    Huntington, Charles W.

    1985-09-01

    Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. 53 refs., 40 figs., 21 tabs.

  20. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    SciTech Connect (OSTI)

    Holderman, Charles

    2009-06-26

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  1. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect (OSTI)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  2. Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.

    SciTech Connect (OSTI)

    Johnson, Bradley J.

    1999-11-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

  3. Natural Propagation and Habitat Improvement, Volume 2, Idaho, 1984 Final and Annual Reports.

    SciTech Connect (OSTI)

    Hair, Don

    1986-01-01

    In 1984, and under the auspices of the Northwest Power Planning Council, the Clear-water National Forest and the Bonneville Power Administration entered into a contractual agreement to improve anadromous fish habitat in Lolo Creek. This was to be the second and final year of instream enhancement work in Lolo Creek, a major tributary to the Clearwater River. The project was again entitled Lolo Creek Habitat Improvement (No.84-6) which was scheduled from April 1, 1984, through March 31, 1985. Project costs were not to exceed $39,109. The following report is a description of the project objectives, methodology, results, and conclusions of this year's work, based on the knowledge and experience gained through 2 years of enhancement work. The primary objective was to partially mitigate the juvenile and adult anadromous fish losses accrued through hydroelectric development in the Columbia and Snake River systems by enhancing the spawning and rearing habitats of selected Clearwater River tributaries for spring chinook salmon and summer steelhead trout. The enhancement was designed to ameliorate the ''limiting production factors'' by the in-stream placement of habitat structures that would positively alter the pool-riffle structure and increase the quality of over-winter habitat.

  4. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  5. The ecological evaluation of surface water outfalls at a manufacturing plant in New Jersey

    SciTech Connect (OSTI)

    Harman, C.R.; Gilchrist, W.

    1995-12-31

    Historic metal machining operations at a manufacturing plant in northern New Jersey had resulted in the contamination of three surface water outfalls leading from the plant to a second-order stream used for trout fishing. The outfalls were fed by a combination of non-contact cooling water, stormwater runoff and groundwater infiltration. The outfalls ranged in length from 180 meters to 600 meters. All three of the outfalls pass through forested wetland areas and contained emergent wetland pockets. The ecological evaluation consisted of the collection of sediment samples to evaluate the extent of chemical contamination and the evaluation of the biological integrity of a portion of the surface water outfalls. Additionally, an ecological characterization of the surrounding habitat was prepared. Sediment sampling indicated elevated concentrations of antimony, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc. Nickel concentrations were the most significant, with concentrations ranging up to 9,850 mg/kg. PCB concentrations ranged between 0.45 mg/kg and 6.4 mg/kg. Elevated concentrations of metals and PCBs were detected to a sediment depth of 45 centimeters. To evaluate the potential for biological impacts from the metals in the sediments, a modified Rapid Bioassessment Protocol 1 evaluation was conducted on the macroinvertebrate population. The results of the evaluation indicated a very sparse macroinvertebrate community. Those organisms that were identified were typical of highly contaminated surface water system. The surrounding wetland systems appeared to be unaffected by the outfall contamination. Based on the results of the first phase of the ecological evaluation, a program of additional sediment sampling and further biological evaluation was prepared.

  6. A review of proposed Glen Canyon Dam interim operating criteria

    SciTech Connect (OSTI)

    LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

    1992-04-01

    Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

  7. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1985 Annual Report.

    SciTech Connect (OSTI)

    Chisholm, Ian

    1985-01-01

    The goal was to quantify seasonal water levels needed to maintain or enhance the reservoir fishery in Libby. This report summarizes data collected from July 1984 through July 1985, and, where appropriate, presents data collected since 1983. The Canada, Rexford, and Tenmile areas of the reservoir are differentially affected by drawdown. Relative changes in water volume and surface area are greatest in the Canada area and smallest in the Tenmile area. Reservoir morphology and hydraulics probably play a major role in fish distribution through their influence on water temperature. Greatest areas of habitat with optimum water temperature for Salmo spp. and kokanee occurred during the spring and fall months. Dissolved oxygen, pH and conductivity levels were not limiting during any sampling period. Habitat enhancement work was largely unsuccessful. Littoral zone vegetation plantings did not survive well, primarily the result of extreme water level fluctuations. Relative abundances of fish species varied seasonally within and between the three areas. Water temperature is thought to be the major influence in fish distribution patterns. Other factors, such as food availability and turbidity, may mitigate its influence. Sampling since 1975 illustrates a continued increase in kokanee numbers and a dramatic decline in redside shiners. Salmo spp., bull trout, and burbot abundances are relatively low while peamouth and coarsescale sucker numbers remain high. A thermal dynamics model and a trophic level components model will be used to quantify the impact of reservoir operation on the reservoir habitat, primary production, secondary production and fish populations. Particulate carbon will be used to track energy flow through trophic levels. A growth-driven population dynamics simulation model that will estimate the impacts of reservoir operation on fish population dynamics is also being considered.

  8. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    SciTech Connect (OSTI)

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2008 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. For yearling Chinook salmon, overall percentages for combined release groups used in survival analyses in the Snake River were 80% hatchery-reared and 20% wild. For steelhead, the overall percentages were 65% hatchery-reared and 35% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.939 for yearling Chinook salmon and 0.935 for steelhead.

  9. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison H.A.; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; Mcmichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, Xinya; Fu, Tao

    2014-12-15

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  10. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

    2014-03-28

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  11. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

  12. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.

    2012-02-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelhead passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through the turbines between March 1 and April 10, 2011. Horizontal distribution data indicated Main Unit 18 passed the majority of fish. Fish passage occurred throughout the day. We conclude that adult steelhead passed through turbines during early spring 2011 at The Dalles Dam.

  13. A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures

    SciTech Connect (OSTI)

    Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.; Eppard, M. B.

    2013-07-15

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmon Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the use of a single suture for surgical implantation of transmitters with incisions that are approximately 5 1/2 mm long after tag insertion.

  14. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  15. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect (OSTI)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

  16. Entiat 4Mile WELLs Completion Report, 2006.

    SciTech Connect (OSTI)

    Malinowksi, Richard

    2007-01-01

    The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

  17. Colville Tribal Fish Hatchery, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Arteburn, John; Christensen, David

    2003-03-01

    Federal hydropower projects as well as private power utility systems have had a major negative impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas have been completely blocked to anadromous fish by dams, destroying the primary food resource (salmon) for many native people forcing them to rely heavily upon resident fish to replace these lost resources. The Colville Tribal Fish Hatchery is an artificial production program that addresses the loss of anadromous fish resources in the Upper Columbia Sub-Region within the ''blocked area'' created by the construction of Chief Joseph and Grand Coulee Dams. This project enhances resident fisheries located in the Intermountain and Columbia Cascade Provinces, specifically within the Colville Reservation portion of the Upper Columbia, SanPoil and Oakanogan Sub-Basins. The project partially mitigates for anadromous fish losses through protection/augmentation of resident fish populations to enhance fishery potential (i.e. in-place, out-of-kind mitigation) pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 and the hatchery was completed in 1990. The Colville Tribal Hatchery (CTH) is located on the northern bank of the Columbia River just down stream of the town of Bridgeport, Washington that is just down stream of Chief Joseph Dam. The hatchery is located on land owned by the Colville Tribes. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout annually. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence/recreational fishery for Colville Tribal members and provide for a successful nonmember sport fishery. The majority of the fish distributed from the facility are intended to support ''carry-over'' fisheries. Fish produced at the facility are intended to be of sufficient quality and quantity to meet specific monitoring and evaluation goals and objectives outlines in the 2002 statement of work (SOW).

  18. Influences of Stocking Salmon Carcass Analogs on Salmonids in Yakima River Tributaries, 2001-2002 Technical Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Johnson, Christopher L.

    2003-04-01

    The benefits that marine derived nutrients from adult salmon carcasses provide to juvenile salmonids are increasingly being recognized. Current estimates suggest that only 6-7% of marine-derived nitrogen and phosphorus that were historically available to salmonids in the Pacific Northwest are currently available. Food limitation may be a major constraint limiting the restoration of salmonids. A variety of methods have been proposed to offset this nutrient deficit including: allowing greater salmon spawning escapement, stocking hatchery salmon carcasses, and stocking inorganic nutrients. Unfortunately, each of these methods has some ecological or socio-economic shortcoming. We intend to overcome many of these shortcomings by making and evaluating a pathogen free product that simulates a salmon carcass (analog). Abundant sources of marine derived nutrients are available such as fish offal from commercial fishing and salmon carcasses from hatcheries. However, a method for recycling these nutrients into a pathogen free analog that degrades at a similar rate as a natural salmon carcass has never been developed. We endeavored to (1) develop a salmon carcass analog that will increase the food available to salmonids, (2) determine the pathways that salmonids use to acquire food from analogs, and (3) determine the benefits to salmonids and the potential for application to salmonid restoration. We used a before-after-control-impact-paired design in six tributaries of the upper Yakima basin to determine the utility of stocking carcass analogs. Our preliminary results suggest that the introduction of carcass analogs into food-limited streams can be used to restore food pathways previously provided by anadromous salmon. The analogs probably reproduced both of the major food pathways that salmon carcasses produce: direct consumption and food chain enhancement. Trout and salmon fed directly on the carcass analogs during the late summer and presumably benefited from the increased invertebrate biomass later in the year. Future reports will analyze whether any benefits are statistically detectable. The risks of using carcass analogs also appear to be low. Pathogens appear to be killed in the manufacturing process of the analogs. In addition, preliminary results suggest that fish exposed to the analogs did not have higher incidences of pathogens. The water quality was also not degraded by the analog additions with the exception of a temporary surface film. Finally, our anecdotal observations, suggested that there was not an increase in the number of predators during the first year of analog distribution. In summary, the risks of analog placement appear to be low but the benefits appear to be high. All results should be considered preliminary until further analyses and field work are conducted.

  19. Dworshak Kokanee Population and Entrainment Assessment 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Stark, Eric J.

    2008-11-06

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. We tested one set of nine strobe lights flashing at a rate of 360 flashes/min in front of turbine 3 while operating at higher discharges than previously tested. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On five nights between January 31 and February 28, 2006, when no lights were present, fish counts near turbine 3 averaged eight fish and densities averaged 91 fish/ha. When strobe lights were turned on during five adjacent nights during the same period, mean counts dropped to four fish and densities dropped to 35 fish/ha. The decline in counts (49%) was not statistically significant (p = 0.182), but decline in densities (62%) was significant (p = 0.049). There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of turbines operating at higher discharges, which would be sufficient to improve sportfish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2005. Estimated abundance of kokanee decreased from the 2004 population estimate. Based on hydroacoustic surveys, we estimated 3,011,626 kokanee (90% CI {+-} 15.2%) in Dworshak Reservoir, July 2005. This included 2,135,986 age-0 (90% CI {+-} 15.9%), 769,175 age-1 (90% CI {+-} 16.0%), and 107,465 age-2 (90% CI {+-} 15.2%). Poor survival of kokanee from age-1 to age-2 continued to keep age-2 densities below the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site split-beam hydroacoustics a minimum of two days per month for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were again found during nighttime periods and lowest during the day. Fish detection rates were low during high discharges throughout the spring and summer and highest during low discharges in September and November. High discharge during drawdowns for anadromous fish flows in July and August again resulted in low detection rates and susceptibility to entrainment. Index counts of spawning kokanee in four tributary streams totaled 12,742 fish. This data fits the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.

  20. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Contor, Craig R.; Harris, Robin; King, Marty

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

  1. Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.

    SciTech Connect (OSTI)

    Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M.

    2001-07-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving the management objectives in the Umatilla River basin that are presented in the Master Plan and the Comprehensive Rehabilitation Plan. A substantial proportion of the production at UFH is reared in MI raceways. This system has not been thoroughly evaluated to determine the effects on Smolt-to-adult survival (SAS). In addition, the rearing strategies proposed for spring chinook salmon require an unusually extensive period of incubation in chilled well water. Extensive background and justification for UFH monitoring and evaluation is presented in Carmichael (1990). In this report, we present findings for the UFH Monitoring and Evaluation Project from 1 November 1998 to 31 October 1999. We designed our program to evaluate fish cultural practices, conduct rearing and survival studies, assess sport fisheries, and provide information for planning and coordination. Additional studies have been designed for fall chinook salmon to evaluate straying and the effects of tagging. We monitored the culture and performance of more than 3.2 million chinook salmon and steelhead produced at UFH in 1997-98 (Appendix Tables A1-8). Individual stock profiles, release, performance, and return data of previously released groups are presented in the following sections.

  2. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. • Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. • Run timing for small-size fish (~65-90 mm) peaked (702 fish) on December 18. Downstream passage of small-size juvenile fish was variable, occurring on two days in the spring, eight days in the summer, and at times throughout late fall and winter. A total of 7,017 ± 690 small-size fish passed through the turbine penstock intakes during the study period. • Relatively few fish passed into the ROs when they were open in summer (2 fish/d) and winter (8 fish/d). • Fish were surface-oriented with 62-80% above 10 m deep. The highest percentage of fish (30-60%) was in the 5-10 m depth bin. We draw the following conclusions from the study. • The non-obtrusive hydroacoustic data from this study are reliable because passage estimates and patterns were similar with those observed in the direct capture data from the tailrace screw trap and were consistent with distribution patterns observed in other studies of juvenile salmonid passage at dams. • Fish passage at LOP was apparently affected but not dominated by dam operations and reservoir elevation. • The surface-oriented vertical distribution of fish we observed supports development of surface passage or collector devices. In summary, the high-resolution spatially and temporally data reported herein provide detailed estimates of vertical, horizontal, diel, daily, and seasonal passage and distributions at LOP during March 2010 through January 2011. This information is applicable to management decisions on design and development of surface passage and collections devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above Lookout Point Dam.

  3. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  4. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    SciTech Connect (OSTI)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index survey areas in 1995 from as high as 1,205 redds in the same area in 1969 (Table 1). All streams reached low points (0-6 redds in the index areas) in the 1990's, except those in which no redds were found for several years and surveys were discontinued, such as Spring, Sheep and Indian creeks which had a total of 109 redds in 1969. The Minam and Wenaha rivers are tributaries of the Grande Ronde River located primarily in wilderness areas. Chinook salmon numbers in these two streams (based on redd counts) also decreased dramatically beginning in the early 1970's (Table 1). Since then there have been a few years of increasing numbers of redds but counts have generally been 25-40% of the number seen in the 1960's. No hatchery fish have been released into either of these streams and we monitor them during spawning ground surveys for the presence of hatchery strays. These populations will be used as a type of control for evaluating our supplementation efforts in Catherine Creek, upper Grande Ronde River and Lostine River. In this way, we can attempt to filter out the effects of downstream variables, over which we have no control, when we interpret the results of the captive broodstock program as the F1 and F2 generations spawn and complete their life cycles in the wild. The Grande Ronde Basin Captive Broodstock Program was initiated because these chinook salmon populations had reached critical levels where dramatic and unprecedented efforts were needed to prevent extinction and preserve any future options for use of endemic fish for artificial propagation programs for recovery and mitigation. This program was designed to quickly increase numbers of returning adults, while maintaining the genetic integrity of each endemic population.

  5. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    SciTech Connect (OSTI)

    Rawding, Dan; Hillson, Todd D.

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The five assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch marks and lack of secondary studies made it difficult to test Jolly-Seber assumptions, necessary for unbiased estimates. We recommend that individual tags be applied to carcasses to provide a statistical basis for goodness of fit tests and ultimately model selection. Secondary or double marks should be applied to assess tag loss and male and female chum salmon carcasses should be enumerated separately. Carcass tagging population estimates at the two other sites were biased low due to limited sampling. The Area-Under-the-Curve escapement estimates at all three sites were 36% to 76% of Jolly-Seber estimates. Area-Under-the Curve estimates are likely biased low because previous assumptions that observer efficiency is 100% and residence time is 10 days proved incorrect. If managers continue to rely on Area-Under-the-Curve to estimate mainstem Columbia River spawners, a methodology is provided to develop annual estimates of observer efficiency and residence time, and to incorporate uncertainty into the Area-Under-the-Curve escapement estimate.

  6. Research, Monitoring, and Evaluation of Avian Predation on Salmonid Smolts in the Lower and Mid-Columbia River, 2006 Final Season Summary.

    SciTech Connect (OSTI)

    Roby, Daniel D.; Collis, Ken; Lyons, Donald E.

    2009-06-18

    This study investigates predation by piscivorous waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River Basin. During 2006, study objectives in the Columbia River estuary, work funded by the Bonneville Power Administration, were to (1) monitor and evaluate previous management initiatives to reduce Caspian tern (Hydroprogne caspia) predation on juvenile salmonids (smolts); (2) measure the impact of double-crested cormorant (Phalacrocorax auritus) predation on smolt survival, and assess potential management options to reduce cormorant predation; and (3) monitor large colonies of other piscivorous waterbirds in the estuary (i.e., glaucous-winged/western gulls [Larus glaucescens/occidentalis]) to determine the potential impacts on smolt survival. Study objectives on the mid-Columbia River, work funded by the Walla Walla District of the U.S. Army Corps of Engineers, were to (1) measure the impact of predation by Caspian terns and double-crested cormorants on smolt survival; and (2) monitor large nesting colonies of other piscivorous waterbirds (i.e., California gulls [L. californicus], ring-billed gulls [L. delawarensis], American white pelicans [Pelecanus erythrorhynchos]) on the mid-Columbia River to determine the potential for significant impacts on smolt survival. Our efforts to evaluate system-wide losses of juvenile salmonids to avian predation indicated that Caspian terns and double-crested cormorants were responsible for the vast majority of smolt losses to avian predators in the Columbia Basin, with most losses occurring in the Columbia River estuary. In 2006, East Sand Island in the Columbia River estuary supported the largest known breeding colonies of Caspian terns and double-crested cormorants in the world. The Caspian tern colony on East Sand Island consisted of about 9,200 breeding pairs in 2006, up slightly (but not significantly so) from the estimate of colony size in 2005 (8,820 pairs). There has not been a statistically significant change in the size of the Caspian tern colony on East Sand Island since 2000. Tern nesting success averaged 0.72 fledglings per breeding pair in 2006, significantly higher than in 2005 (0.37 fledglings per breeding pair), a year of poor ocean conditions. Despite the presumably higher availability of marine forage fishes in 2006, the proportion of juvenile salmonids in diets of Caspian terns (32% of prey items) averaged higher than in 2005 (23% of prey items) and 2004 (18% of prey items). Steelhead smolts were particular vulnerable to predation by East Sand Island terns in 2006, with predation rates as high as 20% on particular groups of PIT-tagged fish reaching the estuary. Consumption of juvenile salmonids by terns nesting at the East Sand Island colony in 2006 was approximately 5.3 million smolts (95% c.i. = 4.4-6.2 million), significantly higher than the estimated 3.6 million smolts consumed in 2005, but still roughly 7 million fewer smolts consumed compared to 1998 (when all terns nested on Rice Island in the upper estuary). Caspian terns nesting on East Sand Island continue to rely primarily on marine forage fishes as a food supply, even in 2005 when availability of marine forage fishes declined due to poor ocean conditions. Further management of Caspian terns to reduce losses of juvenile salmonids would be implemented under the Caspian Tern Management Plan for the Columbia River Estuary; the Records of Decision (RODs) authorizing implementation of the plan were signed in November 2006. The ROD lists as the management goal the redistribution of approximately half of the East Sand Island Caspian tern colony to alternative colony sites in interior Oregon and San Francisco Bay, California (USFWS 2006). Implementation of the management plan is stalled, however, because of the lack of appropriated funds.

  7. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    SciTech Connect (OSTI)

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile Chinook and 4,913 steelhead during the spring of 2005. We estimated that 130,144 (95% CL's 97,133-168,409) Chinook emigrated from the upper John Day subbasin past our seining area in the Mainstem John Day River (river kilometers 274-296) between February 4 and June 16, 2005. We also estimated that 32,601 (95% CL's 29,651 and 36,264) Chinook and 47,921 (95% CL's 35,025 and 67,366) steelhead migrated past our Mainstem rotary screw trap at river kilometer (rkm) 326 between October 4, 2004 and July 6, 2005. We estimated that 20,193 (95% CL's 17,699 and 22,983) Chinook and 28,980 (95% CL's 19,914 and 43,705) steelhead migrated past our Middle Fork trap (rkm 24) between October 6, 2004 and June 17, 2005. Seventy three percent of PIT tagged steelhead migrants were age-2 fish, 13.8% were age-3, 12.7% were age-2, and 0.3% were age 4. Spring Chinook SAR for the 2002 brood year was estimated at 2.5% (100 returns of 4,000 PIT tagged smolts). Preliminary steelhead SAR (excluding 2-ocean fish) for the 2004 tagging year was estimated at 1.61% (60 returns of 3,732 PIT-tagged migrants).

  8. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    SciTech Connect (OSTI)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.

    2009-04-10

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

  9. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  10. Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

    2008-12-01

    In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific riverbed elevation and providing minimum spawning flows that have the greatest chance of being maintained through egg incubation and fry emergence. However, managing the lower Columbia River for a stable tailwater elevation does not provide much operational flexibility at Bonneville Dam, which has little storage capacity. When river discharges increase due to rain events, the traditional approach has been to pass excess water at night to maintain stable tailwater elevations during the daytime. The underlying assumption of this strategy, referred to as reverse load following, is that fish do not spawn at night. However, Tiffan et al. (2005) showed that this assumption is false by documenting nighttime spawning by chum salmon in the Ives Island area. Similarly, McMichael et al. (2005) reported nighttime spawning by Chinook salmon (O. tshawytscha) in the Columbia River, indicating that diel spawning may be a common occurrence in Pacific salmon. During the latter portion of the chum spawning period in December 2003 and 2004, discharges from Bonneville Dam increased from an average of 3,398 m3/s (tailwater elevation {approx} 3.5 m above mean sea level) during the day to over 5,664 m3/s (tailwater elevation {approx} 5.1 m) at night, with peak discharges of 7,080 m{sup 3}/s (tailwater elevation {approx} 6.1 m). This caused concern among fishery managers regarding the potential effects of these high discharges on this population of spawning chum salmon, which is listed under the Endangered Species Act (National Oceanic and Atmospheric Administration 1999). We hypothesized that increased water velocities associated with elevated tailwaters might alter chum salmon spawning behavior if water velocities at redd locations increased beyond the range of suitability (>0.8 m/s; Salo 1991). In 2005, we investigated the movement and behavioral responses of spawning chum salmon at Ives Island to increased tailwater elevations at Bonneville Dam. We used acoustic telemetry to determine if the higher velocities associated with increased tailwater elevations caused fish to leave their re

  11. Enumeration of Juvenile Salmonids in the Okanogan Basin Using Rotary Screw Traps, Performance Period: March 15, 2006 - July 15, 2006.

    SciTech Connect (OSTI)

    Johnson, Peter N.; Rayton, Michael D.

    2007-05-01

    The Colville Tribes identified the need for collecting baseline census data on the timing and abundance of juvenile salmonids in the Okanogan River basin for the purpose of documenting local fish populations, augmenting existing fishery data and assessing natural production trends of salmonids. This report documents and assesses the pilot year of rotary trap capture of salmonid smolts on the Okanogan River. The project is a component of the Colville Tribes Okanogan Basin Monitoring and Evaluation Program (OBMEP) which began in 2004. Trapping for outmigrating fish began on 14 March 2006 and continued through 11 July 2006. Anadromous forms of Oncorhynchus, including summer steelhead (O. mykiss), Chinook (O. tshawytscha), and sockeye (O. nerka), were targeted for this study; all have verified, natural production in the Okanogan basin. Both 8-ft and 5-ft rotary screw traps were deployed on the Okanogan River from the Highway 20 Bridge and typically fished during evening hours or 24 hours per day, depending upon trap position and discharge conditions. Juvenile Chinook salmon were the most abundant species trapped in 2006 (10,682 fry and 2,024 smolts), followed by sockeye (205 parr and 3,291 smolts) and steelhead (1 fry and 333 smolts). Of the trapped Chinook, all fry were wild origin and all but five of the smolts were hatchery-reared. All trapped sockeye were wild origin and 88% of the steelhead smolts were hatchery-reared. Mark-recapture experiments were conducted using Chinook fry and hatchery-reared steelhead smolts (sockeye were not used in 2006 because the peak of the juvenile migration occurred prior to the onset of the mark-recapture experiments). A total of 930 chinook fry were marked and released across eight separate release dates (numbers of marked Chinook fry released per day ranged from 34 to 290 fish). A total of 11 chinook fry were recaptured for an overall trap efficiency of 1.18%. A total of 710 hatchery-reared steelhead were marked and released across three separate release dates (numbers of steelhead released per day ranged from 100 to 500 fish). A total of 12 steelhead were recaptured for an overall trap efficiency of 1.69%. A pooled Peterson estimator with a Chapman modification was used to produce population estimates for wild Chinook fry and hatchery-reared steelhead based on the results of the mark-recapture experiments. The 2006 populations for Chinook and steelhead were estimated to be 381,554 (95% confidence intervals: 175,731-587,377) and 14,164 (6,999-21,330), respectively. The population estimates were based on the periods in which mark-recapture experiments were initialized through the end of the trapping season (10 May for steelhead and 1 June for Chinook).

  12. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    SciTech Connect (OSTI)

    Connor, William P.

    2008-04-01

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under a surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates are not reported here, but will be presented in future reports written after workshops and input by federal, state, and tribal researchers. In this report, we compared the postrelease performance of natural subyearlings to the postrelease performance of surrogate and production subyearlings. We made this comparison to help the fisheries community determine which of the two hatchery rearing strategies produced fish that were more similar to natural subyearlings. We compared the following attributes of postrelease performance (1) detection dates at dams, (2) detections during the implementation of summer spill, (3) travel times, (4) migrant sizes, and (5) the joint probability of migration and survival. Overall, we found that postrelease performance was more similar between natural and surrogate subyearlings than between natural and production subyearlings. Further, the similarity between natural and surrogate subyearlings was greater in 2006 than in 2005, partly as the result of changes in incubation and early rearing practices we recommended based on 2005 results.

  13. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    SciTech Connect (OSTI)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.; Wagner, Katie A.; Royer, Ida M.; Knox, Kasey M.; Kim, Jin A.; Gay, Marybeth E.; Weiland, Mark A.; Brown, Richard S.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5 mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in indoor circular tanks at the Bonneville Dam Juvenile Monitoring Facility. Overall mortality ranged weekly from 45 to 72% for YCH, 55 to 83% for STH, and 56 to 84% for SYC. The high background mortality in all groups and species made it difficult to discern tag effects. However, for YCH, STH, and SYC, the Tagged treatment groups had the highest overall mean mortality - 62%, 79%, and 76%, respectively. Fungal infections were found on 35% of all fish. Mean tag burden for the Tagged treatment group was relatively low for YCH (1.7%) and moderate for SYC (4.2%), while STH had a very low mean tag burden (0.7%). Tag burden was significantly higher in the Tagged treatment group for all species when compared to the Sham treatment group because of the presence of two tags. Surgeon performance did not contribute to the difference in mortality between the Sham and Tagged treatment groups. Tag expulsion from fish that survived to the end of the 30-day experiment was low but occurred in all species, with only two PIT tags and one AT lost, one tag per species. The high background mortality in this experiment was not limited to a treatment, temperature, or month. The decreased number of surviving fish influenced our experimental results and thus analyses. For future research, we recommend that a more natural exposure to monitor tag effects and other factors, such as swimming ability and predator avoidance, be considered to determine the effects of AT- and PIT- implantation on fishes.

  14. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam 2008-2009

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2009-09-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2008 and early spring 2009, respectively. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). Operating the sluiceway reduces the potential for hydropower production. However, this surface flow outlet may be the optimal non-turbine route for fallbacks in late fall after the sluiceway is typically closed for juvenile fish passage and for overwintering summer steelhead and kelt passage in the early spring before the start of the voluntary spill season. The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines, and their movements in front of the sluiceway at TDA to inform fisheries managers’ and engineers’ decision-making relative to sluiceway operations. The study periods were from November 1 to December 15, 2008 (45 days) and from March 1 to April 9, 2009 (40 days). The study objectives were to 1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA during the two study periods, respectively, and 2) assess the behavior of these fish in front of sluice entrances. We obtained fish passage data using fixed-location hydroacoustics and fish behavior data using acoustic imaging. For the overwintering summer steelhead, fallback occurred throughout the 45-day study period. We estimated that a total of 1790 ± 250 (95% confidence interval) summer steelhead targets passed through the powerhouse intakes and operating sluices during November 1 to December 15, 2008. Ninety five percent of these fish passed through the sluiceway. Therefore, without the sluiceway as a route through the dam, a number of steelhead may have fallen back through turbines. Run timing peaked in late November, but fish continued to pass the dam until the end of the study. Horizontal distribution data indicated that sluice 1 is the preferred route for these fish during fallback through the dam. Diel distribution for overwintering steelhead fallbacks was variable with no apparent distinct patterns. Therefore, sluiceway operations should not be based on diel distribution. For the early spring study, overwintering summer steelhead and early out-migrating steelhead kelt downstream passage occurred throughout the 40-day study period. A total of 1766 ± 277 (95% confidence interval) kelt-size targets were estimated to have passed through the powerhouse intakes and operating sluices. Ninety five percent of these fish passed through the sluiceway. Therefore, as with steelhead fallback, not having the sluiceway as a route through the dam, a number of overwintering steelhead and kelts may use the turbines for downstream passage before the start of the spill season. Run timing peaked in late March; however, relatively large numbers of kelt-sized targets passed the dam on March 2 and March 6 (162 and 188 fish, respectively). Horizontal distribution indicated that sluice 1 is the preferred route for these adult salmonids as they migrate downstream through the dam. Again, no clear pattern was seen for diel distribution of overwintering steelhead and early out-migrating kelt passage.

  15. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam, 2009-2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2010-07-31

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2009 through early spring 2010. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines for fisheries managers and engineers to use in decision-making relative to sluiceway operations. The study was from November 1, 2009 to April 10, 2010. The study was divided into three study periods: Period 1, November 1 - December 15, 2009 for a fall/winter sluiceway and turbine study; Period 2, December 16, 2009 - February 28, 2010 for a turbine only study; Period 3, March 1 - April 10, 2010 for a spring sluiceway and turbine study. Sluiceway operations were scheduled to begin on March 1 for this study; however, because of an oil spill cleanup near the sluice outfall, sluiceway operations were delayed until March 8, 2010, therefore the spring study period did not commence until March 8. The study objectives were to (1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA between November 1 and December 15, 2009 and March 1 and April 10, 2010, and (2) estimate the numbers and distribution of adult steelhead and kelt-sized targets passing into turbine units between December 16, 2009 and February 28, 2010. We obtained fish passage data using fixed-location hydroacoustics. For Period 1, overwintering summer steelhead fallback occurred throughout the 45-day study period. A total of 879 {+-} 165 (95% CI) steelhead targets passed through the powerhouse and sluiceway during November 1 to December 15, 2009. Ninety two percent of these fish passed through the sluiceway. Run timing peaked in early December, but fish continued to pass the dam until the end of the study. Horizontal distribution data indicated that Sluice 1 is the preferred route for these fish during fallback through the dam. Diel distribution for steelhead was variable with no apparent distinct patterns. For Period 2, adult steelhead passage occurred on January 14 and 31 and February 2, 22, and 24. A total of 62 {+-} 40 (95% CI) steelhead targets passed through the powerhouse intakes during December 16, 2009 to March 7, 2010. Horizontal distribution data indicated turbine unit 18 passed the majority of fish. Fish passage occurred during morning periods. Passage did not occur during afternoon or nighttime. For Period 3, the early spring study period, overwintering summer steelhead and early out-migrating steelhead kelt downstream passage occurred throughout the 34-day study period. A total of 1,985 {+-} 234 (95% CI) kelt-size targets were estimated to have passed through the powerhouse sluiceway. Ninety-nine percent of these fish passed through the sluiceway. Run timing peaked in late March and again in early April. Horizontal distribution indicated that Sluice 1 is the preferred route for these adult salmonids as they migrate downstream through the dam. Diel distribution for steelhead was variable with no apparent distinct patterns. The results of this study strongly suggest that operating the TDA sluiceway for steelhead passage (fallbacks and kelts) during the late fall, winter, and early spring months will provide an optimal, non-turbine route for these fishes to pass the dam.

  16. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Ham, Kenneth D.

    2012-11-15

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and increased somewhat in September 2011. When the spillway was operated simultaneously with the turbines, spillway efficiency (efficiency is estimated as spillway passage divided by total project passage) was 0.72 and effectiveness (fish:flow ratio—proportion fish passage at a route (e.g., spillway) divided by proportion water through that route out of the total project) was 2.69. That is, when the spillway was open, 72% of the fish passing the dam used the spillway and 28% passed into the turbine penstocks. Diel distribution for smolt-size fish at the spillway shows a distinct peak in passage between mid-morning and mid-afternoon and low passage at night. We estimated that 23,339 smolt-size fish (± 572 fish, 95% CI) passed via the Regulating Outlet (RO) when it was open from October 29 through November 12, 2011, January 2-6, and January 20 through February 3, 2012. During the October–November period, RO passage peaked at 1,086 fish on November 5, with a second peak on November 7 (1,075 fish). When the RO was operated simultaneously with the turbines, RO efficiency was 0.33 and effectiveness was 0.89. In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed fish passage data well. The best model included forebay temperature at depth, forebay elevation, total discharge, hours of daylight, and the operation period. The vertical distribution of fish in the forebay near the face of the dam where the transducers sampled showed fish were generally distributed throughout the water column during all four operational periods. During the refill and full pool periods, vertical distribution was bi-modal with surface-layer and mid-water modes. Patterns for day and night distributions were variable. Fish were distributed above and below the thermocline when it was present (full pool and drawdown periods).

  17. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2012-05-31

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to project discharge (P<0.001). This relationship was positive, but there was no relationship between total project passage and forebay elevation (P=0.48) or forebay elevation delta, i.e., day-to-day change in forebay elevation (P=0.16). In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed data well. The multiple regression model indicates a positive trend between expected daily fish passage and each of the three variables in the model-Julian day, log(discharge), and log(abs(forebay delta)); i.e., as any of the environmental variables increase, expected daily fish passage increases. For vertical distribution of fish at the face of the dam, fish were surface-oriented with 62%-80% occurring above 10 m deep. The highest percentage of fish (30%-60%) was found between 5-10-m-deep. During spring and summer, mean target strengths for the analysis periods ranged from -44.2 to -42.1 dB. These values are indicative of yearling-sized juvenile salmon. In contrast, mean target strengths in fall and winter were about -49.0 dB, which are representative of subyearling-sized fish. The high-resolution spatial and temporal data reported herein provide detailed information about vertical, horizontal, diel, daily, and seasonal fish passage rates and distributions at LOP from March 2010 through January 2011. This information will support management decisions on design and development of surface passage and collection devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above LOP.

  18. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    SciTech Connect (OSTI)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These FY2008 data assessments and others assembled over the years of the CSMEP project can be accessed on the CBFWA public website. The CSMEP web database (http://csmep.streamnet.org/) houses metadata inventories from S&W assessments of Columbia River Basin watersheds that were completed prior to FY2008. These older S&W assessments are maintained by StreamNet, but budget cutbacks prevented us from adding the new FY2008 assessments into the database. Progress was made in FY2008 on CSMEP's goals of collaborative design of improved M&E methods. CSMEP convened two monitoring design workshops in Portland (December 5 and 6, 2007 and February 11 and 12, 2008) to continue exploration of how best to integrate the most robust features of existing M&E programs with new approaches. CSMEP continued to build on this information to develop improved designs and analytical tools for monitoring the status and trends of fish populations and the effectiveness of hatchery and hydrosystem recovery actions within the Columbia River Basin. CSMEP did not do any new work on habitat or harvest effectiveness monitoring designs in FY2008 due to budget cutbacks. CSMEP presented the results of the Snake Basin Pilot Study to the Independent Scientific Review Panel (ISRP) in Portland on December 7, 2008. This study is the finalization of CSMEP's pilot exercise of developing design alternatives across different M&E domains within the Snake River Basin spring/summer Chinook ESU. This work has been summarized in two linked reports (CSMEP 2007a and CSMEP 2007b). CSMEP participants presented many of the analyses developed for the Snake Basin Pilot work at the Western Division American Fisheries Society (AFS) conference in Portland on May 4 to 7, 2008. For the AFS conference CSMEP organized a symposium on regional monitoring and evaluation approaches. A presentation on CSMEP's Cost Integration Database Tool and Salmon Viability Monitoring Simulation Model developed for the Snake Basin Pilot Study was also given to the Pacific Northwest Aquatic monitoring Partnership (PNAMP) stee

  19. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean

    2006-04-01

    2005 was an average to below average flow year at John Day and Bonneville Dams. A large increase in flow in May improved migration conditions for that peak passage month. Spill was provided April through August and averaged about 30% and 48% of river flow at John Day and Bonneville Dams, respectively. Water temperature graphs were added this year that show slightly lower than average water temperature at John Day and slightly higher than average temperatures at Bonneville. The number of fish handled at John Day decreased from 412,797 in 2004 to 195,293 this year. Of the 195,293 fish, 120,586 (61.7%) were collected for researchers. Last year, 356,237 (86.3%) of the fish sampled were for researchers. This dramatic decline is the result of (1) fewer research fish needed (2) a smaller, lighter tag which allowed for tagging of smaller fish, and (3) a larger average size for subyearling chinook. These factors combined to reduce the average sample rate to 10.8%, about half of last year's rate of 18.5%. Passage timing at John Day was similar to previous years, but the pattern was distinguished by larger than average passage peaks for spring migrants, especially sockeye. The large spike in mid May for sockeye created a very short middle 80% passage duration of just 16 days. Other spring migrants also benefited from the large increase in flow in May. Descaling was lower than last year for all species except subyearling chinook and below the historical average for all species. Conversely, the incidence of about 90% of the other condition factors increased. Mortality, while up from last year for all species and higher than the historical average for all species except sockeye, continued to be low, less than 1% for all species. On 6 April a slide gate was left closed at John Day and 718 fish were killed. A gate position indicator light was installed to prevent reoccurrences. Also added this year was a PIT tag detector on the adult return-to-river flume. For the first time this year, we successfully held Pacific lamprey ammocetes. The number of fish sampled at Bonneville Dam was also down this year to 260,742, from 444,580 last year. Reasons for the decline are the same as stated above for John Day. Passage timing at Bonneville Dam was quite similar to previous years with one notable exception, sockeye. Sockeye passage was dominated by two large spikes in late May that greatly condensed the passage pattern, with the middle 80% passing Bonneville in just 18 days. Unlike John Day, passage for the rest of the species was well disbursed from late April through early June. Fish condition was good, with reductions in descaling rates for all species except unclipped steelhead and sockeye. Sockeye mortality matched last year's rate but was considerably lower for all other species. Rare species sampled at Bonneville this year included a bull trout and a eulachon.

  20. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    SciTech Connect (OSTI)

    Marmorek, David

    2004-03-01

    Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitat restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi-watershed designs for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design, implementation, and monitoring of prospective habitat restoration programs in the Columbia River Basin (Chapter 8).

  1. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    SciTech Connect (OSTI)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of the planning effort leading to this Master Plan, a Technical Working Group (TWG) was established that represents most, if not all, fish and wildlife agencies/interests in the subbasin. This TWG met regularly throughout the planning process to provide input and review and was instrumental in the development of this plan. Preparation of this plan included the development of a quantitative prioritization process to rank 40,000 parcels within the Urban Growth Area based on the value of fish and wildlife habitat each parcel provided. Biological and physical criteria were developed and applied to all parcels through a GIS-based prioritization model. In the second-phase of the prioritization process, the TWG provided local expert knowledge and review of the properties. In selecting the most critical areas within the Urban Growth Area for protection, this project assessed the value of fish and wildlife habitat on the Yakima River. Well-developed habitat acquisition efforts (e.g., Yakima River Basin Water Enhancement Project by the Bureau of Reclamation and Yakama Nation acquisition projects) are already underway on the Yakima River mainstem. These efforts, however, face several limitations in protection of floodplain function that could be addressed through the support of the Yakima Habitat Improvement Project. This Master Plan integrates tributary habitat acquisition efforts with those ongoing on the Yakima River to best benefit fish and wildlife in the Urban Growth Area. The parcel ranking process identified 25 properties with the highest fish and wildlife value for habitat acquisition in the Yakima Urban Area. These parcels contain important fish and wildlife corridors on Ahtanum and Wide Hollow Creeks and the Naches River. The fifteen highest-ranking parcels of the 25 parcels identified were considered very high priority for protection of fish and wildlife habitat. These 15 parcels were subsequently grouped into four priority acquisition areas. This Master Plan outlines a four-year schedule for acquisition, protection, and restoration of the 25 highest ranked prop

  2. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M.

    2005-10-01

    In 2004, the National Marine Fisheries Service and the University of Washington completed the twelfth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,621 hatchery steelhead, 8,128 wild steelhead, and 9,227 wild yearling Chinook salmon at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2004 were to (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2004 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2004 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. Overall, the percentages for combined release groups used in survival analyses were 68% hatchery-reared yearling Chinook salmon and 32% wild. For steelhead, the overall percentages were 73% hatchery-reared and 27% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.923 for yearling Chinook salmon and 0.860 for steelhead. Respective average survival estimates for yearling Chinook salmon and steelhead were 0.875 and 0.820 from Little Goose Dam tailrace to Lower Monumental Dam tailrace; 0.818 and 0.519 from Lower Monumental Dam tailrace to McNary Dam tailrace (including passage through Ice Harbor Dam); and 0.809 and 0.465 from McNary Dam tailrace to John Day Dam tailrace. Survival for yearling Chinook salmon from John Day Dam tailrace to Bonneville Dam tailrace (including passage through The Dalles Dam) was 0.735. We were unable to estimate survival through this reach for steelhead during 2004 because too few fish were detected at Bonneville Dam due to operation of the new corner collector at the second powerhouse. Combining average estimates from the Snake River smolt trap to Lower Granite Dam, from Lower Granite Dam to McNary Dam, and from McNary Dam to Bonneville Dam, estimated annual average survival through the entire hydropower system from the head of Lower Granite reservoir to the tailrace of Bonneville Dam (eight projects) was 0.353 (s.e. 0.045) for Snake River yearling Chinook salmon. We could not empirically estimate survival through the entire system for steelhead in 2004 because of low detection rates for this species at Bonneville Dam. For yearling spring Chinook salmon released in the Upper Columbia River, estimated survival from point of release to McNary Dam tailrace was 0.484 (s.e. 0.005) for fish released from Leavenworth Hatchery, 0.748 (s.e. 0.015) for fish released from Entiat Hatchery, 0.738 (s.e. 0.036) for fish released from Winthrop Hatchery, and 0.702 (s.e. 0.048) and 0.747 (s.e.0.047) for those from Methow Hatchery, Chewuch Pond and

  3. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    SciTech Connect (OSTI)

    Rabe, Craig D.; Nelson, Douglas D.

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.

  4. Research, Monitoring, and Evaluation of Avian Predation on Salmonid Smolts in the Lower and Mid-Columbia River, 2008 Draft Season Summary.

    SciTech Connect (OSTI)

    Roby, Daniel D.; Collis, Ken; Lyons, Donald E.

    2009-07-08

    This report describes investigations into predation by piscivorous colonial waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River basin during 2008. East Sand Island in the Columbia River estuary again supported the largest known breeding colony of Caspian terns (Hydroprogne caspia) in the world (approximately 10,700 breeding pairs) and the largest breeding colony of double-crested cormorants (Phalacrocorax auritus) in western North America (approximately 10,950 breeding pairs). The Caspian tern colony increased from 2007, but not significantly so, while the double-crested cormorant colony experienced a significant decline (20%) from 2007. Average cormorant nesting success in 2008, however, was down only slightly from 2007, suggesting that food supply during the 2008 nesting season was not the principal cause of the decline in cormorant colony size. Total consumption of juvenile salmonids by East Sand Island Caspian terns in 2008 was approximately 6.7 million smolts (95% c.i. = 5.8-7.5 million). Caspian terns nesting on East Sand Island continued to rely primarily on marine forage fishes as a food supply. Based on smolt PIT tag recoveries on the East Sand Island Caspian tern colony, predation rates were highest on steelhead in 2008; minimum predation rates on steelhead smolts detected passing Bonneville Dam averaged 8.3% for wild smolts and 10.7% for hatchery-raised smolts. In 2007, total smolt consumption by East Sand Island double-crested cormorants was about 9.2 million juvenile salmonids (95% c.i. = 4.4-14.0 million), similar to or greater than that of East Sand Island Caspian terns during that year (5.5 million juvenile salmonids; 95% c.i. = 4.8-6.2 million). The numbers of smolt PIT tags recovered on the cormorant colony in 2008 were roughly proportional to the relative availability of PIT-tagged salmonids released in the Basin, suggesting that cormorant predation on salmonid smolts in the estuary was less selective than tern predation. Cormorant predation rates in excess of 30%, however, were observed for some groups of hatchery-reared fall Chinook salmon released downstream of Bonneville Dam. Implementation of the federal plan 'Caspian Tern Management to Reduce Predation of Juvenile Salmonids in the Columbia River Estuary' was initiated in 2008 with construction by the Corps of Engineers of two alternative colony sites for Caspian terns in interior Oregon: a 1-acre island on Crump Lake in the Warner Valley and a 1-acre island on Fern Ridge Reservoir near Eugene. We deployed Caspian tern social attraction (decoys and sound systems) on these two islands and monitored for Caspian tern nesting. Caspian terns quickly colonized the Crump Lake tern island; about 430 pairs nested there, including 5 terns that had been banded at the East Sand Island colony in the Columbia River estuary, over 500 km to the northwest. No Caspian terns nested at the Fern Ridge tern island in 2008, but up to 9 Caspian terns were recorded roosting on the island after the nesting season. There were two breeding colonies of Caspian terns on the mid-Columbia River in 2008: (1) about 388 pairs nested at the historical colony on Crescent Island in the McNary Pool and (2) about 100 pairs nested at a relatively new colony site on Rock Island in the John Day Pool. Nesting success at the Crescent Island tern colony was only 0.28 young fledged per breeding pair, the lowest nesting success recorded at that colony since monitoring began in 2000, while only three fledglings were raised at the Rock Island tern colony. The diet of Crescent Island Caspian terns consisted of 68% salmonid smolts; total smolt consumption was estimated at 330,000. Since 2004, total smolt consumption by Crescent Island terns has declined by 34%, due mostly to a decline in colony size, while steelhead consumption has increased 10% during this same period. In 2008, approximately 64,000 steelhead smolts were consumed by Caspian terns nesting at Crescent Island. Based on smolt PIT tag recoveries on the Crescent Island Caspian tern colony, the average

  5. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, average fish length remained relatively consistent (132 {+-} 39 mm), after which average lengths increased to 294 {+-} 145 mm for mid-November though early December. Fish behavior analysis indicates milling in front of the intake tower was the most common behavior observed throughout the study period (>50% of total fish events). The next most common movement patterns were fish traversing along the front of the tower, east-to-west and west-to-east. The proportion of fish events seen moving into (forebay to tower) or out of (tower to forebay) the tower was generally low throughout the spring, summer, and early fall for both directions combined. From mid-December 2010 through the end of the study, the combined proportions of fish moving into and out of the tower were higher than previous months of this study. Schooling behavior was most distinct in the spring from late April through mid-June. Schooling events were present in 30 - 96% of the fish events during that period, with a peak in mid-May. Schooling events were also present in the summer, but at lower numbers. Diel distributions for schooling fish during spring, fall, and winter months indicate schooling was concentrated during daylight hours. No schooling was observed at night. Predator activity was observed during late spring, when fish abundance and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months. For the two days of BlueView data analyzed for vertical distribution in the forebay, a majority of fish (>50%) were present in the middle of the water column (10 - 20 m deep). Between 20 and 41 % of total fish abundance were found in the bottom of the water column (20 - 30 m deep). Few fish were observed in the top 10 m of the water column.

  6. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and demolition was immediately started on building. Because of a delivery delay of Turbine, Generator and Equipment from Canyon Brigham City had to request another extension for the final date of completion. DOE awarded modification (.007) to Brigham City with a new completion date of August 1, 2015. The Turbine has had a few adjustments to help with efficiency; but the Generator had a slight vibration when generator got hot so Canyon Industries had U S Motor’s that manufactured the generator come to check out the issue. The other Equipment seems to be running normal. Brigham City, Sunrise Engineering and Canyon Industries met to determine what the vibration in the generator was and how to solve the issue Us Motor’s found some welds that failed: they have been repaired. U S Motor’s delivered the repaired generator Feb. 17, 2015. Canyon Industries arranged for a crane to installed generator in Power Plant. U S Motor’s balanced and wired generator. Plant Operators put the generator back on line. Canyon Industries returned and gave their approval to keep Hydro online. After Hydro was put back into operations it kept going off line because of overheating issues. Canyon Industries returned and replaced sensors and adjusted them to the proper settings for normal operations. Brigham City added additional steel screens to windows to increase air flow in Power Plant Building. After construction phase of the Upper Hydro Plant some landscaping has been restored around the building additional gravel brought in and leveled out and the road that was cut through for conduits to run wires. A retaining wall was installed to protect penstock. The Upper Hydro Plant is complete and in full operations. The final reimbursement was submitted.

  7. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect (OSTI)

    May, Christopher; Geist, David

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  8. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    NAD_UTIL","FILLER","EFFDATE","STATUS","MULTIST","YEAR","GEN01","CON01","STK01","GEN02","CON02","STK02","GEN03","CON03","STK03","GEN04","CON04","STK04","GEN05","CON05","STK05","GEN06","CON06","STK06","GEN07","CON07","STK07","GEN08","CON08","STK08","GEN09","CON09","STK09","GEN10","CON10","STK10","GEN11","CON11","STK11","GEN12","CON12","STK12","PCODE","NERC","UTILCODE","FUELDESC","PMDESC" 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,1179,"0A",1294,,,95,772,0,0,858,0,0,1012,0,0,727,0,0,1061,0,0,917,0,0,385,0,0,118,0,0,0,0,0,657,0,0,905,0,0,820,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,1179,"0A",1294,,,95,2116,0,0,1715,0,0,1459,0,0,1821,0,0,1946,0,0,2134,0,0,2157,0,0,1797,0,0,1745,0,0,1829,0,0,2224,0,0,2386,0,0,1474,6,50159,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT OIL",1179,"0A",1294,,,95,0,0,553,181,307,419,0,0,593,31,55,538,66,120,418,219,399,383,324,598,481,313,579,614,97,178,575,1,2,573,0,0,608,98,171,611,1474,6,50159,"FO2","IC" 11,23,1,1,,19,35,"BANGOR HYDRO ELECTRIC CO","MILFORD",0,,1179,"0A",1294,,,95,3843,0,0,3348,0,0,4177,0,0,3759,0,0,4855,0,0,4740,0,0,2971,0,0,2432,0,0,1786,0,0,1561,0,0,3510,0,0,4606,0,0,1475,6,50159,"WAT","HY" 11,23,1,1,,19,45,"BANGOR HYDRO ELECTRIC CO","ORONO",0,,1179,"0A",1294,,,95,895,0,0,836,0,0,966,0,0,576,0,0,624,0,0,736,0,0,684,0,0,464,0,0,408,0,0,616,0,0,849,0,0,896,0,0,1476,6,50159,"WAT","HY" 11,23,1,1,,19,55,"BANGOR HYDRO ELECTRIC CO","STILLWATER",0,,1179,"0A",1294,,,95,1191,0,0,844,0,0,939,0,0,1021,0,0,1114,0,0,1181,0,0,1170,0,0,878,0,0,818,0,0,880,0,0,923,0,0,950,0,0,1478,6,50159,"WAT","HY" 11,23,1,1,,19,60,"BANGOR HYDRO ELECTRIC CO","VEAZIE A",0,,1179,"0A",1294,,,95,4314,0,0,3855,0,0,5043,0,0,5153,0,0,6053,0,0,5342,0,0,3542,0,0,2651,0,0,2281,0,0,3932,0,0,5128,0,0,3842,0,0,1479,6,50159,"WAT","HY" 11,23,1,1,,19,62,"BANGOR HYDRO ELECTRIC CO","VEAZIE B",0,,1179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7199,6,50159,"WAT","HY" 11,23,1,3,2,19,68,"BANGOR HYDRO ELECTRIC CO","BAR HARBOR",0,"LIGHT OIL",1179,"0A",1294,,,95,42,73,538,379,659,574,0,0,574,73,128,446,69,125,512,225,420,440,312,579,556,449,813,455,32,60,586,49,89,497,6,10,487,152,264,571,1466,6,50159,"FO2","IC" 11,23,1,3,2,19,75,"BANGOR HYDRO ELECTRIC CO","EASTPORT",0,"LIGHT OIL",1179,"0A",1294,,,95,39,70,576,80,139,412,0,0,586,10,18,557,32,58,494,111,204,464,172,317,495,182,334,509,19,36,472,0,0,470,15,29,429,67,117,460,1468,6,50159,"FO2","IC" 11,23,1,1,,37,5,"CENTRAL MAINE POWER CO","ANDROSCOG 3",0,,3266,"0M",1294,,,95,2536,0,0,2573,0,0,2732,0,0,2703,0,0,2639,0,0,2235,0,0,2379,0,0,2201,0,0,1657,0,0,2352,0,0,2282,0,0,2805,0,0,1480,6,50491,"WAT","HY" 11,23,1,1,,37,10,"CENTRAL MAINE POWER CO","BAR MILLS",0,,3266,"0M",1294,,,95,2420,0,0,1389,0,0,2414,0,0,2364,0,0,2584,0,0,1195,0,0,623,0,0,586,0,0,293,0,0,1310,0,0,2401,0,0,2056,0,0,1481,6,50491,"WAT","HY" 11,23,1,1,,37,20,"CENTRAL MAINE POWER CO","BONNY EAGLE",0,,3266,"0M",1294,,,95,6041,0,0,3654,0,0,5858,0,0,5255,0,0,4575,0,0,2217,0,0,1233,0,0,1084,0,0,592,0,0,3323,0,0,7098,0,0,4100,0,0,1482,6,50491,"WAT","HY" 11,23,1,1,,37,40,"CENTRAL MAINE POWER CO","CATARACT",0,,3266,"0M",1294,,,95,5330,0,0,4194,0,0,4953,0,0,4656,0,0,4888,0,0,5331,0,0,818,0,0,662,0,0,102,0,0,2232,0,0,5064,0,0,4090,0,0,1486,6,50491,"WAT","HY" 11,23,1,1,,37,42,"CENTRAL MAINE POWER CO","CONTINENTAL",0,,3266,"0M",1294,,,95,-14,0,0,-15,0,0,322,0,0,72,0,0,147,0,0,12,0,0,3,0,0,13,0,0,15,0,0,109,0,0,555,0,0,-18,0,0,1487,6,50491,"WAT","HY" 11,23,1,1,,37,50,"CENTRAL MAINE POWER CO","DEER RIP 1",0,,3266,"0M",1294,,,95,2694,0,0,2434,0,0,4080,0,0,3776,0,0,4034,0,0,2023,0,0,686,0,0,215,0,0,83,0,0,1916,0,0,3984,0,0,3453,0,0,1488,6,50491,"WAT","HY" 11,23,1,1,,37,60,"CENTRAL MAINE POWER CO","FT HALIFAX",0,,3266,"0M",1294,,,95,959,0,0,424,0,0,1026,0,0,961,0,0,925,0,0,526,0,0,51,0,0,5,0,0,155,0,0,380,0,0,977,0,0,659,0,0,1490,6,50491,"WAT","HY" 11,23,1,1,,37,75,"CENTRAL MAINE POWER CO","GULF ISLAND",0,,3266,"0M",1294,,,95,10764,0,0,9131,0,0,13512,0,0,13282,0,0,13485,0,0,8299,0,0,5537,0,0,4070,0,0,2892,0,0,9130,0,0,15549,0,0,11464,0,0,1491,6,50491,"WAT","HY" 11,23,1,1,,37,80,"CENTRAL MAINE POWER CO","HARRIS",0,,3266,"0M",1294,,,95,14325,0,0,24479,0,0,22937,0,0,6538,0,0,5448,0,0,21283,0,0,13285,0,0,11928,0,0,12813,0,0,10770,0,0,19708,0,0,26783,0,0,1492,6,50491,"WAT","HY" 11,23,1,1,,37,85,"CENTRAL MAINE POWER CO","HIRAM",0,,3266,"0M",1294,,,95,5791,0,0,3447,0,0,5873,0,0,6762,0,0,6516,0,0,2778,0,0,1397,0,0,1182,0,0,155,0,0,2992,0,0,7160,0,0,4285,0,0,1493,6,50491,"WAT","HY" 11,23,1,1,,37,90,"CENTRAL MAINE POWER CO","MESALONSK 2",0,,3266,"0M",1294,,,95,1280,0,0,585,0,0,1625,0,0,606,0,0,869,0,0,350,0,0,2,0,0,-1,0,0,9,0,0,710,0,0,1668,0,0,745,0,0,1497,6,50491,"WAT","HY" 11,23,1,1,,37,95,"CENTRAL MAINE POWER CO","MESALONSK 3",0,,3266,"0M",1294,,,95,753,0,0,330,0,0,977,0,0,349,0,0,507,0,0,180,0,0,0,0,0,-6,0,0,0,0,0,414,0,0,1038,0,0,416,0,0,1498,6,50491,"WAT","HY" 11,23,1,1,,37,100,"CENTRAL MAINE POWER CO","MESALONSK 4",0,,3266,"0M",1294,,,95,405,0,0,183,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1499,6,50491,"WAT","HY" 11,23,1,1,,37,105,"CENTRAL MAINE POWER CO","MESALONSK 5",0,,3266,"0M",1294,,,95,699,0,0,292,0,0,0,0,0,378,0,0,0,0,0,203,0,0,13,0,0,9,0,0,4,0,0,408,0,0,923,0,0,390,0,0,1500,6,50491,"WAT","HY" 11,23,1,1,,37,110,"CENTRAL MAINE POWER CO","NO GORHAM",0,,3266,"0M",1294,,,95,1215,0,0,963,0,0,842,0,0,520,0,0,455,0,0,503,0,0,595,0,0,604,0,0,413,0,0,340,0,0,740,0,0,1180,0,0,1501,6,50491,"WAT","HY" 11,23,1,1,,37,125,"CENTRAL MAINE POWER CO","SHAWMUT",0,,3266,"0M",1294,,,95,5226,0,0,5495,0,0,6547,0,0,5776,0,0,5295,0,0,4910,0,0,3475,0,0,2346,0,0,2571,0,0,3529,0,0,4803,0,0,6066,0,0,1504,6,50491,"WAT","HY" 11,23,1,1,,37,130,"CENTRAL MAINE POWER CO","SKELTON",0,,3266,"0M",1294,,,95,13276,0,0,8614,0,0,12134,0,0,11304,0,0,11550,0,0,5199,0,0,2833,0,0,2610,0,0,687,0,0,6731,0,0,13037,0,0,9456,0,0,1505,6,50491,"WAT","HY" 11,23,1,1,,37,145,"CENTRAL MAINE POWER CO","WEST BUXTON",0,,3266,"0M",1294,,,95,4424,0,0,2556,0,0,4381,0,0,3723,0,0,3292,0,0,1602,0,0,798,0,0,745,0,0,418,0,0,1944,0,0,4334,0,0,3045,0,0,1508,6,50491,"WAT","HY" 11,23,1,1,,37,150,"CENTRAL MAINE POWER CO","WESTON",0,,3266,"0M",1294,,,95,8095,0,0,8443,0,0,9513,0,0,8520,0,0,7843,0,0,7850,0,0,5819,0,0,4618,0,0,4257,0,0,5361,0,0,7925,0,0,9347,0,0,1509,6,50491,"WAT","HY" 11,23,1,1,,37,155,"CENTRAL MAINE POWER CO","WILLIAMS",0,,3266,"0M",1294,,,95,9171,0,0,9162,0,0,10255,0,0,6585,0,0,7543,0,0,8658,0,0,6098,0,0,5593,0,0,5308,0,0,5891,0,0,8857,0,0,10646,0,0,1510,6,50491,"WAT","HY" 11,23,1,1,,37,160,"CENTRAL MAINE POWER CO","WYMAN HYDRO",0,,3266,"0M",1294,,,95,30298,0,0,37016,0,0,38382,0,0,18735,0,0,24745,0,0,31774,0,0,20433,0,0,17564,0,0,16353,0,0,19735,0,0,40234,0,0,38504,0,0,1511,6,50491,"WAT","HY" 11,23,1,4,2,37,175,"CENTRAL MAINE POWER CO","CAPE",0,"LIGHT OIL",3266,"0M",1294,,,95,40,282,7937,40,336,7601,-57,44,7557,-40,24,7533,5,162,7371,38,208,7316,611,1872,6581,497,1571,5887,-24,32,5855,-32,27,5828,-45,25,5803,-25,145,5552,1484,6,50491,"FO2","GT" 11,23,1,2,2,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"LIGHT OIL",3266,"0M",1294,,,95,707,1587,1149,810,1542,1579,117,264,1534,980,1825,1680,366,883,1468,854,1640,1807,783,1460,2327,653,1307,1677,115,266,1410,20,76,1335,486,1282,2039,604,1177,2212,1507,6,50491,"FO2","ST" 11,23,1,2,3,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"HEAVY OIL",3266,"0M",1294,,,95,47051,97029,319010,122493,214459,275338,22777,47240,228098,127804,222606,207728,22560,50003,278752,79660,140051,253816,153893,263859,173676,74046,134076,202289,16596,35140,288543,3258,10955,197963,18538,44437,353526,107031,192190,308382,1507,6,50491,"FO6","ST" 11,23,1,3,2,37,204,"CENTRAL MAINE POWER CO","ISLESBORO",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1494,6,50491,"FO2","IC" 11,23,1,3,2,37,206,"CENTRAL MAINE POWER CO","PEAK IS",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1502,6,50491,"FO2","IC" 11,23,1,1,,37,210,"CENTRAL MAINE POWER CO","BRUNSWICK",0,,3266,"0M",1294,,,95,7964,0,0,6898,0,0,11266,0,0,10237,0,0,10095,0,0,6009,0,0,3698,0,0,2974,0,0,2429,0,0,6541,0,0,12216,0,0,8541,0,0,1483,6,50491,"WAT","HY" 11,23,1,1,,37,215,"CENTRAL MAINE POWER CO","W CHANNEL",0,,3266,"0M",1294,,,95,0,0,0,-33,0,0,-20,0,0,-22,0,0,-1,0,0,-1,0,0,-1,0,0,-21,0,0,-1,0,0,19,0,0,-11,0,0,-22,0,0,695,6,50491,"WAT","HY" 11,23,1,1,,37,220,"CENTRAL MAINE POWER CO","BATES UPPER",0,,3266,"0M",1294,,,95,-41,0,0,-34,0,0,610,0,0,144,0,0,273,0,0,15,0,0,1,0,0,15,0,0,18,0,0,217,0,0,4223,0,0,-30,0,0,7044,6,50491,"WAT","HY" 11,23,1,1,,37,225,"CENTRAL MAINE POWER CO","BATES LOWER",0,,3266,"0M",1294,"S",,95,-17,0,0,-16,0,0,-8,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-3,0,0,-17,0,0,7045,6,50491,"WAT","HY" 11,23,1,1,,37,235,"CENTRAL MAINE POWER CO","ANDRO LOWER",0,,3266,"0M",1294,,,95,23,0,0,-11,0,0,21,0,0,-2,0,0,12,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,5,0,0,38,0,0,-14,0,0,7047,6,50491,"WAT","HY" 11,23,1,1,,37,240,"CENTRAL MAINE POWER CO","HILL MILL",0,,3266,"0M",1294,,,95,-3,0,0,-2,0,0,183,0,0,-6,0,0,60,0,0,2,0,0,1,0,0,0,0,0,1,0,0,105,0,0,467,0,0,-6,0,0,7048,6,50491,"WAT","HY" 11,23,1,1,,37,245,"CENTRAL MAINE POWER CO","C E MONTY",0,,3266,"0M",1294,,,95,11840,0,0,10124,0,0,14280,0,0,13297,0,0,13808,0,0,8324,0,0,5496,0,0,4271,0,0,3199,0,0,9333,0,0,15686,0,0,12247,0,0,805,6,50491,"WAT","HY" 11,23,1,1,,37,250,"CENTRAL MAINE POWER CO","SMELT HILL",0,,3266,"0M",294,"A",,95,0,0,0,400,0,0,352,0,0,239,0,0,180,0,0,162,0,0,191,0,0,178,0,0,-608,0,0,766,0,0,224,0,0,283,0,0,7514,6,50491,"WAT","HY" 11,23,1,2,"B",37,255,"CENTRAL MAINE POWER CO","AROOSTOOK V",0,"WOOD",3266,"0M",294,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,165,0,0,134,0,0,0,0,0,0,0,0,7513,6,50491,"WD","ST" 11,23,1,1,,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,,11522,"0M",1294,,,95,454,0,0,469,0,0,519,0,0,451,0,0,454,0,0,410,0,0,48,0,0,1,0,0,-2,0,0,178,0,0,536,0,0,504,0,0,1513,6,51747,"WAT","HY" 11,23,1,2,3,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"HEAVY OIL",11522,"0M",1294,,,95,343,903,9375,592,1410,7984,-32,0,8005,-29,0,7995,-26,6,8015,-27,4,8057,-26,0,8067,222,644,7448,-28,0,7396,-29,0,7390,857,1841,5557,2237,4973,2370,1513,6,51747,"FO6","ST" 11,23,1,3,2,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"LIGHT OIL",11522,"0M",1294,,,95,50,251,1746,5,143,1693,-65,0,1583,78,225,1932,-18,17,1865,-9,6,1829,38,115,1683,233,500,1802,86,210,1776,-6,65,2071,-56,28,1948,244,599,2098,1513,6,51747,"FO2","IC" 11,23,1,1,,94,10,"MAINE PUBLIC SERVICE CO","SQUA PAN",0,,11522,"0M",1294,,,95,115,0,0,363,0,0,152,0,0,-10,0,0,-7,0,0,-3,0,0,-3,0,0,-4,0,0,-6,0,0,-7,0,0,3,0,0,223,0,0,1516,6,51747,"WAT","HY" 11,23,1,3,2,94,23,"MAINE PUBLIC SERVICE CO","FLOS INN",0,"LIGHT OIL",11522,"0M",1294,,,95,27,115,314,19,82,232,-29,0,232,19,79,373,-23,2,371,-16,0,371,13,80,290,124,284,232,74,135,323,-3,51,272,-25,8,264,217,451,388,1514,6,51747,"FO2","IC" 11,23,1,3,2,94,25,"MAINE PUBLIC SERVICE CO","HOULTON",0,"LIGHT OIL",11522,"0M",1294,,,95,6,28,13,-8,1,12,-8,2,10,-8,0,10,-6,0,10,-3,0,10,-2,0,10,-3,0,10,-3,0,10,-4,0,11,-4,2,8,14,34,6,1515,6,51747,"FO2","IC" 11,23,1,2,1,97,1,"MAINE YANKEE ATOMIC PWR C","MAIN YANKEE",0,"NUCLEAR",11525,"0M",1294,,,95,197577,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1517,6,51748,"UR","ST" 11,23,1,3,2,116,10,"PUB SERV CO OF NEW HAMP","SWANS FALLS",0,"LIGHT OIL",15472,"0M",1294,"R",180,95,-7,0,2,-7,0,2,-6,0,2,-3,0,2,-2,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-3,0,2,0,0,0,1518,6,52411,"FO2","IC" 11,23,5,1,,525,1,"LEWISTON (CITY OF)","ANDRO UPPER",0,,10963,"0A",1294,,,95,296,0,0,378,0,0,310,0,0,424,0,0,264,0,0,390,0,0,256,0,0,258,0,0,304,0,0,270,0,0,342,0,0,324,0,0,7046,6,54168,"WAT","HY" 11,23,5,1,,566,1,"MADISON (CITY OF)","NORRIDGEWCK",0,,11477,"0A",1294,,,95,306,0,0,241,0,0,261,0,0,291,0,0,379,0,0,277,0,0,75,0,0,0,0,0,26,0,0,121,0,0,197,0,0,224,0,0,6701,6,51737,"WAT","HY" 11,23,8,3,2,835,5,"EASTERN MAINE ELEC COOP","PORTABLE",0,"LIGHT OIL",5609,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6366,6,50848,"FO2","IC" 11,23,8,3,2,940,1,"SWANS ISLAND ELEC COOP","MINTURN",0,"LIGHT OIL",18368,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1550,6,52863,"FO2","IC" 12,33,1,1,,106,5,"NEW ENGLAND POWER CO","COMERFORD",0,,13433,"0M",1294,,90,95,34273,0,0,19125,0,0,43429,0,0,11874,0,0,22700,0,0,13853,0,0,5565,0,0,11061,0,0,5412,0,0,30636,0,0,45527,0,0,18948,0,0,2349,6,52007,"WAT","HY" 12,33,1,1,,106,10,"NEW ENGLAND POWER CO","MCINDOES",0,,13433,"0M",1294,,90,95,4420,0,0,3434,0,0,6350,0,0,3330,0,0,4648,0,0,2664,0,0,1453,0,0,2497,0,0,1353,0,0,4755,0,0,7050,0,0,3740,0,0,6483,6,52007,"WAT","HY" 12,33,1,1,,106,13,"NEW ENGLAND POWER CO","S C MOORE",0,,13433,"0M",1294,,90,95,29434,0,0,15866,0,0,34014,0,0,9521,0,0,19359,0,0,12124,0,0,4787,0,0,9805,0,0,4357,0,0,27013,0,0,40020,0,0,16551,0,0,2351,6,52007,"WAT","HY" 12,33,1,1,,106,15,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,7120,0,0,5523,0,0,9186,0,0,7993,0,0,7582,0,0,3197,0,0,1355,0,0,2525,0,0,19,0,0,5912,0,0,9702,0,0,7342,0,0,2352,6,52007,"WAT","HY" 12,33,1,1,,106,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,1974,0,0,3326,0,0,18722,0,0,7773,0,0,8911,0,0,4713,0,0,4047,0,0,5176,0,0,2849,0,0,9330,0,0,12667,0,0,7471,0,0,2353,6,52007,"WAT","HY" 12,33,1,2,1,123,1,"PUB SERV CO OF NEW HAMP","SEABROOK",0,"NUCLEAR",15472,"0M",1294,,180,95,857441,0,0,778373,0,0,863021,0,0,832472,0,0,865152,0,0,495425,0,0,690261,0,0,805711,0,0,800410,0,0,828658,0,0,60958,0,0,501494,0,0,6115,6,52411,"UR","ST" 12,33,1,1,,123,4,"PUB SERV CO OF NEW HAMP","AMOSKEAG",0,,15472,"0M",1294,,180,95,10690,0,0,7028,0,0,11425,0,0,749,0,0,15769,0,0,4245,0,0,2251,0,0,3257,0,0,434,0,0,5760,0,0,11044,0,0,6264,0,0,2354,6,52411,"WAT","HY" 12,33,1,1,,123,6,"PUB SERV CO OF NEW HAMP","AYERS IS",0,,15472,"0M",1294,,180,95,3909,0,0,2249,0,0,4743,0,0,3555,0,0,4487,0,0,1520,0,0,1448,0,0,1727,0,0,380,0,0,3303,0,0,5711,0,0,2632,0,0,2355,6,52411,"WAT","HY" 12,33,1,1,,123,16,"PUB SERV CO OF NEW HAMP","EASTMAN FLS",0,,15472,"0M",1294,,180,95,2843,0,0,1293,0,0,2781,0,0,2587,0,0,2725,0,0,1214,0,0,1763,0,0,10079,0,0,-9794,0,0,1729,0,0,3266,0,0,1701,0,0,2356,6,52411,"WAT","HY" 12,33,1,1,,123,20,"PUB SERV CO OF NEW HAMP","GARVIN FLS",0,,15472,"0M",1294,,180,95,5209,0,0,3143,0,0,5693,0,0,4388,0,0,3956,0,0,2019,0,0,755,0,0,1667,0,0,350,0,0,3233,0,0,6336,0,0,3913,0,0,2357,6,52411,"WAT","HY" 12,33,1,1,,123,22,"PUB SERV CO OF NEW HAMP","GORHAM",0,,15472,"0M",1294,,180,95,989,0,0,1031,0,0,1249,0,0,885,0,0,1193,0,0,756,0,0,568,0,0,530,0,0,580,0,0,864,0,0,1116,0,0,1202,0,0,2358,6,52411,"WAT","HY" 12,33,1,1,,123,28,"PUB SERV CO OF NEW HAMP","HOOKSETT",0,,15472,"0M",1294,,180,95,787,0,0,865,0,0,912,0,0,1164,0,0,1141,0,0,791,0,0,156,0,0,317,0,0,43,0,0,751,0,0,952,0,0,776,0,0,2359,6,52411,"WAT","HY" 12,33,1,1,,123,30,"PUB SERV CO OF NEW HAMP","JACKMAN",0,,15472,"0M",1294,,180,95,1997,0,0,535,0,0,1239,0,0,236,0,0,557,0,0,305,0,0,191,0,0,722,0,0,-8,0,0,1339,0,0,2326,0,0,864,0,0,2360,6,52411,"WAT","HY" 12,33,1,1,,123,50,"PUB SERV CO OF NEW HAMP","SMITH STA",0,,15472,"0M",1294,,180,95,8143,0,0,9737,0,0,11648,0,0,6108,0,0,8349,0,0,6172,0,0,4454,0,0,4871,0,0,3742,0,0,6861,0,0,10860,0,0,10308,0,0,2368,6,52411,"WAT","HY" 12,33,1,4,2,123,57,"PUB SERV CO OF NEW HAMP","LOST NATION",0,"LIGHT OIL",15472,"0M",1294,,180,95,-15,0,2159,79,306,1853,-15,0,1853,-12,0,1853,42,125,1728,50,140,1587,209,595,1527,275,828,1235,-11,0,1235,-11,0,1235,-10,0,1235,111,338,1076,2362,6,52411,"FO2","GT" 12,33,1,2,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,27,45,275,16,29,156,22,38,180,23,38,218,0,0,0,29,52,151,6,14,205,30,55,180,52,96,222,62,108,185,57,96,176,20,35,176,2364,6,52411,"FO2","ST" 12,33,1,2,6,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"BIT COAL",15472,"0M",1294,,180,95,266403,101539,253077,274308,103830,266334,256612,98157,263978,216443,80934,278945,76504,17154,315133,246563,95683,297713,281671,111493,247571,263463,95839,235114,181335,71786,264069,207269,81066,275589,253852,96425,269715,287608,108204,247069,2364,6,52411,"BIT","ST" 12,33,1,4,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,-47,0,3032,411,1048,3032,-21,0,1984,-18,0,1984,112,282,1702,122,334,1367,613,1576,1494,582,1554,2033,-14,0,2033,-11,20,2013,-20,0,2013,242,603,1411,2364,6,52411,"FO2","GT" 12,33,1,2,3,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"HEAVY OIL",15472,"0M",1294,,180,95,1350,2702,31413,820,1554,92325,2073,4352,187620,1454,2823,184796,1826,3479,189663,2478,4626,184835,4062,7903,176932,2011,4193,53637,1321,2911,170000,1885,4329,165671,5233,10859,154812,3538,6785,118334,2367,6,52411,"FO6","ST" 12,33,1,2,6,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"BIT COAL",15472,"0M",1294,,180,95,53534,27148,87087,68779,32692,50318,47008,24972,52027,65230,33724,53967,55312,27020,32185,49976,24400,75043,55074,26887,62380,30313,18396,42154,18241,9931,51974,16092,9642,54786,30357,16856,90418,65541,32424,72200,2367,6,52411,"BIT","ST" 12,33,1,4,2,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"LIGHT OIL",15472,"0M",1294,,180,95,-13,0,804,95,260,723,-12,0,723,-9,0,723,57,118,604,-7,0,604,90,262,723,242,963,714,-7,0,714,0,0,714,-9,0,714,120,301,794,2367,6,52411,"FO2","GT" 12,33,1,4,9,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"NAT GAS",15472,"0M",1294,,180,95,19,240,0,12,140,0,24,310,0,25,300,0,22,264,0,17,210,0,219,2700,0,121,2803,0,14,190,0,15,220,0,24,320,0,22,260,0,2367,6,52411,"NG","GT" 12,33,1,4,2,123,70,"PUB SERV CO OF NEW HAMP","WHITE LAKE",0,"LIGHT OIL",15472,"0M",1294,,180,95,-17,0,2383,97,350,2033,-14,4,2029,-7,0,2029,48,94,1935,136,341,1595,147,405,1763,357,924,1410,-3,0,1410,-3,0,1410,-13,0,1410,-6,129,1281,2369,6,52411,"FO2","GT" 12,33,1,2,2,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"LIGHT OIL",15472,"0M",1294,,180,95,2141,4247,1577,1729,3274,1766,1111,2327,1824,1584,4149,1209,1580,3072,1209,1589,3168,1640,1162,2239,1856,1703,3313,1598,1134,2258,1388,173,817,1751,1894,3703,1630,507,3096,1651,8002,6,52411,"FO2","ST" 12,33,1,2,3,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"HEAVY OIL",15472,"0M",1294,,180,95,73391,138116,328850,119485,206586,321529,32827,62816,434361,89003,159420,245596,100291,177704,321055,73382,134661,317462,125529,216497,100965,57182,118647,2305699,45699,82009,405756,1560,6611,399144,100544,177099,222046,136392,231245,388270,8002,6,52411,"FO6","ST" 12,33,1,2,9,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"NAT GAS",15472,"0M",1294,,180,95,1463,17053,0,0,0,0,0,0,0,0,0,0,35353,394385,0,45744,527451,0,57696,624462,0,48968,544320,0,10747,122302,0,57,1545,0,742,8312,0,0,0,0,8002,6,52411,"NG","ST" 13,50,1,1,,22,2,"CENTRAL VT PUB SERV CORP","ARNOLD FLS",0,,3292,"0A",1294,,350,95,112,0,0,27,0,0,168,0,0,290,0,0,100,0,0,18,0,0,33,0,0,37,0,0,17,0,0,172,0,0,245,0,0,135,0,0,3707,6,50503,"WAT","HY" 13,50,1,1,,22,10,"CENTRAL VT PUB SERV CORP","CAVENDISH",0,,3292,"0A",1294,,350,95,534,0,0,309,0,0,847,0,0,607,0,0,267,0,0,83,0,0,0,0,0,134,0,0,-3,0,0,391,0,0,928,0,0,383,0,0,3710,6,50503,"WAT","HY" 13,50,1,1,,22,11,"CENTRAL VT PUB SERV CORP","CLARKS FLS",0,,3292,"0A",1294,,350,95,1404,0,0,1026,0,0,1689,0,0,1865,0,0,1729,0,0,855,0,0,596,0,0,1076,0,0,567,0,0,1648,0,0,1970,0,0,1412,0,0,3711,6,50503,"WAT","HY" 13,50,1,1,,22,15,"CENTRAL VT PUB SERV CORP","FAIRFAX",0,,3292,"0A",1294,,350,95,1873,0,0,1589,0,0,2321,0,0,2516,0,0,2499,0,0,1241,0,0,878,0,0,1432,0,0,744,0,0,2114,0,0,2573,0,0,2233,0,0,3712,6,50503,"WAT","HY" 13,50,1,1,,22,16,"CENTRAL VT PUB SERV CORP","GAGE",0,,3292,"0A",1294,,350,95,221,0,0,24,0,0,244,0,0,307,0,0,290,0,0,73,0,0,85,0,0,38,0,0,48,0,0,305,0,0,523,0,0,226,0,0,3713,6,50503,"WAT","HY" 13,50,1,1,,22,18,"CENTRAL VT PUB SERV CORP","GLEN",0,,3292,"0A",1294,,350,95,1041,0,0,605,0,0,731,0,0,367,0,0,238,0,0,98,0,0,83,0,0,323,0,0,183,0,0,629,0,0,1307,0,0,401,0,0,3714,6,50503,"WAT","HY" 13,50,1,1,,22,22,"CENTRAL VT PUB SERV CORP","LW MIDLEBRY",0,,3292,"0A",1294,,350,95,725,0,0,534,0,0,1054,0,0,920,0,0,550,0,0,286,0,0,79,0,0,150,0,0,104,0,0,524,0,0,1220,0,0,492,0,0,3716,6,50503,"WAT","HY" 13,50,1,1,,22,26,"CENTRAL VT PUB SERV CORP","MILTON",0,,3292,"0A",1294,,350,95,3538,0,0,2446,0,0,4215,0,0,4336,0,0,3864,0,0,1806,0,0,1204,0,0,2514,0,0,1210,0,0,4046,0,0,4879,0,0,3192,0,0,3717,6,50503,"WAT","HY" 13,50,1,1,,22,28,"CENTRAL VT PUB SERV CORP","PASSUMPSIC",0,,3292,"0A",1294,,350,95,315,0,0,97,0,0,378,0,0,435,0,0,415,0,0,90,0,0,51,0,0,150,0,0,94,0,0,370,0,0,434,0,0,44,0,0,3718,6,50503,"WAT","HY" 13,50,1,1,,22,30,"CENTRAL VT PUB SERV CORP","PATCH",0,,3292,"0A",1294,,350,95,107,0,0,58,0,0,59,0,0,21,0,0,7,0,0,5,0,0,5,0,0,28,0,0,7,0,0,42,0,0,158,0,0,30,0,0,3719,6,50503,"WAT","HY" 13,50,1,1,,22,34,"CENTRAL VT PUB SERV CORP","PIERCE MLS",0,,3292,"0A",1294,,350,95,113,0,0,81,0,0,121,0,0,180,0,0,161,0,0,59,0,0,47,0,0,47,0,0,17,0,0,102,0,0,181,0,0,116,0,0,3721,6,50503,"WAT","HY" 13,50,1,1,,22,36,"CENTRAL VT PUB SERV CORP","PITTSFORD",0,,3292,"0A",1294,,350,95,1275,0,0,941,0,0,158,0,0,47,0,0,-2,0,0,9,0,0,0,0,0,489,0,0,354,0,0,726,0,0,1999,0,0,679,0,0,3722,6,50503,"WAT","HY" 13,50,1,1,,22,38,"CENTRAL VT PUB SERV CORP","SALISBURY",0,,3292,"0A",1294,,350,95,325,0,0,210,0,0,191,0,0,62,0,0,141,0,0,65,0,0,25,0,0,72,0,0,111,0,0,88,0,0,-6,0,0,303,0,0,3724,6,50503,"WAT","HY" 13,50,1,1,,22,40,"CENTRAL VT PUB SERV CORP","SILVER LAKE",0,,3292,"0A",1294,,350,95,800,0,0,508,0,0,722,0,0,405,0,0,402,0,0,227,0,0,103,0,0,275,0,0,84,0,0,500,0,0,973,0,0,535,0,0,3725,6,50503,"WAT","HY" 13,50,1,1,,22,41,"CENTRAL VT PUB SERV CORP","TAFTSVILLE",0,,3292,"0A",1294,,350,95,150,0,0,135,0,0,208,0,0,200,0,0,119,0,0,12,0,0,0,0,0,17,0,0,-1,0,0,55,0,0,175,0,0,162,0,0,3727,6,50503,"WAT","HY" 13,50,1,1,,22,44,"CENTRAL VT PUB SERV CORP","WEYBRIDGE",0,,3292,"0A",1294,,350,95,1391,0,0,616,0,0,1819,0,0,1459,0,0,991,0,0,370,0,0,156,0,0,354,0,0,167,0,0,1042,0,0,2031,0,0,856,0,0,3728,6,50503,"WAT","HY" 13,50,1,1,,22,45,"CENTRAL VT PUB SERV CORP","PETERSON",0,,3292,"0A",1294,,350,95,2522,0,0,1281,0,0,3601,0,0,3092,0,0,2335,0,0,1090,0,0,702,0,0,1605,0,0,681,0,0,2814,0,0,4021,0,0,1742,0,0,3720,6,50503,"WAT","HY" 13,50,1,4,2,22,48,"CENTRAL VT PUB SERV CORP","RUTLAND",0,"LIGHT OIL",3292,"0A",1294,,350,95,13,125,4525,45,327,4198,40,218,3979,19,143,3836,20,127,3709,101,381,3328,272,898,2430,277,932,1498,34,167,3475,-8,46,3429,32,195,3234,152,651,2583,3723,6,50503,"FO2","GT" 13,50,1,4,2,22,49,"CENTRAL VT PUB SERV CORP","ASCUTNEY",0,"LIGHT OIL",3292,"0A",1294,,350,95,27,136,2572,77,326,2246,69,300,1946,18,96,1851,8,65,1786,41,144,1641,268,895,2175,226,765,1409,-1,38,3277,-15,0,3277,-3,71,3206,88,353,2853,3708,6,50503,"FO2","GT" 13,50,1,3,2,22,60,"CENTRAL VT PUB SERV CORP","ST ALBANS",0,"LIGHT OIL",3292,"0A",1294,,350,95,-14,0,89,5,38,214,-11,4,210,-10,5,205,7,17,188,21,40,148,72,149,234,59,123,111,-1,2,110,-3,0,110,-6,0,108,9,42,236,3726,6,50503,"FO2","IC" 13,50,1,1,,22,65,"CENTRAL VT PUB SERV CORP","SMITH",0,,3292,"0A",1294,,350,95,361,0,0,154,0,0,495,0,0,658,0,0,519,0,0,163,0,0,121,0,0,123,0,0,72,0,0,258,0,0,692,0,0,170,0,0,3709,6,50503,"WAT","HY" 13,50,1,1,,22,70,"CENTRAL VT PUB SERV CORP","EAST BARNET",0,,3292,"0A",1294,,350,95,595,0,0,399,0,0,900,0,0,1046,0,0,922,0,0,325,0,0,322,0,0,358,0,0,203,0,0,790,0,0,1148,0,0,702,0,0,788,6,50503,"WAT","HY" 13,50,1,1,,24,5,"CITIZENS UTILITIES CO","CHARLESTON",0,,3611,"0A",1294,,,95,339,0,0,244,0,0,393,0,0,445,0,0,409,0,0,252,0,0,154,0,0,192,0,0,90,0,0,382,0,0,461,0,0,314,0,0,3729,6,50560,"WAT","HY" 13,50,1,1,,24,10,"CITIZENS UTILITIES CO","NEWPORT",0,,3611,"0A",1294,,,95,1625,0,0,946,0,0,1961,0,0,1655,0,0,1645,0,0,917,0,0,474,0,0,1107,0,0,331,0,0,1614,0,0,2652,0,0,1235,0,0,3731,6,50560,"WAT","HY" 13,50,1,3,2,24,15,"CITIZENS UTILITIES CO","NEWPORT DSL",0,"LIGHT OIL",3611,"0A",1294,,,95,0,0,377,16,33,290,0,0,259,0,0,229,0,0,206,0,0,206,0,0,206,7,12,194,8,16,177,0,0,177,0,0,137,0,0,85,3730,6,50560,"FO2","IC" 13,50,1,1,,24,20,"CITIZENS UTILITIES CO","TROY",0,,3611,"0A",1294,,,95,150,0,0,72,0,0,150,0,0,267,0,0,209,0,0,71,0,0,28,0,0,30,0,0,3,0,0,74,0,0,244,0,0,128,0,0,3733,6,50560,"WAT","HY" 13,50,1,1,,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,,7601,"0M",1294,,,95,2888,0,0,2870,0,0,4338,0,0,3931,0,0,3261,0,0,980,0,0,333,0,0,1531,0,0,936,0,0,2161,0,0,3540,0,0,2964,0,0,3737,6,51169,"WAT","HY" 13,50,1,3,2,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,"LIGHT OIL",7601,"0M",1294,,,95,0,0,311,11,27,284,1,1,283,0,0,283,7,16,267,28,61,385,45,85,300,33,65,235,9,19,394,0,0,394,0,0,394,12,25,369,3737,6,51169,"FO2","IC" 13,50,1,1,,47,15,"GREEN MOUNTAIN POWER CORP","GORGE NO 18",0,,7601,"0M",1294,,,95,901,0,0,986,0,0,1573,0,0,1661,0,0,1125,0,0,122,0,0,113,0,0,692,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6475,6,51169,"WAT","HY" 13,50,1,1,,47,20,"GREEN MOUNTAIN POWER CORP","MARSHFIELD6",0,,7601,"0M",1294,,,95,891,0,0,1188,0,0,245,0,0,107,0,0,0,0,0,3,0,0,2,0,0,54,0,0,53,0,0,604,0,0,1300,0,0,430,0,0,3739,6,51169,"WAT","HY" 13,50,1,1,,47,25,"GREEN MOUNTAIN POWER CORP","MIDDLESEX 2",0,,7601,"0M",1294,,,95,1134,0,0,848,0,0,1580,0,0,1697,0,0,1156,0,0,150,0,0,111,0,0,717,0,0,45,0,0,1158,0,0,2061,0,0,1133,0,0,3740,6,51169,"WAT","HY" 13,50,1,1,,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,,7601,"0M",1294,,,95,972,0,0,799,0,0,1171,0,0,1224,0,0,968,0,0,441,0,0,247,0,0,499,0,0,318,0,0,590,0,0,1307,0,0,899,0,0,6519,6,51169,"WAT","HY" 13,50,1,3,2,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,"LIGHT OIL",7601,"0M",1294,,,95,15,27,282,68,118,164,15,24,319,5,8,311,4,25,465,108,264,200,174,319,417,163,302,294,20,35,437,3,2,436,2,4,432,35,62,370,6519,6,51169,"FO2","IC" 13,50,1,1,,47,53,"GREEN MOUNTAIN POWER CORP","WATRBRY 22",0,,7601,"0M",1294,,,95,2101,0,0,2029,0,0,1441,0,0,318,0,0,823,0,0,444,0,0,464,0,0,1190,0,0,485,0,0,2251,0,0,2609,0,0,1566,0,0,6520,6,51169,"WAT","HY" 13,50,1,1,,47,55,"GREEN MOUNTAIN POWER CORP","W DANVIL 15",0,,7601,"0M",1294,,,95,445,0,0,146,0,0,507,0,0,509,0,0,301,0,0,77,0,0,87,0,0,220,0,0,103,0,0,544,0,0,661,0,0,151,0,0,3743,6,51169,"WAT","HY" 13,50,1,4,2,47,58,"GREEN MOUNTAIN POWER CORP","BERLIN NO 5",0,"LIGHT OIL",7601,"0M",1294,,,95,32,270,10962,606,1501,9460,21,72,9388,0,0,9338,254,677,8711,731,1834,7632,1214,3039,11011,1354,3377,12369,189,463,14376,681,1521,12855,79,209,12646,389,879,11767,3734,6,51169,"FO2","GT" 13,50,1,4,2,47,60,"GREEN MOUNTAIN POWER CORP","COLCHSTR 16",0,"LIGHT OIL",7601,"0M",1294,,,95,7,28,1071,86,296,775,5,25,750,0,0,750,9,33,717,6,26,1583,117,472,1112,76,320,791,0,0,1506,0,0,1506,0,0,1507,0,0,1506,3735,6,51169,"FO2","GT" 13,50,1,1,,47,65,"GREEN MOUNTAIN POWER CORP","BOLTON FALL",0,,7601,"0M",1294,,,95,3020,0,0,2253,0,0,3823,0,0,2884,0,0,2258,0,0,636,0,0,502,0,0,1603,0,0,428,0,0,2596,0,0,4478,0,0,2430,0,0,7056,6,51169,"WAT","HY" 13,50,1,7,"D",47,70,"GREEN MOUNTAIN POWER CORP","CARTHUSIANS",0,"N/A",7601,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7260,6,51169,"WI","WI" 13,50,1,1,,73,5,"NEW ENGLAND POWER CO","BELLOWS FLS",0,,13433,"0M",1294,,90,95,22299,0,0,16448,0,0,28735,0,0,22260,0,0,21635,0,0,10244,0,0,6175,0,0,10541,0,0,3991,0,0,19464,0,0,30239,0,0,18843,0,0,3745,6,52007,"WAT","HY" 13,50,1,1,,73,10,"NEW ENGLAND POWER CO","HARRIMAN",0,,13433,"0M",1294,,90,95,14391,0,0,13610,0,0,13092,0,0,2630,0,0,807,0,0,1394,0,0,2040,0,0,2968,0,0,2416,0,0,10136,0,0,16468,0,0,11713,0,0,3746,6,52007,"WAT","HY" 13,50,1,1,,73,15,"NEW ENGLAND POWER CO","SEARSBURG",0,,13433,"0M",1294,,90,95,3120,0,0,2878,0,0,3094,0,0,1942,0,0,1012,0,0,853,0,0,152,0,0,1319,0,0,954,0,0,2077,0,0,3042,0,0,2675,0,0,6529,6,52007,"WAT","HY" 13,50,1,1,,73,18,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,4592,0,0,4182,0,0,5197,0,0,4922,0,0,4427,0,0,2397,0,0,1604,0,0,3525,0,0,1667,0,0,3876,0,0,4946,0,0,3693,0,0,8904,6,52007,"WAT","HY" 13,50,1,1,,73,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,9053,0,0,5888,0,0,8525,0,0,1765,0,0,2559,0,0,1204,0,0,21,0,0,1756,0,0,407,0,0,4556,0,0,8802,0,0,2669,0,0,8905,6,52007,"WAT","HY" 13,50,1,1,,98,5,"PUB SERV CO OF NEW HAMP","CANAAN",0,,15472,"0M",1294,,180,95,729,0,0,718,0,0,805,0,0,483,0,0,569,0,0,345,0,0,252,0,0,190,0,0,195,0,0,728,0,0,765,0,0,738,0,0,3750,6,52411,"WAT","HY" 13,50,1,2,1,135,1,"VT YANKEE NUCLEAR PR CORP","VT YANKEE",0,"NUCLEAR",19796,"0M",1294,,,95,384928,0,0,346136,0,0,192519,0,0,0,0,0,335965,0,0,365673,0,0,371198,0,0,375476,0,0,363210,0,0,389313,0,0,379730,0,0,354361,0,0,3751,6,53128,"UR","ST" 13,50,1,1,,304,1,"VERMONT MARBLE CO","PROCTOR",0,,19794,"0A",1294,,,95,3213,0,0,2009,0,0,3559,0,0,3058,0,0,2032,0,0,1143,0,0,395,0,0,893,0,0,294,0,0,1839,0,0,3796,0,0,1853,0,0,6450,6,53127,"WAT","HY" 13,50,1,1,,304,5,"VERMONT MARBLE CO","CTR RUTLAND",0,,19794,"0A",1294,,,95,161,0,0,164,0,0,188,0,0,211,0,0,211,0,0,121,0,0,26,0,0,62,0,0,19,0,0,85,0,0,190,0,0,184,0,0,6453,6,53127,"WAT","HY" 13,50,1,1,,304,10,"VERMONT MARBLE CO","BELDENS",0,,19794,"0A",1294,,,95,2174,0,0,1009,0,0,2729,0,0,1624,0,0,972,0,0,405,0,0,95,0,0,369,0,0,149,0,0,1679,0,0,2997,0,0,1013,0,0,6451,6,53127,"WAT","HY" 13,50,1,4,2,304,15,"VERMONT MARBLE CO","FLORENCE",0,"LIGHT OIL",19794,"0A",1294,,,95,-2,95,12708,118,200,12076,184,475,11934,674,1762,7457,74,191,4607,157,358,9260,354,1040,6925,210,559,6363,167,435,4707,-11,3,10761,-13,60,8428,167,550,7887,7337,6,53127,"FO2","GT" 13,50,5,1,,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,,1299,"0A",1294,,,95,477,0,0,231,0,0,556,0,0,533,0,0,570,0,0,256,0,0,132,0,0,351,0,0,83,0,0,382,0,0,680,0,0,196,0,0,3753,6,50178,"WAT","HY" 13,50,5,3,2,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,"LIGHT OIL",1299,"0A",1294,,,95,0,0,206,14,34,172,0,0,172,0,0,172,1,3,169,19,51,118,39,103,190,42,112,78,7,19,59,0,0,59,0,0,118,10,86,32,3753,6,50178,"FO2","IC" 13,50,5,4,2,536,1,"BURLINGTON (CITY OF)","GAS TURB",0,"LIGHT OIL",2548,"0M",1294,,,95,0,1,1628,248,707,868,0,4,2022,0,0,2015,19,66,1949,459,1365,1742,608,1830,1698,485,1472,1476,56,189,1287,0,0,1285,84,242,1001,165,472,1772,3754,6,50375,"FO2","GT" 13,50,5,2,"B",536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"WOD CHIPS",2548,"0M",1294,,,95,7742,0,0,12138,0,0,4790,0,0,12108,0,0,15618,0,0,11949,0,0,14425,0,0,8887,0,0,5359,0,0,3746,0,0,10817,0,0,19589,0,0,589,6,50375,"WOD","ST" 13,50,5,2,2,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"LIGHT OIL",2548,"0M",1294,,,95,136,326,2416,132,350,1989,41,99,1826,0,216,1559,0,39,1448,0,22,1351,4,23,1264,0,81,1183,0,52,1021,0,40,945,19,99,3170,24,98,2994,589,6,50375,"FO2","ST" 13,50,5,2,9,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"NAT GAS",2548,"0M",1294,,,95,1750,24386,0,816,12632,0,1337,18689,0,0,2252,0,0,3244,0,0,3721,0,177,4800,0,0,2471,0,0,2396,0,0,2708,0,449,13380,0,2064,47618,0,589,6,50375,"NG","ST" 13,50,5,1,,551,5,"ENOSBURG FALLS (VILLAGE)","KENDALL",0,,5915,"0A",1294,,,95,52,0,0,126,0,0,145,0,0,160,0,0,164,0,0,130,0,0,102,0,0,121,0,0,68,0,0,109,0,0,147,0,0,64,0,0,3757,6,50910,"WAT","HY" 13,50,5,3,2,551,10,"ENOSBURG FALLS (VILLAGE)","DIESEL PLT",0,"LIGHT OIL",5915,"0A",1294,,,95,1,5,320,14,24,296,0,1,296,1,3,293,4,13,280,16,34,246,20,37,351,23,44,307,2,6,301,0,0,301,0,0,0,12,21,279,4247,6,50910,"FO2","IC" 13,50,5,1,,551,15,"ENOSBURG FALLS (VILLAGE)","VILLAGE PLT",0,,5915,"0A",1294,,,95,370,0,0,204,0,0,298,0,0,433,0,0,408,0,0,218,0,0,87,0,0,140,0,0,45,0,0,324,0,0,364,0,0,395,0,0,4246,6,50910,"WAT","HY" 13,50,5,1,,567,1,"HARDWICK (VILLAGE OF)","WOLCOTT",0,,8104,"0A",1294,,,95,228,0,0,139,0,0,381,0,0,480,0,0,332,0,0,55,0,0,41,0,0,20,0,0,22,0,0,331,0,0,526,0,0,262,0,0,6477,6,51238,"WAT","HY" 13,50,5,3,2,567,5,"HARDWICK (VILLAGE OF)","HARDWICK",0,"LIGHT OIL",8104,"0A",1294,,,95,0,0,451,0,0,451,0,0,451,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6476,6,51238,"FO2","IC" 13,50,5,1,,644,5,"LYNDONVILLE (CITY OF)","GREAT FALLS",0,,11359,"0A",1294,,,95,160,0,0,115,0,0,308,0,0,489,0,0,746,0,0,350,0,0,273,0,0,122,0,0,171,0,0,457,0,0,558,0,0,437,0,0,3762,6,51721,"WAT","HY" 13,50,5,1,,644,10,"LYNDONVILLE (CITY OF)","VAIL",0,,11359,"0A",1294,,,95,100,0,0,71,0,0,99,0,0,123,0,0,225,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,107,0,0,3763,6,51721,"WAT","HY" 13,50,5,1,,659,5,"MORRISVILLE (VILLAGE OF)","CADYS FALLS",0,,12989,"0A",1294,,,95,396,0,0,268,0,0,387,0,0,226,0,0,403,0,0,133,0,0,101,0,0,2,0,0,71,0,0,356,0,0,337,0,0,160,0,0,3765,6,51943,"WAT","HY" 13,50,5,1,,659,10,"MORRISVILLE (VILLAGE OF)","MORRISVILLE",0,,12989,"0A",1294,,,95,250,0,0,312,0,0,619,0,0,801,0,0,581,0,0,131,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,-2,0,0,227,0,0,3764,6,51943,"WAT","HY" 13,50,5,1,,659,15,"MORRISVILLE (VILLAGE OF)","W K SANDERS",0,,12989,"0A",1294,,,95,-5,0,0,114,0,0,24,0,0,13,0,0,33,0,0,10,0,0,-1,0,0,38,0,0,-2,0,0,83,0,0,177,0,0,7,0,0,678,6,51943,"WAT","HY" 13,50,5,1,,737,5,"SWANTON (VILLAGE OF)","HIGHGATE FL",0,,18371,"0A",1294,,,95,3846,0,0,2084,0,0,5329,0,0,5012,0,0,4484,0,0,2556,0,0,711,0,0,1431,0,0,444,0,0,4486,0,0,6056,0,0,2920,0,0,6618,6,52864,"WAT","HY" 13,50,8,1,,800,5,"VERMONT ELECTRIC COOP","N HARTLAND",0,,19791,"0A",1294,,,95,1260,0,0,415,0,0,212,0,0,990,0,0,623,0,0,190,0,0,90,0,0,4,0,0,8,0,0,484,0,0,1466,0,0,734,0,0,590,6,53125,"WAT","HY" 13,50,8,1,,810,5,"WASHINGTON ELECTRIC COOP","WRIGHTSVILE",0,,20151,"0A",1294,,,95,270,0,0,88,0,0,334,0,0,327,0,0,246,0,0,50,0,0,54,0,0,128,0,0,47,0,0,3224,0,0,418,0,0,153,0,0,7051,6,58100,"WAT","HY" 14,25,1,2,1,23,1,"BOSTON EDISON CO","PILGRIM",0,"NUCLEAR",1998,"0M",1294,,,95,494219,0,0,433548,0,0,370903,0,0,0,0,0,0,0,0,313826,0,0,476983,0,0,486906,0,0,466384,0,0,470820,0,0,479805,0,0,492451,0,0,1590,6,50300,"UR","ST" 14,25,1,4,2,23,15,"BOSTON EDISON CO","EDGAR",0,"LIGHT OIL",1998,"0M",1294,,,95,43,139,1048,160,393,893,25,79,1053,64,124,929,28,74,855,110,379,953,323,950,955,245,760,910,38,108,1040,37,107,933,56,139,1032,134,337,934,1585,6,50300,"FO2","GT" 14,25,1,4,2,23,17,"BOSTON EDISON CO","FRAMINGHAM",0,"LIGHT OIL",1998,"0M",1294,,,95,141,378,1770,276,681,1804,67,203,1601,44,165,1674,70,215,1698,449,1329,1559,788,2383,1819,766,2306,1658,95,258,1630,53,142,1734,74,277,1695,278,761,1649,1586,6,50300,"FO2","GT" 14,25,1,4,2,23,20,"BOSTON EDISON CO","L STREET",0,"LIGHT OIL",1998,"0M",1294,,,95,18,71,606,223,524,481,31,74,586,101,254,571,64,181,628,302,790,611,232,657,597,450,1241,537,70,195,581,33,121,579,41,95,603,202,478,601,1587,6,50300,"FO2","GT" 14,25,1,2,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,251,519,1723,2082,3518,560,0,0,2480,874,1565,1748,1508,2858,1987,1285,2470,2852,2284,4277,1789,1325,2537,1992,119,230,1762,111,219,2019,220,439,1580,238,420,1327,1588,6,50300,"FO2","ST" 14,25,1,2,3,23,25,"BOSTON EDISON CO","MYSTIC",0,"HEAVY OIL",1998,"0M",1294,,,95,112692,212897,634701,250006,389639,396000,28170,35809,578539,46219,75659,622498,47350,81843,540595,74633,131731,529651,114158,195470,453259,65504,114254,339850,9543,16899,623019,18574,33314,589243,137777,234264,549412,333744,539006,466193,1588,6,50300,"FO6","ST" 14,25,1,2,9,23,25,"BOSTON EDISON CO","MYSTIC",0,"NAT GAS",1998,"0M",1294,,,95,54301,611365,0,41760,387451,0,199825,2260608,0,223483,2242300,0,121095,1295784,0,76698,835115,0,229079,2424349,0,221936,2420968,0,166749,1844575,0,138588,1545200,0,1185,12271,0,4690,47014,0,1588,6,50300,"NG","ST" 14,25,1,4,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,27,56,491,103,175,435,20,57,497,61,110,506,37,71,435,192,369,532,279,524,365,264,506,455,27,53,523,26,52,471,36,92,498,52,92,444,1588,6,50300,"FO2","GT" 14,25,1,2,2,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"LIGHT OIL",1998,"0M",1294,,,95,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,1589,6,50300,"FO2","ST" 14,25,1,2,3,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"HEAVY OIL",1998,"0M",1294,,,95,215120,320592,70394,155709,225131,71506,167349,258313,38374,0,0,38374,0,0,38374,0,0,38374,0,0,38403,0,0,38403,0,0,38403,0,0,38808,0,0,73197,633,1026,94600,1589,6,50300,"FO6","ST" 14,25,1,2,9,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,151,1334,0,2301,23751,0,201560,2042478,0,231080,2303282,0,366745,3613841,0,376840,3697457,0,381210,3746576,0,337660,3311625,0,328300,3254233,0,343010,3322669,0,159417,1573389,0,1589,6,50300,"NG","ST" 14,25,1,4,2,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"LIGHT OIL",1998,"0M",1294,,,95,532,1305,6724,2615,5858,6588,305,882,6659,441,1064,6548,648,1783,6907,1922,5806,5619,2304,7193,6789,2376,1139,6841,43,153,6688,33,101,6587,199,636,6665,2492,6199,6929,1592,6,50300,"FO2","GT" 14,25,1,4,9,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,963,16262,0,363,42170,0,305,906,0,134,2149,0,0,0,0,0,0,0,1592,6,50300,"NG","GT" 14,25,1,2,3,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"HEAVY OIL",4120,"0M",1294,,80,95,12,9,1622,622,891,254,0,0,0,12,11,3277,4,9,3067,8,31,3303,19,66,3122,71,286,2313,8,25,2707,0,0,2900,388,267,2375,216,151,3016,1594,6,50412,"FO6","ST" 14,25,1,2,9,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"NAT GAS",4120,"0M",1294,,80,95,643,3052,0,809,7234,0,0,0,0,329,1924,0,176,2782,0,306,7064,0,840,18553,0,641,16359,0,98,2009,0,0,0,0,26,113,0,3,12,0,1594,6,50412,"NG","ST" 14,25,1,2,3,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"HEAVY OIL",4120,"0M",1294,,80,95,1966,3331,44639,4440,7426,46357,571,1025,43350,551,1184,40895,279,518,39729,76,146,39422,226,384,45928,178,367,45253,473,969,43288,91,206,42859,6937,10643,43043,10035,14044,33074,1595,6,50412,"FO6","ST" 14,25,1,2,9,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"NAT GAS",4120,"0M",1294,,80,95,8305,87563,0,5498,57215,0,7487,85115,0,6963,94695,0,6096,81153,0,7445,90078,0,8638,93009,0,7941,103714,0,6154,79756,0,5898,84299,0,580,5629,0,447,3954,0,1595,6,50412,"NG","ST" 14,25,1,4,2,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1889,173,442,1930,0,0,1930,10,26,1904,381,951,1671,340,886,1969,587,1240,1863,822,2088,2078,160,754,1323,0,0,1561,0,0,1561,183,453,1925,1595,6,50412,"FO2","GT" 14,25,1,2,3,25,15,"COMMONWEALTH ENERGY SYS","CANAL",0,"HEAVY OIL",4120,"0M",1294,,80,95,162391,279085,64428,147412,254620,37606,178077,310890,35916,210807,342420,34150,172965,296386,68134,149960,274442,64297,204907,357210,66759,386648,623547,65078,202416,316252,66152,59087,109907,66707,307766,492512,64272,421791,645524,63446,1599,6,50412,"FO6","ST" 14,25,1,3,2,25,25,"COMMONWEALTH ENERGY SYS","OAK BLUFFS",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1131,70,125,1006,0,0,1006,3,6,1000,58,98,1011,55,97,1035,183,321,1005,196,350,1036,1,4,1032,0,0,1159,6,15,1144,63,118,1026,1597,6,50412,"FO2","IC" 14,25,1,3,2,25,30,"COMMONWEALTH ENERGY SYS","W TISBURY",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,2023,42,87,1936,0,0,1936,2,4,1932,38,68,1918,40,70,1848,243,439,1711,204,373,1827,0,0,1827,0,0,2044,5,18,2026,47,98,1928,6049,6,50412,"FO2","IC" 14,25,1,3,2,25,35,"COMMONWEALTH ENERGY SYS","AIRPORT DIE",0,"LIGHT OIL",4120,"0M",1294,,80,95,2,4,65,20,32,57,6,9,48,14,26,23,3,17,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7184,6,50412,"FO2","IC" 14,25,1,4,2,46,1,"FITCHBURG GAS & ELEC LGT","FITCHBURG",0,"LIGHT OIL",6374,"0M",1294,,,95,113,320,1233,544,1372,812,0,0,1289,68,210,1079,120,416,1139,539,1444,1109,663,1798,2154,708,1974,1126,70,191,2125,49,166,1960,0,0,1960,461,1173,2216,1601,6,50990,"FO2","GT" 14,25,1,1,,59,5,"HOLYOKE WTR PWR CO","BB HOLBROOK",0,,8779,"0M",1294,,554,95,215,0,0,12,0,0,439,0,0,48,0,0,0,0,0,-4,0,0,-2,0,0,111,0,0,7,0,0,88,0,0,177,0,0,95,0,0,1602,6,51327,"WAT","HY" 14,25,1,1,,59,7,"HOLYOKE WTR PWR CO","CHEMICAL",0,,8779,"0M",1294,,554,95,390,0,0,65,0,0,264,0,0,560,0,0,1378,0,0,-3,0,0,-2,0,0,33,0,0,-2,0,0,199,0,0,228,0,0,152,0,0,1604,6,51327,"WAT","HY" 14,25,1,1,,59,10,"HOLYOKE WTR PWR CO","HADLEY FLLS",0,,8779,"0M",1294,,554,95,19318,0,0,16252,0,0,20835,0,0,17997,0,0,1047,0,0,10005,0,0,4815,0,0,8945,0,0,1536,0,0,13795,0,0,19251,0,0,19209,0,0,1605,6,51327,"WAT","HY" 14,25,1,1,,59,15,"HOLYOKE WTR PWR CO","RIVERSIDE",0,,8779,"0M",1294,,554,95,2283,0,0,798,0,0,2407,0,0,2806,0,0,1058,0,0,-32,0,0,-28,0,0,236,0,0,-31,0,0,991,0,0,1475,0,0,1658,0,0,1607,6,51327,"WAT","HY" 14,25,1,1,,59,20,"HOLYOKE WTR PWR CO","BOATLOCK",0,,8779,"0M",1294,,554,95,1401,0,0,440,0,0,1465,0,0,1749,0,0,-1985,0,0,-45,0,0,34,0,0,364,0,0,188,0,0,1015,0,0,1030,0,0,1719,0,0,1603,6,51327,"WAT","HY" 14,25,1,1,,59,21,"HOLYOKE WTR PWR CO","SKINNER",0,,8779,"0M",1294,,554,95,1087,0,0,-990,0,0,135,0,0,122,0,0,0,0,0,-3,0,0,-3,0,0,10,0,0,-5,0,0,48,0,0,88,0,0,144,0,0,1608,6,51327,"WAT","HY" 14,25,1,2,2,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"LIGHT OIL",8779,"0M",1294,,554,95,253,312,334,85,74,223,86,144,363,96,161,0,210,338,471,128,216,400,63,106,0,319,575,0,148,244,0,283,596,339,311,528,442,268,461,289,1606,6,51327,"FO2","ST" 14,25,1,2,6,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"BIT COAL",8779,"0M",1294,,554,95,83436,31625,65901,94304,36568,48767,100316,38568,48417,92219,34981,57613,86828,32256,68520,89522,33641,55040,96838,37232,50903,67013,26869,64337,58083,21428,72102,20300,9635,85211,75120,28714,96373,83498,33548,87268,1606,6,51327,"BIT","ST" 14,25,1,2,3,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"HEAVY OIL",12833,"0M",1294,,,95,5362,8778,70647,3605,6271,64376,3682,6389,57987,572,894,57093,4068,7388,49705,3861,6474,101371,1808,3090,98281,1729,8455,89825,4071,6826,83000,7484,12748,70251,8762,14647,55605,1259,3587,97942,1613,6,56511,"FO6","ST" 14,25,1,2,6,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"BIT COAL",12833,"0M",1294,,,95,57318,21462,76767,61443,26125,64290,61730,25219,52529,14739,5125,47404,25607,10149,50811,58410,21998,42203,65563,26654,42553,52228,21241,48670,53057,20314,65856,44642,17190,76089,48433,18499,83931,70559,26084,98563,1613,6,56511,"BIT","ST" 14,25,1,4,2,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"LIGHT OIL",12833,"0M",1294,,,95,143,374,5116,433,1118,3998,115,229,3769,65,186,3583,285,740,4510,629,1593,4110,1349,3410,5229,1777,4429,5348,136,348,5000,0,0,4999,5,26,5687,653,1369,4318,1613,6,56511,"FO2","GT" 14,25,1,3,2,90,15,"NANTUCKET ELEC CO","NANTUCKET",0,"LIGHT OIL",13206,"0M",1294,,,95,7539,12658,2602,7625,13184,8503,7218,12056,5494,6969,12757,2261,7465,13354,7937,7820,14759,9687,10453,19444,7486,10644,19689,5848,7894,13523,10626,6823,12246,7898,7832,14492,3042,9557,16800,2912,1615,6,51977,"FO2","IC" 14,25,1,1,,96,5,"NEW ENGLAND POWER CO","DEERFIELD 2",0,,13433,"0M",1294,,90,95,3908,0,0,2952,0,0,3971,0,0,2045,0,0,1064,0,0,520,0,0,442,0,0,617,0,0,404,0,0,2016,0,0,3583,0,0,2747,0,0,6047,6,52007,"WAT","HY" 14,25,1,1,,96,10,"NEW ENGLAND POWER CO","DEERFIELD 3",0,,13433,"0M",1294,,90,95,4040,0,0,3243,0,0,4233,0,0,2293,0,0,1182,0,0,848,0,0,445,0,0,722,0,0,460,0,0,1885,0,0,3570,0,0,3116,0,0,6083,6,52007,"WAT","HY" 14,25,1,1,,96,15,"NEW ENGLAND POWER CO","DEERFIELD 4",0,,13433,"0M",1294,,90,95,3691,0,0,2835,0,0,3555,0,0,1674,0,0,865,0,0,673,0,0,414,0,0,621,0,0,420,0,0,1920,0,0,3135,0,0,2638,0,0,6119,6,52007,"WAT","HY" 14,25,1,1,,96,20,"NEW ENGLAND POWER CO","DEERFIELD 5",0,,13433,"0M",1294,,90,95,8684,0,0,6946,0,0,8699,0,0,2314,0,0,807,0,0,564,0,0,515,0,0,177,0,0,0,0,0,0,0,0,3382,0,0,5810,0,0,1620,6,52007,"WAT","HY" 14,25,1,1,,96,25,"NEW ENGLAND POWER CO","SHERMAN",0,,13433,"0M",1294,,90,95,4117,0,0,3467,0,0,4264,0,0,1151,0,0,407,0,0,439,0,0,377,0,0,602,0,0,527,0,0,2183,0,0,3889,0,0,2917,0,0,6012,6,52007,"WAT","HY" 14,25,1,2,3,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"HEAVY OIL",13433,"0M",1294,,90,95,40093,74054,435541,65951,116563,318656,49098,75749,438283,41100,69916,368366,2212,5326,519600,0,0,519442,0,0,519401,488,4266,515767,0,0,516617,0,0,516584,7553,10954,505630,71672,125949,379784,1619,6,52007,"FO6","ST" 14,25,1,2,6,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"BIT COAL",13433,"0M",1294,,90,95,657136,245754,255528,538158,200282,277893,335153,130042,379361,336389,128159,523785,552184,203304,520224,709319,259373,461575,714608,267126,390587,681408,256270,431828,600517,222478,518312,676108,250140,322224,643066,226804,159986,692743,256541,166201,1619,6,52007,"BIT","ST" 14,25,1,2,9,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"NAT GAS",13433,"0M",1294,,90,95,2475,65992,0,19895,234494,0,87264,1046891,0,115149,1305242,0,165738,1925331,0,192541,2159965,0,121121,1465806,0,138514,1578722,0,90677,1067560,0,7950,208839,0,642,50267,0,499,65467,0,1619,6,52007,"NG","ST" 14,25,1,3,2,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"LIGHT OIL",13433,"0M",1294,,90,95,48,91,0,168,321,0,49,91,0,66,120,0,149,212,0,229,427,0,434,803,0,429,813,0,49,97,0,17,33,0,0,0,0,122,221,0,1619,6,52007,"FO2","IC" 14,25,1,2,3,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"HEAVY OIL",13433,"0M",1294,,90,95,4216,6811,427550,19621,51462,372000,43825,80929,296042,52176,100975,196885,88546,157427,294207,74155,134469,405510,143472,245061,157683,78033,135040,315193,15952,29894,481681,10242,22800,451257,31856,63264,446411,130138,177251,300301,1626,6,52007,"FO6","ST" 14,25,1,2,6,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"BIT COAL",13433,"0M",1294,,90,95,170230,67910,116594,174526,68827,87604,182421,75469,107334,180983,73494,87888,123760,53441,145441,149482,64633,132065,157915,67184,148469,169338,69504,116124,140768,59871,93091,133365,56779,72780,147538,65216,99054,158287,70574,72828,1626,6,52007,"BIT","ST" 14,25,1,3,2,96,40,"NEW ENGLAND POWER CO","GLOUCESTER",0,"LIGHT OIL",13433,"0M",1294,,90,95,180,400,1027,365,1056,1255,495,500,1183,191,320,863,798,1430,1148,331,615,1333,398,757,1219,767,1957,1197,100,165,1033,0,0,1031,2,3,1465,491,918,1190,1624,6,52007,"FO2","IC" 14,25,1,3,2,96,50,"NEW ENGLAND POWER CO","NEWBURYPORT",0,"LIGHT OIL",13433,"0M",1294,,90,95,23,31,898,242,431,942,1,0,943,124,222,720,79,135,986,279,516,828,384,714,746,466,834,770,24,47,723,5,10,715,0,0,929,200,360,998,1625,6,52007,"FO2","IC" 14,25,1,1,,96,55,"NEW ENGLAND POWER CO","FIFE BROOK",0,,13433,"0M",1294,,90,95,4107,0,0,3775,0,0,4880,0,0,1321,0,0,312,0,0,338,0,0,198,0,0,494,0,0,291,0,0,2274,0,0,4150,0,0,3161,0,0,8004,6,52007,"WAT","HY" 14,25,1,1,,96,60,"NEW ENGLAND POWER CO","BEAR SWAMP",0,"P-PUMPSTG",13433,"0M",1294,,90,95,-17861,61325,0,-15324,57381,0,-16082,58258,0,-15241,53916,0,-14630,56226,0,-16812,61971,0,-18159,63682,0,-15902,62948,0,-16995,61404,0,-17477,62001,0,-15650,58713,0,-16215,58454,0,8005,6,52007,"WAT","HY" 14,25,1,1,,145,5,"W MASSACHUSETTS ELEC CO","CABOT",0,,20455,"0M",1294,,555,95,27350,0,0,20962,0,0,33562,0,0,28813,0,0,2450,0,0,11373,0,0,5730,0,0,10888,0,0,1060,0,0,21360,0,0,32264,0,0,23532,0,0,1629,6,53266,"WAT","HY" 14,25,1,1,,145,10,"W MASSACHUSETTS ELEC CO","COBBLE MT",0,,20455,"0M",1294,,555,95,2687,0,0,2401,0,0,3134,0,0,1490,0,0,613,0,0,1371,0,0,1579,0,0,2606,0,0,404,0,0,934,0,0,679,0,0,2257,0,0,1630,6,53266,"WAT","HY" 14,25,1,1,,145,12,"W MASSACHUSETTS ELEC CO","DWIGHT",0,,20455,"0M",1294,,555,95,541,0,0,520,0,0,744,0,0,709,0,0,972,0,0,422,0,0,241,0,0,219,0,0,137,0,0,316,0,0,187,0,0,450,0,0,6378,6,53266,"WAT","HY" 14,25,1,1,,145,20,"W MASSACHUSETTS ELEC CO","GARDER FLS",0,,20455,"0M",1294,,555,95,1535,0,0,1501,0,0,2140,0,0,1273,0,0,591,0,0,393,0,0,159,0,0,373,0,0,244,0,0,740,0,0,1394,0,0,1292,0,0,1634,6,53266,"WAT","HY" 14,25,1,1,,145,30,"W MASSACHUSETTS ELEC CO","IND ORCHARD",0,,20455,"0M",1294,,555,95,1913,0,0,854,0,0,1614,0,0,786,0,0,661,0,0,177,0,0,8,0,0,59,0,0,4,0,0,434,0,0,1375,0,0,741,0,0,6379,6,53266,"WAT","HY" 14,25,1,1,,145,32,"W MASSACHUSETTS ELEC CO","PUTTS BRDGE",0,,20455,"0M",1294,,555,95,224,0,0,252,0,0,1368,0,0,249,0,0,550,0,0,741,0,0,249,0,0,393,0,0,186,0,0,1233,0,0,1150,0,0,251,0,0,1637,6,53266,"WAT","HY" 14,25,1,1,,145,33,"W MASSACHUSETTS ELEC CO","RED BRIDGE",0,,20455,"0M",1294,,555,95,2265,0,0,1259,0,0,1699,0,0,1592,0,0,1025,0,0,689,0,0,212,0,0,256,0,0,150,0,0,1248,0,0,7724,0,0,1271,0,0,1638,6,53266,"WAT","HY" 14,25,1,1,,145,35,"W MASSACHUSETTS ELEC CO","TURNERS FL",0,,20455,"0M",1294,,555,95,1180,0,0,-9,0,0,2580,0,0,457,0,0,2357,0,0,3,0,0,320,0,0,753,0,0,1529,0,0,1437,0,0,3487,0,0,96,0,0,6388,6,53266,"WAT","HY" 14,25,1,1,,145,37,"W MASSACHUSETTS ELEC CO","NORTHFLD MT",0,"P-PUMPSTG",20455,"0M",1294,,555,95,-40582,142177,0,-33131,122422,0,-34507,127754,0,-38191,123876,0,-53574,130653,0,-54650,139615,0,-65287,149806,0,-58299,150495,0,-60095,144418,0,-65178,152081,0,-51403,135668,0,-54958,140849,0,547,6,53266,"WAT","HY" 14,25,1,4,2,145,38,"W MASSACHUSETTS ELEC CO","DOREEN",0,"LIGHT OIL",20455,"0M",1294,,555,95,50,156,956,319,789,738,14,84,997,11,135,1029,31,63,967,166,460,863,117,360,1099,422,1231,1099,69,204,1073,-10,0,1073,34,122,951,162,418,771,1631,6,53266,"FO2","GT" 14,25,1,2,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,0,0,533,101,224,458,0,0,458,19,36,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,379,1642,6,53266,"FO2","ST" 14,25,1,2,3,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"HEAVY OIL",20455,"0M",1294,,555,95,3033,6175,75421,4119,8425,75374,344,607,80604,1867,3252,77352,19,33,77318,750,1321,75997,1456,2596,73401,758,1343,72058,0,0,72058,0,0,72923,2320,5181,76520,13739,24402,55074,1642,6,53266,"FO6","ST" 14,25,1,2,9,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"NAT GAS",20455,"0M",1294,,555,95,2167,27681,0,81,1046,0,24872,278755,0,28674,316564,0,33801,372726,0,33691,376470,0,34950,395433,0,39329,440670,0,21443,242289,0,3420,45099,0,110,1547,0,158,1773,0,1642,6,53266,"NG","ST" 14,25,1,4,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,45,159,682,84,220,801,-17,0,801,-12,0,801,-3,12,789,108,297,6777,282,717,1096,319,633,977,0,0,977,0,0,977,0,0,977,0,0,977,1642,6,53266,"FO2","GT" 14,25,1,4,2,145,60,"W MASSACHUSETTS ELEC CO","WOODLAND RD",0,"LIGHT OIL",20455,"0M",1294,,555,95,38,127,1027,218,623,814,3,20,1144,11,96,1048,22,56,992,219,604,924,341,963,1130,373,1030,1017,32,105,1090,-7,0,1090,5,59,1032,156,398,534,1643,6,53266,"FO2","GT" 14,25,5,3,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,1,3,0,40,86,0,2,4,0,8,15,0,18,33,0,0,0,0,66,37,0,90,173,0,8,15,0,16,29,0,0,0,0,47,86,0,1660,6,50315,"FO2","IC" 14,25,5,5,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"WASTE HT",2144,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1660,6,50315,"NG","CC" 14,25,5,6,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,597,1163,3860,1950,3916,4922,529,946,3897,722,1243,2632,0,0,2595,0,0,2595,0,0,0,0,0,0,0,0,0,418,803,0,0,0,0,563,1271,0,1660,6,50315,"FO2","CT" 14,25,5,6,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"NAT GAS",2144,"0M",1294,,,95,6985,76876,0,16116,164048,0,4161,42418,0,25648,268544,0,6647,61554,0,0,0,0,6439,68107,0,22225,231091,0,11633,125960,0,2826,30097,0,605,6473,0,2795,30378,0,1660,6,50315,"NG","CT" 14,25,5,1,,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,,8776,"0M",1294,,,95,1039,0,0,94,0,0,1200,0,0,538,0,0,244,0,0,216,0,0,169,0,0,308,0,0,243,0,0,308,0,0,843,0,0,63,0,0,9864,6,51325,"WAT","HY" 14,25,5,2,3,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"HEAVY OIL",8776,"0M",1294,,,95,-34,8,21223,-7,161,18597,-32,0,17335,-149,242,9944,-157,0,11105,-26,144,12014,197,918,10400,173,751,10383,0,0,21744,-26,2,23445,-45,21,21407,48,571,24539,9864,6,51325,"FO6","ST" 14,25,5,2,9,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"NAT GAS",8776,"0M",1294,,,95,-406,548,0,-47,7095,0,-432,0,0,-151,1508,0,-180,0,0,-82,2775,0,358,10343,0,495,13260,0,-282,0,0,-300,136,0,-310,907,0,116,8617,0,9864,6,51325,"NG","ST" 14,25,5,3,2,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"LIGHT OIL",8973,"0A",1294,,,95,126,216,6535,468,801,5733,24,47,5687,49,79,5608,60,99,5509,136,242,5267,334,576,4687,237,442,10028,21,36,9992,0,0,9992,0,0,9992,0,613,9379,9038,6,51362,"FO2","IC" 14,25,5,3,9,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"NAT GAS",8973,"0A",1294,,,95,16,177,0,0,0,0,0,0,0,27,276,0,223,2327,0,514,5353,0,813,8555,0,1067,10973,0,248,2679,0,0,0,0,0,0,0,0,0,0,9038,6,51362,"NG","IC" 14,25,5,3,2,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"LIGHT OIL",9442,"0A",1294,,,95,3,144,1524,185,504,1020,-44,84,928,26,97,839,45,81,751,112,229,1817,221,430,1388,171,335,1053,42,71,981,0,0,1991,0,13,1901,70,285,1616,1670,6,51411,"FO2","IC" 14,25,5,3,9,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"NAT GAS",9442,"0A",1294,,,95,0,0,0,0,0,0,-7,91,0,26,564,0,193,2049,0,356,4180,0,540,6225,0,488,5467,0,218,2149,0,0,0,0,0,164,0,0,0,0,1670,6,51411,"NG","IC" 14,25,5,3,2,630,20,"MARBLEHEAD (CITY OF)","COMM ST 2",0,"LIGHT OIL",11624,"0A",1294,,,95,0,0,134,30,54,153,0,0,124,1,4,109,8,23,86,22,43,163,30,67,96,40,77,139,3,3,134,0,0,129,0,0,107,16,31,153,6585,6,51769,"FO2","IC" 14,25,5,3,2,630,25,"MARBLEHEAD (CITY OF)","WILKINS STA",0,"LIGHT OIL",11624,"0A",1294,,,95,24,42,422,242,404,495,3,4,490,17,25,466,41,67,398,140,249,387,184,331,532,214,384,390,17,34,833,0,0,831,0,0,833,105,187,646,6586,6,51769,"FO2","IC" 14,25,5,4,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,868,1812,0,3250,6760,0,1070,2159,0,1016,2152,0,1531,3641,0,3583,7206,0,6923,15010,0,5440,12228,0,1296,2825,0,251,525,0,0,0,0,2081,4355,0,6081,6,56516,"FO2","GT" 14,25,5,5,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,4867,0,0,4882,0,0,1895,0,0,0,0,0,1645,0,0,1298,0,0,2909,0,0,2231,0,0,542,0,0,137,0,0,778,0,0,7866,0,0,6081,6,56516,"FO2","CC" 14,25,5,5,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"WASTE HT",11806,"0M",1294,,,95,667,6409,0,33,225,0,713,7903,0,38860,226425,0,32080,282829,0,30410,271547,0,30355,268417,0,22281,199679,0,16911,152536,0,13731,126250,0,649,6336,0,0,0,0,6081,6,56516,"NG","CC" 14,25,5,6,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,16765,34499,275954,17076,35625,171066,1732,3145,164811,15194,31318,130811,4458,10049,117055,3259,6474,203614,7129,14689,223923,5719,12097,199458,1427,2966,193410,406,852,191674,2974,6318,192851,24527,50346,140778,6081,6,56516,"FO2","CT" 14,25,5,6,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"NAT GAS",11806,"0M",1294,,,95,2298,22081,0,33,225,0,7123,78947,0,38860,226425,0,85133,750563,0,75927,677993,0,74156,655728,0,57044,511219,0,44278,399380,0,38588,354794,0,2475,24166,0,0,0,0,6081,6,56516,"NG","CT" 14,25,5,4,2,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"LIGHT OIL",14605,"0M",1294,,,95,4,11,7009,461,990,6019,3,13,6006,114,218,5789,218,411,5378,259,572,4806,1447,3081,5724,79,204,5787,0,0,5770,0,0,5770,0,0,5770,751,1304,4214,1678,6,52270,"FO2","GT" 14,25,5,4,9,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"NAT GAS",14605,"0M",1294,,,95,71,948,0,818,8676,0,0,0,0,298,3898,0,500,6079,0,1161,14052,0,735,10563,0,2810,34245,0,871,10971,0,16,244,0,0,0,0,136,1612,0,1678,6,52270,"NG","GT" 14,25,5,3,2,695,1,"SHREWSBURY (CITY OF)","SHREWSBURY",0,"LIGHT OIL",17127,"0A",1294,,,95,-48,53,1717,-20,96,1621,-72,0,1621,-59,0,1621,-27,43,1577,28,133,1444,206,450,994,393,793,1630,-12,58,1571,-52,4,1568,-66,0,1568,5,146,1421,6125,6,52653,"FO2","IC" 14,25,5,2,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,707,1487,45484,117,274,41056,124,1171,40232,227,881,38944,154,338,18232,1782,3821,13122,1997,4404,13146,1671,3714,26632,1017,1981,30701,285,1042,41468,209,665,43572,1269,2308,3691,1682,6,52885,"FO6","ST" 14,25,5,5,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,2588,4259,0,3074,4987,0,7,71,0,264,1016,0,10569,21610,0,5376,8750,0,7132,10296,0,7761,11325,0,6430,8473,0,269,1218,0,135,435,0,7563,7563,0,1682,6,52885,"FO6","CC" 14,25,5,5,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,0,0,0,88,2162,0,0,0,0,0,7,0,70,898,0,11828,118101,0,7953,72245,0,11517,102477,0,3409,38796,0,275,3743,0,0,0,0,0,0,0,1682,6,52885,"NG","CC" 14,25,5,6,2,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"LIGHT OIL",18488,"0M",1294,,,95,600,1721,500,1175,3321,414,0,10,405,0,0,405,23,155,250,230,719,0,424,1426,393,75,247,983,20,69,920,0,0,922,172,601,798,1596,4611,881,1682,6,52885,"FO2","CT" 14,25,5,6,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1682,6,52885,"FO6","CT" 14,25,5,6,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,215,3547,0,0,0,0,0,0,0,9,220,0,91,2523,0,3269,55134,0,3573,59309,0,4974,79500,0,4776,58796,0,188,2751,0,2,41,0,0,0,0,1682,6,52885,"NG","CT" 15,44,1,3,2,59,1,"BLOCK ISLAND POWER CO","BLOCK ISL",0,"LIGHT OIL",1857,"0A",1294,,,95,640,929,1894,560,757,1368,454,801,1953,666,926,2412,871,1183,2384,728,1492,1815,1748,2173,1258,1686,2317,1251,852,1532,1104,890,1214,1044,683,904,1044,537,1042,1378,6567,6,50270,"FO2","IC" 15,44,1,2,3,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"HEAVY OIL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6954,6984,12805,21121,8031,15471,21089,11950,17787,9381,10642,17134,20900,3236,6,52007,"FO6","ST" 15,44,1,2,6,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"BIT COAL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3236,6,52007,"BIT","ST" 15,44,1,2,9,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"NAT GAS",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,6790,0,5496,108488,0,22180,283931,0,57696,544903,0,43911,426261,0,200212,1571059,0,273062,2060878,0,3236,6,52007,"NG","ST" 15,44,1,3,2,71,5,"NEWPORT ELECTRIC CORP","ELDRED",0,"LIGHT OIL",13549,"0A",1294,,,95,0,0,912,146,241,919,0,0,916,14,24,893,280,476,872,38,285,806,254,445,603,431,759,765,53,97,884,0,0,884,30,55,818,186,311,942,3240,6,52046,"FO2","IC" 15,44,1,3,2,71,15,"NEWPORT ELECTRIC CORP","JEPSON",0,"LIGHT OIL",13549,"0A",1294,,,95,10,19,1047,104,179,864,0,0,1112,13,24,1094,58,103,998,35,303,926,228,421,966,339,620,1037,31,56,977,0,0,977,0,0,977,162,273,920,3241,6,52046,"FO2","IC" 15,44,5,1,,600,1,"PROVIDENCE (CITY OF)","PROVIDENCE",0,,15440,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3245,6,52404,"WAT","HY" 16,9,1,1,,21,1,"GILMAN BROTHERS CO","GILMAN",0,,6885,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,536,6,50309,"WAT","HY" 16,9,1,1,,37,5,"CONNECTICUT LGT & PWR CO","BULLS BRDGE",0,,4176,"0M",1294,,550,95,4542,0,0,3859,0,0,4535,0,0,4526,0,0,711,0,0,1545,0,0,596,0,0,576,0,0,83,0,0,3291,0,0,5258,0,0,4512,0,0,541,6,50651,"WAT","HY" 16,9,1,1,,37,15,"CONNECTICUT LGT & PWR CO","ROBERTSVLE",0,,4176,"0M",1294,,550,95,228,0,0,144,0,0,74,0,0,117,0,0,0,0,0,23,0,0,4,0,0,14,0,0,1,0,0,58,0,0,0,0,0,7,0,0,549,6,50651,"WAT","HY" 16,9,1,1,,37,20,"CONNECTICUT LGT & PWR CO","ROCKY RIVER",0,"C-PUMPSTG",4176,"0M",1294,,550,95,-532,573,0,-108,831,0,-5011,4942,0,-3890,3881,0,-2483,2464,0,-30,0,0,-50,160,0,-45,941,0,-34,0,0,-295,262,0,3242,0,0,3543,0,0,539,6,50651,"WAT","HY" 16,9,1,1,,37,25,"CONNECTICUT LGT & PWR CO","SCOTLAND DM",0,,4176,"0M",1294,,550,95,1196,0,0,762,0,0,1285,0,0,753,0,0,65,0,0,169,0,0,32,0,0,83,0,0,9,0,0,401,0,0,43,0,0,524,0,0,551,6,50651,"WAT","HY" 16,9,1,1,,37,28,"CONNECTICUT LGT & PWR CO","SHEPAUG",0,,4176,"0M",1294,,550,95,19987,0,0,8510,0,0,16746,0,0,8668,0,0,479,0,0,3113,0,0,1323,0,0,1665,0,0,561,0,0,4280,0,0,17593,0,0,9586,0,0,552,6,50651,"WAT","HY" 16,9,1,1,,37,30,"CONNECTICUT LGT & PWR CO","STEVENSON",0,,4176,"0M",1294,,550,95,14594,0,0,6873,0,0,12878,0,0,7022,0,0,5946,0,0,2333,0,0,1155,0,0,1565,0,0,585,0,0,7574,0,0,15018,0,0,7269,0,0,553,6,50651,"WAT","HY" 16,9,1,1,,37,33,"CONNECTICUT LGT & PWR CO","TAFTVILLE",0,,4176,"0M",1294,,550,95,1047,0,0,773,0,0,1181,0,0,662,0,0,0,0,0,286,0,0,106,0,0,168,0,0,58,0,0,376,0,0,802,0,0,539,0,0,554,6,50651,"WAT","HY" 16,9,1,1,,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,,4176,"0M",1294,,550,95,1344,0,0,790,0,0,1127,0,0,808,0,0,808,0,0,130,0,0,51,0,0,62,0,0,13,0,0,528,0,0,1238,0,0,756,0,0,557,6,50651,"WAT","HY" 16,9,1,4,2,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,"LIGHT OIL",4176,"0M",1294,,550,95,92,241,1121,148,413,1052,-10,0,1052,8,34,1017,-9,0,1017,174,492,1054,399,1075,1028,391,1123,1060,-10,0,1060,-9,0,1060,-8,0,1060,247,642,1013,557,6,50651,"FO2","GT" 16,9,1,4,2,37,37,"CONNECTICUT LGT & PWR CO","COS COB",0,"LIGHT OIL",4176,"0M",1294,,550,95,338,879,6366,1004,2550,5530,-6,0,6730,61,328,6402,100,252,6836,1043,2766,6164,1606,4183,6744,1574,4512,6417,89,372,6045,10,115,5931,-7,47,5884,478,1250,6205,542,6,50651,"FO2","GT" 16,9,1,2,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,4,7,607,26,48,738,10,19,719,8,14,705,6,12,693,5,10,683,12,21,662,5,10,652,35,67,586,12,21,564,10,19,545,126,250,652,544,6,50651,"FO2","ST" 16,9,1,2,3,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"HEAVY OIL",4176,"0M",1294,,550,95,1691,2896,140820,5317,8938,131882,6310,10503,160145,2309,3909,156236,1040,1748,154488,1026,1746,152742,366,624,152118,0,0,152118,0,0,152118,1119,1895,186866,0,0,223227,52715,95704,164704,544,6,50651,"FO6","ST" 16,9,1,2,9,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"NAT GAS",4176,"0M",1294,,550,95,139882,1480772,0,125833,1333372,0,140034,1484076,0,74718,805341,0,129292,1364215,0,113222,1209824,0,134347,1440396,0,141005,1520883,0,84240,919763,0,92690,988325,0,85651,910220,0,1027,11734,0,544,6,50651,"NG","ST" 16,9,1,4,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,-8,0,826,52,143,1016,-6,0,1016,11,41,975,15,50,924,93,252,873,213,464,899,323,840,1155,12,42,1113,14,46,864,-8,0,864,126,312,755,544,6,50651,"FO2","GT" 16,9,1,2,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,79,187,224,71,184,282,0,0,277,35,81,316,26,52,254,126,275,254,225,460,205,169,342,281,13,78,193,-9,27,344,11,35,57,248,530,404,546,6,50651,"FO2","ST" 16,9,1,2,3,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"HEAVY OIL",4176,"0M",1294,,550,95,19404,42123,179930,11903,28403,229734,496,984,267130,8852,18669,287361,73,131,287230,16090,31789,255441,33046,60820,194621,29759,54794,250449,448,2452,286041,-459,1261,284780,4782,14127,272628,50192,96782,219079,546,6,50651,"FO6","ST" 16,9,1,2,9,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"NAT GAS",4176,"0M",1294,,550,95,2644,35575,0,1337,19886,0,14239,177907,0,15760,209674,0,26332,300080,0,15321,191070,0,33080,384304,0,29657,341116,0,660,22744,0,-410,7132,0,948,17617,0,2622,31910,0,546,6,50651,"NG","ST" 16,9,1,3,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,5,11,429,51,91,429,3,5,429,21,47,429,5,10,429,32,60,429,47,88,429,44,82,429,5,10,429,0,0,429,7,15,429,14,27,429,546,6,50651,"FO2","IC" 16,9,1,2,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,,550,95,1942,3751,1166,1049,1831,1166,1411,2570,1166,801,1409,746,830,1566,1275,1306,2393,1275,1212,2164,1208,1005,1793,1129,448,996,1090,743,1549,1201,1863,3623,816,1573,2830,1073,548,6,50651,"FO2","ST" 16,9,1,2,3,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"HEAVY OIL",4176,"0M",1294,,550,95,61485,109340,281515,116317,186438,251428,53269,89422,277523,112195,177490,244461,49615,86635,387526,72024,117143,423659,87276,142042,395624,69104,110519,365065,12764,26032,444868,12966,24423,458286,56112,97835,437824,98414,160154,343905,548,6,50651,"FO6","ST" 16,9,1,4,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,"R",550,95,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,548,6,50651,"FO2","GT" 16,9,1,1,,37,60,"CONNECTICUT LGT & PWR CO","BANTAM",0,,4176,"0M",1294,,550,95,166,0,0,122,0,0,177,0,0,99,0,0,0,0,0,24,0,0,2,0,0,9,0,0,0,0,0,66,0,0,182,0,0,126,0,0,6457,6,50651,"WAT","HY" 16,9,1,1,,37,65,"CONNECTICUT LGT & PWR CO","FLS VILLAGE",0,,4176,"0M",1294,,550,95,6485,0,0,3067,0,0,6148,0,0,4269,0,0,57,0,0,1043,0,0,359,0,0,386,0,0,86,0,0,3283,0,0,6134,0,0,3241,0,0,560,6,50651,"WAT","HY" 16,9,1,4,2,37,70,"CONNECTICUT LGT & PWR CO","FRANKLIN DR",0,"LIGHT OIL",4176,"0M",1294,,550,95,87,251,1073,112,303,770,-21,0,770,6,41,429,9,45,1229,156,508,1033,386,937,931,385,1480,880,-11,0,808,-12,0,808,-14,0,0,109,306,1000,561,6,50651,"FO2","GT" 16,9,1,2,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,52,116,72,106,200,205,37,72,134,69,119,181,93,171,177,62,115,62,142,274,121,143,283,195,159,331,184,25,61,123,89,174,116,58,124,159,562,6,50651,"FO2","ST" 16,9,1,2,3,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"HEAVY OIL",4176,"0M",1294,,550,95,28156,57773,619646,82338,144562,470965,28954,52136,494722,112799,180932,367774,91771,154447,321716,103385,178821,285273,180564,315539,192342,120265,219668,308678,14240,27382,395204,9172,20697,432521,29631,53865,465010,116423,197687,379501,562,6,50651,"FO6","ST" 16,9,1,4,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,0,0,986,60,155,998,2,12,986,0,0,986,18,56,1096,133,235,803,220,518,962,326,864,969,6,21,948,0,0,946,0,0,936,0,0,936,562,6,50651,"FO2","GT" 16,9,1,2,"C",37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"REFUSE",4176,"0M",1294,,550,95,36668,0,0,31584,0,0,30750,0,0,36558,0,0,4988,0,0,38064,0,0,35273,0,0,35840,0,0,37803,0,0,39379,0,0,36583,0,0,40236,0,0,563,6,50651,"GEO","ST" 16,9,1,4,2,37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"LIGHT OIL",4176,"0M",1294,,550,95,547,1286,33605,2263,5797,27807,-4,195,27613,257,794,4952,465,1373,43574,2527,6621,35953,4081,8784,28189,3486,11650,34410,234,1143,29931,-49,0,29931,56,271,29660,2479,6072,23588,563,6,50651,"FO2","GT" 16,9,1,4,2,37,85,"CONNECTICUT LGT & PWR CO","TORRINGTN T",0,"LIGHT OIL",4176,"0M",1294,,550,95,80,183,802,-19,0,802,9,49,753,4,24,729,-6,0,1062,163,373,867,4081,6864,28189,583,1059,947,4,16,931,-7,0,931,-8,0,931,173,446,1006,565,6,50651,"FO2","GT" 16,9,1,4,2,37,90,"CONNECTICUT LGT & PWR CO","BRANFORD",0,"LIGHT OIL",4176,"0M",1294,,550,95,-23,0,993,-11,0,993,-12,0,983,-9,0,993,-12,0,993,-15,0,963,303,888,1170,580,1248,981,112,115,1073,-7,12,1061,12,62,999,103,312,1042,540,6,50651,"FO2","GT" 16,9,1,2,1,45,1,"CONN YANKEE ATOMIC PWR CO","HADDAM NECK",0,"NUCLEAR",4187,"0M",1294,,551,95,349804,0,0,-2724,0,0,-2714,0,0,80321,0,0,411060,0,0,385019,0,0,346822,0,0,397229,0,0,404771,0,0,427136,0,0,421633,0,0,435253,0,0,558,6,50652,"UR","ST" 16,9,1,1,,70,1,"FARMINGTON RIVER POWER CO","RAINBOW",0,,6207,"0A",1294,,,95,4465,0,0,2602,0,0,3654,0,0,2574,0,0,1712,0,0,1108,0,0,787,0,0,842,0,0,700,0,0,2530,0,0,4222,0,0,2756,0,0,559,6,50970,"WAT","HY" 16,9,1,2,1,85,1,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,474794,0,0,424364,0,0,479164,0,0,452923,0,0,470915,0,0,397551,0,0,307242,0,0,369216,0,0,459416,0,0,478184,0,0,46176,0,0,-2630,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,2,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,-2968,0,0,-3117,0,0,-2841,0,0,12840,0,0,0,0,0,0,0,0,-8427,0,0,340333,0,0,625348,0,0,645987,0,0,618792,0,0,511064,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,3,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,853882,0,0,758672,0,0,851613,0,0,328284,0,0,0,0,0,594786,0,0,853005,0,0,844847,0,0,822134,0,0,852985,0,0,817800,0,0,422956,0,0,566,6,50005,"UR","ST" 16,9,1,2,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,289,498,533,83,144,555,103,183,538,278,575,297,94,164,466,159,276,523,127,224,632,239,436,363,60,105,591,207,368,557,52,92,465,58,101,530,568,6,53003,"FO2","ST" 16,9,1,2,3,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,12678,20036,157706,31465,49414,142873,1716,2749,140124,28015,51807,143380,11615,18496,124884,34707,55499,150609,43253,69685,122107,18699,30642,149294,6814,10677,163242,4908,7842,155400,4195,6665,148735,54634,86347,0,568,6,53003,"FO6","ST" 16,9,1,2,6,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"BIT COAL",19497,"0M",1294,,,95,193441,73716,182983,223214,85285,166858,221070,86802,148636,4755,2176,201542,224862,86475,170775,217578,84500,168741,225684,88542,121774,166492,67303,123827,199715,77070,157924,143992,56780,199095,198867,77375,176894,249682,95223,163986,568,6,53003,"BIT","ST" 16,9,1,4,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,4,8,549,151,259,469,0,0,647,5,12,635,10,18,617,12,22,595,145,256,696,308,560,493,63,111,560,0,0,560,9,16,545,75,130,594,568,6,53003,"FO2","GT" 16,9,1,2,2,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"LIGHT OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO2","ST" 16,9,1,2,3,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"HEAVY OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO6","ST" 16,9,1,2,2,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,876,1540,484,437,731,468,424,737,445,327,564,583,511,892,406,254,441,667,361,632,570,401,702,762,359,651,646,23,502,680,959,1741,546,779,1314,482,6156,6,53003,"FO2","ST" 16,9,1,2,3,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,104071,166097,286634,171042,260046,151260,95848,151028,241794,147390,227183,379543,69013,110799,306351,74009,117219,286218,97251,153426,333078,88533,139665,374595,39346,64393,310202,163,3184,307018,72476,120773,186245,162959,252660,0,6156,6,53003,"FO6","ST" 16,9,1,2,9,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"NAT GAS",19497,"0M",1294,,,95,0,0,0,0,0,0,31250,307224,0,64504,630374,0,76077,749979,0,81590,800742,0,99404,985733,0,49501,489902,0,13044,134068,0,34,4180,0,0,0,0,0,0,0,6156,6,53003,"NG","ST" 16,9,5,1,,556,5,"NORWICH (CITY OF)","SECOND ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,174,0,0,101,0,0,67,0,0,17,0,0,180,0,0,272,0,0,324,0,0,580,6,52123,"WAT","HY" 16,9,5,1,,556,10,"NORWICH (CITY OF)","OCCUM",0,,13831,"0A",1294,,,95,516,0,0,356,0,0,529,0,0,370,0,0,225,0,0,257,0,0,63,0,0,95,0,0,42,0,0,215,0,0,420,0,0,292,0,0,582,6,52123,"WAT","HY" 16,9,5,1,,556,13,"NORWICH (CITY OF)","TENTH ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,0,0,0,0,0,113,0,0,54,0,0,255,0,0,534,0,0,636,0,0,583,6,52123,"WAT","HY" 16,9,5,4,2,556,20,"NORWICH (CITY OF)","N MAIN ST",0,"LIGHT OIL",13831,"0A",1294,,,95,0,0,1935,53,168,1767,0,0,1767,0,0,1767,23,56,1711,62,161,1550,402,1007,1693,531,1325,1518,0,0,1518,0,0,1518,0,0,1518,117,296,2388,581,6,52123,"FO2","GT" 16,9,5,3,2,560,1,"SOUTH NORWALK (CITY OF)","SO NORWALK",0,"LIGHT OIL",17569,"0A",1294,,,95,50,90,1114,84,147,1614,27,49,1523,27,45,1455,71,123,1331,70,125,1235,242,444,819,209,351,1604,20,34,1570,2,4,1736,9,13,1671,98,158,1418,6598,6,52704,"FO2","IC" 16,9,5,2,3,567,1,"WALLINGFORD (CITY OF)","PIERCE",0,"HEAVY OIL",20038,"0A",1294,,,95,0,15,1540,368,1067,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,146,445,1873,0,0,1873,0,0,1873,0,0,1873,6635,6,53175,"FO6","ST" 21,36,1,1,,35,10,"CENTRAL HUDSON GAS & ELEC","DASHVILLE",0,,3249,"0M",1294,,,95,2381,0,0,502,0,0,1130,0,0,814,0,0,844,0,0,273,0,0,156,0,0,52,0,0,6,0,0,1173,0,0,1735,0,0,901,0,0,2481,6,50484,"WAT","HY" 21,36,1,1,,35,18,"CENTRAL HUDSON GAS & ELEC","NEVERSINK",0,,3249,"0M",1294,,,95,4408,0,0,4221,0,0,4645,0,0,2716,0,0,2618,0,0,2849,0,0,10968,0,0,9289,0,0,3298,0,0,2724,0,0,2482,0,0,4970,0,0,2483,6,50484,"WAT","HY" 21,36,1,1,,35,20,"CENTRAL HUDSON GAS & ELEC","STURGEON PL",0,,3249,"0M",1294,,,95,9300,0,0,4140,0,0,8251,0,0,4665,0,0,3127,0,0,1123,0,0,872,0,0,359,0,0,111,0,0,5834,0,0,7954,0,0,3663,0,0,2486,6,50484,"WAT","HY" 21,36,1,2,3,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"HEAVY OIL",3249,"0M",1294,,,95,0,0,10567,2887,4585,13091,0,0,13091,0,0,13091,377,619,12472,1176,2123,10349,198,406,9943,0,0,9943,0,0,9943,0,0,9943,16,30,9913,0,0,9913,2480,6,50484,"FO6","ST" 21,36,1,2,6,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"BIT COAL",3249,"0M",1294,,,95,180547,67912,176943,208851,77841,149786,144579,54893,173619,180437,67955,164986,58267,23110,161831,149627,57630,163884,131893,51114,152154,127793,49654,170960,144488,55872,134561,60315,24424,150152,137406,60589,138420,208309,77898,129136,2480,6,50484,"BIT","ST" 21,36,1,2,9,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"NAT GAS",3249,"0M",1294,,,95,12788,136338,0,5348,58875,0,52133,554622,0,1003,12881,0,26410,269381,0,9355,110458,0,50047,563362,0,64005,727957,0,42268,475832,0,72329,806049,0,21208,238996,0,526,5007,0,2480,6,50484,"NG","ST" 21,36,1,3,2,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"LIGHT OIL",3249,"0M",1294,,,95,38,70,119,10,15,278,29,38,240,10,9,231,5,9,222,30,55,167,29,60,281,48,81,200,48,99,274,48,83,191,38,76,289,9,16,273,2480,6,50484,"FO2","IC" 21,36,1,4,2,35,35,"CENTRAL HUDSON GAS & ELEC","SOUTH CAIRO",0,"LIGHT OIL",3249,"0M",1294,,,95,74,178,2486,0,0,2486,0,0,2486,0,0,2486,13,31,2455,198,577,1878,16,34,1844,70,197,1647,0,0,2719,0,0,2719,39,93,2626,18,49,2577,2485,6,50484,"FO2","GT" 21,36,1,4,2,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"LIGHT OIL",3249,"0M",1294,,,95,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,2487,6,50484,"FO2","GT" 21,36,1,4,9,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"NAT GAS",3249,"0M",1294,,,95,90,1181,0,32,427,0,0,0,0,45,632,0,59,962,0,631,9351,0,109,1557,0,530,7243,0,0,0,0,52,789,0,180,2430,0,69,1043,0,2487,6,50484,"NG","GT" 21,36,1,2,2,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"LIGHT OIL",3249,"0M",1294,,,95,1744,3069,2289,782,1361,3014,1071,2036,2369,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,17,2525,654,2512,1229,581,1004,2137,8006,6,50484,"FO2","ST" 21,36,1,2,3,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"HEAVY OIL",3249,"0M",1294,,,95,49649,80148,781308,157108,249990,495225,13890,23984,478029,0,0,478029,0,0,478029,0,0,604069,0,0,604069,0,0,604069,0,0,604069,0,0,589640,1356,4755,599314,189513,299562,451927,8006,6,50484,"FO6","ST" 21,36,1,2,9,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"NAT GAS",3249,"0M",1294,,,95,33526,336575,0,69660,692555,0,24026,260204,0,0,0,0,177930,1880760,0,186946,1950511,0,310122,3310810,0,247281,2627847,0,0,0,0,0,0,0,2849,61824,0,7068,69278,0,8006,6,50484,"NG","ST" 21,36,1,1,,35,50,"CENTRAL HUDSON GAS & ELEC","HIGH FALLS",0,,3249,"0M",1294,,,95,1184,0,0,92,0,0,1122,0,0,69,0,0,143,0,0,23,0,0,26,0,0,0,0,0,0,0,0,340,0,0,1057,0,0,170,0,0,579,6,50484,"WAT","HY" 21,36,1,1,,37,5,"CENTRAL VT PUB SERV CORP","CARVERS FLS",0,,3292,"0A",1294,,350,95,921,0,0,597,0,0,1182,0,0,1121,0,0,691,0,0,250,0,0,18,0,0,58,0,0,0,0,0,391,0,0,1196,0,0,502,0,0,6456,6,50503,"WAT","HY" 21,36,1,2,3,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,7328,11940,18519,0,0,18519,0,0,18519,0,0,18513,0,0,18513,2490,6,50653,"FO6","ST" 21,36,1,2,9,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"NAT GAS",4226,"0M",1294,,,95,-1408,17220,0,-1393,16473,0,-1276,5546,0,42517,495291,0,55216,582417,0,194234,1938196,0,301093,2957985,0,278373,2754690,0,147636,1480827,0,-1783,3561,0,-1398,5,0,-1433,5,0,2490,6,50653,"NG","ST" 21,36,1,4,2,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"LIGHT OIL",4226,"0M",1294,,,95,13,44,1913,67,194,1823,0,0,1823,36,79,1744,215,635,1882,298,918,2083,566,1739,2154,371,1201,1884,0,0,0,0,0,0,0,0,0,0,0,0,2490,6,50653,"FO2","GT" 21,36,1,2,1,40,2,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"NUCLEAR",4226,"0M",1294,,,95,562851,0,0,52711,0,0,-6970,0,0,-3790,0,0,-13730,0,0,241777,0,0,674078,0,0,678357,0,0,681364,0,0,661697,0,0,694091,0,0,636105,0,0,2497,6,50653,"UR","ST" 21,36,1,2,3,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"HEAVY OIL",4226,"0M",1294,,,95,44284,69523,204071,87234,136417,162405,51168,80603,150832,37361,58624,135192,36339,59441,192317,36196,59149,130130,89762,143025,106180,87335,138221,98117,59995,93814,117887,54037,87216,125085,64568,101738,117638,289554,461968,161157,8906,6,50653,"FO6","ST" 21,36,1,2,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,270672,2666431,0,244705,2376465,0,354262,3528212,0,241575,2383868,0,275033,2732177,0,466083,4630924,0,417404,4132582,0,422777,4216725,0,331846,3235732,0,333120,3377003,0,267480,2653281,0,78615,787377,0,8906,6,50653,"NG","ST" 21,36,1,4,2,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"LIGHT OIL",4226,"0M",1294,,,95,1484,3523,70541,935,2176,68112,695,1314,66869,1270,3125,63744,1033,2385,61076,1517,3666,57410,5121,12698,44790,1655,4191,48468,794,1989,67296,758,1842,65454,651,1541,63965,4785,11328,52945,8906,6,50653,"FO2","GT" 21,36,1,4,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,1238,16825,0,4723,63317,0,9436,102713,0,19761,279920,0,13199,175023,0,14602,203072,0,50641,721027,0,30754,443611,0,22755,324431,0,10683,150198,0,29807,410036,0,1300,17862,0,8906,6,50653,"NG","GT" 21,36,1,2,3,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"HEAVY OIL",4226,"0M",1294,,,95,48411,100447,260377,52328,112594,251467,22577,46041,196293,14368,29471,111609,10915,20599,75923,9443,18148,129321,17347,33410,143239,17145,35799,154704,57,119,208820,391,883,155405,24581,53489,125358,26299,56899,135819,2493,6,50653,"FO6","ST" 21,36,1,2,9,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"NAT GAS",4226,"0M",1294,,,95,22936,297706,0,16423,222129,0,33740,432005,0,32894,424765,0,83114,976015,0,52018,626673,0,74759,901280,0,43540,571392,0,62070,814818,0,38780,549257,0,26334,362630,0,4079,55677,0,2493,6,50653,"NG","ST" 21,36,1,2,3,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,134,711,28019,-168,0,13932,-186,0,17029,-180,0,14663,-186,0,16921,-180,0,14962,-186,0,34238,-186,0,28013,0,0,18655,-186,0,24175,-180,0,21506,-186,0,15408,2503,6,50653,"FO6","ST" 21,36,1,2,9,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"NAT GAS",4226,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-180,0,0,0,0,0,0,0,0,0,0,0,2503,6,50653,"NG","ST" 21,36,1,4,2,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,2421,12,43,2379,0,0,2379,34,63,2315,382,920,2169,220,532,2101,517,1422,2132,154,399,2018,0,0,2018,0,0,2018,0,0,2019,0,0,2019,2503,6,50653,"FO2","GT" 21,36,1,4,2,40,10,"CONSOL EDISON CO N Y INC","GOWANUS",0,"LIGHT OIL",4226,"0M",1294,,,95,3431,10187,54995,3032,8863,61517,3332,9885,51514,5596,16946,54888,9656,30399,58173,10867,35156,51183,35078,112111,54362,18095,69179,54055,9925,32320,51120,3062,9091,61678,11850,35551,63660,11082,31386,52408,2494,6,50653,"FO2","GT" 21,36,1,4,2,40,17,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"LIGHT OIL",4226,"0M",1294,,,95,10,470,1357,110,334,1476,0,0,1438,10,26,1387,190,648,1553,120,502,1367,618,1994,1429,339,1276,1561,10,65,1518,10,49,1466,70,568,1361,10,79,1524,2497,6,50653,"FO2","GT" 21,36,1,2,3,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"HEAVY OIL",4226,"0M",1294,,,95,13942,16640,116475,22892,27677,121761,19571,25683,88715,5881,7513,112117,13579,17821,145862,8960,11221,121321,17004,23012,156902,16358,21789,184711,8488,11589,233738,9039,12876,207818,15377,22058,190563,21649,30797,210122,2496,6,50653,"FO6","ST" 21,36,1,4,2,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"LIGHT OIL",4226,"0M",1294,,,95,32,106,3790,262,520,3270,24,63,4088,0,0,4088,318,932,4131,366,1254,4363,1154,3982,3948,684,2253,4361,44,148,4212,7,28,4185,255,954,4157,0,0,4471,2496,6,50653,"FO2","GT" 21,36,1,4,2,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"LIGHT OIL",4226,"0M",1294,,,95,1815,5002,70995,2374,6488,64363,3121,8503,70742,4829,13085,57595,4696,13259,61188,7112,20641,70359,14360,43802,86922,0,0,86754,113,310,61193,358,1046,60146,2527,7040,53007,5977,17365,64411,2499,6,50653,"FO2","GT" 21,36,1,4,9,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"NAT GAS",4226,"0M",1294,,,95,160,2545,0,0,0,0,1437,23105,0,3151,50378,0,5478,91177,0,7841,132409,0,26727,472807,0,23321,410674,0,8725,137237,0,6684,112244,0,14121,266734,0,726,12168,0,2499,6,50653,"NG","GT" 21,36,1,2,3,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"HEAVY OIL",4226,"0M",1294,,,95,56562,96769,43835,156038,248776,28947,15866,27428,34677,22910,42845,42500,30055,54093,37926,31922,55970,39660,31596,55334,44269,54612,90412,42941,11656,19796,32055,4144,7555,26939,45172,77641,44297,97823,181018,43354,2500,6,50653,"FO6","ST" 21,36,1,2,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,209768,2234824,0,193780,1928735,0,161992,1747544,0,161776,1895581,0,200509,2260799,0,241862,2659354,0,377330,4132582,0,492580,5112387,0,269868,2872681,0,121326,1378858,0,190022,2065045,0,34903,408143,0,2500,6,50653,"NG","ST" 21,36,1,4,2,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"LIGHT OIL",4226,"0M",1294,,,95,317,1144,40469,1114,3166,37304,412,1109,36195,1364,3752,32443,0,0,32613,292,765,31848,1020,2785,39004,707,2001,37003,43,116,38759,232,819,37940,91,256,37684,3105,8078,40525,2500,6,50653,"FO2","GT" 21,36,1,4,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,699,14506,0,461,7543,0,1614,25061,0,3849,61087,0,2639,36379,0,6191,93115,0,11215,178768,0,7292,120354,0,2766,43431,0,1873,38571,0,2782,45521,0,533,8123,0,2500,6,50653,"NG","GT" 21,36,1,2,3,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,4001,11849,37330,7337,16422,1428,4042,7539,1190,6302,7774,1190,11192,14181,1190,8567,12004,1190,7521,9483,1190,3846,5472,1365,3937,4892,1428,-949,0,1429,3253,6242,1429,3602,5677,1429,2504,6,50653,"FO6","ST" 21,36,1,4,2,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,-13,0,1690,-11,0,2143,-12,0,2083,-12,0,1952,-3,12,1881,-12,0,1762,-12,24,1738,-13,0,1747,-12,0,1548,-12,0,1524,-12,0,1595,-12,0,2202,2504,6,50653,"FO2","GT" 21,36,1,2,3,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"HEAVY OIL",4226,"0M",1294,,,95,3119,5797,0,25178,41438,0,1003,1798,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,146,266,0,2502,6,50653,"FO6","ST" 21,36,1,2,9,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"NAT GAS",4226,"0M",1294,,,95,59934,697096,0,47441,490868,0,53623,603408,0,39082,449151,0,37250,448243,0,36423,288224,0,55999,633276,0,55829,627391,0,38346,480259,0,35286,396996,0,48220,540897,0,63071,723341,0,2502,6,50653,"NG","ST" 21,36,1,2,3,40,50,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,2766499,0,0,2324286,0,0,2545579,0,0,2254272,0,0,1899927,0,0,1649376,0,0,1484314,0,0,1332860,0,0,1420463,0,0,1532278,0,0,1814997,0,0,1473629,8801,6,50653,"FO6","ST" 21,36,1,4,2,40,60,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,204071,0,0,265070,0,0,259969,0,0,242953,0,0,247234,0,0,245330,0,0,259288,0,0,251578,0,0,241219,0,0,257945,0,0,250930,0,0,243796,8802,6,50653,"FO2","GT" 21,36,1,4,2,40,65,"CONSOL EDISON CO N Y INC","BUCHANAN",0,"LIGHT OIL",4226,"0M",1294,,,95,55,213,3746,295,599,4326,12,22,4481,20,42,4440,199,586,4211,634,1857,4497,979,2573,4452,907,2783,4475,35,172,4303,63,247,4282,398,1093,4230,56,191,4039,4233,6,50653,"FO2","GT" 21,36,1,1,,49,5,"HYDRO DEV GROUP INC","DEXTER",0,,9145,"0A",1294,,,95,2082,0,0,1260,0,0,2412,0,0,1860,0,0,1134,0,0,690,0,0,834,0,0,558,0,0,666,0,0,1998,0,0,2619,0,0,1908,0,0,2505,6,50785,"WAT","HY" 21,36,1,1,,49,10,"HYDRO DEV GROUP INC","PYRITES #1",0,,9145,"0A",1294,,,95,228,0,0,53,0,0,337,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2506,6,50785,"WAT","HY" 21,36,1,1,,49,12,"HYDRO DEV GROUP INC","PYRITES #2",0,,9145,"0A",1294,,,95,2658,0,0,1453,0,0,3335,0,0,2856,0,0,2370,0,0,1044,0,0,630,0,0,678,0,0,606,0,0,2458,0,0,3186,0,0,2166,0,0,7031,6,50785,"WAT","HY" 21,36,1,1,,49,15,"HYDRO DEV GROUP INC","HAILESBORO",0,,9145,"0A",1294,,,95,1037,0,0,706,0,0,1087,0,0,1097,0,0,854,0,0,509,0,0,415,0,0,624,0,0,389,0,0,982,0,0,1159,0,0,780,0,0,6573,6,50785,"WAT","HY" 21,36,1,1,,49,20,"HYDRO DEV GROUP INC","FOWLER",0,,9145,"0A",1294,,,95,426,0,0,394,0,0,515,0,0,491,0,0,515,0,0,316,0,0,245,0,0,349,0,0,250,0,0,398,0,0,507,0,0,434,0,0,6572,6,50785,"WAT","HY" 21,36,1,1,,49,25,"HYDRO DEV GROUP INC","#6 MILL",0,,9145,"0A",1294,,,95,471,0,0,407,0,0,463,0,0,491,0,0,394,0,0,231,0,0,201,0,0,313,0,0,208,0,0,384,0,0,494,0,0,499,0,0,453,6,50785,"WAT","HY" 21,36,1,1,,49,50,"HYDRO DEV GROUP INC","COPENHAGEN",0,,9145,"0A",1294,,,95,1176,0,0,560,0,0,1460,0,0,1532,0,0,460,0,0,108,0,0,360,0,0,112,0,0,312,0,0,1396,0,0,1884,0,0,924,0,0,742,6,50785,"WAT","HY" 21,36,1,1,,49,55,"HYDRO DEV GROUP INC","DIAMOND IS",0,,9145,"0A",1294,,,95,665,0,0,468,0,0,733,0,0,702,0,0,504,0,0,251,0,0,228,0,0,190,0,0,239,0,0,583,0,0,773,0,0,616,0,0,2553,6,50785,"WAT","HY" 21,36,1,1,,49,60,"HYDRO DEV GROUP INC","THERESA",0,,9145,"0A",1294,,,95,752,0,0,606,0,0,800,0,0,836,0,0,556,0,0,150,0,0,78,0,0,202,0,0,34,0,0,710,0,0,842,0,0,794,0,0,2618,6,50785,"WAT","HY" 21,36,1,1,,49,70,"HYDRO DEV GROUP INC","#3 MILL",0,,9145,"0A",1294,,,95,456,0,0,350,0,0,485,0,0,483,0,0,398,0,0,240,0,0,157,0,0,294,0,0,180,0,0,283,0,0,456,0,0,346,0,0,743,6,50785,"WAT","HY" 21,36,1,1,,49,75,"HYDRO DEV GROUP INC","GOODYEAR LK",0,,9145,"0A",1294,,,95,640,0,0,400,0,0,757,0,0,542,0,0,315,0,0,166,0,0,49,0,0,25,0,0,19,0,0,171,0,0,575,0,0,550,0,0,7358,6,50785,"WAT","HY" 21,36,1,3,2,59,1,"FISHERS IS ELEC CORP (THE","FISHERS ISL",0,"LIGHT OIL",6369,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6575,6,50989,"FO2","IC" 21,36,1,4,2,87,1,"LONG ISLAND LIGHTING CO","W BABYLON",0,"LIGHT OIL",11172,"0M",1294,,,95,-9,0,10978,184,398,10580,-10,0,10580,-8,0,10580,-10,0,10580,-10,0,10580,1589,3799,6781,1012,2525,9994,-8,0,9994,23,63,9931,12,52,9878,-6,0,9878,2521,6,51685,"FO2","GT" 21,36,1,2,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,189,351,31,0,0,31,0,0,0,0,0,0,2511,6,51685,"FO2","ST" 21,36,1,2,3,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"HEAVY OIL",11172,"0M",1294,,,95,7679,13204,183912,19277,32691,151221,6888,12026,167809,7622,13054,154755,21364,35883,118872,5001,8521,110351,0,0,100351,0,0,150055,0,0,176621,0,0,176621,4499,7876,168745,30931,52133,130983,2511,6,51685,"FO6","ST" 21,36,1,2,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,88641,923891,0,72376,743992,0,119516,1265049,0,108791,1129535,0,161464,1644681,0,176300,1817157,0,201713,2124759,0,207176,2182914,0,194067,2023621,0,176719,1855067,0,152642,1622397,0,111293,1143313,0,2511,6,51685,"NG","ST" 21,36,1,4,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,89,272,21050,2511,6,51685,"FO2","GT" 21,36,1,4,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,2584,48858,0,2455,39578,0,396,9580,0,7540,115964,0,15423,241318,0,13024,203027,0,13183,202506,0,13611,214090,0,2215,41056,0,3367,60239,0,3070,49795,0,1324,23100,0,2511,6,51685,"NG","GT" 21,36,1,2,3,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,2513,6,51685,"FO6","ST" 21,36,1,2,9,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"NAT GAS",11172,"0M",1294,,,95,35652,370173,0,-382,0,0,37901,413154,0,47344,499677,0,39814,418408,0,43785,454694,0,44918,522402,0,46370,490439,0,46043,485717,0,32114,356625,0,40424,437203,0,48243,507731,0,2513,6,51685,"NG","ST" 21,36,1,2,3,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2514,6,51685,"FO6","ST" 21,36,1,2,9,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"NAT GAS",11172,"0M",1294,,,95,57152,656357,0,88875,989013,0,43090,513102,0,64609,758501,0,65972,764067,0,85437,987225,0,91585,1053103,0,91614,1044546,0,87436,984844,0,70615,831640,0,65930,771090,0,72860,814525,0,2514,6,51685,"NG","ST" 21,36,1,4,2,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"LIGHT OIL",11172,"0M",1294,,,95,-13,0,28987,348,833,28155,-2,113,28042,-10,0,28042,-15,0,28042,308,112,27929,1020,3353,24576,1330,3635,20941,-16,0,20941,52,122,20819,-18,0,20787,-15,0,20787,2514,6,51685,"FO2","GT" 21,36,1,3,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,971,33,69,902,-4,4,898,-6,0,898,-1,8,890,2,12,878,464,935,369,527,862,816,51,112,705,-6,0,705,-1,4,915,0,3,911,2512,6,51685,"FO2","IC" 21,36,1,4,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-17,0,2876,-11,17,2859,-15,0,2859,-9,0,2859,-4,25,2834,34,116,2718,2330,5851,265,2246,5851,2259,76,212,2471,-10,0,2471,27,113,2789,-12,0,2789,2512,6,51685,"FO2","GT" 21,36,1,4,2,87,18,"LONG ISLAND LIGHTING CO","SOUTHOLD",0,"LIGHT OIL",11172,"0M",1294,,,95,-8,0,2716,-15,0,2716,-15,0,2716,-11,0,2716,-9,0,2716,14,79,2637,79,316,2534,39,174,2784,-8,0,2784,-8,0,2784,33,160,2624,-15,0,2624,2520,6,51685,"FO2","GT" 21,36,1,2,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,393,703,2446,1919,3360,10568,787,1448,10918,244,438,10694,0,0,10694,1255,2346,10708,543,987,10787,859,1604,10653,1224,1286,10857,0,0,11070,42,78,10992,866,1558,10948,2516,6,51685,"FO2","ST" 21,36,1,2,3,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"HEAVY OIL",11172,"0M",1294,,,95,251839,410183,917940,419721,669714,545119,137170,230153,627264,93546,156459,751601,4614,7948,743653,138528,235371,730114,232571,387065,831393,198326,339587,780654,65679,111985,948390,0,0,1048629,13006,22156,1026473,263245,435054,787488,2516,6,51685,"FO6","ST" 21,36,1,2,9,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"NAT GAS",11172,"0M",1294,,,95,161173,1656185,0,109357,1099738,0,179917,1902183,0,179876,1858552,0,249772,2620522,0,277680,2980882,0,392501,4094975,0,395601,4243388,0,332956,3533654,0,339896,3613412,0,310631,3313635,0,259449,2673147,0,2516,6,51685,"NG","ST" 21,36,1,4,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2030,-16,0,2030,11,87,1943,-13,0,1943,-12,0,1943,-8,15,1928,10,25,1904,24,175,1729,-2,17,1712,-7,0,0,-15,0,1290,-10,0,1506,2516,6,51685,"FO2","GT" 21,36,1,3,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2518,6,51685,"FO2","IC" 21,36,1,4,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,-4,0,10375,81,259,11414,11,38,11377,-7,0,11377,340,528,10848,91,128,10720,441,1417,9303,551,846,15679,5,41,15638,18,32,15605,-4,0,15605,-7,3,15602,2518,6,51685,"FO2","GT" 21,36,1,2,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,505,940,248,368,651,173,451,865,267,430,769,71,340,624,210,273,507,271,308,573,265,205,379,265,120,230,224,260,511,310,181,337,162,173,317,229,2517,6,51685,"FO2","ST" 21,36,1,2,3,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"HEAVY OIL",11172,"0M",1294,,,95,83231,142447,374658,116002,187180,292517,84682,149701,363973,88134,146337,217636,86246,147673,240914,86540,147162,367784,119762,202643,388397,116504,197519,283029,62653,110443,267311,37059,67418,404544,57551,98596,305948,73017,122780,291514,2517,6,51685,"FO6","ST" 21,36,1,4,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,14,70,2055,36,150,1905,-16,0,1905,-11,0,1905,30,100,1805,15,79,1726,94,282,1444,49,175,2118,-8,0,2118,2,49,2069,-12,0,2069,-14,0,2069,2517,6,51685,"FO2","GT" 21,36,1,4,2,87,26,"LONG ISLAND LIGHTING CO","SOUTHAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2575,22,137,2438,-17,0,2438,-9,0,2438,-4,9,2430,36,153,2277,200,649,2266,170,698,2628,-11,0,2628,-8,0,2628,-2,0,2628,-18,0,2628,2519,6,51685,"FO2","GT" 21,36,1,3,2,87,29,"LONG ISLAND LIGHTING CO","MONTAUK",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,685,34,66,619,-6,0,619,-6,0,619,0,0,619,2,46,572,274,574,424,184,319,529,57,109,420,-6,0,420,0,23,611,-6,0,611,2515,6,51685,"FO2","IC" 21,36,1,4,2,87,30,"LONG ISLAND LIGHTING CO","HOLTSVILLE",0,"LIGHT OIL",11172,"0M",1294,,,95,3418,7966,65483,2730,6945,98989,1349,3183,95807,3573,8991,86815,1220,3009,83806,4957,12317,71489,13538,28073,71475,15481,41712,89159,785,2396,86763,-94,234,86529,427,1487,85042,2296,5778,79264,8007,6,51685,"FO2","GT" 21,36,1,4,2,87,35,"LONG ISLAND LIGHTING CO","BROOKHAVEN",0,"LIGHT OIL",11172,"0M",1294,,,95,2290,4982,38416,2652,6010,38901,226,279,38622,3165,6704,37310,6210,13571,28376,6235,12488,40846,9816,21210,30472,9736,19194,39142,-52,0,39142,113,688,40071,528,1470,40751,2660,5996,37572,7146,6,51685,"FO2","GT" 21,36,1,1,,100,1,"N Y STATE ELEC & GAS CORP","CADYVILLE",0,,13511,"0M",1294,,,95,2289,0,0,1760,0,0,2697,0,0,2249,0,0,2033,0,0,1277,0,0,1043,0,0,1271,0,0,873,0,0,1835,0,0,2411,0,0,1256,0,0,2522,6,52036,"WAT","HY" 21,36,1,1,,100,3,"N Y STATE ELEC & GAS CORP","MILL 'C'",0,,13511,"0M",1294,,,95,1082,0,0,1120,0,0,1325,0,0,1217,0,0,1424,0,0,918,2,0,782,0,0,1153,0,0,591,0,0,1982,0,0,2696,0,0,728,0,0,6486,6,52036,"WAT","HY" 21,36,1,1,,100,8,"N Y STATE ELEC & GAS CORP","HIGH FALLS",0,,13511,"0M",1294,,,95,8036,0,0,6467,0,0,9348,0,0,7548,0,0,6945,0,0,4111,0,0,3127,0,0,4402,0,0,2270,0,0,1885,0,0,8998,0,0,6023,0,0,2530,6,52036,"WAT","HY" 21,36,1,1,,100,9,"N Y STATE ELEC & GAS CORP","KENT FALLS",0,,13511,"0M",1294,,,95,4267,0,0,3614,0,0,5729,0,0,4500,0,0,4403,0,0,2459,0,0,1821,0,0,2011,0,0,1112,0,0,2429,0,0,0,0,0,2462,0,0,2532,6,52036,"WAT","HY" 21,36,1,1,,100,11,"N Y STATE ELEC & GAS CORP","KEUKA",0,,13511,"0M",1294,,,95,479,0,0,618,0,0,1104,0,0,424,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,246,0,0,368,0,0,87,0,0,2533,6,52036,"WAT","HY" 21,36,1,1,,100,18,"N Y STATE ELEC & GAS CORP","RAINBOW FLS",0,,13511,"0M",1294,,,95,844,0,0,484,0,0,1136,0,0,1424,0,0,2008,0,0,1044,0,0,972,0,0,828,0,0,572,0,0,920,0,0,1432,0,0,800,0,0,6526,6,52036,"WAT","HY" 21,36,1,1,,100,20,"N Y STATE ELEC & GAS CORP","SENECA FLS",0,,13511,"0M",1294,,,95,929,0,0,0,0,0,237,0,0,418,0,0,57,0,0,12,0,0,35,0,0,0,0,0,0,0,0,144,0,0,1097,0,0,1515,0,0,6525,6,52036,"WAT","HY" 21,36,1,1,,100,26,"N Y STATE ELEC & GAS CORP","WATERLOO",0,,13511,"0M",1294,,,95,218,0,0,0,0,0,91,0,0,167,0,0,47,0,0,38,0,0,63,0,0,15,0,0,0,0,0,28,0,0,273,0,0,435,0,0,2538,6,52036,"WAT","HY" 21,36,1,2,2,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"LIGHT OIL",13511,"0M",1294,,,95,4,6,902,7,12,922,38,860,816,166,1093,889,115,412,787,23,40,755,14,25,726,19,34,1012,88,159,674,17,29,652,15,27,781,57,99,755,2526,6,52036,"FO2","ST" 21,36,1,2,6,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"BIT COAL",13511,"0M",1294,,,95,49140,18404,38386,47957,17309,33487,38535,14154,31196,29944,11570,19706,47570,19243,17396,46082,17833,16951,48114,18609,8401,48907,19270,14458,47509,18547,11816,46734,17563,21803,47743,17962,29205,49938,18814,16951,2526,6,52036,"BIT","ST" 21,36,1,2,2,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"LIGHT OIL",13511,"0M",1294,,,95,49,84,1482,143,249,1673,49,85,1663,69,118,1503,97,194,1276,101,268,963,140,255,1024,312,565,929,134,232,1184,28,65,1082,27,47,1003,135,254,963,2527,6,52036,"FO2","ST" 21,36,1,2,6,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"BIT COAL",13511,"0M",1294,,,95,59064,22369,46139,64896,24628,34337,56536,21560,33567,61588,23327,27754,60141,23147,16512,44718,17812,44179,56844,23346,35975,63282,25535,39483,33115,12718,51031,52461,19935,48906,51733,19814,48981,79778,32545,44179,2527,6,52036,"BIT","ST" 21,36,1,2,6,100,32,"N Y STATE ELEC & GAS CORP","HICKLING",0,"BIT COAL",13511,"0M",1294,,,95,29937,25353,59845,37278,28317,42388,31428,24287,26231,36848,29367,9739,25540,20965,7417,26619,21486,11619,19927,15033,13417,19292,17747,12211,16109,14260,19398,15799,13125,25995,15584,11444,38506,16518,14020,11619,2529,6,52036,"BIT","ST" 21,36,1,2,"B",100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"WOOD CHIP",13511,"0M",1294,,,95,1937,0,0,2506,0,0,1706,0,0,446,0,0,510,0,0,631,0,0,0,0,0,966,0,0,1443,0,0,1357,0,0,215,0,0,517,0,0,2531,6,52036,"WOD","ST" 21,36,1,2,6,100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"BIT COAL",13511,"0M",1294,,,95,18813,12027,31771,27918,18374,13300,18598,13682,9272,12405,9568,1166,10568,8258,1035,8066,6810,737,10639,7167,2889,9803,7780,5121,7664,6371,9926,7104,5362,9933,11173,7198,8195,18436,12369,737,2531,6,52036,"BIT","ST" 21,36,1,2,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,206,337,1812,188,320,1856,273,465,1873,142,244,1879,53,94,1978,249,452,1841,116,209,1815,158,288,1863,211,385,1831,258,462,1670,59,105,1738,26,47,1841,2535,6,52036,"FO2","ST" 21,36,1,2,6,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"BIT COAL",13511,"0M",1294,,,95,192258,68792,79141,180255,67185,80127,183681,68408,89806,153861,58397,69230,98273,37927,98714,132074,52498,118633,185234,73165,90889,184163,73756,101056,131693,53020,97110,185372,73940,102961,167135,65625,99048,191784,76075,118633,2535,6,52036,"BIT","ST" 21,36,1,3,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,0,1,0,20,38,0,3,84,0,104,107,0,54,144,0,1,38,0,-64,39,0,10,20,0,0,1,0,12,39,0,11,44,0,17,32,0,2535,6,52036,"FO2","IC" 21,36,1,3,2,100,40,"N Y STATE ELEC & GAS CORP","HARRIS LAKE",0,"LIGHT OIL",13511,"0M",1294,,,95,-11,0,405,0,0,349,0,0,0,-4,0,313,0,0,260,0,0,242,64,122,269,12,25,244,2,0,436,0,0,357,0,0,290,-13,0,242,2528,6,52036,"FO2","IC" 21,36,1,1,,100,43,"N Y STATE ELEC & GAS CORP","MECHANICVLE",0,,13511,"0M",1294,,,95,9072,0,0,6867,0,0,9702,0,0,6867,0,0,4347,0,0,2961,0,0,1134,0,0,2331,0,0,1953,0,0,5670,0,0,12663,0,0,8946,0,0,625,6,52036,"WAT","HY" 21,36,1,2,2,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"LIGHT OIL",13511,"0M",1294,,,95,219,378,4169,770,1322,2904,474,811,3335,953,1656,3113,165,283,2839,314,543,2288,879,1523,3426,394,685,2738,627,1087,4124,1183,2162,2118,626,1094,4657,509,873,2288,6082,6,52036,"FO2","ST" 21,36,1,2,6,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"BIT COAL",13511,"0M",1294,,,95,429496,166336,132032,393694,148405,142690,419527,160683,178911,416807,160659,178855,418612,159916,174957,381565,146069,162034,348178,133246,124345,413546,158604,73112,376458,141570,75380,181079,73253,130474,363691,142233,133771,423315,159637,162034,6082,6,52036,"BIT","ST" 21,36,1,2,1,105,1,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,368414,0,0,58742,0,0,0,0,0,332154,0,0,459193,0,0,439571,0,0,434942,0,0,437261,0,0,420930,0,0,452099,0,0,441551,0,0,459844,0,0,2589,6,52053,"UR","ST" 21,36,1,2,1,105,2,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,694823,0,0,533574,0,0,742888,0,0,149501,0,0,0,0,0,575400,0,0,821880,0,0,766368,0,0,443850,0,0,845303,0,0,824493,0,0,841323,0,0,2589,6,52053,"UR","ST" 21,36,1,1,,105,5,"NIAGARA MOHAWK POWER CORP","ALLENS FLS",0,,13573,"0M",1294,,190,95,2087,0,0,1758,0,0,2479,0,0,2662,0,0,2344,0,0,1289,0,0,1268,0,0,1240,0,0,1099,0,0,2308,0,0,2305,0,0,2092,0,0,2540,6,52053,"WAT","HY" 21,36,1,1,,105,10,"NIAGARA MOHAWK POWER CORP","BALDWINSVLE",0,,13573,"0M",1294,,190,95,205,0,0,112,0,0,221,0,0,171,0,0,60,0,0,7,0,0,-3,0,0,16,0,0,1,0,0,57,0,0,217,0,0,140,0,0,2542,6,52053,"WAT","HY" 21,36,1,1,,105,15,"NIAGARA MOHAWK POWER CORP","BELFORT",0,,13573,"0M",1294,,190,95,861,0,0,751,0,0,805,0,0,464,0,0,550,0,0,561,0,0,714,0,0,764,0,0,730,0,0,557,0,0,1171,0,0,1354,0,0,2544,6,52053,"WAT","HY" 21,36,1,1,,105,20,"NIAGARA MOHAWK POWER CORP","BENNETTS B",0,,13573,"0M",1294,,190,95,10231,0,0,5759,0,0,9838,0,0,5346,0,0,4404,0,0,1938,0,0,-33,0,0,313,0,0,5443,0,0,9001,0,0,13335,0,0,6313,0,0,2545,6,52053,"WAT","HY" 21,36,1,1,,105,25,"NIAGARA MOHAWK POWER CORP","BLACK RIVER",0,,13573,"0M",1294,,190,95,3477,0,0,2422,0,0,3823,0,0,3907,0,0,2562,0,0,1270,0,0,1501,0,0,948,0,0,1559,0,0,3563,0,0,4456,0,0,3477,0,0,2546,6,52053,"WAT","HY" 21,36,1,1,,105,30,"NIAGARA MOHAWK POWER CORP","BLAKE",0,,13573,"0M",1294,,190,95,6604,0,0,6486,0,0,5072,0,0,2962,0,0,3721,0,0,3715,0,0,672,0,0,2828,0,0,1682,0,0,3534,0,0,9144,0,0,6300,0,0,2547,6,52053,"WAT","HY" 21,36,1,1,,105,35,"NIAGARA MOHAWK POWER CORP","BROWNS FLS",0,,13573,"0M",1294,,190,95,6785,0,0,3738,0,0,4510,0,0,1724,0,0,1746,0,0,1866,0,0,545,0,0,2901,0,0,1160,0,0,4896,0,0,7492,0,0,3767,0,0,2548,6,52053,"WAT","HY" 21,36,1,1,,105,40,"NIAGARA MOHAWK POWER CORP","CHASM",0,,13573,"0M",1294,,190,95,1902,0,0,1138,0,0,1426,0,0,1777,0,0,1751,0,0,1323,0,0,994,0,0,1236,0,0,1014,0,0,1752,0,0,1795,0,0,1489,0,0,2550,6,52053,"WAT","HY" 21,36,1,1,,105,45,"NIAGARA MOHAWK POWER CORP","COLTON",0,,13573,"0M",1294,,190,95,20600,0,0,18761,0,0,20043,0,0,13701,0,0,15937,0,0,15548,0,0,9456,0,0,14510,0,0,7469,0,0,15049,0,0,2073,0,0,19935,0,0,2551,6,52053,"WAT","HY" 21,36,1,1,,105,50,"NIAGARA MOHAWK POWER CORP","DEFERIET",0,,13573,"0M",1294,,190,95,4478,0,0,3495,0,0,5869,0,0,5234,0,0,3642,0,0,1740,0,0,1638,0,0,1204,0,0,1248,0,0,5355,0,0,7027,0,0,4656,0,0,2552,6,52053,"WAT","HY" 21,36,1,1,,105,65,"NIAGARA MOHAWK POWER CORP","EAGLE",0,,13573,"0M",1294,,190,95,2653,0,0,2021,0,0,2505,0,0,1200,0,0,1421,0,0,1737,0,0,2331,0,0,1979,0,0,2045,0,0,1398,0,0,3203,0,0,3777,0,0,2555,6,52053,"WAT","HY" 21,36,1,1,,105,70,"NIAGARA MOHAWK POWER CORP","EEL WEIR",0,,13573,"0M",1294,,190,95,866,0,0,622,0,0,964,0,0,803,0,0,524,0,0,203,0,0,115,0,0,125,0,0,7,0,0,655,0,0,1332,0,0,994,0,0,2556,6,52053,"WAT","HY" 21,36,1,1,,105,75,"NIAGARA MOHAWK POWER CORP","EFFLEY",0,,13573,"0M",1294,,190,95,1093,0,0,986,0,0,1153,0,0,580,0,0,694,0,0,845,0,0,905,0,0,982,0,0,900,0,0,740,0,0,1558,0,0,1767,0,0,2557,6,52053,"WAT","HY" 21,36,1,1,,105,80,"NIAGARA MOHAWK POWER CORP","ELMER",0,,13573,"0M",1294,,190,95,812,0,0,575,0,0,796,0,0,380,0,0,439,0,0,552,0,0,441,0,0,640,0,0,593,0,0,496,0,0,1010,0,0,1135,0,0,2559,6,52053,"WAT","HY" 21,36,1,1,,105,85,"NIAGARA MOHAWK POWER CORP","ET NORFOLK",0,,13573,"0M",1294,,190,95,2479,0,0,1995,0,0,2559,0,0,1703,0,0,1975,0,0,1859,0,0,1059,0,0,1731,0,0,851,0,0,1883,0,0,2471,0,0,2519,0,0,2561,6,52053,"WAT","HY" 21,36,1,1,,105,90,"NIAGARA MOHAWK POWER CORP","FIVE FALLS",0,,13573,"0M",1294,,190,95,10795,0,0,10405,0,0,8347,0,0,4782,0,0,5926,0,0,5896,0,0,3396,0,0,5619,0,0,2631,0,0,5807,0,0,14654,0,0,10198,0,0,2562,6,52053,"WAT","HY" 21,36,1,1,,105,95,"NIAGARA MOHAWK POWER CORP","FLAT ROCK",0,,13573,"0M",1294,,190,95,1503,0,0,871,0,0,1489,0,0,592,0,0,450,0,0,401,0,0,136,0,0,528,0,0,169,0,0,1414,0,0,1912,0,0,876,0,0,2563,6,52053,"WAT","HY" 21,36,1,1,,105,98,"NIAGARA MOHAWK POWER CORP","FRANKLIN F",0,,13573,"0M",1294,,190,95,775,0,0,767,0,0,1052,0,0,613,0,0,385,0,0,496,0,0,336,0,0,352,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,2564,6,52053,"WAT","HY" 21,36,1,1,,105,100,"NIAGARA MOHAWK POWER CORP","FULTON",0,,13573,"0M",1294,,190,95,464,0,0,333,0,0,608,0,0,437,0,0,459,0,0,300,0,0,406,0,0,363,0,0,304,0,0,474,0,0,653,0,0,625,0,0,2566,6,52053,"WAT","HY" 21,36,1,1,,105,105,"NIAGARA MOHAWK POWER CORP","GRANBY",0,,13573,"0M",1294,,190,95,5845,0,0,3502,0,0,6558,0,0,1324,0,0,640,0,0,477,0,0,-38,0,0,491,0,0,-42,0,0,3025,0,0,5404,0,0,5157,0,0,2569,6,52053,"WAT","HY" 21,36,1,1,,105,110,"NIAGARA MOHAWK POWER CORP","HANNAWA",0,,13573,"0M",1294,,190,95,5253,0,0,4772,0,0,5248,0,0,3332,0,0,4051,0,0,3941,0,0,2329,0,0,3797,0,0,1747,0,0,1086,0,0,2696,0,0,5321,0,0,2571,6,52053,"WAT","HY" 21,36,1,1,,105,115,"NIAGARA MOHAWK POWER CORP","HERRINGS",0,,13573,"0M",1294,,190,95,1980,0,0,1586,0,0,2151,0,0,2116,0,0,1509,0,0,629,0,0,705,0,0,371,0,0,337,0,0,1747,0,0,2341,0,0,2187,0,0,2572,6,52053,"WAT","HY" 21,36,1,1,,105,120,"NIAGARA MOHAWK POWER CORP","HEUVELTON",0,,13573,"0M",1294,,190,95,458,0,0,468,0,0,484,0,0,556,0,0,455,0,0,254,0,0,195,0,0,277,0,0,149,0,0,433,0,0,506,0,0,588,0,0,2573,6,52053,"WAT","HY" 21,36,1,1,,105,125,"NIAGARA MOHAWK POWER CORP","HIGH DAM 6",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,1863,0,0,2023,0,0,1494,0,0,922,0,0,725,0,0,989,0,0,179,0,0,2024,0,0,2607,0,0,3766,0,0,2574,6,52053,"WAT","HY" 21,36,1,1,,105,126,"NIAGARA MOHAWK POWER CORP","HIGH FALLS",0,,13573,"0M",1294,,190,95,2622,0,0,1900,0,0,2648,0,0,1268,0,0,1439,0,0,1814,0,0,2106,0,0,1998,0,0,1847,0,0,1571,0,0,3045,0,0,3527,0,0,2575,6,52053,"WAT","HY" 21,36,1,1,,105,130,"NIAGARA MOHAWK POWER CORP","HIGLEY",0,,13573,"0M",1294,,190,95,3414,0,0,2999,0,0,3075,0,0,1774,0,0,2177,0,0,2037,0,0,1416,0,0,2086,0,0,1120,0,0,2315,0,0,3556,0,0,3242,0,0,2576,6,52053,"WAT","HY" 21,36,1,1,,105,135,"NIAGARA MOHAWK POWER CORP","HOGANSBURG",0,,13573,"0M",1294,,190,95,98,0,0,143,0,0,192,0,0,192,0,0,148,0,0,129,0,0,87,0,0,146,0,0,79,0,0,113,0,0,186,0,0,218,0,0,2577,6,52053,"WAT","HY" 21,36,1,1,,105,140,"NIAGARA MOHAWK POWER CORP","KAMARGO",0,,13573,"0M",1294,,190,95,2374,0,0,1857,0,0,2750,0,0,2638,0,0,1924,0,0,960,0,0,1034,0,0,398,0,0,612,0,0,2497,0,0,3433,0,0,1788,0,0,2581,6,52053,"WAT","HY" 21,36,1,1,,105,145,"NIAGARA MOHAWK POWER CORP","LIGHTHOUSE",0,,13573,"0M",1294,,190,95,2431,0,0,1342,0,0,2514,0,0,1178,0,0,925,0,0,399,0,0,-14,0,0,-14,0,0,1080,0,0,1999,0,0,3282,0,0,1507,0,0,2582,6,52053,"WAT","HY" 21,36,1,1,,105,155,"NIAGARA MOHAWK POWER CORP","MACOMB",0,,13573,"0M",1294,,190,95,434,0,0,398,0,0,641,0,0,569,0,0,481,0,0,319,0,0,-4,0,0,-4,0,0,132,0,0,534,0,0,627,0,0,520,0,0,2583,6,52053,"WAT","HY" 21,36,1,1,,105,160,"NIAGARA MOHAWK POWER CORP","MINETTO",0,,13573,"0M",1294,,190,95,3847,0,0,2604,0,0,4467,0,0,2022,0,0,1607,0,0,940,0,0,602,0,0,800,0,0,427,0,0,1690,0,0,4151,0,0,4554,0,0,2586,6,52053,"WAT","HY" 21,36,1,1,,105,165,"NIAGARA MOHAWK POWER CORP","MOSHIER",0,,13573,"0M",1294,,190,95,2698,0,0,2561,0,0,2447,0,0,1064,0,0,1751,0,0,2554,0,0,2993,0,0,2896,0,0,2791,0,0,736,0,0,3994,0,0,5506,0,0,2588,6,52053,"WAT","HY" 21,36,1,1,,105,170,"NIAGARA MOHAWK POWER CORP","NORFOLK",0,,13573,"0M",1294,,190,95,2391,0,0,2156,0,0,2979,0,0,1872,0,0,2207,0,0,2139,0,0,1223,0,0,2018,0,0,958,0,0,2054,0,0,3088,0,0,2630,0,0,2590,6,52053,"WAT","HY" 21,36,1,1,,105,175,"NIAGARA MOHAWK POWER CORP","NORWOOD",0,,13573,"0M",1294,,190,95,1536,0,0,1408,0,0,1536,0,0,938,0,0,1146,0,0,1136,0,0,605,0,0,1104,0,0,480,0,0,1072,0,0,1232,0,0,1488,0,0,2591,6,52053,"WAT","HY" 21,36,1,1,,105,180,"NIAGARA MOHAWK POWER CORP","OSWEGATCHIE",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2593,6,52053,"WAT","HY" 21,36,1,1,,105,182,"NIAGARA MOHAWK POWER CORP","OSWEGO FL E",0,,13573,"0M",1294,,190,95,2890,0,0,2449,0,0,2510,0,0,1688,0,0,1604,0,0,996,0,0,637,0,0,679,0,0,550,0,0,1991,0,0,2836,0,0,2816,0,0,2595,6,52053,"WAT","HY" 21,36,1,1,,105,183,"NIAGARA MOHAWK POWER CORP","OSWEGO FL W",0,,13573,"0M",1294,,190,95,1223,0,0,423,0,0,1212,0,0,176,0,0,-1,0,0,28,0,0,-2,0,0,47,0,0,14,0,0,385,0,0,730,0,0,1172,0,0,2596,6,52053,"WAT","HY" 21,36,1,1,,105,185,"NIAGARA MOHAWK POWER CORP","PARISHVILLE",0,,13573,"0M",1294,,190,95,0,0,0,690,0,0,1562,0,0,1603,0,0,1516,0,0,848,0,0,849,0,0,763,0,0,749,0,0,1395,0,0,1488,0,0,1298,0,0,2597,6,52053,"WAT","HY" 21,36,1,1,,105,187,"NIAGARA MOHAWK POWER CORP","PIERCEFIELD",0,,13573,"0M",1294,,190,95,1488,0,0,1283,0,0,1529,0,0,1482,0,0,1341,0,0,627,0,0,429,0,0,881,0,0,370,0,0,1195,0,0,1783,0,0,1527,0,0,2598,6,52053,"WAT","HY" 21,36,1,1,,105,192,"NIAGARA MOHAWK POWER CORP","PROSPECT",0,,13573,"0M",1294,,190,95,1704,0,0,0,0,0,4257,0,0,5788,0,0,3672,0,0,2881,0,0,2386,0,0,1689,0,0,184,0,0,6691,0,0,11309,0,0,6904,0,0,2599,6,52053,"WAT","HY" 21,36,1,1,,105,195,"NIAGARA MOHAWK POWER CORP","RAINBOW",0,,13573,"0M",1294,,190,95,10771,0,0,10270,0,0,8298,0,0,4779,0,0,5959,0,0,5843,0,0,3452,0,0,5583,0,0,2641,0,0,5774,0,0,14120,0,0,9950,0,0,2600,6,52053,"WAT","HY" 21,36,1,1,,105,200,"NIAGARA MOHAWK POWER CORP","RAYMONDVLE",0,,13573,"0M",1294,,190,95,932,0,0,816,0,0,1452,0,0,926,0,0,670,0,0,1102,0,0,674,0,0,1036,0,0,530,0,0,1056,0,0,1404,0,0,1120,0,0,2601,6,52053,"WAT","HY" 21,36,1,1,,105,210,"NIAGARA MOHAWK POWER CORP","S EDWARDS",0,,13573,"0M",1294,,190,95,1404,0,0,1076,0,0,1387,0,0,973,0,0,1018,0,0,736,0,0,427,0,0,1020,0,0,558,0,0,1359,0,0,1919,0,0,1392,0,0,2604,6,52053,"WAT","HY" 21,36,1,1,,105,215,"NIAGARA MOHAWK POWER CORP","SEWALLS",0,,13573,"0M",1294,,190,95,1372,0,0,889,0,0,1518,0,0,1486,0,0,1205,0,0,544,0,0,246,0,0,320,0,0,319,0,0,1211,0,0,1489,0,0,1514,0,0,2608,6,52053,"WAT","HY" 21,36,1,1,,105,220,"NIAGARA MOHAWK POWER CORP","SOFT MAPLE",0,,13573,"0M",1294,,190,95,2633,0,0,1616,0,0,2359,0,0,882,0,0,1236,0,0,1714,0,0,2341,0,0,1918,0,0,1850,0,0,1760,0,0,3432,0,0,4125,0,0,2610,6,52053,"WAT","HY" 21,36,1,1,,105,225,"NIAGARA MOHAWK POWER CORP","SOTH COLTON",0,,13573,"0M",1294,,190,95,8860,0,0,8292,0,0,6906,0,0,3510,0,0,4607,0,0,4842,0,0,2861,0,0,4595,0,0,2211,0,0,4731,0,0,12247,0,0,8305,0,0,2611,6,52053,"WAT","HY" 21,36,1,1,,105,230,"NIAGARA MOHAWK POWER CORP","STARK",0,,13573,"0M",1294,,190,95,10035,0,0,10162,0,0,7531,0,0,4401,0,0,5629,0,0,5788,0,0,3281,0,0,5363,0,0,2475,0,0,5187,0,0,14852,0,0,9960,0,0,2613,6,52053,"WAT","HY" 21,36,1,1,,105,235,"NIAGARA MOHAWK POWER CORP","SUGAR IS",0,,13573,"0M",1294,,190,95,2908,0,0,2519,0,0,2995,0,0,2818,0,0,2884,0,0,2757,0,0,1893,0,0,2754,0,0,1376,0,0,2667,0,0,2781,0,0,2983,0,0,2616,6,52053,"WAT","HY" 21,36,1,1,,105,240,"NIAGARA MOHAWK POWER CORP","TAYLORVILLE",0,,13573,"0M",1294,,190,95,2219,0,0,1663,0,0,2176,0,0,1051,0,0,1247,0,0,1560,0,0,1566,0,0,1692,0,0,1630,0,0,1392,0,0,2700,0,0,3109,0,0,2617,6,52053,"WAT","HY" 21,36,1,1,,105,250,"NIAGARA MOHAWK POWER CORP","TRENTON",0,,13573,"0M",1294,,190,95,12363,0,0,10763,0,0,12685,0,0,10309,0,0,6711,0,0,6004,0,0,5262,0,0,4565,0,0,3995,0,0,8295,0,0,14603,0,0,11617,0,0,2619,6,52053,"WAT","HY" 21,36,1,1,,105,255,"NIAGARA MOHAWK POWER CORP","VARICK",0,,13573,"0M",1294,,190,95,3510,0,0,2348,0,0,3552,0,0,1467,0,0,836,0,0,546,0,0,363,0,0,629,0,0,211,0,0,2344,0,0,3490,0,0,3553,0,0,2621,6,52053,"WAT","HY" 21,36,1,1,,105,265,"NIAGARA MOHAWK POWER CORP","YALEVILLE",0,,13573,"0M",1294,,190,95,293,0,0,255,0,0,406,0,0,320,0,0,373,0,0,341,0,0,243,0,0,407,0,0,242,0,0,346,0,0,275,0,0,248,0,0,2624,6,52053,"WAT","HY" 21,36,1,3,2,105,270,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"LIGHT OIL",13573,"0M",1294,,190,95,6,136,4435,3,121,4470,11,87,4380,0,100,4256,13,323,4316,10,36,4349,6,164,4288,7,218,4320,6,11,535,6,12,573,6,13,557,6,12,543,2589,6,52053,"FO2","IC" 21,36,1,2,3,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"HEAVY OIL",13573,"0M",1294,,190,95,0,0,632933,120407,215553,417380,0,0,417380,26504,46741,370639,0,0,370639,1371,4130,366508,44092,30232,330715,13690,33269,298197,9883,21973,276183,0,0,276183,0,0,542213,0,0,542213,2594,6,52053,"FO6","ST" 21,36,1,2,9,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"NAT GAS",13573,"0M",1294,,190,95,999,22854,0,10635,117884,0,0,0,0,0,0,0,0,0,0,0,0,0,108,461,0,38513,570000,0,15497,213000,0,0,0,0,0,0,0,0,0,0,2594,6,52053,"NG","ST" 21,36,1,3,2,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,4,11,2138,0,0,2138,0,0,2138,0,0,2138,2594,6,52053,"FO2","IC" 21,36,1,1,,105,285,"NIAGARA MOHAWK POWER CORP","BEARDSLEE F",0,,13573,"0M",1294,,190,95,5266,0,0,1946,0,0,6556,0,0,4417,0,0,2463,0,0,1946,0,0,895,0,0,759,0,0,741,0,0,5400,0,0,6369,0,0,2631,0,0,2543,6,52053,"WAT","HY" 21,36,1,1,,105,290,"NIAGARA MOHAWK POWER CORP","BAKER FALLS",0,,13573,"0M",1294,"R",190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2541,6,52053,"WAT","HY" 21,36,1,1,,105,300,"NIAGARA MOHAWK POWER CORP","EL J WEST",0,,13573,"0M",1294,,190,95,5989,0,0,5250,0,0,1580,0,0,972,0,0,1241,0,0,3218,0,0,3059,0,0,2326,0,0,4257,0,0,1425,0,0,10684,0,0,8834,0,0,6527,6,52053,"WAT","HY" 21,36,1,1,,105,305,"NIAGARA MOHAWK POWER CORP","EPHRATAH",0,,13573,"0M",1294,,190,95,2045,0,0,902,0,0,1493,0,0,780,0,0,337,0,0,463,0,0,97,0,0,147,0,0,127,0,0,1599,0,0,1298,0,0,1198,0,0,2560,6,52053,"WAT","HY" 21,36,1,1,,105,315,"NIAGARA MOHAWK POWER CORP","GLEN FALLS",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2567,6,52053,"WAT","HY" 21,36,1,1,,105,317,"NIAGARA MOHAWK POWER CORP","GREEN ISL",0,,13573,"0M",1294,,190,95,3672,0,0,3067,0,0,3470,0,0,3478,0,0,2678,0,0,2110,0,0,1303,0,0,1440,0,0,1476,0,0,2837,0,0,2513,0,0,3722,0,0,6528,6,52053,"WAT","HY" 21,36,1,1,,105,320,"NIAGARA MOHAWK POWER CORP","INGHAMS",0,,13573,"0M",1294,,190,95,2951,0,0,1446,0,0,3570,0,0,3006,0,0,1806,0,0,1403,0,0,605,0,0,518,0,0,480,0,0,2716,0,0,3695,0,0,1829,0,0,2579,6,52053,"WAT","HY" 21,36,1,1,,105,325,"NIAGARA MOHAWK POWER CORP","JOHNSONVLE",0,,13573,"0M",1294,,190,95,783,0,0,709,0,0,698,0,0,730,0,0,706,0,0,415,0,0,84,0,0,196,0,0,71,0,0,754,0,0,1347,0,0,777,0,0,2580,6,52053,"WAT","HY" 21,36,1,1,,105,340,"NIAGARA MOHAWK POWER CORP","MOREAU",0,,13573,"0M",1294,"R",190,95,0,0,0,2501,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2587,6,52053,"WAT","HY" 21,36,1,1,,105,350,"NIAGARA MOHAWK POWER CORP","SCH ST COHS",0,,13573,"0M",1294,,190,95,17365,0,0,13801,0,0,18549,0,0,16246,0,0,8330,0,0,6836,0,0,4087,0,0,3410,0,0,3303,0,0,14028,0,0,23804,0,0,15352,0,0,2605,6,52053,"WAT","HY" 21,36,1,1,,105,355,"NIAGARA MOHAWK POWER CORP","SCHAGHTICKE",0,,13573,"0M",1294,,190,95,6959,0,0,4628,0,0,1779,0,0,7008,0,0,3998,0,0,2703,0,0,925,0,0,1694,0,0,513,0,0,4157,0,0,7065,0,0,4122,0,0,2606,6,52053,"WAT","HY" 21,36,1,1,,105,360,"NIAGARA MOHAWK POWER CORP","SCHUYLERVLE",0,,13573,"0M",1294,,190,95,766,0,0,454,0,0,951,0,0,408,0,0,291,0,0,185,0,0,26,0,0,77,0,0,-5,0,0,527,0,0,1089,0,0,771,0,0,2607,6,52053,"WAT","HY" 21,36,1,1,,105,365,"NIAGARA MOHAWK POWER CORP","SHERMAN",0,,13573,"0M",1294,,190,95,14937,0,0,11480,0,0,11483,0,0,9158,0,0,6495,0,0,5892,0,0,5453,0,0,6179,0,0,6999,0,0,9121,0,0,7996,0,0,9198,0,0,2609,6,52053,"WAT","HY" 21,36,1,1,,105,370,"NIAGARA MOHAWK POWER CORP","SPIER FALLS",0,,13573,"0M",1294,,190,95,22054,0,0,16130,0,0,18521,0,0,13202,0,0,8844,0,0,7373,0,0,6467,0,0,7246,0,0,8844,0,0,15741,0,0,12177,0,0,20353,0,0,2612,6,52053,"WAT","HY" 21,36,1,1,,105,380,"NIAGARA MOHAWK POWER CORP","STEWARTS BR",0,,13573,"0M",1294,,190,95,10770,0,0,11203,0,0,3959,0,0,1818,0,0,5172,0,0,2348,0,0,5366,0,0,4271,0,0,7737,0,0,2666,0,0,19084,0,0,17328,0,0,2614,6,52053,"WAT","HY" 21,36,1,1,,105,385,"NIAGARA MOHAWK POWER CORP","STUYVESANT",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2615,6,52053,"WAT","HY" 21,36,1,2,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,201,0,0,201,0,0,195,0,0,192,0,0,189,0,0,185,2539,6,52053,"FO2","ST" 21,36,1,2,3,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"HEAVY OIL",13573,"0M",1294,,190,95,58267,97691,332532,62750,94595,237938,5641,8097,184840,0,0,184840,0,0,184840,1711,4230,180610,0,0,180610,0,0,180610,0,0,180610,0,0,180610,18591,30657,149952,25930,42050,107902,2539,6,52053,"FO6","ST" 21,36,1,2,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,57789,665226,0,58253,669709,0,144263,1550322,0,53054,571524,0,31237,333909,0,47841,524896,0,130139,1434248,0,147338,1604315,0,50979,541649,0,49257,521886,0,6001,121469,0,5994,104410,0,2539,6,52053,"NG","ST" 21,36,1,3,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","IC" 21,36,1,4,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","GT" 21,36,1,4,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"NG","GT" 21,36,1,1,,105,420,"NIAGARA MOHAWK POWER CORP","GLENWOOD",0,,13573,"0M",1294,,190,95,584,0,0,584,0,0,712,0,0,35,0,0,602,0,0,501,0,0,510,0,0,499,0,0,459,0,0,493,0,0,412,0,0,213,0,0,2568,6,52053,"WAT","HY" 21,36,1,1,,105,425,"NIAGARA MOHAWK POWER CORP","HYDRAULIC R",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,247,0,0,1980,0,0,1737,0,0,1757,0,0,1761,0,0,1655,0,0,1715,0,0,209,0,0,0,0,0,2578,6,52053,"WAT","HY" 21,36,1,1,,105,440,"NIAGARA MOHAWK POWER CORP","WATERPORT",0,,13573,"0M",1294,,190,95,1372,0,0,1372,0,0,1447,0,0,69,0,0,924,0,0,779,0,0,723,0,0,727,0,0,684,0,0,922,0,0,936,0,0,428,0,0,2623,6,52053,"WAT","HY" 21,36,1,2,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,1601,2790,0,653,1081,0,675,1178,0,599,1017,0,1403,2417,0,539,896,0,638,1090,0,1031,1725,0,723,1216,0,997,1731,0,914,1625,0,396,651,0,2554,6,52053,"FO2","ST" 21,36,1,2,6,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"BIT COAL",13573,"0M",1294,,190,95,254022,99455,112963,311173,114689,97723,298538,114582,80138,317020,119632,52831,259603,99967,52456,255038,95545,74556,311521,120965,80149,307244,117398,77577,307482,116339,76599,257442,99939,138351,253614,100750,153571,354614,131876,151153,2554,6,52053,"BIT","ST" 21,36,1,3,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,1079,0,0,1334,0,0,1300,0,0,1323,0,0,635,0,0,1174,0,0,1343,0,0,1234,0,0,1317,0,0,1090,0,0,1325,0,0,1484,2554,6,52053,"FO2","IC" 21,36,1,2,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,681,1256,1160,349,688,1247,690,1294,1076,1705,3207,1221,704,1326,1175,1004,1818,1727,1072,1981,1452,554,1037,1301,324,570,1193,1215,2237,1180,832,1567,1213,253,461,1135,2549,6,52053,"FO2","ST" 21,36,1,2,6,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"BIT COAL",13573,"0M",1294,,190,95,272246,110975,103175,276497,121255,106086,220640,91915,179212,270614,112094,162277,265384,109603,157439,267756,107734,190733,286378,118727,131748,337035,139658,120591,316597,122391,136393,245260,100618,129570,236599,99435,197282,339259,137453,168549,2549,6,52053,"BIT","ST" 21,36,1,3,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2549,6,52053,"FO2","IC" 21,36,1,1,,105,460,"NIAGARA MOHAWK POWER CORP","OAK ORCHARD",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,178,0,0,186,0,0,185,0,0,187,0,0,174,0,0,176,0,0,46,0,0,0,0,0,2592,6,52053,"WAT","HY" 21,36,1,1,,105,465,"NIAGARA MOHAWK POWER CORP","BEEBEE IS",0,,13573,"0M",1294,,190,95,3633,0,0,2768,0,0,5208,0,0,4383,0,0,3010,0,0,1959,0,0,2292,0,0,1754,0,0,2115,0,0,4754,0,0,5881,0,0,3959,0,0,6434,6,52053,"WAT","HY" 21,36,1,1,,105,470,"NIAGARA MOHAWK POWER CORP","FEEDER DAM",0,,13573,"0M",1294,,190,95,3058,0,0,0,0,0,2491,0,0,1680,0,0,1085,0,0,869,0,0,595,0,0,648,0,0,1046,0,0,1795,0,0,3058,0,0,2885,0,0,2666,6,52053,"WAT","HY" 21,36,1,1,,115,3,"ORANGE & ROCKLAND UTL INC","GRAHAMSVILE",0,,14154,"0M",1294,,,95,7995,0,0,10213,0,0,10828,0,0,5471,0,0,3765,0,0,6843,0,0,11715,0,0,11385,0,0,6049,0,0,6915,0,0,5017,0,0,7158,0,0,2627,6,52181,"WAT","HY" 21,36,1,1,,115,5,"ORANGE & ROCKLAND UTL INC","MONGAUP FLS",0,,14154,"0M",1294,,,95,1849,0,0,830,0,0,1994,0,0,1152,0,0,218,0,0,502,0,0,749,0,0,605,0,0,91,0,0,475,0,0,1859,0,0,1637,0,0,2630,6,52181,"WAT","HY" 21,36,1,1,,115,10,"ORANGE & ROCKLAND UTL INC","RIO",0,,14154,"0M",1294,,,95,4380,0,0,1792,0,0,4911,0,0,2578,0,0,759,0,0,986,0,0,1125,0,0,978,0,0,116,0,0,1041,0,0,4467,0,0,3352,0,0,2631,6,52181,"WAT","HY" 21,36,1,1,,115,15,"ORANGE & ROCKLAND UTL INC","SWING BR 1",0,,14154,"0M",1294,,,95,1041,0,0,442,0,0,1445,0,0,608,0,0,266,0,0,374,0,0,391,0,0,409,0,0,76,0,0,299,0,0,1316,0,0,873,0,0,2633,6,52181,"WAT","HY" 21,36,1,1,,115,20,"ORANGE & ROCKLAND UTL INC","SWING BR 2",0,,14154,"0M",1294,,,95,687,0,0,340,0,0,661,0,0,428,0,0,16,0,0,-84,0,0,164,0,0,42,0,0,-68,0,0,68,0,0,889,0,0,593,0,0,2634,6,52181,"WAT","HY" 21,36,1,2,3,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"HEAVY OIL",14154,"0M",1294,,,95,43906,73730,656595,138605,222519,509921,36874,60431,690856,47123,77864,612992,171664,281797,399693,132603,218077,395393,121658,204130,412273,93622,159538,457749,16475,28676,564249,22772,39554,562775,23802,41159,590697,87447,145316,516559,2625,6,52181,"FO6","ST" 21,36,1,2,9,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"NAT GAS",14154,"0M",1294,,,95,168974,1723560,0,82272,1239913,0,246716,2463200,0,218627,2199380,0,99656,966090,0,197607,1984380,0,277722,2939140,0,259468,2692570,0,188365,2000250,0,195838,2071510,0,142378,1499610,0,41983,424600,0,2625,6,52181,"NG","ST" 21,36,1,2,3,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"HEAVY OIL",14154,"0M",1294,,,95,8,15,100319,1955,3363,96956,1,1,96927,0,0,96968,162,289,96714,7,13,96701,10,18,96682,5,10,96706,6,11,96717,0,0,96732,0,0,96732,5,10,96723,2629,6,52181,"FO6","ST" 21,36,1,2,6,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"BIT COAL",14154,"0M",1294,,,95,111799,49067,63359,155251,65603,75519,116513,50062,70545,69873,29960,67950,67316,29174,75567,80224,36666,84715,138923,58882,82515,118307,52178,76055,140703,61690,59229,113469,49704,60388,125569,51656,62679,132749,58514,56774,2629,6,52181,"BIT","ST" 21,36,1,2,9,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"NAT GAS",14154,"0M",1294,,,95,29773,323525,0,26698,280445,0,15824,169812,0,33214,357965,0,35392,384353,0,65900,754578,0,47901,513697,0,42001,470557,0,20369,222754,0,24743,268834,0,21096,220661,0,31665,346005,0,2629,6,52181,"NG","ST" 21,36,1,4,2,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4238,0,0,4238,0,0,4238,0,0,4238,0,9,4229,0,0,4229,52,164,4065,108,334,3731,0,0,3731,0,0,3731,0,0,3731,0,0,3731,2628,6,52181,"FO2","GT" 21,36,1,4,9,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"NATURAL G",14154,"0M",1294,,,95,44,1217,0,0,0,0,37,1143,0,565,8996,0,-13,1208,0,256,5250,0,276,4745,0,945,15862,0,444,6906,0,-18,82,0,-27,456,0,24,430,0,2628,6,52181,"NG","GT" 21,36,1,4,2,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4599,73,30,4569,29,103,4466,-1,30,4485,1,2,4463,45,124,4068,0,0,4068,1,3,4065,0,0,4065,22,81,3984,84,247,3738,0,0,3738,2632,6,52181,"FO2","GT" 21,36,1,4,9,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"NAT GAS",14154,"0M",1294,,,95,217,4023,0,342,7789,0,599,11559,0,-31,207,0,1856,30143,0,3256,49008,0,4402,75566,0,4597,74746,0,2492,42150,0,713,14586,0,45,456,0,53,1654,0,2632,6,52181,"NG","GT" 21,36,1,2,1,135,1,"ROCHESTER GAS & ELEC CORP","GINNA",0,"NUCLEAR",16183,"0M",1294,,,95,351805,0,0,321771,0,0,293087,0,0,-2750,0,0,299117,0,0,334397,0,0,342637,0,0,305248,0,0,336763,0,0,353447,0,0,342871,0,0,354889,0,0,6122,6,52501,"UR","ST" 21,36,1,1,,135,5,"ROCHESTER GAS & ELEC CORP","MILLS M 172",0,,16183,"0M",1294,,,95,68,0,0,0,0,0,79,0,0,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2636,6,52501,"WAT","HY" 21,36,1,1,,135,10,"ROCHESTER GAS & ELEC CORP","MT MORR 160",0,,16183,"0M",1294,,,95,0,0,0,75,0,0,0,0,0,0,0,0,49,0,0,121,0,0,87,0,0,44,0,0,16,0,0,124,0,0,132,0,0,67,0,0,2637,6,52501,"WAT","HY" 21,36,1,1,,135,15,"ROCHESTER GAS & ELEC CORP","ROCHESTER 2",0,,16183,"0M",1294,,,95,3983,0,0,3890,0,0,4861,0,0,4119,0,0,4073,0,0,2681,0,0,1898,0,0,1483,0,0,708,0,0,3228,0,0,4230,0,0,3509,0,0,2639,6,52501,"WAT","HY" 21,36,1,1,,135,25,"ROCHESTER GAS & ELEC CORP","ROCHESTER 5",0,,16183,"0M",1294,,,95,18727,0,0,8869,0,0,21670,0,0,13445,0,0,7303,0,0,4173,0,0,5885,0,0,2422,0,0,1347,0,0,9730,0,0,15462,0,0,12738,0,0,2641,6,52501,"WAT","HY" 21,36,1,1,,135,28,"ROCHESTER GAS & ELEC CORP","RCHESTER 26",0,,16183,"0M",1294,,,95,596,0,0,1040,0,0,1215,0,0,1302,0,0,1083,0,0,420,0,0,405,0,0,282,0,0,135,0,0,726,0,0,1174,0,0,1054,0,0,2638,6,52501,"WAT","HY" 21,36,1,1,,135,35,"ROCHESTER GAS & ELEC CORP","WISCOY 170",0,,16183,"0M",1294,,,95,517,0,0,408,0,0,590,0,0,391,0,0,204,0,0,97,0,0,121,0,0,83,0,0,55,0,0,240,0,0,470,0,0,462,0,0,2646,6,52501,"WAT","HY" 21,36,1,2,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",394,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,102,143,2305,77,143,2008,122,214,1718,91,167,1882,68,119,1700,27,58,1645,2640,6,52501,"FO2","ST" 21,36,1,2,3,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"HEAVY OIL",16183,"0M",1294,"R",,95,27,48,2860,14,24,2809,14,24,2745,14,24,2703,0,0,2703,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2640,6,52501,"FO6","ST" 21,36,1,2,6,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"BIT COAL",16183,"0M",1294,,,95,36334,13900,770,42264,15300,1458,40715,15300,1556,45572,16900,817,17481,6500,1591,36715,14100,1438,41179,15700,936,37637,15017,1800,37010,13802,1800,27740,10832,1630,33466,12558,1431,34731,13210,1105,2640,6,52501,"BIT","ST" 21,36,1,4,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",1294,,,95,26,81,0,4,27,0,13,41,0,3,18,0,0,0,0,6,34,0,4,6,0,46,154,0,25,76,0,8,26,0,13,63,0,1,7,0,2640,6,52501,"FO2","GT" 21,36,1,2,2,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"LIGHT OIL",16183,"0M",1294,,,95,299,571,1111,90,167,1127,375,690,1162,173,310,1211,249,452,1299,566,1071,1121,331,643,1190,434,833,1065,37,71,1065,373,738,1065,345,643,958,311,571,1102,2642,6,52501,"FO2","ST" 21,36,1,2,6,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"BIT COAL",16183,"0M",1294,,,95,66357,27700,114902,86515,35300,90431,90609,36600,83204,137634,53400,75835,121093,47500,85250,104898,43000,113923,112687,47700,112973,116634,48507,127749,110993,45157,153399,77990,33362,173353,81051,33064,173047,90029,35948,150667,2642,6,52501,"BIT","ST" 21,36,1,4,2,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"LIGHT OIL",16183,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2644,6,52501,"FO2","GT" 21,36,1,4,9,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"NAT GAS",16183,"0M",1294,,,95,26,383,0,2,74,0,14,216,0,4,174,0,0,0,0,8,290,0,17,280,0,3,89,0,24,381,0,0,0,0,3,98,0,8,143,0,2644,6,52501,"NG","GT" 21,36,5,3,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,1463,3067,3172,1434,3271,2622,413,1557,2551,-162,121,3525,-118,217,5782,984,2264,6164,3712,7100,3595,3729,7301,5720,584,1625,6684,895,1423,5789,787,2037,3752,1869,3903,3213,2679,6,51057,"FO2","IC" 21,36,5,4,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,12,0,13,58,0,18,95,0,0,0,0,0,0,0,0,0,0,0,0,0,2679,6,51057,"FO2","GT" 21,36,5,3,2,578,10,"FREEPORT (VILLAGE OF)","PLANT NO 1",0,"LIGHT OIL",6775,"0M",1294,,,95,182,658,1479,376,1032,1630,468,1254,1391,320,920,1697,251,803,1542,452,1093,1119,571,1281,1220,740,1757,1321,639,1551,1424,175,575,1295,402,1078,1704,465,1231,1436,2678,6,51057,"FO2","IC" 21,36,5,1,,586,1,"GOUVERNEUR (CITY OF)","GOUVERNEUR",0,,7422,"0A",1294,,,95,46,0,0,92,0,0,47,0,0,50,0,0,50,0,0,38,0,0,13,0,0,45,0,0,29,0,0,20,0,0,26,0,0,41,0,0,2680,6,51137,"WAT","HY" 21,36,5,3,2,599,1,"GREENPORT (CITY OF)","GREENPORT",0,"LIGHT OIL",7630,"0A",1294,,,95,-32,0,183,-32,0,183,-27,0,183,0,2,181,0,0,0,0,1,180,-20,0,180,-4,28,152,-10,14,182,-19,0,182,0,0,182,-1,26,181,2681,6,51177,"FO2","IC" 21,36,5,2,2,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"LIGHT OIL",9645,"0M",1294,,,95,105,273,377,41,102,275,21,59,394,24,59,335,20,54,281,26,64,394,57,144,250,59,144,281,26,66,215,26,69,323,44,114,209,51,136,250,2682,6,51437,"FO2","ST" 21,36,5,2,6,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"BIT COAL",9645,"0M",1294,,,95,17974,10638,3526,17648,10013,3826,11794,7305,3597,9844,5439,3428,9879,6006,2629,11487,6255,2811,13511,7717,2530,13208,7291,3578,9538,5398,3370,10505,6096,2827,12704,7245,3946,16956,10165,3924,2682,6,51437,"BIT","ST" 21,36,5,3,2,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"LIGHT OIL",16217,"0M",1294,,,95,105,294,2332,321,741,2091,43,283,1808,-60,82,1726,-18,114,2338,244,637,2368,957,2138,1919,2160,4073,1884,560,1129,2277,20,216,2061,38,213,2151,101,381,1770,2695,6,52509,"FO2","IC" 21,36,5,3,9,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"NAT GAS",16217,"0M",1294,,,95,642,7257,0,510,5912,0,15,471,0,0,325,0,-11,282,0,1931,20033,0,4455,46010,0,2523,26516,0,352,4031,0,47,1369,0,46,1025,0,450,5750,0,2695,6,52509,"NG","IC" 21,36,5,3,2,700,5,"SKANEATELES VILLAGE OF","SKANEATELES",0,"LIGHT OIL",17280,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2697,6,52670,"FO2","IC" 21,36,5,1,,712,1,"SPRINGVILLE (CITY OF)","SPRINGVILLE",0,,17846,"0A",1294,,,95,145,0,0,118,0,0,104,0,0,166,0,0,172,0,0,129,0,0,84,0,0,63,0,0,12,0,0,39,0,0,110,0,0,124,0,0,2698,6,52772,"WAT","HY" 21,36,5,1,,725,1,"WATERTOWN (CITY OF)","WATERTOWN",0,,20188,"0A",1294,,,95,2508,0,0,1826,0,0,2861,0,0,2520,0,0,2042,0,0,715,0,0,684,0,0,252,0,0,458,0,0,1925,0,0,2671,0,0,2141,0,0,2700,6,53199,"WAT","HY" 21,36,9,1,,668,1,"POWER AUTHY OF ST OF N Y","LEWISTON PG",0,"C-PUMPSTG",15296,"0M",1294,,,95,-23392,48481,0,-16321,48107,0,-18062,52914,0,-34170,75041,0,-32754,81523,0,-35246,84639,0,-35971,80543,0,-31970,78905,0,-33926,76500,0,-34404,82531,0,-25619,66689,0,-26848,63831,0,2692,6,52375,"WAT","HY" 21,36,9,2,1,668,1,"POWER AUTHY OF ST OF N Y","FITZPATRICK",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,34055,0,0,544665,0,0,562170,0,0,384520,0,0,579310,0,0,577530,0,0,402855,0,0,590100,0,0,572680,0,0,580835,0,0,6110,6,52375,"UR","ST" 21,36,9,1,,668,3,"POWER AUTHY OF ST OF N Y","MOSES NIAG",0,,15296,"0M",1294,,,95,1463973,0,0,1230590,0,0,1418230,0,0,1163933,0,0,1279083,0,0,1132981,0,0,1197133,0,0,1148436,0,0,1021706,0,0,1145560,0,0,1382957,0,0,1354956,0,0,2693,6,52375,"WAT","HY" 21,36,9,2,1,668,3,"POWER AUTHY OF ST OF N Y","INDIAN PT 3",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,0,0,434533,0,0,716433,0,0,320544,0,0,0,0,0,0,0,0,-2,0,0,8907,6,52375,"UR","ST" 21,36,9,1,,668,5,"POWER AUTHY OF ST OF N Y","MOSES PR DM",0,,15296,"0M",1294,,,95,524759,0,0,481624,0,0,585412,0,0,549618,0,0,532348,0,0,526743,0,0,545520,0,0,559232,0,0,538635,0,0,554432,0,0,576778,0,0,569302,0,0,2694,6,52375,"WAT","HY" 21,36,9,1,,668,8,"POWER AUTHY OF ST OF N Y","BLENHEIM G",0,"P-PUMPSTG",15296,"0M",1294,,,95,-80117,223900,0,-66116,187582,0,-64757,198518,0,-71547,180530,0,-58305,185571,0,-61293,196731,0,-78558,215353,0,-75753,237341,0,-63547,183628,0,-66325,194141,0,-57795,177791,0,-70135,192222,0,2691,6,52375,"WAT","HY" 21,36,9,2,3,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"HEAVY OIL",15296,"0M",1294,,,95,33400,61649,303226,126069,209523,203682,20403,35475,168236,17269,37577,130679,19806,35708,94972,47803,62254,32718,36004,60668,68293,14149,23707,150452,35247,61190,430389,17481,30727,459549,62862,110242,349307,252627,421942,245156,2491,6,52375,"FO6","ST" 21,36,9,2,9,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"NAT GAS",15296,"0M",1294,,,95,99454,1128061,0,99940,1020449,0,202945,2167293,0,211435,2738075,0,258894,2862705,0,324525,2604689,0,262599,2721610,0,310920,3222176,0,205757,2168448,0,224611,2374781,0,128580,1368464,0,2466,25078,0,2491,6,52375,"NG","ST" 21,36,9,1,,668,20,"POWER AUTHY OF ST OF N Y","ASHOKAN",0,,15296,"0M",1294,,,95,1615,0,0,587,0,0,1045,0,0,2214,0,0,2450,0,0,2277,0,0,2117,0,0,2126,0,0,1756,0,0,1286,0,0,1083,0,0,1303,0,0,88,6,52375,"WAT","HY" 21,36,9,1,,668,25,"POWER AUTHY OF ST OF N Y","KENSICO",0,,15296,"0M",1294,,,95,802,0,0,73,0,0,0,0,0,1521,0,0,150,0,0,271,0,0,1411,0,0,1244,0,0,1418,0,0,1191,0,0,880,0,0,0,0,0,650,6,52375,"WAT","HY" 21,36,9,1,,668,30,"POWER AUTHY OF ST OF N Y","JARVIS",0,,15296,"0M",1294,,,95,4048,0,0,2165,0,0,2416,0,0,2485,0,0,1720,0,0,1501,0,0,1162,0,0,1003,0,0,575,0,0,2833,0,0,5091,0,0,2476,0,0,808,6,52375,"WAT","HY" 21,36,9,1,,668,35,"POWER AUTHY OF ST OF N Y","CRESCENT",0,,15296,"0M",1294,,,95,6303,0,0,4034,0,0,7316,0,0,4624,0,0,3019,0,0,2031,0,0,104,0,0,713,0,0,703,0,0,3132,0,0,6120,0,0,4690,0,0,2685,6,52375,"WAT","HY" 21,36,9,1,,668,40,"POWER AUTHY OF ST OF N Y","VISCHER FER",0,,15296,"0M",1294,,,95,5945,0,0,3714,0,0,6024,0,0,4504,0,0,2789,0,0,1833,0,0,986,0,0,123,0,0,654,0,0,2259,0,0,5980,0,0,4591,0,0,2686,6,52375,"WAT","HY" 21,36,9,5,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"WASTE HT",15296,"0M",1294,,,95,24819,192100,0,17369,134483,0,27383,211172,0,18948,146928,0,26056,199854,0,24430,188777,0,23492,184084,0,25126,194127,0,24424,188668,0,23749,183457,0,20261,158951,0,19720,154115,0,7314,6,52375,"WH","CC" 21,36,9,6,2,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"LIGHT OIL",15296,"0M",1294,,,95,7722,10369,101959,21462,28859,72145,0,0,72242,14,20,72083,0,0,72104,0,0,72094,0,0,72044,0,0,72052,0,0,72062,157,211,71873,9447,12866,58992,27271,36998,78070,7314,6,52375,"FO2","CT" 21,36,9,6,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"NAT GAS",15296,"0M",1294,,,95,74458,576302,0,52111,403450,0,82153,633518,0,56849,440785,0,78170,599562,0,73293,566331,0,71470,552251,0,75381,582382,0,73276,566005,0,71251,550371,0,60784,476853,0,59162,462344,0,7314,6,52375,"NG","CT" 22,34,1,2,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,123,81,130,93,0,0,131,0,0,138,14,28,165,67,129,202,80,160,147,5,10,137,40,91,189,0,29,160,0,29,131,4,8,123,2384,3,56513,"FO2","ST" 22,34,1,2,3,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"HEAVY OIL",963,"0M",1294,,181,95,1345,2425,95467,4563,6516,88951,0,0,88951,0,0,88261,0,0,88261,1177,2026,86235,3361,5958,80277,5273,9351,70926,5555,8624,62302,0,0,62302,0,0,62302,0,0,62302,2384,3,56513,"FO6","ST" 22,34,1,2,6,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"BIT COAL",963,"0M",1294,,181,95,29945,12519,39313,35838,15203,23710,8276,3561,20149,0,0,34389,5810,3059,52665,34469,14723,52014,42129,18253,40567,44451,19515,27979,11926,4625,44084,33654,13941,51248,53859,21346,70836,57721,22974,63900,2384,3,56513,"BIT","ST" 22,34,1,2,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,1491,16310,0,0,0,0,944,9940,0,1878,22040,0,11307,122240,0,11062,117040,0,27862,302860,0,29442,321050,0,12534,120040,0,807,8090,0,1552,15370,0,0,0,0,2384,3,56513,"NG","ST" 22,34,1,4,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,-8,0,770,27,44,729,14,39,690,20,103,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,0,2384,3,56513,"FO2","GT" 22,34,1,4,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,629,6657,0,3831,41649,0,3649,39793,0,1027,14649,0,628,9167,0,1061,10505,0,694,6875,0,2384,3,56513,"NG","GT" 22,34,1,4,2,24,2,"ATLANTIC CITY ELEC CO","MISSOURI AV",0,"LIGHT OIL",963,"0M",1294,,181,95,-4,100,9869,278,791,9635,3,53,9582,-21,5,9576,-17,8,9568,177,455,9113,2101,5546,7361,1882,5382,8451,605,2439,10201,-18,16,10185,-16,19,10167,2,70,10097,2383,3,56513,"FO2","GT" 22,34,1,2,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,510,999,1734,317,596,1818,213,395,1756,107,200,1734,125,224,1843,424,778,1734,424,814,1508,552,1027,1647,500,1086,1588,450,958,1654,643,1122,1377,242,442,1435,2378,3,56513,"FO2","ST" 22,34,1,2,3,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"HEAVY OIL",963,"0M",1294,,181,95,4583,8307,99579,7833,13643,103560,0,0,103560,0,0,103560,0,0,103560,8731,14731,88829,37756,66914,51324,29729,50813,69931,850,2842,113855,18800,33751,80103,0,0,80103,15770,26499,87607,2378,3,56513,"FO6","ST" 22,34,1,2,6,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"BIT COAL",963,"0M",1294,,181,95,68381,30282,165387,127521,54088,125492,123787,53379,95025,85963,36061,88754,176115,72435,61413,155554,64926,62658,185411,80134,49009,173888,73305,41509,130330,53650,71904,83030,32962,118367,145947,62033,109160,196038,81549,81843,2378,3,56513,"BIT","ST" 22,34,1,3,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,5,11,0,0,0,0,0,0,0,0,0,0,12,23,0,133,257,0,321,597,0,5,10,0,0,0,0,0,0,0,0,0,0,2378,3,56513,"FO2","IC" 22,34,1,4,2,24,20,"ATLANTIC CITY ELEC CO","MIDDLE STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-834,144,15410,-227,1590,15128,-1342,459,14669,-815,159,14510,-333,16,14494,-558,315,9113,2009,5421,12193,2243,7786,14637,-670,677,15327,-729,232,15284,-745,423,15069,-730,254,14814,2382,3,56513,"FO2","GT" 22,34,1,4,2,24,25,"ATLANTIC CITY ELEC CO","CEDAR STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-474,179,21675,-321,918,21875,-42,70,21804,-546,56,21748,-110,38,21710,62,61,21650,3843,9672,14702,3756,10444,18151,-253,1075,20407,-631,431,21246,-535,219,21027,-679,322,20705,2380,3,56513,"FO2","GT" 22,34,1,4,2,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"LIGHT OIL",963,"0M",1294,,181,95,-28,8,13554,78,379,13175,-43,0,13175,-20,0,13175,-965,8,13167,-121,166,13002,1394,2899,10102,1615,4499,9171,-32,0,13713,-16,0,14849,-44,0,14849,49,332,14517,2379,3,56513,"FO2","GT" 22,34,1,4,9,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"NAT GAS",963,"0M",1294,,181,95,35,1120,0,452,8170,0,-76,50,0,-19,1010,0,73,2450,0,835,15970,0,6072,93380,0,5324,82370,0,-117,28460,0,861,14250,0,-44,7170,0,172,150,0,2379,3,56513,"NG","GT" 22,34,1,4,2,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8008,3,56513,"FO2","GT" 22,34,1,4,9,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"NAT GAS",963,"0M",1294,,181,95,665,11020,0,1084,16250,0,714,11030,0,1017,15170,0,334,6070,0,2355,35610,0,9801,143090,0,8665,129480,0,2856,42750,0,30,1480,0,2277,33340,0,276,5380,0,8008,3,56513,"NG","GT" 22,34,1,4,2,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,-76,0,18141,-10,0,18141,-38,0,18141,-31,0,18141,-30,0,18141,0,0,18141,5894,12888,17367,7323,16647,12470,3,249,14661,0,0,17077,-158,198,17249,60,412,16838,5083,3,56513,"FO2","GT" 22,34,1,4,9,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"NAT GAS",963,"0M",1294,,181,95,-76,0,0,-10,0,0,-38,0,0,-31,0,0,0,0,0,-27,130,0,342,4020,0,16,200,0,1,380,0,-93,0,0,0,0,0,101,3810,0,5083,3,56513,"NG","GT" 22,34,1,4,2,24,35,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,53843,0,0,50861,0,0,80853,0,0,80853,0,0,80853,0,0,80853,0,0,58245,0,0,12871,0,0,12871,0,0,52645,0,0,52645,0,0,82122,8803,3,56513,"FO2","GT" 22,34,1,4,3,24,40,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"HEAVY OIL",963,"0M",1294,,181,95,0,0,128847,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,81814,0,0,111865,0,0,111865,0,0,115694,0,0,115694,0,0,131074,8804,3,56513,"FO6","GT" 22,34,1,4,2,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"LIGHT OIL",963,"0M",1294,,181,95,70,186,14708,-45,0,14708,-30,0,14708,0,0,14708,-11,0,14708,0,0,14708,0,0,14708,-190,0,14708,0,0,14708,0,0,14708,76,193,14515,232,590,14513,7288,3,56513,"FO2","GT" 22,34,1,4,9,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"NAT GAS",963,"0M",1294,,181,95,1386,19950,0,-45,0,0,-30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-190,0,0,0,0,0,0,0,0,1704,23780,0,2984,41500,0,7288,3,56513,"NG","GT" 22,34,1,2,1,50,1,"GPU NUCLEAR CORP","OYSTER CRK",0,"NUCLEAR",7423,"0M",1294,,,95,471880,0,0,400185,0,0,466040,0,0,457427,0,0,440064,0,0,447364,0,0,438119,0,0,420825,0,0,447572,0,0,468215,0,0,428423,0,0,307964,0,0,2388,3,58850,"UR","ST" 22,34,1,1,,78,5,"JERSEY CENTRAL PWR & LGT","YARDS CR JO",0,"P-PUMPSTG",9726,"0M",1294,,,95,-9476,31075,0,-6121,19602,0,-8606,30644,0,-9596,30043,0,-9800,36086,0,-15417,52655,0,-13938,46076,0,-11848,42668,0,-7525,27636,0,0,0,0,0,0,0,-2205,5358,0,6522,3,56512,"WAT","HY" 22,34,1,4,2,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"LIGHT OIL",9726,"0M",1294,,,95,357,1074,17830,457,1242,16588,29,247,16340,30,141,16199,0,0,16199,360,1062,15138,0,0,15138,0,0,15138,149,445,14693,21,60,14633,69,223,14409,10,63,16838,8227,3,56512,"FO2","GT" 22,34,1,4,9,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"NAT GAS",9726,"0M",1294,,,95,1,10,0,31,485,0,2,90,0,0,0,0,0,0,0,698,11690,0,15562,248730,0,18982,309960,0,4246,71580,0,3046,50662,0,1111,20594,0,10,377,0,8227,3,56512,"NG","GT" 22,34,1,2,3,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"HEAVY OIL",9726,"0M",1294,,,95,268,611,153901,2150,4403,149484,0,0,149488,0,0,149544,0,0,149379,0,0,150080,0,0,150051,0,0,149974,0,0,150075,0,0,149949,0,0,149926,8990,12417,137518,2393,3,56512,"FO6","ST" 22,34,1,2,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1658,32084,0,198,3865,0,-452,0,0,-364,0,0,-363,0,0,6011,80854,0,28213,364986,0,24888,306021,0,915,14545,0,340,8670,0,825,13717,0,331,2840,0,2393,3,56512,"NG","ST" 22,34,1,4,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,150,431,0,803,2747,0,39,127,0,0,0,0,0,0,0,1,8,0,1,3,0,791,2604,0,31,88,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"FO2","GT" 22,34,1,4,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1,16,0,0,0,0,1,15,0,0,0,0,0,0,0,3,79,0,2862,50800,0,6493,121452,0,911,15880,0,4,174,0,979,364,0,29,249,0,2393,3,56512,"NG","GT" 22,34,1,5,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,728,0,0,3136,0,0,1259,0,0,1612,0,0,-587,0,0,5741,0,0,26058,0,0,28272,0,0,20554,0,0,8047,0,0,19296,0,0,18926,0,0,2393,3,56512,"FO2","CC" 22,34,1,5,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"WASTE HT",9726,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"NG","CC" 22,34,1,6,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,1147,2566,252704,5572,11989,236313,1136,2545,232067,367,826,230086,0,0,229824,2660,6112,221348,82,189,219853,2038,4709,211204,942,1977,207539,163,373,205587,83,183,203671,5739,8660,193069,2393,3,56512,"FO2","CT" 22,34,1,6,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,5385,68331,0,8729,106467,0,6306,80671,0,7352,94029,0,-100,0,0,15594,203104,0,61026,877903,0,70864,931070,0,54572,701754,0,24094,329931,0,60664,796524,0,81101,693848,0,2393,3,56512,"NG","CT" 22,34,1,2,3,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"HEAVY OIL",9726,"0M",1294,,,95,4224,7914,90214,19448,37587,72103,7,16,72200,0,0,72163,792,1710,90373,6448,15362,75189,42812,86857,27305,24793,50118,55888,1650,3646,52242,0,0,71301,7,18,90540,10844,23847,66865,2390,3,56512,"FO6","ST" 22,34,1,2,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,20137,245800,0,2651,32100,0,6917,89800,0,-727,100,0,-407,2800,0,141,2100,0,224,4900,0,16338,199000,0,1429,25400,0,-704,0,0,2904,47900,0,306,4100,0,2390,3,56512,"NG","ST" 22,34,1,4,2,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"LIGHT OIL",9726,"0M",1294,,,95,93,224,31996,752,2238,29758,0,0,29758,0,0,29758,139,640,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,2390,3,56512,"FO2","GT" 22,34,1,4,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,1500,19800,0,1294,21300,0,831,12100,0,898,13300,0,187,4800,0,2507,37100,0,16534,266200,0,24165,379300,0,3245,51100,0,2451,37300,0,265,3800,0,22,300,0,2390,3,56512,"NG","GT" 22,34,1,2,3,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"HEAVY OIL",9726,"0M",1294,,,95,259,628,28845,5405,11437,18060,1926,4703,13792,-265,311,13764,-275,69,13780,1352,3366,28845,10346,20351,28459,7922,15595,12784,55,70,13159,-271,197,32022,-298,546,32144,3509,7954,24818,2385,3,56512,"FO6","ST" 22,34,1,4,2,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"LIGHT OIL",9726,"0M",1294,,,95,44,115,40240,398,1664,37864,88,236,37615,0,0,37379,13,702,36473,348,618,35855,2640,8238,27453,4764,13326,33888,215,290,33598,10,269,33202,0,25,42792,3,278,41910,2385,3,56512,"FO2","GT" 22,34,1,4,2,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"LIGHT OIL",9726,"0M",1294,,,95,0,0,16388,1066,2219,17602,713,1618,15984,0,0,15971,0,0,15989,0,0,15969,0,0,15974,0,0,15980,0,0,15980,5,12,15970,0,0,15994,221,489,15505,7138,3,56512,"FO2","GT" 22,34,1,4,9,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"NAT GAS",9726,"0M",1294,,,95,364,4569,0,160,1908,0,1306,15609,0,1647,20147,0,1120,14174,0,2225,28309,0,12875,162923,0,11844,149957,0,4227,53220,0,1880,23454,0,1759,25611,0,749,9475,0,7138,3,56512,"NG","GT" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,818199,0,0,47631,0,0,687443,0,0,753981,0,0,247176,0,0,-8310,0,0,-7985,0,0,-5500,0,0,-3133,0,0,-2112,0,0,-2002,0,0,-2639,0,0,2410,3,52414,"UR","ST" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","HOPE CREEK",0,"NUCLEAR",15477,"0M",1294,,,95,778188,0,0,711976,0,0,566874,0,0,750262,0,0,767051,0,0,742345,0,0,309223,0,0,760021,0,0,742281,0,0,733449,0,0,210606,0,0,-8357,0,0,6118,3,52414,"UR","ST" 22,34,1,2,1,131,2,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,-17867,0,0,12090,0,0,369001,0,0,767911,0,0,765246,0,0,157494,0,0,-5523,0,0,-7400,0,0,-4042,0,0,-4499,0,0,-4002,0,0,-3638,0,0,2410,3,52414,"UR","ST" 22,34,1,4,2,131,2,"PUBLIC SERV ELEC & GAS CO","BAYONNE 1",0,"LIGHT OIL",15477,"0M",1294,,,95,-19,40,3837,74,282,453,-9,0,453,-44,0,1097,-18,0,3930,-2,0,3930,252,805,3125,134,585,2744,-24,0,3373,-42,0,3744,0,26,3744,-33,25,3898,2397,3,52414,"FO2","GT" 22,34,1,2,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-2112,0,0,-2514,3702,0,8759,159907,0,3706,93882,0,82739,754972,0,167861,1271630,0,281448,2131152,0,334990,2488678,0,184434,1379778,0,154884,1248547,0,151551,1232638,0,151368,1176288,0,2398,3,52414,"NG","ST" 22,34,1,4,2,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,0,0,21622,0,0,21622,0,0,38592,0,0,38592,0,0,61623,2310,3197,102565,0,0,118429,0,0,118396,3765,5367,113029,4832,7091,116664,465,652,117805,2398,3,52414,"FO2","GT" 22,34,1,4,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-13,0,0,0,0,0,-6,664,0,-6,644,0,-9,0,0,0,0,0,347,35845,0,505,5090,0,0,0,0,-7,0,0,-7,0,0,-8,0,0,2398,3,52414,"NG","GT" 22,34,1,2,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,922,1740,0,1014,1683,0,707,1131,0,668,1366,0,0,0,0,911,1528,0,1631,2761,0,200,501,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","ST" 22,34,1,2,3,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"HEAVY OIL",15477,"0M",1294,,,95,9046,15688,55522,11250,17153,88452,0,0,88452,0,0,88452,-534,0,88437,2949,4515,83916,25958,40320,43596,1803,5025,88868,-545,0,88868,-541,0,88868,-541,0,88868,-573,0,88868,2399,3,52414,"FO6","ST" 22,34,1,4,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,1176,2221,83444,10436,17314,64340,158,253,93381,55,114,91811,-75,14,91811,57,96,90581,102,173,81026,4040,11276,88868,-82,16,87601,-75,58,86367,29,348,84382,4578,8912,83631,2399,3,52414,"FO2","GT" 22,34,1,4,9,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"NAT GAS",15477,"0M",1294,,,95,60222,642634,0,62039,580691,0,60695,548854,0,9404,108237,0,42361,363894,0,31693,299006,0,63357,605299,0,60174,537745,0,21155,187254,0,17575,158420,0,24156,217635,0,18363,172905,0,2399,3,52414,"NG","GT" 22,34,1,6,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",894,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,144,235,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","CT" 22,34,1,4,2,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"LIGHT OIL",15477,"0M",1294,,,95,152,366,106308,281,513,105795,252,403,105392,7,135,105257,0,0,105257,88,644,104610,675,1783,102827,687,1976,100851,0,0,110803,0,0,110803,126,444,110359,742,2206,108153,2400,3,52414,"FO2","GT" 22,34,1,4,9,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"NAT GAS",15477,"0M",1294,,,95,-33,582,0,70,992,0,-80,345,0,0,0,0,-162,750,0,0,0,0,3046,44211,0,2441,36716,0,-100,537,0,120,3310,0,89,2079,0,28,428,0,2400,3,52414,"NG","GT" 22,34,1,4,2,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,112211,4598,10660,104446,0,0,104446,0,0,103802,0,0,96326,4,10,91990,0,0,91990,0,0,91990,0,0,112914,2,185,112914,234,400,112327,894,2118,110210,2401,3,52414,"FO2","GT" 22,34,1,4,9,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"NAT GAS",15477,"0M",1294,,,95,20171,250330,0,38746,466002,0,28312,330527,0,6195,75506,0,7086,87770,0,17745,236062,0,65291,864255,0,62756,803138,0,18682,243317,0,3599,40505,0,3163,40505,0,1420,2118,0,2401,3,52414,"NG","GT" 22,34,1,2,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,0,0,0,0,0,0,0,0,0,0,0,0,0,3,6,0,4,9,0,4,9,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"FO2","ST" 22,34,1,2,3,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"HEAVY OIL",15477,"0M",1294,,,95,11188,21576,147242,40039,87268,59974,0,0,59974,158,379,13064,0,0,13064,0,0,13064,0,0,13064,0,0,0,0,0,0,0,0,0,0,0,0,-2401,3164,109182,2403,3,52414,"FO6","ST" 22,34,1,2,6,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"BIT COAL",15477,"0M",1294,,,95,0,0,239403,0,0,239403,46093,19713,219690,82549,35226,208484,158939,68702,225010,141427,62425,162585,235608,99546,193639,263396,110928,173063,10310,4383,258904,0,0,349753,57703,21908,369380,339660,132744,293504,2403,3,52414,"BIT","ST" 22,34,1,2,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,30599,362930,0,7194,97478,0,122788,1378604,0,43966,500739,0,16188,203737,0,20750,232325,0,137870,1458255,0,96187,1102638,0,1254,45160,0,-3375,2793,0,356,3383,0,1493,16683,0,2403,3,52414,"NG","ST" 22,34,1,4,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,352215,256,609,34606,-63,0,34606,-54,0,34597,-48,0,34597,0,0,34597,1239,2320,32262,396,2283,29962,-50,0,29962,-46,0,29962,-55,0,29962,-71,0,29959,2403,3,52414,"FO2","GT" 22,34,1,4,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,7,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,38,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"NG","GT" 22,34,1,2,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,47,160,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2404,3,52414,"FO2","ST" 22,34,1,2,3,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"HEAVY OIL",15477,"0M",1294,,,95,-1419,0,47358,3162,9747,46218,-1264,0,46218,-811,0,43218,-763,0,46218,2322,7151,47602,25660,53229,45133,22324,46979,41775,-837,0,41775,-758,0,41755,-1135,0,41775,-1308,0,46698,2404,3,52414,"FO6","ST" 22,34,1,4,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,375,941,65441,656,2205,61502,0,175,60444,-48,459,59831,-54,459,66419,-11,40,64109,2241,5425,58552,1592,6227,53502,-37,0,73227,-117,0,73054,-84,226,71810,-19,331,69761,2404,3,52414,"FO2","GT" 22,34,1,4,9,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"NAT GAS",15477,"0M",1294,,,95,778,10891,0,531,10070,0,-183,586,0,-132,928,0,-131,324,0,1324,24641,0,4064,67350,0,6293,99804,0,-119,0,0,-6,0,0,-8,139,0,-23,0,0,2404,3,52414,"NG","GT" 22,34,1,2,3,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"HEAVY OIL",15477,"0M",1294,,,95,-2975,0,169370,18699,47791,121579,1724,8149,41900,-1941,0,88431,-2550,0,88431,1771,15138,11078,59268,130643,95281,51534,115049,125814,-2711,0,128815,-1641,0,126134,-2551,10434,115700,-1747,0,115700,2406,3,52414,"FO6","ST" 22,34,1,4,2,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"LIGHT OIL",15477,"0M",1294,,,95,26,253,53370,313,1361,52009,448,1157,50882,3498,6627,44255,6478,14170,30085,0,0,30085,0,0,30085,564,1160,28925,0,0,49924,-37,195,49604,202,372,49037,451,1756,51571,2406,3,52414,"FO2","GT" 22,34,1,4,9,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"NAT GAS",15477,"0M",1294,,,95,-96,0,0,43,2616,0,3961,49847,0,1854,18696,0,15141,180135,0,13553,160573,0,33255,393680,0,32192,409006,0,8666,121819,0,8374,103539,0,3980,41596,0,1468,15561,0,2406,3,52414,"NG","GT" 22,34,1,2,6,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"BIT COAL",15477,"0M",1294,,,95,260338,90961,263541,283481,98338,252219,105820,38401,312566,69927,25278,364038,58034,23857,399943,121372,47152,419711,144178,55677,392291,111773,44297,360087,169493,64917,301841,40666,17201,334307,135703,47712,346850,209008,71876,359245,2408,3,52414,"BIT","ST" 22,34,1,2,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,15072,160572,0,10698,100608,0,12860,134613,0,17393,171693,0,23606,242604,0,33578,373796,0,130882,1357300,0,110572,1186167,0,12727,142016,0,7184,77196,0,1387,12188,0,362,30224,0,2408,3,52414,"NG","ST" 22,34,1,4,2,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"LIGHT OIL",15477,"0M",1294,,,95,58,452,0,99,166,0,-80,45,0,-80,22,0,-90,0,0,-84,0,0,174,1003,0,1250,2375,0,-74,0,0,-89,0,0,-86,0,0,65,504,0,2408,3,52414,"FO2","GT" 22,34,1,4,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,11,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,252,0,0,0,0,0,0,0,0,0,0,0,0,0,2408,3,52414,"NG","GT" 22,34,1,4,2,131,24,"PUBLIC SERV ELEC & GAS CO","NATIONAL PK",0,"LIGHT OIL",15477,"0M",1294,,,95,-7,0,2850,-5,0,2850,-6,0,168,-6,0,167,-7,0,1390,-6,0,3548,-6,0,3548,33,67,3481,-6,0,3481,3,25,3456,2,22,3434,-6,0,3434,2409,3,