Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stream habitat and rainbow trout (Oncorhynchus mykiss) physiological stress responses to  

E-Print Network [OSTI]

Stream habitat and rainbow trout (Oncorhynchus mykiss) physiological stress responses to streamside and sedimentation, loss of habitat complexity) are potentially stressful to stream-dwelling fish. We examined stream Columbia using 15 streams divided into three categories: old growth (reference), recently logged (clear

Hinch, Scott G.

2

Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss)  

SciTech Connect (OSTI)

The herbicide atrazine (ATZ) is one of the most widely used pesticides in the world and is now under scrutiny for its alleged capacity to disrupt the endocrine system. Exhibiting negligible interaction with the estrogen receptor (ER), ATZ's mode of action remains to be elucidated. ATZ may act as an inducer of the enzyme aromatase, which converts androgens to estrogens, although other mechanisms should also be taken into consideration such as impairment of hepatic metabolism. Therefore we administered juvenile rainbow trout (Oncorhynchus mykiss) a dose of either 2 or 200 {mu}g ATZ/kg, or of carrier control phosphate buffered saline (PBS) and we measured plasma concentrations of testosterone (T), 17beta-estradiol (E2) and vitellogenin (Vtg) 6 days after exposure. Simultaneously we analyzed hepatic gene expression of cytochrome P450 (CYP) 1A and pi-class glutathione S-transferase (GST-P), and catalase (CAT) activity. Although sex steroid levels showed no significant alterations, we found a dose-dependent increase in Vtg and a concomitant decrease in CYP1A. There was no effect of ATZ on GST-P mRNA levels but GST-P was positively correlated with CYP1A. Also, CYP1A was negatively correlated with liver CAT and E2, and varied with T concentrations in a hormetic manner. The results showed that ATZ can alter hepatic metabolism, induce estrogenic effects and oxidative stress in vivo, and that these effects are linked.

Salaberria, Iurgi [Department of Zoology and Animal Cell Biology, University of the Basque Country, Apdo. 644, E-48080 Bilbao (Spain); Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)], E-mail: iurgi.salaberria@hotmail.com; Hansen, Bjorn Henrik [SINTEF Materials and Chemistry, Marine Environmental Technology, N-7465 Trondheim (Norway); Asensio, Vega [Department of Zoology and Animal Cell Biology, University of the Basque Country, Apdo. 644, E-48080 Bilbao (Spain); Olsvik, Pal A. [National Institute of Nutrition and Seafood Research (NIFES), Nordnes, N-5817 Bergen (Norway); Andersen, Rolf A.; Jenssen, Bjorn Munro [Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2009-01-01T23:59:59.000Z

3

Response threshold levels of selected organic compounds for rainbow trout (Oncorhynchus mykiss)  

SciTech Connect (OSTI)

The responses of 27 organic compounds, mainly chloromethanes, -ethanes, -ethenes, and -phenols, were investigated by exposing rainbow trout fingerlings to low microgram-per-liter concentrations in a darkened flow-through system for up to 1 h. Responses by the fish were followed continuously by observing ventilation rates (frequency and amplitude), swimming patterns, and general activity using the low-voltage electric fields generated by the fishes` activity. The lowest level of response was found for trichloroethylene at 5 {micro}g/L. Dichloromethane, 1,1- and 1,2-dichloroethane, 1,1,1- and 1,1,2-trichloroethane, cis-1,2-dichloroethylene, 1,3-dichloropropene, and allyl acetate were responded to at concentrations of 10 {micro}g/L, carbon tetrachloride at 15 {micro}g/L, and 4-chlorophenol and 2,4-dichlorophenol at levels of 30 {micro}g/L. Unsubstituted phenol was not responded to at levels of up to 50 {micro}g/L.

Kaiser, K.L.E.; McKinnon, M.B. [National Water Research Inst., Burlington, Ontario (Canada); Stendahl, D.H.; Pett, W.B. [Regional Municipality of Waterloo, Kitchener, Ontario (Canada)

1995-12-01T23:59:59.000Z

4

Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro  

E-Print Network [OSTI]

organochlorine pesticide, on cortisol secretion, cell viability, antioxidants and lipid peroxidation wereOxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow troutAMP-stimulated cortisol secretion, and cell viability were impaired in a dose-related manner following acute in vitro

Hontela, Alice

5

Assessment of energetic costs of AhR activation by ?-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis  

SciTech Connect (OSTI)

Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

2013-08-15T23:59:59.000Z

6

arcoiris oncorhynchus mykiss: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J. 2 Intestinal transport following transfer to increased salinity in an anadromous fish (Oncorhynchus mykiss) Biology and Medicine Websites Summary: rainbow trout...

7

The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout  

SciTech Connect (OSTI)

Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) {alpha}, {beta}, and {gamma} isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

Prindiville, John S., E-mail: jprin041@uottawa.ca; Mennigen, Jan A.; Zamora, Jake M.; Moon, Thomas W.; Weber, Jean-Michel

2011-03-15T23:59:59.000Z

8

E-Print Network 3.0 - anadromous rainbow trout Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

press) A comparative analysis of the rainbow trout genome with two other species of fish (Arctic charr... parameters for upper thermal tolerance and growth-related traits in...

9

Lake Roosevelt Fisheries Evaluation Program; Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington, 1999 Annual Report.  

SciTech Connect (OSTI)

Hatchery supplementation of kokanee Oncorhynchus nerka and rainbow trout O. mykiss has been the primary mitigation provided by Bonneville Power Administration for loss of anadromous fish to the waters above Grand Coulee Dam (GCD). The hatchery program for rainbow trout has consistently met management goals and provided a substantial contribution to the fishery; however, spawner returns and creel survey results for kokanee have been below management goals. Our objective was to identify factors that limit limnetic fish production in Lake Roosevelt by evaluating abiotic conditions, food limitations, piscivory, and entrainment. Dissolved oxygen concentration was adequate throughout most of the year; however, levels dropped to near 6 mg/L in late July. For kokanee, warm water temperatures during mid-late summer limited their nocturnal distribution to 80-100 m in the lower section of the reservoir. Kokanee spawner length was consistently several centimeters longer than in other Pacific Northwest systems, and the relative weights of rainbow trout and large kokanee were comparable to national averages. Large bodied daphnia (> 1.7 mm) were present in the zooplankton community during all seasons indicating that top down effects were not limiting secondary productivity. Walleye Stizostedion vitreum were the primary piscivore of salmonids in 1998 and 1999. Burbot Lota lota smallmouth bass Micropterus dolomieui, and northern pikeminnow Ptychocheilus oregonensis preyed on salmonids to a lesser degree. Age 3 and 4 walleye were responsible for the majority (65%) of the total walleye consumption of salmonids. Bioenergetics modeling indicated that reservoir wide consumption by walleye could account for a 31-39% loss of stocked kokanee but only 6-12% of rainbow trout. Size at release was the primary reason for differential mortality rates due to predation. Entrainment ranged from 2% to 16% of the monthly abundance estimates of limnetic fish, and could account for 30% of total mortality of limnetic fishes, depending on the contribution of littoral zone fishes. Inflow to GCD forebay showed the strongest negative relationship with entrainment whereas reservoir elevation and fish vertical distribution had no direct relationship with entrainment. Our results indicate that kokanee and rainbow trout in Lake Roosevelt were limited by top down impacts including predation and entrainment, whereas bottom up effects and abiotic conditions were not limiting.

Baldwin, Casey; Polacek, Matt

2009-03-01T23:59:59.000Z

10

The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.  

SciTech Connect (OSTI)

Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

2010-06-25T23:59:59.000Z

11

An individual-based instream flow model for coexisting populations of brown and rainbow trout  

SciTech Connect (OSTI)

This report describes an individual-based model for sympatric populations of brown and rainbow trout in a stream habitat. Hatchery rainbow trout are included as a third species. The model provides a tool for predicting flow effects on trout populations by linking the hydraulic component of the Physical Habitat Simulation (PHABSIM) methodology and an individual-based population modeling approach. PHABSIM simulates the spatial distribution of depth and velocity at different flows. The individual-based model simulates the reproduction, foraging, consumption, energetic costs, growth, habitat utilization, movement, and mortality of individual fish, and enables population attributes to be determined from relevant attributes of individual fish. The spatially explicit nature of the model permits evaluation of behavioral responses used by fish to mitigate temporary setbacks in habitat quality. This linked mechanistic modeling approach readily lends itself to the iterative process of making predictions, testing against field data, improving the model, and making more predictions. The model has been applied to a stream segment in the Tule River, California. Physical and biological data from this site are used as input to the model. Calibrating the model to abundance data was relatively easy because values for mortality parameters were not strongly constrained by empirical data. Calibrating the model to observed growth rates and habitat use was more challenging. The primary reason for developing this model has been to provide a new and complementary tool to PHABSIM that can be used in instream-flow assessments.

Van Winkle, W.; Jager, H.I.; Holcomb, B.D.

1996-03-01T23:59:59.000Z

12

Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish and rainbow trout  

E-Print Network [OSTI]

Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish; accepted 16 October 2002 Abstract 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a widespread in zebrafish and rainbow trout that dioxin increases expression of this EF-hand calcium-binding protein gene

Tullos, Desiree

13

Distribution and elimination routes of a naphthenic hydrocarbon (Dodecylcyclohexane) in rainbow trout (Salmo gairdneri)  

SciTech Connect (OSTI)

Contamination of fish by hydrocarbons, whether it occurred directly via the water or indirectly via the food chain has been the object of many studies during the last decade. The interest of laboratories have been focused on the most toxic components of crude oils, i.e., aromatic hydrocarbons but there is a lack of information on the fate of cyclic alkanes in fish. Naphthenic hydrocarbons are the least biologically active of the more mobile fractions of petroleum; nevertheless the fate of these compounds are worth considering, because they constitute respectively 41% and 19.2% of light and heavy crude oils. This paper reports the results of our experiment in which /sup 3/H-dodecylcyclohexane has been given per os to rainbow trout in order to evaluate the distribution and elimination routes of this cycloparaffin.

Cravedi, J.P.; Tulliez, J.

1981-03-01T23:59:59.000Z

14

Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.  

SciTech Connect (OSTI)

The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

Sears, Sheryl

2004-01-01T23:59:59.000Z

15

Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.  

SciTech Connect (OSTI)

The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated Tribes (CCT), Spokane Tribe of Indians (STI) and Washington Department of Fish and Wildlife (WDFW) to develop and propose a comprehensive fishery management plan for Lake Roosevelt. The Rainbow Trout Habitat/Passage Improvement Project (LRHIP) was designed with goals directed towards increasing natural production while maintaining genetic integrity among current tributary stocks. The initial phase of the Lake Roosevelt Habitat Improvement Project (Phase I, baseline data collection: 1990-91) was focused on the assessment of limiting factors, including the quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other constraints. After the initial assessment of stream parameters, five streams meeting specific criteria were selected for habitat/passage improvement projects (Phase II, implementation -1992-1995). Four of these projects were on the Colville Indian Reservation South Nanamkin, North Nanamkin, Louie and Iron Creeks and one Blue Creek was on the Spokane Indian Reservation. At the completion of project habitat improvements, the final phase (Phase III, monitoring-1996-2000) began. This phase assessed the changes and determined the success achieved through the improvements. Data analysis showed that passage improvements are successful for increasing habitat availability and use. The results of in-stream habitat improvements were inconclusive. Project streams, to the last monitoring date, have shown increases in fish density following implementation of the improvements. In 2000 Bridge Creek, on the Colville Reservation was selected for the next phase of improvements. Data collection, including baseline stream survey and population data collection, was carried out during 2001 in preparation for the design and implementation of stream habitat/passage improvements. Agencies cooperating on the project include the Colville Confederated Tribes (CCT), Natural Resource Conservation Service (NRCS, Ferry County District), Ferry County Conservation District, and Ferry County. The Bonneville Power Administration (BPA) provided

Sears, Sheryl

2003-01-01T23:59:59.000Z

16

Radionuclides and heavy metals in rainbow trout from Tsichomo, Nana Ka, Wen Povi, and Pin De Lakes in Santa Clara Canyon  

SciTech Connect (OSTI)

Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and TI) concentrations were determined in rainbow trout collected from Tsichomo, Nana Ka, Wen Povi, and Pin De lakes in Santa Clara Canyon in 1997. Most radionuclide and heavy metal concentrations in fish collected from these four lakes were within or just above upper limit background concentrations (Abiquiu reservoir), and as a group were statistically (p < 0.05) similar in most parameters to background.

Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

1998-04-01T23:59:59.000Z

17

6 References Allen, D. B, B. J. Flatter, and K. Fite. 1996. Redband Trout (Oncorhynchus mykiss gairdneri)  

E-Print Network [OSTI]

. 1990. Status and Distribu Symposium of the Northern Wild Sheep Council. Clarkston, WA. p. 12's State of Idaho Bull Trout Conservation Plan. Bo ID. Bethesda, MD. Control-Region Sequence Data Society Special Publications, pp. 83- 138. . In: roject No. 2055). Volume 3. Prepared for Idaho Power

18

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

Upper American River Hydroelectric Project, FERC Project No.California, Chili Bar Hydroelectric Project, FERC Projectthe night, as part of hydroelectric power generation by the

2010-01-01T23:59:59.000Z

19

Effects of replacing fish oil with vegetable oils in feed for rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus).  

E-Print Network [OSTI]

??As global capture of fish has stagnated and fish consumption is increasing due to a growing human population, the demand can only be met by… (more)

Pettersson, Andreas

2010-01-01T23:59:59.000Z

20

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

impact statement for hydropower license. Upper Americanand permitted for hydropower generation and flood control.1):257–268 Hunter MA (1992) Hydropower flow fluctuations and

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

the night, as part of hydroelectric power generation by theto manage water for hydroelectric power generation. There

2010-01-01T23:59:59.000Z

22

Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.  

SciTech Connect (OSTI)

The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

Trotter, Patrick C.

2001-10-01T23:59:59.000Z

23

E-Print Network 3.0 - adrenocortical y1 cells Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steroidogenic signaling pathway in rainbow trout (Oncorhynchus mykiss) Summary: cortisol secretion and cell viability Cortisol secretion of adrenocortical cells stimulated with...

24

Analyzing Tradeoffs Between the Threat of Invasion by Brook Trout and Effects of Intentional Isolation for Native Westslope Cutthroat Trout  

E-Print Network [OSTI]

who fund these projects. A consistent decision process would include an analysis of the relative risks or exacerbate the other. A consistent decision process would include a systematic analysis of when and where) as a tool for such analyses. We focused on native westslope cutthroat trout (Oncorhynchus clarkii lewisi

25

Rainbow statistics  

E-Print Network [OSTI]

Non-commutative quantum field theories and their global quantum group symmetries provide an intriguing attempt to go beyond the realm of standard local quantum field theory. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which reflects a non-trivial momentum-dependent statistics. We investigate the properties of this "rainbow statistics" in the particular context of $\\kappa$-quantum fields and discuss the analogies/differences with models with twisted statistics.

Michele Arzano; Dario Benedetti

2008-09-04T23:59:59.000Z

26

Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.  

SciTech Connect (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

2006-01-26T23:59:59.000Z

27

Nonsingular rainbow universes  

SciTech Connect (OSTI)

In this work, we study FRW cosmologies in the context of gravity rainbow. We discuss the general conditions for having a nonsingular FRW cosmology in gravity rainbow. We propose that gravity rainbow functions can be fixed using two known modified dispersion relation (MDR), which have been proposed in literature. The first MDR was introduced by Amelino-Camelia, et el. in [9] and the second was introduced by Magueijo and Smolin in [24]. Studying these FRW-like cosmologies, after fixing the gravity rainbow functions, leads to nonsingular solutions which can be expressed in exact forms.

Awad, Adel; Ali, Ahmed Farag [Center for Theoretical Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Majumder, Barun, E-mail: aawad@zewailcity.edu.eg, E-mail: ahmed.ali@fsc.bu.edu.eg, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India)

2013-10-01T23:59:59.000Z

28

Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.  

SciTech Connect (OSTI)

The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

Senn, Harry G.

1984-09-01T23:59:59.000Z

29

Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.  

SciTech Connect (OSTI)

The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

Cope, R.S.; Morris, K.J.

2001-03-01T23:59:59.000Z

30

Wake Ull to. 2 rispy Fried Rainbow Trout  

E-Print Network [OSTI]

has been satisfied. A lack of protein in the morning meal no doubt accounts for that mid in carbohydrates and low in high qualiry proteins. Aside from nutritive value, probably the most important on the budget. What other protein food fulfills these requirements better than fish? Fish is a high

31

Smolt Monitoring Program, Part II, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1985 Annual Report.  

SciTech Connect (OSTI)

Volume I of this report describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the freeze brand data used in the analysis of travel time for Lower Granite, Rock Island, McNary, and John Day dams. Brand recoveries for Lower Monumental dam also are presented. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data.

Fish Passage Center

1986-02-01T23:59:59.000Z

32

Rainbow trapping of guided waves  

E-Print Network [OSTI]

Rainbow trapping of guided waves Javier Polanco and Rosa M.the propagation of a wave packet that is a superpositionof three s-polarized guided waves with different frequencies

Polanco, Javier; Fitzgerald, Rosa M; Leskova, Tamara A; Maradudin, Alexei A

2011-01-01T23:59:59.000Z

33

Status of Oregon's Bull Trout.  

SciTech Connect (OSTI)

Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

1997-10-01T23:59:59.000Z

34

Black Hole Complementarity in Gravity's Rainbow  

E-Print Network [OSTI]

We calculate the required energy for duplication of information in the context of black hole complementarity in the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit given by the conventional result for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could be not allowed below a certain critical value of the rainbow parameter; however, it could be possible above the critical value of the rainbow parameter, so that the consistent formulation in the rainbow Schwarzschild black hole requires additional constraints or any other resolutions for the latter case.

Gim, Yongwan

2015-01-01T23:59:59.000Z

35

Gravity's Rainbow induces Topology Change  

E-Print Network [OSTI]

In this work, we explore the possibility that quantum fluctuations induce a topology change, in the context of Gravity's Rainbow. A semi-classical approach is adopted, where the graviton one-loop contribution to a classical energy in a background spacetime is computed through a variational approach with Gaussian trial wave functionals. The energy density of the graviton one-loop contribution, or equivalently the background spacetime, is then let to evolve, and consequently the classical energy is determined. More specifically, the background metric is fixed to be Minkowskian in the equation governing the quantum fluctuations, which behaves essentially as a backreaction equation, and the quantum fluctuations are let to evolve; the classical energy, which depends on the evolved metric functions, is then evaluated. Analysing this procedure, a natural ultraviolet (UV) cutoff is obtained, which forbids the presence of an interior spacetime region, and may result in a multipy-connected spacetime. Thus, in the context of Gravity's Rainbow, this process may be interpreted as a change in topology, and in principle results in the presence of a Planckian wormhole.

Remo Garattini; Francisco S. N. Lobo

2014-08-20T23:59:59.000Z

36

Journey of the Oncorhynchus.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershing About Uscompressedof the Oncorhynchus The

37

Cadmium uptake in isolated adrenocortical cells of rainbow trout and yellow perch  

E-Print Network [OSTI]

in lakes contaminated by atmospheric depositions from mining activities contain high levels of Cd released into the aquatic and terrestrial ecosystems by industrial activities poses significant health risks to both humans and wildlife. In 1993, the International Agency for Research on Cancer classified

Hontela, Alice

38

Hepatic versus gallbladder bile composition: in vivo transport physiology of the gallbladder in rainbow trout  

E-Print Network [OSTI]

and water reabsorption; bile acid BILE IS A HEPATIC SECRETION that functions to promote digestion and absorption of lipids from the intestine via the action of bile acids or bile salts. Bile also acts

Grosell, Martin

39

Trout liver phospholipase A/sub 2/ and its role in membrane adaptations to temperature  

SciTech Connect (OSTI)

The deacylating enzyme, phospholipase A> (PLA/sub 2/; E.C. 3.1.1.4) from liver microsomes of 5 and 20-acclimated rainbow trout (Salmo gairdneri) was studied using fixed time assays in the presence of an exogenous substrate of 1-acyl, 2-(/sup 3/H)-oleoyl phosphatidylcholine and measuring the accumulation of radiolabel in free fatty acid. The enzyme occurred in conjunction with phospholipase A/sub 1/ in microsomes, but unlike the mammalian phospholipases, PLA/sub 2/ accounted for the preponderance of deacylating activity in that subcellar fraction. The enzyme exhibited perfect compensation for temperature at non-saturating substrate concentrations regardless of whether assays were performed using microsomal (particulate) preparations or lipid-free preparations indicating that temperature compensation was an attribute of the protein and not its interaction with the lipid microenvironment. To determine the substrate preference of PLA/sub 2/, ratios of kinetic constants, V/K/sub m/, were measured for 1-palmitoyl phosphatidylcholines with three different 18-carbon fatty acids esterified to the sn-two carbon. PLA/sub 2/ from cold-acclimated fish showed an order of preference of the acyl moieties of 18:1 > 18: > 18:0. Warm-acclimated trout generally preferred 2-18:0 phosphatidylcholine, but the actual order of preference depended on the temperature of the assay and the presence of endogenous lipids. In light of its intracellular distribution, perfect compensation, trout liver PLA/sub 2/ is implicated as an important component and possible regulatory step in thermally induced remodeling of cell membranes via a deacylation-reacylation cycle.

Neas, N.P.

1983-01-01T23:59:59.000Z

40

Mixtures of Estrogenic Contaminants in Bile of Fish  

E-Print Network [OSTI]

WwTWs effluents. Sexually immature rainbow trout, Oncorhynchus mykiss, and sexually mature roach also detected in bile of effluent- exposed roach, and the concentrations of all these steroidal with female (E2, 740 ( 197; E1, 197 ( 37; EE2, 40 ( 6; DHQ, 8 ( 2) roach. The synthetic estrogen EE2 was also

Tyler, Charles

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dworshak Dam Impact Assessment and Fishery Investigation and Trout, Bass and Forage Species: Combined Project Completion Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe (NPT) and the Idaho Department of Fish and Game (IDFG) entered into separate intergovernmental agreements with the Bonneville Power Administration in a cooperative four-year effort to study impacts of Dworshak Dam operation on resident fisheries. The NPT Department of Fisheries Management focused on rainbow trout, smallmouth bass and forage fish. The IDFG's segment of the project was to document kokanee population dynamics, relate it to the changing nutrient status of the reservoir, evaluate kokanee losses through Dworshak Dam, and make kokanee management recommendations. This final report includes findings for 1990 and 1991 and relates these data to information previously presented in annual reports for 1987, 1988 and 1989.

Maiolie, Melo; Statler, David P.; Elam, Steve

1992-10-01T23:59:59.000Z

42

Rainbow Energy Marketing Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector GeothermalRafterRainbow

43

Rainbow, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow, California:

44

An analysis of spatial and environmental factors influencing hybridization between native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and  

E-Print Network [OSTI]

. In the absence of timely management intervention, the genetic integrity of WCT populations in the heart (*Corresponding author: Present address: Department of Environmental Science, Policy & Manage- ment Reservoir, suggesting that the reservoir acts as a RBT source. We found no evidence that stream order

Taylor, Eric B. "Rick"

45

Geodesic Structure of the Schwarzschild Black Hole in Rainbow Gravity  

E-Print Network [OSTI]

In this paper we study the geodesic structure of the Schwarzschild black hole in rainbow gravity analyzing the behavior of null and time-like geodesic. We find that the structure of the geodesics essentially does not change when the semi-classical effects are included. However, we can distinguish different scenarios if we take into account the effects of rainbow gravity. Depending on the type of rainbow functions under consideration, inertial and external observers see very different situations in radial and non radial motion of a test particles.

Carlos Leiva; Joel Saavedra; Jose Villanueva

2008-12-09T23:59:59.000Z

46

Biochemical changes in speckled trout (Cynoscion nebulosus) preserved with ice  

E-Print Network [OSTI]

BIOCHEMICAL CHANGES IN SPECKLED TROUT (CYNOSCION NEBULOSUS) PRESERVED WITH ICE A Thesis by JAMES DONALD GLOVER Approved as to style and content by: (C irman of Committee) emb ) (Head of Depa tment) (Member ) August 1970 ABSTRACT... Biochemical Changes in Speckled Trout (Cynoscion Nebulosus) Preserved with Ice. (August 1970) James Donald Glover, B. S. , Texas A&M University Directed by: Bryant F. Cobb III One hundred-sixty speckled trout were purchased from retail fish markets...

Glover, James Donald

1970-01-01T23:59:59.000Z

47

Tasting the Rainbow: One Dye at a Time  

E-Print Network [OSTI]

T asting the rainbow : O ne dye at a time Alvin Huang foodregulation over food dyes. Modern uses of food coloring andto change. However, food dyes have been a staple in the food

Huang, Alvin

2013-01-01T23:59:59.000Z

48

Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014  

SciTech Connect (OSTI)

The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after their release, representing a residualization rate of 12.8% (21 of 164). Snorkeling revealed considerable overlap of habitat use (in space and time) by residual hatchery steelhead and naturally produced O. mykiss in the South Santiam River. Results from our study (and others) also indicated that hatchery steelhead juveniles typically dominate interactions with naturally produced O. mykiss juveniles. The overlap in space and time, combined with the competitive advantage that residual hatchery steelhead appear to have over naturally produced O. mykiss, increases the potential for negative ecological interactions that could have population-level effects on the wild winter steelhead population of the South Santiam River.

Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

2014-12-23T23:59:59.000Z

49

County, Idaho.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

part due to the potential to restore altered riparian habitats for wildlife, resident fish species (i.e., rainbow trout, bull trout, westslope cutthroat trout, kokanee) and the...

50

BIOLOGY OF REPRODUCTION 65, 288294 (2001) Follicle-Stimulating Hormone and Its and Subunits in Rainbow Trout  

E-Print Network [OSTI]

carp, Cyprinus carpio [4]; bonito, Euthynnus pelamis [5]; Atlantic croaker, Micropogonias undulatus [6

Tyler, Charles

51

Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

SciTech Connect (OSTI)

This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

2004-01-01T23:59:59.000Z

52

E-Print Network 3.0 - amago salmon oncorhynchus Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

salmonids... Pacific salmon (Oncorhynchus). J. Fish Biol. 42: 485-508. Berg, M. 1964. Nord-Norske Lakseelver. Johan... , D.J., and Iwama, G.K. 1993. Repeat sexual maturation of...

53

SOME EFFECTS OF DDT ON THE GUPPY AND THE BROWN TROUT  

E-Print Network [OSTI]

399 SOME EFFECTS OF DDT ON THE GUPPY AND THE BROWN TROUT SPECIAL SCIENTIFIC REPORT-FISHERIES Na 399, Daniel H . Janzen, Director SOME EFFECTS OF DDT ON THE GUPPY AND THE BROWN TROUT By Susan Frances King following exposure to DDT .... 6 Results 6 Bioassays with the guppy 6 Bioassays with young brown trout 8 Hi

54

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

We assessed the relationships between specific stream attributes and Yellowstone cutthroat trout Oncorhynchus clarki bouvieri distribution and biomass at 773 stream reaches (averaging 100 m in length) throughout the Upper Snake River Basin in Idaho, in an effort to identify possible limiting factors. Because limiting factors were expected to vary across the range of cutthroat trout distribution in Idaho, separate logistic and multiple regression models were developed for each of the nine major river drainages to relate stream conditions to occurrence and biomass of cutthroat trout. Adequate stream flow to measure fish and habitat existed at 566 sites, and of those, Yellowstone cutthroat trout were present at 322 sites, while rainbow trout O. mykiss (or rainbow x cutthroat hybrids) and brook trout Salvelinus fontinalis occurred at 108 and 181 sites, respectively. In general, cutthroat trout presence at a specific site within a drainage was associated with a higher percentage of public property, higher elevation, more gravel and less fine substrate, and more upright riparian vegetation. However, there was much variation between drainages in the direction and magnitude of the relationships between stream characteristics and Yellowstone cutthroat trout occurrence and biomass, and in model strength. This was especially true for biomass models, in which we were able to develop models for only five drainages that explained more than 50% of the variation in cutthroat trout biomass. Sample size appeared to affect the strength of the biomass models, with a higher explanation of biomass variation in drainages with lower sample sizes. The occurrence of nonnative salmonids was not strongly related to cutthroat trout occurrence, but their widespread distribution and apparent ability to displace native cutthroat trout suggest they may nevertheless pose the largest threat to long-term cutthroat trout persistence in the Upper Snake River Basin.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2004-03-01T23:59:59.000Z

55

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2000 Annual Report.  

SciTech Connect (OSTI)

Repeat spawning is a life history strategy that is expressed by some species from the family salmonidae. Natural rates of repeat spawning for Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. Increasing this repeat spawning rate using fish culture techniques could assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to grow and develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for local populations. The primary purpose of this project in 2000 was to test the general feasibility of collecting, feeding, and treating steelhead kelts in a captive environment. Steelhead kelts were collected from the Yakima River at the Chandler Juvenile Evaluation Facility (Rkm 48) from 12 March to 13 June 2000. Kelts were reconditioned at adjacent Prosser Hatchery in both rectangular and circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus, and we tested the use of ivermectin to control internal parasites (e.g., Salmincola spp.). Some the kelts that died during the reconditioning process were analyzed via pathology and gonad histology to ascertain the possible cause of death and to describe their reproductive development at the time of death. All surviving specimens were released for natural spawning on 12 December 2000. Overall success of the reconditioning process was based on the proportion of fish that survived captivity, gained weight, and on the number of fish that successfully underwent gonadal recrudescence. Many of the reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery. In total, 512 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 37% (512/1,380) of the entire 1999-2000 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. At the conclusion of the experiments ({approx}240 days from capture), 91 fish (18%) had survived and were released to spawn in the wild. Ultrasound examination--to determine sex and reproductive development--determined that 87 (96%) of 91 specimens were female, and we estimated 62 fish (12% of the total collected) had successfully reconditioned. Unfortunately, the majority (82%) of the kelts collected died during the experiment, with the bulk of the moralities occurring during the first 100 days of captivity. Much was learned from the mortalities and modifications were made to the facility to reduce loss for future projects. Overall, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Knowledge regarding kelt husbandry, food type preferences, condition, and rearing environments were obtained during this research endeavor. Although the reconditioning success rate achieved (estimated at 12%) was substantially lower than we initially hoped yet still six times higher than the natural rate of respawning and the authors are encouraged by the results of this innovative project. Information collected during this feasibility study will be incorporated into the experimental design for the upcoming year of research and is expected to increase survival.

Evans, Allen F.; Beaty, Roy E.; Hatch, Douglas R. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2001-12-01T23:59:59.000Z

56

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2001 Annual Report.  

SciTech Connect (OSTI)

Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead (Oncorhynchus mykiss) populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are artificially and in some cases severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon (Salmo salar) and sea-trout (S. trutta). The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To address recovery, we captured wild emigrating steelhead kelts from the Yakima River and tested reconditioning and the effects of several diet formulations on its success at Prosser Hatchery on the Yakama Reservation. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from 12 March to 5 July 2001. Kelts were reconditioned in circular tanks and fed a mixed diet of starter paste, adult sized trout pellets, and freeze-dried krill. Formalin was used to control outbreaks of fungus and we tested the use of Ivermectin{trademark}to control internal parasites (e.g., Salmincola spp.). Surviving specimens were released for natural spawning in two groups on 15 November 2001 and 18 January 2002. Overall success of the reconditioning process was based on the proportion of fish that survived in captivity, gained weight, and the number of fish that successfully underwent gonadal recrudescence. Many of the reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery. In total, 551 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 18.7% (551 of 2,942) of the entire 2000-2001Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. At the conclusion of the experiments (208-323 days from capture), 108 fish (19.6%) had survived and were released to spawn in the wild. Ultrasound examination--to determine sex and reproductive development--determined that 100 (94.3%) of 106 sex-identified specimens were female and we estimated that 96% of the reconditioned releases gained weight and developed mature gonads. Nearly one quarter (24.3%) of all reconditioned kelts survived for the duration of the experiment. As in previous years, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Valuable knowledge regarding Kelt husbandry, food type preferences, condition, and rearing environments were obtained during this research endeavor. Although higher survival rates would have been desirable, the authors were encouraged by the positive results of this innovative project. Nearly 20% of the kelts collected were successfully reconditioned, and radio telemetry allowed us to track some of these fish to the spawning grounds and to obtain documentation of successful redd construction. Information collected during this feasibility study has been significantly incorporated into the experimental design for upcoming years of research, and is expected to continue to increase survival and successful expression of iteroparity.

Hatch, Douglas R.; Anders, Paul J., Evans, Allen F. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2002-12-01T23:59:59.000Z

57

A Generalization of the Rainbow Band Separation Attack and its Applications to  

E-Print Network [OSTI]

Recovery Attack, Rainbow, Enhanced STS, Enhanced TTS, MFE, Diophantine Equations, MQQ-Enc, MQQ-Sig 1-trivial generaliza- tion of the well known Unbalanced Oil and Vinegar (UOV) signature scheme (Eurocrypt '99) minimizing the length of the signatures. By now the Rainbow Band Separation attack is the best key recovery

58

Bull Trout Population Assessment in the Columbia River Gorge : Annual Report 2000.  

SciTech Connect (OSTI)

We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were <15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m{sup 2} in Trappers Creek, 2.6 fish/100m{sup 2} on Clearwater Creek, and 0.4 fish/100m{sup 2} in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem Klickitat to determine the distribution of bull trout throughout the drainage and to determine the extent of hybridization with brook trout.

Byrne, Jim; McPeak, Ron

2001-02-01T23:59:59.000Z

59

EA-296-B Rainbow Energy Marketing Corporation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC3-AB Rainbow

60

Temporary Restoration of Bull Trout Passage at Albeni Falls Dam  

SciTech Connect (OSTI)

This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acoustic radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other fish was large enough to be mature, but at the time of capture its sex was unable to be determined, indicating it may not have been mature at the time of capture. These fish are expected to enter their natal tributaries in early summer or fall of 2009.

Paluch, Mark; Scholz, Allan; McLellan, Holly [Eastern Washington University Department of Biology; Olson, Jason [Kalispel Tribe of Indians Natural Resources Department

2009-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Beyond the Rainbow: Self-Adaptive Failure Avoidance in Configurable Systems  

E-Print Network [OSTI]

Beyond the Rainbow: Self-Adaptive Failure Avoidance in Configurable Systems Jacob Swanson, Myra B and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post

Cohen, Myra

62

Idaho Water Rental Pilot Project probability/coordination study resident fish and wildlife impacts, Phase III. Annual report  

SciTech Connect (OSTI)

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss)in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, E.

1996-09-01T23:59:59.000Z

63

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impact Phase III, 1995 Annual Report.  

SciTech Connect (OSTI)

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, Eric J. (Idaho Department of Fish and Game, Boise, ID)

1996-09-01T23:59:59.000Z

64

4.1 Bull Trout (Salvelinus confluentus) 4.1.1 Background  

E-Print Network [OSTI]

Panhandle National Forests have named bull trout as Management Indicator Species (MIS) in their Forest Plan to guide stream and riparian management and to monitor progress toward achieving Forest Plan objectivesTribes of the Salish and Kootenai consider bull trout a sensitive species and an important cultural resource

65

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2003 Annual Report.  

SciTech Connect (OSTI)

Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 12 March to 28 May 2003. In total, 690 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.8% (690 of 2,235) of the entire 2002-2003 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in circular tanks, fed freeze-dried krill and received hw-wiegandt multi vit dietary supplement; long-term steelhead kelts also received Moore-Clark pellets. Oxytetracycline was administered to reconditioned fish to boost immune system response following the stress of initial capture. Formalin was also administered to prevent outbreaks of fungus and we also intubated the fish that were collected with Ivermectin{trademark} to control internal parasites (e.g., Salmincola spp.). Captured kelts were separated into two experimental groups: short-term and long-term reconditioning. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were reconditioned for 3 to 7 weeks. Surviving specimens were released for natural spawning on June 4, 2003. Survival-to-release was very good for the short-term experiment, with a rate of 89.9%. Long-term steelhead kelts were held for 5-9 months then released on December 8, 2003. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. Survival and rematuration for long-term kelts increased as well with 62.4% surviving to release and 91.7% rematuring. A total of 47 reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery and to evaluate in-season homing fidelity. As in previous years, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Valuable knowledge regarding kelt husbandry, condition, and rearing environments were obtained during this research endeavor. The authors were very pleased with the high survival rates. Information collected during this feasibility study has been significantly incorporated into the experimental design for upcoming years of research, and is expected to continue to increase survival of long-term reconditioned fish and successful expression of iteroparity.

Hatch, Douglas R.; Branstetter, Ryan (Columbia River Inter-Tribal Fish Commission, Portland, OR); Blodgett, Joe (Yakama Nation, Toppenish, WA)

2004-03-01T23:59:59.000Z

66

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2002 Annual Report.  

SciTech Connect (OSTI)

Repeat spawning is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the natural expression of historical repeat spawning rates using fish culturing means could be a viable technique to assist the recovery of depressed steelhead populations. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and again develop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, we captured wild emigrating steelhead kelts from the Yakima River and evaluated reconditioning (short and long-term) success and diet formulations at Prosser Hatchery on the Yakima River. Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Evaluation Facility (CJEF, located at Yakima River kilometer 48) from March 12 to June 13, 2002. In total, 899 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 19.8% (899 of 4,525) of the entire 2001-2002 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. Kelts were reconditioned in circular tanks and were fed freeze-dried krill, Moore-Clark pellets, altered Moore-Clark pellets (soaked in krill extract and dyed), or a combination of the altered Moore-Clark/unaltered Moore-Clark pellets. Formalin was used to prevent outbreaks of fungus and we also intubated the fish that were collected with Ivermectin{trademark} to control internal parasites (e.g., Salmincola spp.). Captured kelts were separated into two experimental groups: short-term and long-term reconditioning. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were then subsequently split into two groups for either 1 or 2-month reconditioning. Surviving specimens were released for natural spawning in two groups, corresponding with reconditioning duration, with releases on May 20/28, 2002. Survival rates for both short-term experiments were high. Long-term reconditioned kelts were subsequently split into three groups that were given three different diet formulations and then released on December 10, 2002. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. A total of 60 reconditioned kelts were radio tagged to assess their spawning migration behavior and success following release from Prosser Hatchery and to evaluate in-season homing fidelity. As in previous years, the kelts reconditioned during this project will substantially bolster the number of repeat spawners in the Yakima River. Valuable knowledge regarding kelt husbandry, food preferences, condition, and rearing environments were obtained during this research endeavor. Although survival rates were higher in 2002, even higher survival rates would be desirable; overall the authors were encouraged by the positive results of this innovative project. Information collected during this feasibility study has been significantly incorporated into the experimental design for upcoming years of research, and is expected to continue to increase survival and successful expression of iteroparity.

Hatch, Douglas R.; Branstetter, Ryan (Columbia River Inter-Trial Fish Commission, Portland, OR); Blodgett, Joe (Yakama Nation, Toppenish, WA)

2003-07-01T23:59:59.000Z

67

Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2004 Annual Report.  

SciTech Connect (OSTI)

Iteroparity, the ability to repeat spawn, is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of three study groups (direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 15 March to 21 June 2004. In total, 842 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.5% (842 of 2,755) of the entire 2003-2004 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially or for the duration of the experiment. All steelhead kelts received hw-wiegandt multi vit dietary supplement as a means to improve initial nutrition. Long-term steelhead kelts received Moore-Clark pellets to provide essential minerals and nutrients necessary for gonadal redevelopment. Oxytetracycline was administered to all reconditioned fish to boost immune system response following the stress of initial capture. To control parasitic infestations two methods were used, first, after initial capture an intubation of Ivermectin{trademark} was administered to control internal parasites (e.g., Salmincola spp.). Next, a Formalin drip was used for the duration of reconditioning to prevent fungal outbreaks. Captured kelts were separated into three experimental groups: short-term reconditioning, long-term reconditioning, and direct transport and release. Success indicators for the short-term experiment include the proportion of fish that survived the reconditioning process and the proportion of fish that initiated a feeding response. Short-term kelts were reconditioned for 3 to 5 weeks. Surviving specimens were released for natural spawning on May 11, 2004. Survival-to-release was good for the short-term experiment, with a rate of 79.0%. Long-term steelhead kelts are currently being held for a 6-9 month period with a scheduled release in December 2004. Long-term success indicators include the proportion of fish that survived the reconditioning process and the proportion of surviving fish that successfully remature. Survival and rematuration for long-term kelts has not been determined and will be presented in the 2005 annual report. Direct transport and release kelts and short-term reconditioned kelts were radio or acoustic tagged to assess their travel time and migratory behaviors below Bonneville Dam. A total of 29 direct-transport and release kelts and 29 short-term reconditioned kelts received surgically implanted radio tags, and a total of 28 direct-transport/release and 26 short-term reconditioned fish received surgically implanted hydro acoustic tags. These tags will allow us to determine outm

Hatch, Douglas R.; Branstetter, Ryan; Whiteaker, John (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2004-11-01T23:59:59.000Z

68

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.  

SciTech Connect (OSTI)

The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

2000-11-01T23:59:59.000Z

69

Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.  

SciTech Connect (OSTI)

This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

Baxter, Jeremy; Baxter, James S.

2002-12-01T23:59:59.000Z

70

Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.  

SciTech Connect (OSTI)

The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull trout were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.

Bellgraph, Brian J. [Pacific Northwest National Laboratory

2009-03-31T23:59:59.000Z

71

In this project, researchers de-veloped alternative feeds for two  

E-Print Network [OSTI]

that will be infused into pellets for feed for rainbow trout, part of another project. Image: Stephen Ausmus for USDA

Tryon, Michael D.

72

THE EFFECTS OF LAMPRICIDE 3-TRIFLUOROMETHYL-4-NITROPHENOL TOXICITY ON THE GILLS OF LARVAL SEA LAMPREY AND NON-TARGET RAINBOW TROUT AND LAKE STURGEON.  

E-Print Network [OSTI]

??The pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), is widely used in the Great Lakes to control invasive sea lampreys (Petromyzon marinus) populations, but much about its sub-lethal effects… (more)

Sorensen, Lisa A

2015-01-01T23:59:59.000Z

73

E-Print Network 3.0 - anadromous brown trout Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: anadromous brown trout Page: << < 1 2 3 4 5 > >> 1 J. Fish Biol. (1987)31, 143-146 Mating of anadromousAtlanticsalmon, Salmo salar L., with...

74

Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.  

SciTech Connect (OSTI)

The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

Runyon, John

2002-08-01T23:59:59.000Z

75

The role of couplings in nuclear rainbow formation at energies far above the barrier  

SciTech Connect (OSTI)

A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

Pereira, D.; Linares, R. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Instituto de Fisica da Universidade Federal Fluminense, Rio de Janeiro, Niteroi, RJ (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); and others

2012-10-20T23:59:59.000Z

76

Note on Design Criteria for Rainbow-Type Multivariates Jintai Ding1  

E-Print Network [OSTI]

This was a short note that deals with the design of Rainbow or "stagewise unbalanced oil-and-vinegar" multivariate parameters in current schemes. These can be ameliorated according to an updated list of security design, 2006: Second Draft, TWISC (Taiwan Information Security Center) tech report · September 5, 2006

77

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impacts Phase III, 1996 Annual Report.  

SciTech Connect (OSTI)

Phase 3 began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River Basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transinontanus) and rainbow trout (Oncorhynchus mykiss) in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased habitat for adult and juvenile white sturgeon and adult rainbow trout. But, the flows have failed to meet mean monthly flow recommendations for the past three years despite the addition of the flow augmentation releases. It is unlikely that the flow augmentation releases have had any significant long-term benefit for sturgeon and rainbow trout in the Snake River. Flow augmentation releases from the Boise and Payette rivers have in some years helped to meet or exceed minimum flow recommendations in these tributaries. The minimum flows would not have been reached without the flow augmentation releases. But, in some instances, the timing of the releases need to be adjusted in order to maximize benefits to resident fishes in the Boise and Payette rivers.

Leitzinger, Eric J. [Idaho Dept. of Fish and Game, Boise, ID (United States)

1997-12-01T23:59:59.000Z

78

Bull Trout Distribution and Abundance in the Waters on and Bordering the Warm Springs Reservation : 2002 Annual Report.  

SciTech Connect (OSTI)

The range of bull trout (Salvelinus confluentus) in the Deschutes River basin has decreased from historic levels due to many factors including dam construction, habitat degradation, brook trout introduction and eradication efforts. While the bull trout population appears to be healthy in the Metolius River-Lake Billy Chinook system they have been largely extirpated from the upper Deschutes River (Buchanan et al. 1997). Little was known about bull trout in the lower Deschutes basin until BPA funded project No.9405400 began during 1998. In this progress report we describe the findings to date from this multi-year study aimed at determining the life history, habitat needs and limiting factors of bull trout in the lower Deschutes subbasin. Juvenile bull trout and brook trout (Salvelinus fontinalis) relative abundance has been assessed in the Warm Springs River and Shitike Creek since 1999. In the Warm Springs R. the relative densities of juvenile bull trout and brook trout were .003 fish/m{sup 2} and .001 fish/m{sup 2} respectively during 2002. These densities were the lowest recorded in the Warm Springs River during the period of study. In Shitike Cr. the relative densities of juvenile bull trout and brook trout were .025 fish/m{sup 2} and .01 fish/m{sup 2} respectively during 2002. The utility of using index reaches to monitor trends in juvenile bull trout and brook trout relative abundance in the Warm Springs R. has been assessed since 1999. During 2002 the mean relative densities of juvenile bull trout within the 2.4 km study area was higher than what was observed in four index reaches. However, the mean relative densities of brook trout was slightly higher in the index reaches than what was observed in the 2.4 km study area. Habitat use by both juvenile bull trout and brook trout was determined in the Warm Springs R. Juvenile bull trout and brook trout were most abundant in pools and glides. However pools and glides comprised less than 20% of the available habitat in the study area during 2002. Multiple-pass spawning ground surveys were conducted during late August through October in the Warm Springs R. and Shitike Cr. during 2002. One-hundred and thirteen (113) redds were enumerated in the Warm Springs R. and 204 redds were found in Shitike Cr. The number of redds enumerated in both the Warm Springs R. and Shitike Cr. were the most redds observed since surveys began in 1998. Spatial and temporal distribution in spawning within the Warm Springs R. and Shitike Cr. is discussed. Juvenile emigration has been monitored in Shitike Creek since 1996. A total of 312 juveniles were estimated to have emigrated from Shitike Cr. during the spring, 2002. Adult escapement was monitored in the Warm Springs R. and Shitike Cr. Thirty adults were recorded at the Warm Springs National Fish Hatchery weir during 2002. This was the highest number of spawning adults recorded to date. A weir equipped with an underwater video camera near the spawning grounds was operated in the Warm Springs R. Thirty-one adults were recorded at the weir in day counts. The adult trap in Shitike Cr. was unsuccessful in capturing adult bull trout during 2002 due to damage from a spring high water event. Thermographs were placed throughout Warm Springs R. and Shitike Cr. to monitor water temperatures during bull trout migration, holding and spawning/rearing periods. During 1999-2002 water temperatures ranged from 11.8-15.4 C near the mouths during adult migration; 11.4-14.6 C during pre-spawning holding; and 6.5-8.4 C during adult spawning and juvenile rearing.

Brun, Christopher V.; Dodson, Rebekah

2003-03-01T23:59:59.000Z

79

Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.  

SciTech Connect (OSTI)

We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S. (Washington Department of Fish and Wildlife); Honanie, Isadore (Confederated Tribes and Bands, Yakama Nation)

2002-01-01T23:59:59.000Z

80

Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.  

SciTech Connect (OSTI)

We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

2003-06-01T23:59:59.000Z

82

Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.  

SciTech Connect (OSTI)

We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tag was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft. above water surface in a helicopter. However, we lost detection capability from 40 ft. water depth when we passed 700 ft. above the water surface in a helicopter. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we reduced the size of the radio tags that we implanted, and delayed most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

2005-11-01T23:59:59.000Z

83

Bull Trout Population and Habitat Surveys in the Middle Fork Willamette and McKenzie Rivers, Annual Report 2002.  

SciTech Connect (OSTI)

Bull trout in the Willamette River Basin were historically distributed throughout major tributaries including the Middle Fork Willamette and McKenzie rivers. Habitat degradation, over-harvest, passage barriers, fish removal by rotenone, and hybridization and competition with non-native brook trout are all likely factors that have led to the decline of bull trout in the Willamette Basin (Ratliff and Howell 1992). The U.S. Fish and Wildlife Service listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act in 1998. Four bull trout populations were isolated in the upper Willamette River following the construction of flood control dams on the South Fork McKenzie River, McKenzie River, and Middle Fork Willamette River that created Cougar, Trail Bridge, and Hills Creek reservoirs. Buchanan et al. (1997) described the population in the main stem McKenzie as 'of special concern', the South Fork McKenzie population as 'high risk of extinction', the population above Trail Bridge Reservoir as 'high risk of extinction', and bull trout in the Middle Fork Willamette as 'probably extinct'. Various management efforts such as strict angling regulations and passage improvement projects have been implemented to stabilize and rehabilitate bull trout habitat and populations in the McKenzie River over the past 10 years. Since 1997, bull trout fry from Anderson Creek on the upper McKenzie River have been transferred to the Middle Fork Willamette basin above Hills Creek Reservoir in an attempt to re-establish a reproducing bull trout population. This project was developed in response to concerns over the population status and management of bull trout in the McKenzie and Middle Fork Willamette Rivers by the Oregon Department of Fish and Wildlife during the early 1990s. The project was conducted under measure 9.3G(2) of the Columbia Basin Fish and Wildlife Program to monitor the status, life history, habitat needs, and limiting factors for bull trout within sub basins of the Columbia River. Also, this project provides information to develop native fish recovery plans such as the Oregon Plan for Salmon and Watersheds and the U.S. Fish and Wildlife Bull Trout Recovery Plan.

Seals, Jason; Reis, Kelly

2003-10-01T23:59:59.000Z

84

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

The Malheur River is a 306-kilometer tributary to the Snake River, which drains 12,950 square kilometers. The Malheur River originates in the Blue Mountains and flows into the Snake River near Ontario, Oregon. The climate of the basin is characterized by hot dry summers, occasionally exceeding 38 C, and cold winters that may drop below -29 C. Average annual precipitation is 30 centimeters in the lower reaches. Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2002. Bull trout Salvelinus confluentus are considered to be cold water species and are temperature-dependant. Due to the interest of bull trout from various state and Federal agencies, a workgroup was formed to develop project objectives related to bull trout. Table 1 lists individuals that participated in the 2002 work group. This report will reflect work completed during the Bonneville Power Administration contract period starting April 1, 2002, and ending March 31, 2003. All tasks were conducted within this timeframe, and a more detailed timeframe may be referred to in each individual report.

Miller, Alan; Soupir, Jim (US Forest Service, Prairie City Ranger District, Prairie City, OR); Schwabe, Lawrence (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

2003-08-01T23:59:59.000Z

85

Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands,  

E-Print Network [OSTI]

. To reduce these negative impacts, a variety of stormwater best management practices (BMPs) have been have on the temperature of storm- water runoff. With the wide implementation of storm- water BMPs Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands, Wet

Hunt, William F.

86

ILLUSTRATIONS. GOLDEN TROUT OF TilE SOUTHERN HIGH SIERRAS: Facing page.  

E-Print Network [OSTI]

trout of Volcano Creek, Salmo roosevelt!................. 3 II. (1) Marble Fork of Kaweah River, (2 River. (5) First series of Ialls in Little Kern River. (6) Upper part of first series of falls in Little third falls. (18) Broder Falls, Coyote Creek. (19) Fonrth falls In Coyote Creek

87

Influence of egg predation and physical disturbance on lake trout Salvelinus namaycush egg mortality and  

E-Print Network [OSTI]

mortality and implications for life-history theory J. D. FITZSIMONS*, J. L. JONAS, R. M. CLARAMUNT, B and physical disturbance on lake trout Salvelinus namaycush egg mortality was investigated in situ in Lake and egg predation on egg loss. Wind fetch was used as an index of physical disturbance and comparisons

Marsden, Ellen

88

Trout in hot water Understanding the effects of climate change on ecosystems is a complex  

E-Print Network [OSTI]

Trout in hot water Understanding the effects of climate change on ecosystems is a complex business as we set out for the Hengill geothermal valley. You might think of Iceland as a cold, dark country up the breakdown of organic matter and nutrients are recycled more quickly, leading to more resources

Brierley, Andrew

89

Food partitioning between coexisting Atlantic salmon and brook trout in the Sainte-Marguerite River  

E-Print Network [OSTI]

in August to September 1996. The food and feeding habits of an allopatric brook trout population in a nearby, University of Victoria, Victoria (BC), N8W 3N5, Canada. Journal of Fish Biology (2004) 64, 680­694 doi:10

Mazumder, Asit

90

Simulation analysis of within-day flow fluctuation effects on trout below flaming Gorge Dam.  

SciTech Connect (OSTI)

In addition to being renewable, hydropower has the advantage of allowing rapid load-following, in that the generation rate can easily be varied within a day to match the demand for power. However, the flow fluctuations that result from load-following can be controversial, in part because they may affect downstream fish populations. At Flaming Gorge Dam, located on the Green River in northeastern Utah, concern has been raised about whether flow fluctuations caused by the dam disrupt feeding at a tailwater trout fishery, as fish move in response to flow changes and as the flow changes alter the amount or timing of the invertebrate drift that trout feed on. Western Area Power Administration (Western), which controls power production on submonthly time scales, has made several operational changes to address concerns about flow fluctuation effects on fisheries. These changes include reducing the number of daily flow peaks from two to one and operating within a restricted range of flows. These changes significantly reduce the value of the power produced at Flaming Gorge Dam and put higher load-following pressure on other power plants. Consequently, Western has great interest in understanding what benefits these restrictions provide to the fishery and whether adjusting the restrictions could provide a better tradeoff between power and non-power concerns. Directly evaluating the effects of flow fluctuations on fish populations is unfortunately difficult. Effects are expected to be relatively small, so tightly controlled experiments with large sample sizes and long study durations would be needed to evaluate them. Such experiments would be extremely expensive and would be subject to the confounding effects of uncontrollable variations in factors such as runoff and weather. Computer simulation using individual-based models (IBMs) is an alternative study approach for ecological problems that are not amenable to analysis using field studies alone. An IBM simulates how a population responds to environmental changes by representing how the population's individuals interact with their environment and each other. IBMs represent key characteristics of both individual organisms (trout, in this case) and the environment, thus allowing controlled simulation experiments to analyze the effects of changes in the key variables. For the flow fluctuation problem at Flaming Gorge Dam, the key environmental variables are flow rates and invertebrate drift concentrations, and the most important processes involve how trout adapt to changes (over space and time) in growth potential and mortality risk. This report documents simulation analyses of flow fluctuation effects on trout populations. The analyses were conducted in a highly controlled fashion: an IBM was used to predict production (survival and growth) of trout populations under a variety of scenarios that differ only in the level or type of flow fluctuation.

Railsback, S. F.; Hayse, J. W.; LaGory, K. E.; Environmental Science Division; EPRI

2006-01-01T23:59:59.000Z

91

Queen for an ice age: Katje Borgesius as the form of ideology in Pynchon's Gravity's Rainbow  

E-Print Network [OSTI]

QUEEN FOR AN ICE AGE: KATJE BORGESIUS AS THE FORM OF IDEOLOGY IN PYNCHON'S GRAVITY'S RAINBOW A Thesis by RUSSELL GREGORY MOSES Submitted to the Office ol Graduate Studies of Texas A8rM Ilniversity in partial t'ulfillment of the requirements... for the degree of MASTER OF ARTS December 1988 Major Subject: English QUEEN FOR AN ICE AGE: KATJE BORGESIUS AS THE FORM OF IDEOLOGY IN PYNCHON'S GRAVITY'S RAINBOV( A Thesis by RUSSELL GREGORY MOSES Approved as to style and content by: Robert D. Newman...

Moses, Russell Gregory

1988-01-01T23:59:59.000Z

92

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.  

SciTech Connect (OSTI)

The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will include the North Fork Malheur River and the Upper Malheur River from Warm Springs Reservoir upstream to the headwaters.

Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

2001-08-01T23:59:59.000Z

93

Influence of the dynamical image potential on the rainbows in ion channeling through short carbon nanotubes  

SciTech Connect (OSTI)

We investigate the influence of the dynamic polarization of the carbon valence electrons on the angular distributions of protons channeled through short (11,9) single-wall carbon nanotubes at speeds of 3 and 5 a.u. (corresponding to the proton energies of 0.223 and 0.621 MeV), with the nanotube length varied from 0.1 to 0.3 {mu}m. The dynamic image force on protons is calculated by means of a two-dimensional hydrodynamic model for the nanotube's dielectric response, whereas the repulsive interaction with the nanotube's cylindrical wall is modeled by a continuum potential based on the Doyle-Turner interatomic potential. The angular distributions of channeled protons are generated by a computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Our analysis shows that the inclusion of the image interaction causes qualitative changes in the proton deflection function, giving rise to a number of rainbow maxima in the corresponding angular distribution. We propose that observations of those rainbow maxima could be used to deduce detailed information on the relevant interaction potentials, and consequently to probe the electron distribution inside carbon nanotubes.

Borka, D.; Petrovic, S.; Neskovic, N. [Laboratory of Physics (010), Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); Mowbray, D. J.; Miskovic, Z. L. [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

2006-06-15T23:59:59.000Z

94

Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation  

SciTech Connect (OSTI)

We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.

Hrayr Matevosyan; Anthony Thomas; Peter Tandy

2007-04-01T23:59:59.000Z

95

Kalispel Non-Native Fish Suppression Project 2007 Annual Report.  

SciTech Connect (OSTI)

Non-native salmonids are impacting native salmonid populations throughout the Pend Oreille Subbasin. Competition, hybridization, and predation by non-native fish have been identified as primary factors in the decline of some native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi) populations. In 2007, the Kalispel Natural Resource Department (KNRD) initiated the Kalispel Nonnative Fish Suppression Project. The goal of this project is to implement actions to suppress or eradicate non-native fish in areas where native populations are declining or have been extirpated. These projects have previously been identified as critical to recovering native bull trout and westslope cutthroat trout (WCT). Lower Graham Creek was invaded by non-native rainbow (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) after a small dam failed in 1991. By 2003, no genetically pure WCT remained in the lower 700 m of Graham Creek. Further invasion upstream is currently precluded by a relatively short section of steep, cascade-pool stepped channel section that will likely be breached in the near future. In 2008, a fish management structure (barrier) was constructed at the mouth of Graham Creek to preclude further invasion of non-native fish into Graham Creek. The construction of the barrier was preceded by intensive electrofishing in the lower 700 m to remove and relocate all captured fish. Westslope cutthroat trout have recently been extirpated in Cee Cee Ah Creek due to displacement by brook trout. We propose treating Cee Cee Ah Creek with a piscicide to eradicate brook trout. Once eradication is complete, cutthroat trout will be translocated from nearby watersheds. In 2004, the Washington Department of Fish and Wildlife (WDFW) proposed an antimycin treatment within the subbasin; the project encountered significant public opposition and was eventually abandoned. However, over the course of planning this 2004 project, little public involvement or education was conducted prior to the planned implementation. Therefore, in 2007 we implemented an extensive process to provide public education, address public concerns and provide opportunity for public involvement in implementing piscicides and other native fish recovery actions in the subbasin.

Wingert, Michele; Andersen, Todd [Kalispel Natural Resource Department

2008-11-18T23:59:59.000Z

96

Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.  

SciTech Connect (OSTI)

The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

2008-11-20T23:59:59.000Z

97

Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.  

SciTech Connect (OSTI)

In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

1990-10-01T23:59:59.000Z

98

Using 3D Acoustic Telemetry to Assess the Response of Resident Salmonids to Strobe Lights in Lake Roosevelt, Washington; Chief Joseph Kokanee Enhancement Feasibility Study, Annual Report 2001-2002.  

SciTech Connect (OSTI)

In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse. In response to finding high entrainment at Grand Coulee Dam, the Independent Scientific Review Panel (ISRP) recommended investigating the use of strobe lights to repel fish from the forebay of the third powerhouse. Therefore, our study focused on the third powerhouse and how strobe lights affected fish behavior in this area. The primary objective of our study was to assess the behavioral response of kokanee and rainbow trout to strobe lights using 3D acoustic telemetry, which yields explicit spatial locations of fish in three dimensions. Our secondary objectives were to (1) use a 3D acoustic system to mobile track tagged fish in the forebay and upriver of Grand Coulee Dam and (2) determine the feasibility of detecting fish using a hydrophone mounted in the tailrace of the third powerhouse. Within the fixed hydrophone array located in the third powerhouse cul-de-sac, we detected 50 kokanee and 30 rainbow trout, accounting for 47% and 45% respectively, of the fish released. Kokanee had a median residence time of 0.20 h and rainbow trout had a median residence time of 1.07 h. We detected more kokanee in the array at night compared to the day, and we detected more rainbow trout during the day compared to the night. In general, kokanee and rainbow trout approached along the eastern shore and the relative frequency of kokanee and rainbow trout detections was highest along the eastern shoreline of the 3D array. However, because we released fish near the eastern shore, this approach pattern may have resulted from our release location. A high percentage of rainbow trout (60%) approached within 35 m of the eastern shore, while fewer kokanee (40%) approached within 35 m of the eastern shore and were more evenly distributed across the entrance to the third powerhouse cul-de-sac area. During each of the strobe light treatments there were very few fish detected within 25 m of the strobe lights. The spatial distribution of fish detections showed relatively few tagged fish swam through the center of the array where the strobe lights were located. We detected 11 kokanee and 12 rainbow trout within 25 m of the strobe lights, accounting for 10% and 18% respectively, of the fish released. Both species exhibited very short residence times within 25 m of the strobe lights No attraction or repulsion behavior was observed within 25 m of the strobe lights. Directional vectors of both kokanee and rainbow trout indicate that both species passed the strobe lights by moving in a downstream direction and slightly towards the third powerhouse. We statistically analyzed fish behavior during treatments using a randomization to compare the mean distance fish were detected from the strobe lights. We compared treatments separately for day and night and with the data constrained to three distances from the strobe light (< 85m, < 50 m, and < 25 m). For kokanee, the only significant randomization test (of 10 tests) occurred with kokanee during the day for the 3-On treatment constrained to within 85 m of the strobe lights, where kokanee were significantly further away from the strobe lights than during the Off treatment (randomization test, P < 0.004, Table 1.5). However, one other test had a low P-value (P = 0.064) where kokanee were closer to the lights during the 3-On treatment at night within 85 m of the strobe lights compared to the Off treatment. For rainbow trout, none of the 11 tests were significant, but one test had a low P-value (P = 0.04), and fish were further away from the strobe lights during

Perry, Russlee; Farley, M.; Hansen, Gabriel

2003-01-01T23:59:59.000Z

99

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found t

Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

2009-03-02T23:59:59.000Z

100

Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.  

SciTech Connect (OSTI)

For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In general, upriver brights differ from tules by at least one locus. Steelhead stocks can be divided into two main groups: (1) those stocks found east of the Cascades; and (2) those stocks found west of the Cascade Mountains. Steelhead from west of the Cascades are divisable into three subgroups of closely related stocks: (1) a group comprised mainly of wild winter steelhead from the lower Columbia River; (2) Willamette River hatchery and wild winter steelhead; and (3) summer and winter hatchery steelhead stocks from both the lower Columbia and Willamette Rivers. Steelhead from east of the Cascades are separable into three subgroups of closely related stocks: (1) wild summer steelhead; (2) a group comprised mainly of hatchery summer steelhead stocks; and (3) other hatchery and wild steelhead from Idaho. Streams east and west of the Cascades can be differentiated using characters including precipitation, elevation, distance from the mouth of the Columbia, number of frost-free days and minimum annual air temperature. There are significant differences among the stocks of chinook salmon and steelhead trout for each of the meristic and body shape characters. Between year variation does not account for differences among the stocks for the meristic and body shape characters with the exception of pelvic fin ray number in steelhead trout. Characters based on body shape are important for discriminating between the groups of hatchery and wild steelhead stocks. We could not determine whether the basis for the differences were genetic or environmental. The reason for the variation of the characters among stocks is as yet unclear. Neutrality or adaptiveness has not been firmly demonstrated.

Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - acute silver toxicity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane of Rainbow Trout Gills Summary: that are the primary site for acute heavy metal toxicity (Mc- Donald and Wood, 1993). The toxic action of silver... and chloride...

102

E-Print Network 3.0 - acute graft-vs-host disease Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source: Baker, Chris I. - Laboratory of Brain and Cognition, National Institute of Mental Health Collection: Biology and Medicine 67 Mainly affects farmed rainbow trout All...

103

South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Annual Report 2002.  

SciTech Connect (OSTI)

In 1999, Montana Fish, Wildlife & Parks (MFWP) began a program aimed at conserving the genetically pure populations of westslope cutthroat trout in the South Fork Flathead River drainage. The objective of this program is to eliminate all of the exotic and hybrid trout that threaten the genetically pure westslope cutthroat populations in the South Fork Flathead. The exotic and hybrid trout populations occur in several headwater lakes and their outflow streams. In 2001 MFWP released a draft environmental assessment, pursuant to the Montana Environmental Policy Act (MEPA), that addressed the use of motorized equipment to deliver personnel and materials to some of these lakes in the Bob Marshall and Great Bear Wildernesses (Grisak 2001). After a 30-day public comment period, MFWP determined that the complexity of issues was too great and warranted a more detailed analysis. These issues included transportation options for personnel, equipment and materials, the use of motorized equipment in wilderness, fish removal methods, fish stocking, and the status and distribution of amphibian populations in the project area. Because the program also involves the U.S. Forest Service (USFS) and Bonneville Power Administration (BPA), the environmental analysis needs to comply with the National Environmental Policy Act (NEPA). In October 2001, pursuant to NEPA, MFWP, along with the USFS and BPA initiated an environmental assessment to address these issues. In June 2002, the three agencies determined that the scope of these issues warranted an Environmental Impact Statement. This specialist report describes the logistical, technical and biological issues associated with this project and provides an analysis of options for fish removal, transportation and fish stocking. It further analyzes issues and concerns associated with amphibian populations and creating new domesticated stocks of westslope cutthroat trout. Finally, this document provides a description of each lake, the best method of fish removal that would achieve the goals of the project, logistics for carrying out the fish removal, and the immediate management direction for each lake following fish removal. The USFS is preparing a specialist report detailing land management issues that relate to National Forest, designated Hiking Areas, and Wilderness. Information from these two documents will be used by BPA to prepare an Environmental Impact Statement.

Grisak, Grant; Marotz, Brian

2003-06-01T23:59:59.000Z

104

Emergency Fish Restoration Project; Final Report 2002.  

SciTech Connect (OSTI)

Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleye (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.

LeCaire, Richard

2003-03-01T23:59:59.000Z

105

Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2000 Annual Report.  

SciTech Connect (OSTI)

Prior to 1978, Dolly Varden Salvelinus malma were classified into an anadromous and interior form. Cavender (1978) classified the interior form as a distinct species, Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1989). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a well developed fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from lat. 41{sup o}N to lat. 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette sub-basins west of the Cascades (Buchanan et al. 1997). However, it is believed bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. Before 1963, bull trout in the McKenzie sub-basin were a contiguous population from the mouth to Tamolitch Falls. Following the construction of Cougar and Trail Bridge Reservoirs there are three isolated populations: (1) mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir. (2) mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls. (3) South Fork McKenzie and tributaries above Cougar Reservoir. The study area includes the three aforementioned McKenzie populations, and the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques including: spawning surveys, standard pool counts, juvenile trapping, radio tracking, electronic fish counters, and a modified Hankin and Reeves protocol to estimate juvenile abundance and density. In addition, we continued to reintroduce bull trout fry from Anderson Creek (McKenzie Basin) to the Middle Fork Willamette above Hills Creek Reservoir in an attempt to rehabilitate the bull trout population in the Middle Fork Willamette Basin. By monitoring population trends and determining life history characteristics of bull trout in McKenzie and Middle Fork Willamette basins we can make informed management decisions that will help maintain long term and sustainable bull trout populations in the Upper Willamette Basin.

Taylor, Greg

2000-11-28T23:59:59.000Z

106

Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2001 Annual Report.  

SciTech Connect (OSTI)

Prior to 1978, bull trout were commonly known as dolly varden (Salvelinus malma) and were classified into an anadromous and interior form. Cavender (1978) described the interior form as a distinct species, classifying it as Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1994). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from latitude 41{sup o}N to 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette subbasins west of the Cascades (Buchanan et al. 1997). However, it is likely that bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. McKenzie River bull trout were a contiguous population from the mouth to Tamolitch Falls prior to 1963. Three populations were isolated following the construction of Cougar and Trail Bridge Reservoirs which include the mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir, mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls, and the South Fork McKenzie and tributaries above Cougar Reservoir. On June 10, 1998 the U.S. Fish and Wildlife Service (USFWS) listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act and Buchanan et al. (1997) listed the bull trout population in the mainstem McKenzie as ''of special concern'', the South Fork McKenzie population as ''high risk of extinction,'' and the population above Trail Bridge Reservoir as ''high risk of extinction.'' Bull trout in the Middle Fork Willamette were listed as ''probably extinct.'' Our study area includes the three McKenzie populations, and a reintroduced population in the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques that include spawning surveys, juvenile trapping, electronic fish counters, and night snorkeling. We continued to reintroduce bull trout fry from Anderson Creek (McKenzie Basin) to the Middle Fork Willamette above Hills Creek Reservoir in an attempt to rehabilitate the bull trout population in the Middle Fork Willamette Basin. By monitoring population trends and determining life history characteristics of bull trout in McKenzie and Middle Fork Willamette basins, we can make informed management decisions that will help maintain long term and sustainable bull trout populations in the upper Willamette Basin.

Taylor, Greg

2003-02-01T23:59:59.000Z

107

Resummation of infrared logarithms in de Sitter space via Dyson-Schwinger equations: the ladder-rainbow approximation  

E-Print Network [OSTI]

We study the infrared (large separation) behavior of a massless minimally coupled scalar quantum field theory with a quartic self interaction in de Sitter spacetime. We show that the perturbation series in the interaction strength is singular and secular, i.e. it does not lead to a uniform approximation of the solution in the infrared region. Only a nonperturbative resummation can capture the correct infrared behavior. We seek to justify this picture using the Dyson-Schwinger equations in the ladder-rainbow approximation. We are able to write down an ordinary differential equation obeyed by the two-point function and perform its asymptotic analysis. Indeed, while the perturbative series-truncated at any finite order-is growing in the infrared, the full nonperturbative sum can be decaying.

Ahmed Youssef; Dirk Kreimer

2014-08-07T23:59:59.000Z

108

Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)  

SciTech Connect (OSTI)

The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.

RH Visser

2000-03-16T23:59:59.000Z

109

Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.  

SciTech Connect (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing waterfalls than males. The study also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 3,971 kcals (34% anaerobic and 66% aerobic) for a sample of five fish. A bioenergetics example was run, which estimated that fall chinook salmon would expend an estimated 1,208 kcal to pass from the mouth of the Columbia River to Bonneville Dam and 874 kcals to pass Bonneville Dam and pool and the three falls on the Lower Klickitat River, plus an additional 2,770 kcals above the falls to reach the spawning grounds, leaving them with approximately 18% (1,089 kcals) of their original energy reserves for spawning. Results of the bioenergetics example suggest that a delay of 9 to 11 days along the lower Klickitat River may deplete their remaining energy reserves (at a rate of about 105 kcal d{sup -1}) resulting in death before spawning would occur.

Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

2002-08-30T23:59:59.000Z

110

Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.  

SciTech Connect (OSTI)

The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on promoting the ability for anadromous salmonids to respond to change by assuring that the genetic diversity to facilitate such responses is present. The key in developing an effective recovery program for chinook salmon and steelhead is to recognize that multiple life history forms associated with temperature characterize the species in the Columbia Basin, and recovery measures taken must address the biological requirements of the population unit within the environmental template identified. Unless such measures are given first and highest priority, establishment of biologically self-sustaining populations will be restrained.

Brannon, E.L.; National Science Foundation (U.S.)

2002-08-01T23:59:59.000Z

111

Joan M. Dukes Rhonda Whiting  

E-Print Network [OSTI]

proceeding to Step2/3 (i.e., a design/build approach) of this project. This recommendation is conditioned) and Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). The recovery and long-term sustainability

112

Physiologic, toxicologic, and population responses of brook trout to acidification: Interim report of the lake acidification and fisheries project: Final report  

SciTech Connect (OSTI)

This report overviews investigations of the ''Lake Acidification and Fisheries'' (LAF) project into the effects of surface water acidification on brook trout (Salvelinus fontinalis) populations. Of the six life stages examined, freshly-fertilized eggs were the most sensitive to reduced pH. In contrast, aluminum was most toxic to fry, juvenile, and adult fish. Increased calcium concentrations reduced the toxic effects of acid/aluminum exposure at all life stages. Little evidence was found to indicate that exposure to acidic waters affects oocyte development or production, suggesting that direct mortality plays a larger role in losses of brook trout populations from acidic waters. For fry and adult fish, the major toxic mechanism of acid/aluminum exposure seems to be disturbance of normal ion regulation at the gill, but aluminum exposure can cause respiratory impairment as well. Using results from LAF toxicity studies and available field data, a modeling framework was developed that predicts the probability of presence or absence of brook trout populations, based ion surface water chemistry. In addition, this framework can be used to evaluate changes in this probability caused by changes in water chemistry (e.g., liming), stocking rates, or fishing pressure. 129 refs., 37 figs., 8 tabs.

Mount, D.R.; Marcus, M.D. (eds.); Breck, J.E.; Christensen, S.W.; Gern, W.A.; Ingersoll, C.G.; Gulley, D.D.; McDonald, D.G.; Parkhurst, B.R.; Van Winkle, W.

1989-02-01T23:59:59.000Z

113

Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.  

SciTech Connect (OSTI)

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

2009-05-11T23:59:59.000Z

114

Kalispel Resident Fish Project, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

In 2004 the Kalispel Natural Resource Department (KNRD) implemented a new enhancement monitoring project for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Largemouth bass (Micropterus salmoides) enhancement projects were also monitored. Additional baseline fish population and habitat assessments were conducted, in tributaries to the Pend Oreille River.

Olson, Jason; Andersen, Todd

2005-06-01T23:59:59.000Z

115

Kalispel Resident Fish Project, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

In 2005 the Kalispel Natural Resource Department (KNRD) monitored its current enhancement projects for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Largemouth Bass (Micropterus salmoides) enhancement projects were also monitored. Additional baseline fish population and habitat assessments were conducted, in East River and several of its tributaries.

Olson, Jason; Andersen, Todd (Kalispel Natural Resource Department, Usk, WA)

2006-07-01T23:59:59.000Z

116

Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.  

SciTech Connect (OSTI)

Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

Everest, Fred H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B.; Cain, Thomas C. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

1988-03-01T23:59:59.000Z

117

UNL WATER CENTER 3 .................. Meet the Faculty  

E-Print Network [OSTI]

ensure future suc- cess for the popular trout fishing lake. The scale model, built in the hydraulics the lake has been Nebraska's premier public rainbow trout fishery since the 1940's," said UNL hydraulic water from the turbine to a Howell- Bunger valve, to help oxygenate water entering the lake

Nebraska-Lincoln, University of

118

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain John Rapids to 16.2 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 11.7 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 8-15 days to Lower Granite Dam and 22-27 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 23-25. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 4-10.

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-07-01T23:59:59.000Z

119

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at Pittsburg Landing to 1.23 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.8% (82.1-93.4%) for Big Canyon Surplus to 94.1% (90.1-98.1%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 58.7% (49.3-68.1%) for Big Canyon Surplus to 71.3% (60.1-82.5%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 9.3 river kilometers per day (rkm/d) for Captain John Rapids to 18.7 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 9.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 7-10 days to Lower Granite Dam and 21-23 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, were all from April 23-25. The median arrival date for Big Canyon Surplus was May 4. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 7-8. Median arrival dates at McNary Dam were May 17 for Big Canyon Surplus and April 26 for Lyons Ferry Hatchery.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

120

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per day (rkm/d) for Captain John Rapids to 14.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Big Canyon to 15.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-12 days to Lower Granite Dam and 25-30 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 20-28. Median arrival dates at McNary Dam for the FCAP groups were all May 11. The objectives of this project are to quantify and evaluate pre-release fish health, condition and mark retention as well as post-release survival, migration timing, migration rates, travel times and movement patterns of fall Chinook salmon from supplementation releases at the FCAP facilities, then provide feedback to co-managers for project specific and basin wide management decision-making.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-16 days to Lower Granite Dam and 23-29 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, ranged from April 18-29. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 1-8.

Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

2005-07-01T23:59:59.000Z

122

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 37.9% (36.0-40.0%) for Pittsburg Landing to 57.9% (53.0-62.8%) for Lyons Ferry Hatchery. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 6.3 river kilometers per day (rkm/d) for Big Canyon to 10.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 5.2 rkm/d for Lyons Ferry Hatchery to 10.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-17 days to Lower Granite Dam and 31-37 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 26-27. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 14-18. The median arrival date at McNary Dam was May 13 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

123

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 65.8% (58.5-73.1%) for Lyons Ferry Hatchery to 84.0% (76.2-91.8%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 10.1 river kilometers per day (rkm/d) for Captain John Rapids to 19.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 6.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-10 days to Lower Granite Dam and 22-25 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 21-22. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 5-6. The median arrival date at McNary Dam was April 24 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

124

Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.  

SciTech Connect (OSTI)

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality (specifically dissolved oxygen and temperature) is the main limiting factor in our fisheries.

Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

2009-05-11T23:59:59.000Z

125

Rates of consumption of juvenile salmonids and alternative prey fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River. [Ptychocheilus oregonensis; Stizostedion vitreum; Micropterus dolomieu; Ictalurus punctatus; Oncorhynchus spp  

SciTech Connect (OSTI)

Adult northern squawfish Ptychocheilus oregonesis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983-1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes and smallmouth bass occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn and near midnight. Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length, for walleyes 201-250 mm, for smallmouth bass 176-200 mm, and for channel catfish 401-450 mm. Averaged over all predator sizes and sampling months (April-August), the total daily ration (fish plus other prey) of smallmouth bass was about twice that of channel catfish, northern squawfish, and walleyes. However, northern squawfish was clearly the major predator on juvenile salmonids.

Vigg, S.; Poe, T.P.; Prendergast, L.A.; Hansel, H.C. (Fish and Wildlife Service, Cook, WA (United States))

1991-07-01T23:59:59.000Z

126

Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.  

SciTech Connect (OSTI)

The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water quality issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.

Sellman, Jake; Perugini, Carol [Department of Fish, Wildlife, and Parks, Shoshone-Paiute Tribes

2009-02-20T23:59:59.000Z

127

Kalispel Resident Fish Project : Annual Report, 2002.  

SciTech Connect (OSTI)

In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

Andersen, Todd; Olson, Jason

2003-03-01T23:59:59.000Z

128

Kalispel Resident Fish Project Annual Report, 2003.  

SciTech Connect (OSTI)

In 2003 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2003, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented.

Olson, Jason; Andersen, Todd

2004-04-01T23:59:59.000Z

129

Big Canyon Creek Ecological Restoration Strategy.  

SciTech Connect (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

130

Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.  

SciTech Connect (OSTI)

Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

Peters, Ronald; Kinkead, Bruce; Stanger, Mark

2003-07-01T23:59:59.000Z

131

Uptake of hydrophobic xenobiotics by fish in water laden with sediments from the Fraser River  

SciTech Connect (OSTI)

The authors examined the uptake of three hydrophobic chemicals, TCB (1,2,4-trichlorobenzene), PeCB (1,2,3,4,5-pentachlorobenzene), and HCBP (2,2{prime}, 4,4{prime},6,6{prime}-hexachlorobiphenyl), by unfed juvenile rainbow trout (Oncorhynchus mykiss) in test aquaria containing sediments from the Fraser River. The working hypothesis was that the low organic carbon content of the Fraser River sediments would increase the bioavailability of xenobiotics associated with these sediments. The test chemicals and sediments were introduced into aquaria 9 d before the fish were introduced.Measured concentrations of he chemicals in the bottom sediments, suspended sediments, and filtered (0.45 {micro}m) water suggested that the test system had reached a quasiequilibrium state by day 9. Subsequently, a 6-d exposure of fish in the test aquaria resulted in a significant accumulation of the test chemicals in the fish tissues and significant reductions in the chemical concentration of the bottom sediments, suspended sediments, and filtered water. Mass balance analysis suggests that the appearance of HCBP and PeCB in the fish after 6 d could not be accounted for solely by the amount of chemical dissolved in the water at the time when the fish were introduced. A large unaccounted-for fraction of TCB, possibly due to fish metabolism, precluded an accurate mass balance analysis for this chemical. Because chemical uptake in fish with the pharynx plugged (to eliminate the gut uptake route) was similar to that in control fish and because direct access to bottom sediments did not alter chemical uptake, the authors conclude that hydrophobic chemicals such as PeCB and HCBP associated with suspended sediments from the Fraser River can readily desorb and be taken up across the gill.

Qiao, P.; Farrell, A.P. [Simon Fraser Univ., Burnaby, British Columbia (Canada)

1996-09-01T23:59:59.000Z

132

Investigations of the cause of fishkills in fish-rearing facilities in Raven Fork watershed  

SciTech Connect (OSTI)

An investigation was undertaken to determine the cause of fishkills in trout-rearing facilities located adjacent to Raven Fork Creek within the Cherokee Indian Reservation in North Carolina. Approximately 50,000 rainbow trout were lost at the Blankenship trout farm-a commercial facility-following eight storm events between March 31 and December 2, 1981. In addition, 524 trophy-size trout died in three ponds operated by the Cherokee tribe for stocking reservation streams. It was found fishkills in the trout farm could be prevented by adding lime to water from the creek as it was pumped into the facility; this strengthened the assumption acidity (H/sup +/) was responsible for the fishkills. Mortality of trophy trout was stopped by routing water from nearby springs to the ponds during and following rain events. Because of concern that these fishkills might be caused by acid rain, TVA was requested by the Cherokee tribe to assist in determining the cause. Limited studies were conducted during March through August 1982 to test two hypotheses: (1) concentrations of H/sup +/ and soluble aluminum in Raven Fork following storm events were high enough to kill rainbow trout and (2) atmospheric deposition was a greater source of stream H/sup +/ than acid-producing geologic formations or the forest soils.

Jones, H.C.; Noggle, J.C.; Young, R.C.; Kelly, J.M.; Olem, H.; Ruane, R.J.; Pasch, R.W.; Hyfantis, G.J.; Parkhurst, W.J.

1983-04-01T23:59:59.000Z

133

Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.  

SciTech Connect (OSTI)

This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo [Idaho Department of Fish and Game

2009-04-09T23:59:59.000Z

134

LONGTERM OLFACTORY "MEMORY" IN COHO SALMON, ONCORHYNCHUS  

E-Print Network [OSTI]

by the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. months. Ten months distinguish the upper section control subjects from the lower section exper- imentals. A small drop (% m) prevented water in the lower section from reentering the upper section. Immediately below the drop a dilute

135

Independent Scientific Review Panel for the Northwest Power & Conservation Council  

E-Print Network [OSTI]

Tribes of the Colville Reservation (Colville Tribe) propose to stock triploid rainbow trout into Lake. In addition, the Colville Tribe proposes to evaluate stocking success with creel data collection. The proposal need to better structure and justify this proposed expansion of a put-and-take fishery using triploid

136

HISTORY OF RED LAKES FISHERY, With Observations on  

E-Print Network [OSTI]

was presented of the artificial propagation of the walleye and whitefish from 1918 through 1938. NOTE Average catch per lift 20 The walleyes of Lower Red Lake 25 Length -frequency distributions 25 Rate bass 50 Artificial propagation 50 Walleye 51 Whitefish 57 Brook, brown, rainbow, and lake trout 60

137

Resources Abstracts Input Transaction Form  

E-Print Network [OSTI]

#12;Resources Abstracts Input Transaction Form 4. Title 5. Report Date 6.Urban Aquaculture Covered The University of the District of Columbia 12. Sponsoring Organization Water Resources Research of the rainbow trout (Salmo gairdneri) in a closed recycling water system in an urban environment is described

District of Columbia, University of the

138

Response to ISRP Comments for Project 35044 Determine the Effects of Contaminants on White Sturgeon Reproduction and Parental Transfer  

E-Print Network [OSTI]

, such as dioxins, furans, and heavy metals. Significant contamination of the upper Columbia River and the Kootenai was acutely toxic to rainbow trout (CRIEMP, 1994). Chlorinated dioxins and furans, although not detectable dioxin and furan regulations. Cominco has been operating since 1906 (MacDonald Environmental Sciences Ltd

139

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity  

E-Print Network [OSTI]

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill concentration distribution of toxicant in a cell test chamber, (2) an electroosmotic (EO) pump chip

Le Roy, Robert J.

140

1dah-fish-2803 (rev.10/07) Previous versions should be destroyed SUBMIT ORIGINAL WITHIN 7 DAYS AFTER ISSUED  

E-Print Network [OSTI]

RBT Rainbow trout WAE Walleye EMS Emerald shiner RHS Redhorse sucker WHB White bass #12;3 dah-fish1dah-fish-2803 (rev.10/07) ­Previous versions should be destroyed SUBMIT ORIGINAL WITHIN 7 DAYS Fish Health Certificate s. ATCP 10.65, Wis Adm. Code See page 4 for required certificate contents based

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Full text access provided via ACS AuthorChoice Environmental Science & Technology is published by the American Chemical  

E-Print Network [OSTI]

regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and Me position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced

142

New Aquaculture Research Directions for SIUC  

E-Print Network [OSTI]

...sweet...home #12;Bachelors - Marine Science (1992) #12;Ph.D. - Fish Physiology (1998) · Striped bass amino acid requirements · Carbohydrate tolerance of striped bass · Nutrient digestibility in rainbow trout · Marine ornamental Protein/Energy requirements · General fish husbandry · Aquaculture systems #12;Postdoc (1998

143

Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines  

E-Print Network [OSTI]

on Reclaimed Coal Mines in Alberta, Canada L. L. Miller · J. B. Rasmussen · V. P. Palace · G. Sterling · A to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout

Hontela, Alice

144

Kalispel Resident Fish Project : Annual Report, 1995.  

SciTech Connect (OSTI)

In 1995 the Kalispel Natural Resource Department (KNRD) in conjunction with the Washington Department of Fish and Wildlife (WDFW) initiated the implementation of a habitat and population enhancement project for bull trout (Salvelinus confluentus), westslope cutthroat trout (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Habitat and population assessments were conducted in seven tributaries of the Box Canyon reach of the Pend Oreille River. Assessments were used to determine the types and quality of habitat that were limiting to native bull trout and cutthroat trout populations. Assessments were also used to determine the effects of interspecific competition within these streams. A bull trout and brook trout (Salvelinus fontinalis) hybridization assessment was conducted to determine the degree of hybridization between these two species. Analysis of the habitat data indicated high rates of sediment and lack of wintering habitat. The factors that contribute to these conditions have the greatest impact on habitat quality for the tributaries of concern. Population data suggested that brook trout have less stringent habitat requirements; therefore, they have the potential to outcompete the native salmonids in areas of lower quality habitat. No hybrids were found among the samples, which is most likely attributable to the limited number of bull trout. Data collected from these assessments were compiled to develop recommendations for enhancement measures. Recommendations for restoration include riparian planting and fencing, instream structures, as well as, removal of non-native brook trout to reduce interspecific competition with native salmonids in an isolated reach of Cee Cee Ah Creek.

Maroney, Joseph; Donley, Christopher; Scott, Jason; Lockwood, Jr., Neil

1997-06-01T23:59:59.000Z

145

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

146

Kalispel Resident Fish Project : Annual Report, 2008.  

SciTech Connect (OSTI)

In 2008, the Kalispel Natural Resource Department (KNRD) continued to implement its habitat enhancement projects for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Baseline fish population and habitat assessments were conducted in Upper West Branch Priest River. Additional fish and habitat data were collected for the Granite Creek Watershed Assessment, a cooperative project between KNRD and the U.S. Forest Service Panhandle National Forest (FS) . The watershed assessment, funded primarily by the Salmon Recovery Funding Board of the State of Washington, will be completed in 2009.

Andersen, Todd [Kalispel Natural Resource Department

2009-07-08T23:59:59.000Z

147

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2005-08-01T23:59:59.000Z

148

Kalispel Resident Fish Project : Annual Report, 2001.  

SciTech Connect (OSTI)

In 2001 the Kalispel Natural Resource Department (KNRD) continued assessing habitat and population enhancement projects for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Habitat enhancement measures, as outlined in recommendations from the 1996, 1997, and 1998 annual reports, were monitored during field season 1999, 2000, and 2001. Post assessments were used to evaluate habitat quality, stream morphology and fish populations where enhancement projects were implemented.

Andersen, Todd

2002-01-01T23:59:59.000Z

149

Rainbow Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector

150

Hatchery Evaluation Report/Lyons Ferry Hatchery - Summer Steelhead : an Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.  

SciTech Connect (OSTI)

This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Summer Steelhead). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of tall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead, and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, Montgomery.

1996-05-01T23:59:59.000Z

151

Hatchery Evaluation Report/Lyons Ferry Hatchery - Spring Chinook : an Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.  

SciTech Connect (OSTI)

This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Spring Chinook). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of fall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead. and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, Montgomery.

1996-05-01T23:59:59.000Z

152

Lynch Ferry Hatchery - Summer Steelhead, Final Report  

SciTech Connect (OSTI)

This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Summer Steelhead). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of fall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead, and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, M.

1996-05-01T23:59:59.000Z

153

Lake Roosevelt Fisheries Evaluation Program, Part C; Lake Roosevelt Pelagic Fish Study: Washington Department of Fish and Wildlife, 1998 Annual Report.  

SciTech Connect (OSTI)

Pelagic fishes, such as kokanee and rainbow trout, provide an important fishery in Lake Roosevelt; however, spawner returns and creel results have been below management goals in recent years. Our objective was to identify factors that potentially limit pelagic fish production in Lake Roosevelt including entrainment, food limitation, piscivory, and other abiotic factors. We estimated the ratio of total fish entrained through Grand Coulee Dam to the pelagic fish abundance for September and October, 1998. If the majority of these fish were pelagic species, then entrainment averaged 10-13% of pelagic fish abundance each month. This rate of entrainment could impose considerable losses to pelagic fish populations on an annual basis. Therefore, estimates of species composition of entrained fish will be important in upcoming years to estimate the proportion of stocked pelagic fish lost through the dam. Food was not limiting for kokanee or rainbow trout populations since growth rates were high and large zooplankton were present in the reservoir. Estimates of survival for kokanee were low (< 0.01 annual) and unknown for rainbow trout. We estimated that the 1997 standing stock biomass of large (>1.1 mm) Daphnia could have supported 0.08 annual survival by kokanee and rainbow trout before fish consumption would have exceeded available biomass during late winter and early spring. Therefore, if recruitment goals are met in the future there may be a bottleneck in food supply for pelagic planktivores. Walleye and northern pikeminnow were the primary piscivores of salmonids in 1996 and 1997. Predation on salmonid prey was rare for rainbow trout and not detected for burbot or smallmouth bass. Northern pikeminnow had the greatest individual potential as a salmonid predator due to their high consumptive demand; however, their overall impact was limited because of their low relative abundance. We modeled the predation impact of 273,524 walleye in 1996, and 39,075 northern pikeminnow in 1997 because diet data revealed predation on salmonids during these years. We could not determine the absolute impact of piscivores on each salmonid species because identification of fish prey was limited to families. Our estimate of salmonid consumption by walleye in 1996 and northern pikeminnow in 1997 shows that losses of stocked kokanee and rainbow trout could be substantial (up to 73% of kokanee) if piscivores were concentrating on one salmonid species, but were most likely lower, assuming predation was spread among kokanee, rainbow trout, and whitefish. Dissolved oxygen was never limiting for kokanee or rainbow trout, but temperatures were up to 6 EC above the growth optimum for kokanee from July to September in the upper 33 meters of water. Critical data needed for a more complete analysis in the future include species composition of entrainment estimates, entrainment estimates expanded to include unmonitored turbines, seasonal growth of planktivorous salmonids, species composition of salmonid prey, piscivore diet during hatchery releases of salmonids, and collection of temperature and dissolved oxygen data throughout all depths of the reservoir during warm summer months.

Baldwin, Casey; Polacek, Matt; Bonar, Scott

2002-11-01T23:59:59.000Z

154

Climate Change and Trout in Wisconsin Streams  

E-Print Network [OSTI]

1950 2000 Lake Mendota Ice Duration 1855-6 to 2008-9 The Story Continues - Trends Persist, Greater to the observed increase in anthropogenic greenhouse gas concentrations." #12;IPCC 2007 Simulated Annual Mean Surface Air Temperatures Observed Natural Forcing Alone Natural and Anthropogenic Forcing #12;· Higher

Sheridan, Jennifer

155

Robert Trout 5295 W. 35th  

E-Print Network [OSTI]

in marketing power produced by the Federal Columbia River Power System (FCRPS). At both hearings opinions were expressed by a diverse group of people. Of these the Sierra Club spokesperson drew a connection between to emissions. The people in our Emission Control Department are professionals in every sense of the word

156

Trout Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation DixieTraverseEnergy. It isTrosky,Trousdale

157

ECOLOGY AND PRODUCTION OF JUVENILE SPRING CHINOOK SALMON, ONCORHYNCHUS TSHAWYTSCHA,  

E-Print Network [OSTI]

), of the spring race in Happy :Valley Reservoir, a eutrophic impoundment located on the Warm Springs Indian

158

Colville Tribal Fish Hatchery, 2000-2001 Annual Report.  

SciTech Connect (OSTI)

Federal hydropower projects as well as private power utility systems have had a devastating impact upon anadromous fish resources that once flourished in the Columbia River and it's tributaries. Several areas were completely blocked to anadromous fish by dams, causing the native people who's number one food resource was salmon to rely entirely upon resident fish to replace lost fisheries resources. The Colville Tribal Fish Hatchery is an artificial production program to partially mitigate for anadromous fish losses in the ''Blocked Area'' above Chief Joseph and Grand Coulee Dams pursuant to Resident Fish Substitution Policy of the Northwest Power Planning Councils Fish and Wildlife Program. The hatchery was accepted into the Council's Fish and Wildlife Program in 1984 as a resident fish substitution measure and the hatchery was completed in 1990. The minimum production quota for this facility is 22,679 kg (50,000 lbs.) of trout. To achieve this quota the Colville Tribal Hatchery was scheduled to produce 174,000 fingerling rainbow trout (5 grams/fish), 330,000 sub-yearling rainbow trout (15 grams/fish), 80,000 legal size rainbow trout (90 grams/fish), 196,000 fingerling brook trout (5 grams/fish), 330,000 subyearling brook trout (15 grams/fish) and 60,000 lahontan cutthroat trout (15 grams/fish) in 2001. All fish produced are released into reservation waters, including boundary waters in an effort to provide a successful subsistence /recreational fishery for Colville Tribal members as well as a successful non-member sport fishery. The majority of the fish distributed from the facility are intended to provide a ''carry-over'' fishery. Fish produced at the facility are intended to be capable of contributing to the natural production component of the reservation fish populations. Contribution to the natural production component will be achieved by producing and releasing fish of sufficient quality and quantity for fish to survive to spawning maturity, to spawn naturally in existing and future available habitat (i.e. natural supplementation), while meeting other program objectives. In addition to the hatchery specific goals detailed above, hatchery personnel will actively participate in the Northwest Power Planning Council program, participate in the Columbia Basin Fish and Wildlife Foundation, Resident Fish Committee, and other associated committees and Ad Hoc groups that may be formed to address resident fish issues in the blocked area above Chief Joseph and Grand Coulee Dams.

Arteburn, John; Christensen, David (Colville Confederated Tribes, Nespelem, WA)

2003-03-01T23:59:59.000Z

159

Wigwam River McNeil Substrate Sampling Program : 1998-2002 Summary Report.  

SciTech Connect (OSTI)

The Wigwam River is an important fisheries stream in the East Kootenay region of British Columbia that supports healthy populations of both bull trout (Salvelinus confluentus) and Westslope cutthroat trout (Oncorhynchus clarki lewisi). The river has been characterized as the single most important bull trout spawning steam in the Kootenay Region (Baxter and Westover 2000), and thus has been the focus of numerous studies in the last ten years (Cope 1998; Cope and Morris 2001; Cope, Morris and Bisset 2002; Kohn Crippen Consultants Ltd. 1998; Westover 1999a; Westover 1999b; Westover and Conroy 1997). Although bull trout populations in the East Kootenay region remain healthy, bull trout populations in other parts of British Columbia and within their traditional range in northwestern United States have declined. Thus, bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Centre (Cannings 1993) and remain a species of special concern. Bull trout in the north-western United States, within the Columbia River watershed, were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. In 1999, the Ministry of Water, Land and Air Protection applied and received funding from the Bonneville Power Administration (BPA) to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. The purpose of this report is to summarize one of the many studies undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00). Three permanent sampling sites were established on the Wigwam River in April 1998. At each site, substrate samples were obtained using a McNeil Core sampler in April of each year from 1998 to 2002. The objectives of this study were to assess the quality of stream-bed substrates used by bull trout for spawning prior to major resource development in the Wigwam watershed, thus providing one potential measure of future impact to bull trout spawning habitat.

Tepper, Herb

2003-01-01T23:59:59.000Z

160

Physiological, toxicological, and population responses of smallmouth bass to acidification  

SciTech Connect (OSTI)

The Lake Acidification and Fisheries (LAF) project examined effects of acidic water chemistries on four fish species. This report presents an overview of investigations on smallmouth bass (Micropterus dolomieui). Experiments conducted with this species included as many as 84 exposure combinations of acid, aluminum, and low calcium. In egg, fry, and juvenile stages of smallmouth bass, increased acid and aluminum concentrations increased mortality and decreased growth, while increased calcium concentrations often improved survival. Relative to the juvenile life stages of smallmouth bass tested, yolksac and swim-up fry were clearly more sensitive to stressful exposure conditions. While eggs appeared to be the most sensitive life stage, this conclusion was compromised by heavy mortalities of eggs due to fungal infestations during experimental exposures. As found in our earlier studies with brook and rainbow trout, acid-aluminum stressed smallmouth bass exhibited net losses of electrolytes across gills and increased accumulation of aluminum on gill tissues. Overall, our results indicated that smallmouth bass were generally more sensitive to increased exposure concentrations of aluminum than to increased acidities. Compared to toxicology results from earlier LAF project studies, smallmouth bass were more sensitive than brook trout and slightly less sensitive than rainbow trout when exposed to water quality conditions associated with acidification.An example application of the LAF modeling framework shows how different liming scenarios can improve survival probabilities for smallmouth bass in a set of lakes sensitive to acidification.

Marcus, M.D.; Gulley, D.D. (eds.); Christensen, S.W.; McDonald, D.G.; Van Winkle, W.; Mount, D.R.; Wood, C.M.; Bergman, H.L. (Wyoming Univ., Laramie, WY (United States). Dept. of Zoology and Physiology)

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hungry Horse Dam Fisheries Mitigation; Kokanee Stocking and Monitoring in Flathead Lake, 1995 Annual Report.  

SciTech Connect (OSTI)

The operation of Hungry Horse Dam on the South Fork-of the Flathead River reduced the reproductive success of kokanee (Oncorhynchus nerka) spawning in the Flathead River. Montana Fish, Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribes (CSKT) authored a mitigation plan to offset those losses. The mitigation goal, stated in the Fisheries Mitigation Plan for Losses Attributed to the Construction and Operation of Hungry Horse Dam, is to: {open_quotes}Replace lost annual production of 100,000 kokanee adults, initially through hatchery production and pen rearing in Flathead Lake, partially replacing lost forage for lake trout (Salvelinus namaycush) in Flathead Lake.{close_quotes}

Fredenberg, Wade; Carty, Daniel (US Fish and Wildlife Service, Kalispell, MT); Cavigli, Jon (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

1996-06-01T23:59:59.000Z

162

Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into five chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the sixth release of hatchery salmon smolts in the upper Yakima River Basin. Chapter 2 reports on the impacts of supplementation and reintroduction of salmon to trout. Chapter 2 was submitted as a manuscript to the North American Journal of Fisheries Management. Chapter 3 is an essay that describes the problems associated

Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

2005-05-01T23:59:59.000Z

163

EA-296-A Rainbow Energy Mrketing Corporation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC3-A

164

EA-375 Rainbow Energy Marketing Corporation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric0-A2 GDF Suez Energy3

165

Rainbows from inhomogeneous transparent spheres: a ray-theoretic approach  

E-Print Network [OSTI]

profiles. The existence of such additional bows is a consequence of a sufficiently attractive potential be of value in the field of rain- bow refractometry and thermometry, which are opti- cal techniques used chamber, and will be primarily radial if internal convection can be ne- glected compared with thermal

Adam, John A.

166

Kootenay Lake Fertilization Experiment, Year 15 (North Arm) and Year 3 (South Arm) (2006) Report  

SciTech Connect (OSTI)

This report summarizes results from the fifteenth year (2006) of nutrient additions to the North Arm of Kootenay Lake and three years of nutrient additions to the South Arm. Experimental fertilization of the lake has been conducted using an adaptive management approach in an effort to restore lake productivity lost as a result of nutrient uptake in upstream reservoirs. The primary objective of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are the main food source for Gerrard rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus). The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to the North Arm in 2006 was 44.7 tonnes of P and 248.4 tonnes of N. The total fertilizer load added to the South Arm was 257 tonnes of nitrogen; no P was added. Kootenay Lake has an area of 395 km{sup 2}, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. Kootenay Lake is a monomictic lake, generally mixing from late fall to early spring and stratifying during the summer. Surface water temperatures generally exceed 20 C for only a few weeks in July. Results of oxygen profiles were similar to previous years with the lake being well oxygenated from the surface to the bottom depths at all stations. Similar to past years, Secchi disc measurements at all stations in 2006 indicate a typical seasonal pattern of decreasing depths associated with the spring phytoplankton bloom, followed by increasing depths as the bloom gradually decreases by the late summer and fall. Total phosphorus (TP) ranged from 2-7 {micro}g/L and tended to decrease as summer advanced. Over the sampling season dissolved inorganic nitrogen (DIN) concentrations decreased, with the decline corresponding to nitrate (the dominant component of DIN) being utilized by phytoplankton during summer stratification. Owing to the importance of epilimnetic nitrate that is required for optimal phytoplankton growth discrete depth water sampling occurred in 2006 to measure more accurately changes in the nitrate concentrations. As expected there was a seasonal decline in nitrate concentrations, thus supporting the strategy of increasing the nitrogen loading in both arms. These in-season changes emphasize the need for an adaptive management approach to ensure the nitrogen to phosphorus (N:P) ratio does not decrease below 15:1 (weight:weight) during the fertilizer application period. Phytoplankton composition determined from the integrated samples (0-20m) was dominated by diatoms, followed by cryptophytes and chrysophytes. The contribution of cryptophytes to total biomass was higher in 2006 than in 2005. Cryptophytes, considered being edible biomass for zooplankton and Daphnia spp., increased in 2006. Phytoplankton in the discrete depth samples (2, 5, 10, 15 and 20m) demonstrated a clear north to south gradient in average phytoplankton density and biomass among the three stations sampled, with highest values at the North Arm station (KLF 2) and lowest values in the most southern station in the South Arm (KLF 7). Populations were dominated by flagellates at all stations and depths in June and July, then dominated by diatoms in August and September in the North and South arms of the lake. There were no large bluegreen (cyanobacteria) populations in either arm of the lake in 2006. Seasonal average zooplankton abundance and biomass in both the main body of the lake and in the West Arm increased in 2006 compared to 2005. Zooplankton density was numerically dominated by copepods and biomass was dominated by Daphnia spp. The annual average mysid biomass data at deep stations indicated that the North Arm of Kootenay Lake was more productive than the South Arm in 2006. Mysid densities increased through the summer and declined in the winter; mean whole lake values remain within prefertilization densities. Kokanee escapement to Meadow Creek declined in 2006 to approximately 400,000 spawners. The Lardeau River escapement also declined wit

Schindler, E.U.; Sebastian, D.; Andrusak, G.F. [Fish and Wildlife Science and Allocation, Ministry of Environment, Province of British Columbia

2009-07-01T23:59:59.000Z

167

Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into three chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the fifth release of hatchery salmon smolts in the upper Yakima River basin. Chapter 2 describes our tributary sampling methodology for monitoring the status of tributary NTT. Chapter 3 describes predation on juvenile salmonids by smallmouth bass and channel catfish in the lower Yakima River. The chapters in this report are in various stages of d

Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M. (Washington Department of Fish and Wildlife, Olympia, WA)

2004-05-01T23:59:59.000Z

168

Yakima River Species Interactions Studies, Annual Report 2002.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the eleventh of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin. This progress report summarizes data collected between January 1, 2002 and December 31, 2002. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding. Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition. Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued nontarget taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into two chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the fourth release of hatchery salmon smolts in the upper Yakima Basin. Chapter 2 describes predation on juvenile salmonids by smallmouth bass and channel catfish in the lower Yakima River.

Pearsons, Todd N.

2003-05-01T23:59:59.000Z

169

Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.  

SciTech Connect (OSTI)

The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

1997-05-01T23:59:59.000Z

170

Genetic Analysis of Bull Trout in Glacier National Park  

E-Print Network [OSTI]

communication). A fin clip was taken non-lethally from each individual and stored in 95% ethanol. DNA

171

Jocko River Watershed conservation easement protects trout habitat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.25 acre habitat acquisition in Montana's Jocko River Watershed for fish habitat mitigation (see map). Located in Lake County in northwestern Montana, this property was selected...

172

Hay Creek conservation easement protects trout habitat in Flathead...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

map). Once the proposed land is acquired, which is expected in spring 2009, Montana Fish, Wildlife & Parks would convey a conservation easement on the property to BPA to ensure...

173

WHIRLING DISEASE OF TROUTS CAUSED BY Myxosoma cerebralis  

E-Print Network [OSTI]

hydroelectric power systems; administers grazing and forestry programs on federally owned range and commercial

174

Fish Bulletin 164. Trout and Salmon Culture (Hatchery Methods)  

E-Print Network [OSTI]

of air through hoses and carborundum stones. As the airplaneair through hoses and carborundum stones to each can of

Leitritz, Earl; Lewis, Robert C

1976-01-01T23:59:59.000Z

175

Contamination of stream fishes with chlorinated hydrocarbons from eggs of Great Lakes salmon  

SciTech Connect (OSTI)

Pacific salmon Oncorhynchus spp. have been stocked in the Great Lakes where they accumulate body burdens of chlorinated hydrocarbons. The transport of these contaminants to resident communities in spawning streams was studied in two tributaries of Lake Michigan accessible to anadromous spawners and one control tributary blocked to them. No polychlorinated biphenyls (PCBs), DDT, or dieldrin were detected in the sediments or biota of the control stream, or in sediments of the test streams. However, trout Salmo spp. and, to a lesser extent, sculpins Cottus spp. accumulated PCBs and DDT as a result of eating contaminated salmon eggs. Eggs constituted as much as 87% (by weight) of the total stomach contents of trout collected during the salmon spawning season early October to early January. Salmon eggs contained 0.46-9.50 mg PCBs/kg,. and 0.14-1.80 mg DDT/kg. Consumption of eggs varied greatly among individual trout, and there was a strong correlation between numbers of eggs in the stomachs and PCB and DDT concentrations in the fillets.

Merna, J.W.

1986-01-01T23:59:59.000Z

176

Kalispell (i.e. Kalispel) Resident Fish Project : Annual Report, 1996.  

SciTech Connect (OSTI)

In 1996 the Kalispell Natural Resource Department (KNRD) in conjunction with the Washington Department of Fish and Wildlife (WDFW) continued the implementation of a habitat and population enhancement project for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). A habitat and population assessment was conducted on Browns Creek a tributary of Cee Cee Ah Creek, one of the priority tributaries outlined in the 1995 annual report. The assessment was used to determine the type and quality of habitat that was limiting to native bull trout and cutthroat trout populations. Analysis of the habitat data indicated high amounts of sediment in the stream, low bank cover, and a lack of winter habitat. Data collected from this assessment was used to prescribe habitat enhancement measures for Browns Creek. Habitat enhancement measures, as outlined in the recommendations from the 1995 annual report, were conducted during field season 1996. Fencing and planting of riparian areas and in stream structures were implemented. As a precursor to these enhancement efforts, pre-assessments were conducted to determine the affects of the enhancement. Habitat quality, stream morphology and fish populations were pre-assessed. The construction of the largemouth bass hatchery was started in October of 1995. The KNRD, Contractors Northwest Inc. and associated subcontractors are in the process of constructing the hatchery. The projected date of hatchery completion is summer 1997.

Maroney, Joseph; Donley, Christopher; Lockwood, Jr., Neil

1997-08-01T23:59:59.000Z

177

E-Print Network 3.0 - arco iris oncorhynchus Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2005, New York. Experiments with An Improved Iris Segmentation Algorithm Xiaomei Liu, Kevin W... Dame, IN 46556, U.S.A. xliu5, kwb, flynn@cse.nd.edu Abstract Iris is...

178

Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly  

E-Print Network [OSTI]

and invaded world Lauren M. Kuehne, Julian D. Olden, and Jeffrey J. Duda Abstract: Rapid environmental change

Olden, Julian D.

179

Spawning Areas and Abundance of Chinook Salmon (Oncorhynchus tsha>vytscha)  

E-Print Network [OSTI]

. SPECIAL SCIENTIFIC REPORT-FISHERIES Na 571 #12;#12;UNITED STATES DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service Special Scientific Report- - Fisheries No. 571 Washington, D.C. October 1968 #12 of salmonids . Evermann (1896) reported on the salmon runs in Idaho during the early 1890's. He listed

180

Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.  

SciTech Connect (OSTI)

The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

Moura, Joan; Swerin, Rod

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Barriers for steelhead (Oncorhynchus mykiss) smolt migration through the lower flood channel of Alameda Creek  

E-Print Network [OSTI]

fish, the East Bay Regional Park District found large predatory largemouth bass (fish, especially in pools with large invasive fishes such as pikeminnow and bass (

Cervantes-Yoshida, Kristina

2009-01-01T23:59:59.000Z

182

Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.  

SciTech Connect (OSTI)

This report examines the results from the eleventh and twelfth years (2002 and 2003) of the Kootenay Lake fertilization experiment. Experimental fertilization has occurred with an adaptive management approach since 1992 in order to restore productivity lost as a result of upstream dams. One of the main objectives of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are a main food source for Gerrard rainbow trout (Oncorhynchus mykiss). Kootenay Lake is located between the Selkirk and Purcell mountains in southeastern British Columbia. It has an area of 395 km2, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to Kootenay Lake in 2002 and 2003 was similar to that added from 1992 to 1996. After four years of decreased fertilizer loading (1997 to 2000), results indicated that kokanee populations had declined, and the decision was made to increase the loads again in 2001. The total load of fertilizer in 2002 was 47.1 tonnes of phosphorus and 206.7 tonnes of nitrogen. The total fertilizer load in 2003 was 47.1 tonnes of phosphorus and 240.8 tonnes of nitrogen. Additional nitrogen was added in 2003 to compensate for nitrogen depletion in the epilimnion. The fertilizer was applied to a 10 km stretch in the North Arm from 3 km south of Lardeau to 3 km south of Schroeder Creek. The maximum surface water temperature in 2002, measured on July 22, was 22 C in the North Arm and 21.3 C in the South Arm. In 2003, the maxima were recorded on August 5 at 20.6 C in the North Arm and on September 2 at 19.7 C in the South Arm. The maximum water temperature in the West Arm was 18.7 C on September 2, 2003. Kootenay Lake had oxygen-saturated water throughout the sampling season with values ranging from about 11-16 mg/L in 2002 and 2003. In both years, Secchi depth followed the expected pattern for an oligo-mesotrophic lake of decreasing in May, June, and early July, concurrent with the spring phytoplankton bloom, and clearing again as the summer progressed. Total phosphorus (TP) ranged from 2-11 {micro}g/L in 2002 and 2-21 {micro}g/L in 2003. With average TP values generally in the range of 3-10 {micro}g/L, Kootenay Lake is considered to be an oligotrophic to oligo-mesotrophic lake. Total dissolved phosphorus (TDP) followed the same seasonal trends as TP in 2002 and 2003 and ranged from 2-7 {micro}g/L in 2002 and from 2-10 {micro}g/L in 2003. Total nitrogen (TN) ranged from 90-380 {micro}g/L in 2002 and 100-210 {micro}g/L in 2003. During both the 2002 and 2003 sampling seasons, TN showed an overall decline in concentration with mid-summer and fall increases at some stations, which is consistent with previous years results. Dissolved inorganic nitrogen (DIN) concentrations showed a more pronounced declining trend over the sampling season compared with TN, corresponding to nitrate (the dominant component of DIN) being used by phytoplankton during summer stratification. DIN ranged from 7-176 {micro}g/L in 2002 and from 8-147 {micro}g/L in 2003. During 2003, discrete depth sampling occurred, and a more detailed look at the nitrate concentrations in the epilimnion was undertaken. There was a seasonal decline in nitrate concentrations, which supports the principle of increasing the nitrogen loading and the nitrogen to phosphorus (N:P) ratio during the fertilizer application period. Chlorophyll a (Chl a) concentrations in Kootenay Lake were in the range of 1.4-5.1 {micro}g/L in 2002 and 0.5-4.9 {micro}g/L in 2003. Over the sampling season, Chl a at North Arm stations generally increased in spring corresponding with the phytoplankton bloom, decreased during the summer, and increased again in the fall with mixing of the water column. The trend was similar, but less pronounced, at South Arm stations in these years, and spring Chl a concentrations were lower. During 2002, total algal biomass averaged during June, July and August was lower in the North

Schindler, E.

2007-02-01T23:59:59.000Z

183

Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010  

SciTech Connect (OSTI)

This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, the average fish length remained relatively consistent (132 {+-} 54 mm), after which average lengths increased to 295 {+-} 148 mm for mid-November though early December. From mid-December through January the average fish length decreased to 151 {+-} 76 mm. Milling in front of the WTC tower was the most common fish behavior observed throughout the study period. Traversing along the front of the tower, east-to-west and west-to-east, was the next common behavior. The percentage of fish events showing movement from the forebay to the tower or from the tower to the forebay was generally low throughout the spring, summer, and early fall (0 to 30% for both directions combined, March through early November). From mid-November 2010 through the end of the study (January 31, 2011), the combined percentages of fish moving into and out of the tower were higher (25 to 70%) than during previous months of the study. Schooling behavior was most distinct in the spring. Schooling events were present in 30 to 96% of the fish events during that period, with a peak on May 19. Schooling events were also present in the summer, but at lower numbers. With the exception of some schooling in mid-December, few to no schooling events were observed in the fall and winter months. Diel distributions for schooling fish during spring and fall months indicate schooling was concentrated during daylight hours and no schooling was observed at night. However, in December, schooling occurred at night, after midnight, and during daylight hours. Predator activity, most likely bull trout or rainbow trout according to a USACE biologist, was observed during late spring, when fish abundance index and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months.

Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

2012-04-01T23:59:59.000Z

184

Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).  

SciTech Connect (OSTI)

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in the epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371 rainbow trout, and 509 yellow perch were harvested from Banks Lake in 2008. No kokanee were reported in the creel; however, local reports indicated that anglers were targeting and catching kokanee. The economic benefit of the Banks Lake fishery was estimated at $2,288,005 during 2008. Abundance estimates from the hydroacoustic survey in July were 514,435 lake whitefish and 10,662 kokanee, with an overall abundance estimate of 626,061 limnetic fish greater than 100 mm. When comparing spring fry, fall fingerling and yearling net pen release strategies of kokanee, 95% were of hatchery origin, with the highest recaptures coming from the fall fingerling release group.

Polacek, Matt [Washington Department of Fish and Wildlife

2009-07-15T23:59:59.000Z

185

Correlation of Biological Characteristics of Smolts with Survival and Travel Time, 1987 Technical Report.  

SciTech Connect (OSTI)

The biological characteristics of smolts were examined to determine their effect on estimates of survival in the Columbia and Snake rivers. Freeze branded groups of steelhead trout (Salmo gairdneri) from Lyons Ferry State Fish Hatchery (SFH) and Wells SFH and spring chinook salmon (Oncorhynchus tshawytscha) from Winthrop National Fish Hatchery (NFH) were used to estimate survival. Past estimates of survival, using a ratio of test and control fish recaptured at McNary Dam, have resulted in estimates > 100%, presumably due to some unknown bias. Study objectives were to determine if stress and descaling, degree of smoltification, and prevalence of bacterial kidney disease (BKD) differed among test and control groups of fish, thereby biasing survival estimates. 19 refs., 20 figs., 10 tabs.

Rondorf, Dennis W.; Beeman, John W.; Free, Mary E. (Seattle National Fishery Research Center, Columbia River Field Station, Cook, WA)

1988-06-01T23:59:59.000Z

186

Kalispel Resident Fish Project : Annual Report, 1997.  

SciTech Connect (OSTI)

In 1997 the Kalispel Natural Resource Department (KNRD) in conjunction with the Washington Department of Fish and Wildlife (WDFW) continued the implementation of a habitat and population enhancement project for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Habitat enhancement measures, as outlined in the recommendations from the 1996 annual report, were conducted during field season 1997. Fencing and planting of riparian areas and instream structures were implemented. As a precursor to these enhancement efforts, pre-assessments were conducted to determine the affects of the enhancement. Habitat quality, stream morphology and fish populations were pre-assessed. This season also began the first year of post-assessment monitoring and evaluation of measures implemented during 1996. The largemouth bass hatchery construction was completed in October and the first bass were introduced to the facility that same month. The first round of production is scheduled for 1998.

Donley, Christopher; Lockwoood, Jr., Neil

1997-01-01T23:59:59.000Z

187

Toxicity and acclimation to ammonia by Tilapia aurea  

E-Print Network [OSTI]

occur when the increasing permeability of the ti. sauce exceeds the maximus susI ai ned rate of urine production (approximately 12 ml!Eg/hr for rainbow trout). Chronic ratI'er than acute ammoni. a poisoning, is a major problem in som f" sh cul. ture.... 374 30. 268 27. 209 49. 768 48. 365 48. 424 6. 2-31. 7 4. . 2-30. 5 7. 0-33. 0 5. 7-30. 5 2. 9-35. 5 11. 5-31. 7 3. 0-31. 7 3. 0-33. 0 0. 1-0. 8 0. 1-0. 7 0. 1-0. 4 10 able 5. ? On-ionized ammoni. (mg/1 N) means for first pre...

Redner, Barry Duncan

1978-01-01T23:59:59.000Z

188

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and wild chinook salmon there was a 2.0- and 2.6-fold increase in migration rate, respectively, between 50 and 100 thousands of cubic feet per second (kcfs). For hatchery steelhead trout there was a 2.6-fold increase in migration rate between 50 kcfs and 100 kcfs. For fish marked at the Salmon River trap, statistical analysis of the 1998 data detected a significant relation between migration rate and discharge for hatchery and wild chinook salmon hatchery and found a 3.3- and 2.6-fold increase in migration rate, respectively, between 50 and 100 kcfs. A significant relation between migration rate and discharge was not detected for hatchery steelhead trout. Insufficient numbers of wild steelhead trout were PIT-tagged at the Salmon River trap to estimate travel time and migration rate to Lower Granite Dam.

Buettner, Edwin W.; Brimmer, Arnold F.

2000-04-01T23:59:59.000Z

189

Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.  

SciTech Connect (OSTI)

This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1992 annual report.

Anders, Paul

2003-01-01T23:59:59.000Z

190

Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)  

SciTech Connect (OSTI)

Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability in fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.

Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch [University Basel, Man-Society-Environment, Department of Environmental Sciences, Vesalgasse 1, CH-4051 Basel (Switzerland); Bucheli, Thomas D.; Wettstein, Felix E. [Agroscope Reckenholz-Taenikon (ART), Research Station ART, Reckenholzstrasse 191, CH-8046 Zuerich (Switzerland); Burkhardt-Holm, Patricia [University Basel, Man-Society-Environment, Department of Environmental Sciences, Vesalgasse 1, CH-4051 Basel (Switzerland)

2011-10-01T23:59:59.000Z

191

Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.  

SciTech Connect (OSTI)

Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

Mendel, Glen Wesley; Trump, Jeremy; Karl, David

2002-12-01T23:59:59.000Z

192

Assessment of fish health effects resulting from exposure to oil sands wastewater  

SciTech Connect (OSTI)

The objective of this study was to determine if oil sands wastewater had an effect on the general health and condition of hatchery raised rainbow trout (200 to 400 g). Effects were assessed based on a battery of physiological and biochemical indices and the physical condition of the fish. The trout were exposed to tailings water in the field and in a flow through system under laboratory conditions. The field tests were conducted in 1992 and 1993 in experimental ponds at Syncrude which contained fine tails covered with surface water, fine tails covered with tailings water, and a surface water control pond. The laboratory treatments included Mildred Lake tailings water, dyke drainage water, fractionated tailings pond water (acid fraction containing naphthenic acids), sodium naphthenate, recycle water from Suncor`s tailings pond, and a laboratory control. All body condition factors and blood parameters were normal in the field and laboratory exposed fish and there were no apparent differences between the fish exposed to the tailings water and controls.

Balch, G.C.; Goudey, J.S. [HydroQual Labs. Ltd., Calgary, Alberta (Canada); Birkholtz, D. [EnviroTest Labs. Ltd., Edmonton, Alberta (Canada); Van Meer, T.; MacKinnon, M. [Syncrude Canada Ltd., Fort McMurray, Alberta (Canada)

1995-12-31T23:59:59.000Z

193

Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors  

E-Print Network [OSTI]

ELE1 genes, in a post-Chernobyl papillary thyroid cancer.in a case of post-Chernobyl childhood thyroid cancer. Foliafrom Belarus after the Chernobyl reactor accident. Oncogene

O'Brien, Benjamin

2011-01-01T23:59:59.000Z

194

Rainbow Rummy : a Web-based game for vocabulary acquisition using computer-directed speech  

E-Print Network [OSTI]

Acquiring vocabulary in a foreign language is a long process which often involves the use of flashcards or cycling through long word lists for memorization. While many students learn effectively in this way, research at ...

Yoshimoto, Brandon (Brandon T.)

2009-01-01T23:59:59.000Z

195

E-Print Network 3.0 - aqui-stm exposed rainbow Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extract, ... Source: Chivers, Douglas P. - Department of Biology, University of Saskatchewan Collection: Biology and Medicine ; Environmental Sciences and Ecology 8 Journal of...

196

Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors  

SciTech Connect (OSTI)

Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of breakpoints in papillary thyroid cancer (PTC).

O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

2010-08-19T23:59:59.000Z

197

Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing, Inc. | Department of Energy EA-264-CLLC |Marketing

198

Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd | Department ofTradingCommodities, Inc.

199

Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd | Department ofTradingCommodities, Inc.Marketing

200

Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd | Department ofTradingCommodities,

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to SmartTransmissionCapital Group Inc.Gas &Marketing

202

Application to Export Electric Energy OE Docket No. EA-375-A Rainbow Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to SmartTransmissionCapital Group Inc.Gas

203

Delta Flow Factors Influencing Stray Rate of Escaping Adult San Joaquin River Fall-Run Chinook Salmon (Oncorhynchus tshawytscha)  

E-Print Network [OSTI]

River, and the Golden Gate Bridge (GGB). Example releaseRiver, westward to the Golden Gate Bridge (Figure 1). Delta

2012-01-01T23:59:59.000Z

204

Routine and Active Metabolic Rates of Migrating Adult Wild Sockeye Salmon (Oncorhynchus nerka Walbaum) in Seawater and Freshwater  

E-Print Network [OSTI]

in freshwater at all swimming speeds except those approaching critical swimming speed. Dur- ing a 45-min- water. When fish performed a second swim test, active meta- bolic rates again remained 28%­81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates

Farrell, Anthony P.

205

The Effects of Disease-Induced Juvenile Mortality on the Transient and Asymptotic Population Dynamics of Chinook Salmon (Oncorhynchus tshawytscha)  

E-Print Network [OSTI]

the scenarios investigated. We conclude that the increase in disease mortality likely has an effect on fishery yield under a fluctuating environment, not only because the mean equilibrium adult spawning abundance has likely been reduced, but also because...

Fujiwara, Masami; Mohr, Michael S.; Greenberg, Aaron

2014-01-10T23:59:59.000Z

206

Nearshore Areas Used by Fry Chinook Salmon, Oncorhynchus tshawytscha, in the Northwestern Sacramento–San Joaquin Delta, California  

E-Print Network [OSTI]

framework for the future: Yolo Bypass management strategy: (J&S 99079). Prepared for Yolo Basin Foundation, Davis, CA.L. 2001b. California’s Yolo Bypass: evidence that flood

McLain, Jeff; Castillo, Gonzalo

2009-01-01T23:59:59.000Z

207

Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta  

E-Print Network [OSTI]

potential impor- tance of the Yolo Bypass floodplain as anKnights Landing Sacramento Yolo Bypass Chipps Island N 10 kmRiver flow events, the Yolo Bypass floodplain, which is the

2013-01-01T23:59:59.000Z

208

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

209

PRELIMINARY EXPERIMENTS ON SEX CONTROL IN TROUT : PRODUCTION OF STERILE FISHES  

E-Print Network [OSTI]

completed. Thus, in the present study, we tried to choose the best conditions for success by treating fry

Paris-Sud XI, Université de

210

RESULTS & CONCLUSION The analysis (above) shows that there are multiple reaches of Trout Brook and Smith  

E-Print Network [OSTI]

and April 1995 and 2006 were downloaded from the NYS Geographic Information Systems Clearinghouse. The 1995 Stream channel migration is a significant problem that can cause damage to roads, buildings and other potentially cheaper and less invasive options, such as not building in areas where channels are migrating

Barclay, David J.

211

EMIGRATION OF JUVENILE SALMON AND TROUT FROM BROWNLEE RESERVOIR, 1963-65  

E-Print Network [OSTI]

, commercial and industrial water use, and hydroelectric power generation. Environmental flows below minimal

212

Appendix 68 Bull Trout Data for Hungry Horse and South Fork of the Flathead  

E-Print Network [OSTI]

.4632 0 10 20 30 40 50 60 70 80 90 100 1993 1994 1995 1996 1997 1998 1999 2000 2001 No.Redds #12;Figure 2

213

Hay Creek conservation easement protects trout habitat in Flathead County.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960 TheHasCitygate53-acre

214

Imprinting Salmon and Steelhead Trout for Homing, 1983 Annual Report of Research.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS), under contract to the Bonneville Power Administration, began conducting research on imprinting Pacific salmon and steelhead for homing in 1978. In the juvenile marking phase, over 4 million juvenile salmon and steelhead were marked and released in 23 experiments. The primary objectives were to determine a triggering mechanism to activate the homing imprint, if a single imprint or a sequential imprint is necessary to assure homing, and the relationship between the physiological condition of fish and their ability to imprint. Ten experimental studies are discussed. Six of the studies employed a variety of techniques for imprinting fish. The remaining four tested the feasibility of imprinting fish by a short-distance voluntary migration before transport. In five experiments, survival was enhanced by the imprint-transportation procedures, and homing to the homing site area was partly successful. Returns from the Astoria, Oregon, release of fall chinook salmon from Big Creek Hatchery (Knappa, Oregon), for example, showed that limited short distance migration imprinting should provide 2-3 time more fish to the various fisheries while providing adequate returns to the hatchery for egg take each year. 21 refs., 12 figs, 12 tabs.

Slatick, Emil

1984-09-01T23:59:59.000Z

215

Jocko River Watershed conservation easement protects trout habitat in Montana - FACT SHEET  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson LabJeffersonStandards andJianzhiAbout

216

Kalispel Tribe of Indians joins federal agencies to protect bull trout and other species  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates 18-ton machineWednesday, July 11,

217

Application to Export Electric Energy OE Docket No. EA-296-A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Corporation Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation Application from Rainbow Energy Marketing Corporation to export...

218

Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.  

SciTech Connect (OSTI)

Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or upstream. Fish were also swimming faster and straighter when the lights were on compared to off. (3) The behavioral results were most pronounced for medium- and large-sized fish at night. Medium-sized fish, based on acoustic target strength, were similar to the size of kokanee and rainbow trout released upstream of Grand Coulee Dam. Based on this study and general review of strobe lights, the researchers recommend several modifications and enhancements to the follow-on study in 2002. The recommendations include: (1) modifying the study design to include only the 24-hr on/off treatments, and controlling the discharge at the third powerplant, so it can be included as a design variable; and (2) providing additional data by beginning the study earlier (mid-May) to better capture the kokanee population, deploying an additional splitbeam transducer to sample the region close to the lights, and increasing the number of lights to provide better definition of the lit and unlit region.

Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

2002-01-01T23:59:59.000Z

219

Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, 1998 Annual Report.  

SciTech Connect (OSTI)

Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m {+-} 0.2 m and 0.26 m/s {+-} 0.19 m/s, and during the fall 0.5 m {+-} 0.2 m and 0.24 m/s {+-} 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest degree of microhabitat overlap with spring chinook salmon. Abundance of naturally occurring spring chinook salmon residuals (age 1+ during the summer) was low (< 0.007/m), representing less than 2% of the naturally produced spring chinook salmon (age 0+ and age 1+ during the summer). Abundance of naturally occurring spring chinook salmon that complete their life cycle in freshwater was high relative to anadromous adults. The authors observed an average of 9.5 precocially mature spring chinook salmon on redds with anadromous adults. In addition, 87% of the redds with anadromous adults present also had precocial males attending. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A. (Washington Department of Fish and Wildlife, Olympia, WA)

1999-12-01T23:59:59.000Z

220

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild Chinook salmon and 2.4-fold for hatchery steelhead as discharge increased between 50 kcfs and

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

222

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2001 spring out-migration at migrant traps on the Snake River and Salmon River. In 2001 fish management agencies released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 11% of the 2000 numbers. The wild chinook catch was 3% of the previous year's catch. Hatchery steelhead trout catch was 49% of 2000 numbers. Wild steelhead trout catch was 69% of 2000 numbers. The Snake River trap collected 28 age-0 chinook salmon. During 2001 the Snake River trap captured zero hatchery and zero wild/natural sockeye salmon and six hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant reduction in catch during 2001 was due to a reduction in hatchery chinook production (60% of 2000 release) and due to extreme low flows. Trap operations began on March 11 and were terminated on June 29. The trap was out of operation for a total of two days due to mechanical failure or debris. Hatchery chinook salmon catch at the Salmon River trap was 47% and wild chinook salmon catch was 67% of 2000 numbers. The hatchery steelhead trout collection in 2001 was 178% of the 2000 numbers. Wild steelhead trout collection in 2001 was 145% of the previous year's catch. Trap operations began on March 11 and were terminated on June 8 due to the end of the smolt monitoring season. There were no days where the trap was out of operation due to high flow or debris. The decrease in hatchery chinook catch in 2001 was due to a reduction in hatchery production (39% of 2000 releases). The increase in hatchery and wild steelhead trap catch is due to the ability to operate the trap in the thalweg for a longer period of time because of the extreme low flow condition in 2001. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout marked at the head of the reservoir were affected by discharge. There were not enough hatchery and wild chinook salmon tagged at the Snake River trap in 2001 to allow migration rate/discharge analysis. For steelhead trout tagged at the Snake River trap, statistical analysis of 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 1.5-fold increase in migration rate in, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery and wild chinook salmon and hatchery and wild steelhead trout. Migration rate increased 3.7-fold for hatchery chinook salmon and 2.5-fold for wild chinook salmon between 50 and 100 kcfs. For hatchery steelhead there was a 1.6-fold increase in migration rate, and for wild steelhead trout there was a 2.2-fold increase between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 86% for hatchery chinook, 70% for wild chinook, 71% for hatchery steelhead, and 89% for wild steelhead. Cumulat

Buettner, Edwin W.; Putnam, Scott A.

2003-06-01T23:59:59.000Z

223

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monume

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

224

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the fo

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

225

Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year.

Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

2006-02-01T23:59:59.000Z

226

Walla Walla River Fish Passage Operations Program, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2002-2003 project year, there were 545 adult summer steelhead (Oncorhynchus mykiss), 29 adult bull trout (Salvelinus confluentus); 1 adult and 1 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway adult trap between January 1 and June 23, 2003. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported 21 adult spring chinook from Ringold Springs Hatchery and 281 from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. Of these, 290 were outplanted in August for natural spawning in the basin.

Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

2004-03-01T23:59:59.000Z

227

Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.  

SciTech Connect (OSTI)

A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidly discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.

Sylvester, Ryan; Stephens, Brian; Tohtz, Joel [Montana Fish, Wildlife & Parks

2009-04-03T23:59:59.000Z

228

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2000 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2000 spring out-migration at migrant traps on the Snake River and Salmon River. In 2000 the Nez Perce Tribe released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 36% of the 1999 number. The wild chinook catch was 34% of the previous year's catch. Hatchery steelhead trout catch was 121% of 1999 numbers. Wild steelhead trout catch was 139% of 1999 numbers. The Snake River trap collected 689 age-0 chinook salmon. During 2000, the Snake River trap captured 40 hatchery and 92 wild/natural sockeye salmon and 159 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 13 and were terminated for the season due to high flows on June 16. There were no down days due to high flows or debris. Hatchery chinook salmon catch at the Salmon River trap was 96%, and wild chinook salmon catch was 66% of 1999 numbers. The hatchery steelhead trout collection in 2000 was 90% of the 1999 numbers. Wild steelhead trout collection in 2000 was 147% of the previous years catch. Trap operations began on March 13 and were terminated for the season due to high flows on May 22. There were no days where the trap was out of operation due to high flow or debris. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged chinook salmon and steelhead trout, marked at the head of the reservoir, were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 2000 data detected a significant relation between migration rate and discharge. For hatchery and wild chinook salmon, there was a 3.0 and 16.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. For hatchery steelhead, there was a 2.7-fold increase in migration rate, respectively, between 50 kcfs and 100 kcfs. The statistical analysis could not detect a significant relation between migration rate and discharge for wild steelhead in 2000. For fish marked at the Salmon River trap, statistical analysis of the 2000 data detected a significant relation between migration rate and discharge for hatchery chinook salmon at the 0.05 level of significance and at the 0.1 level of significance for wild chinook salmon. Migration rate increased 3.2- and 1.9-fold, respectively, between 50 and 100 kcfs. For hatchery steelhead there was a 1.5-fold increase in migration rate between 50 kcfs and 100 kcfs. Insufficient numbers of wild steelhead trout were PIT tagged at the Salmon River trap to estimate travel time and migration rate to Lower Granite Dam. Fish tagged with PIT tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 57% for hatchery chinook, 65% for wild chinook, 73% for hatchery steelhead and 71% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 53% for hatchery chinook, 64% for wild chinook salmon, 68% for hatchery steelhead trout, and 65% for wild steelhead trout.

Buettner, Edwin W.; Putnam, Scott A.

2002-08-01T23:59:59.000Z

229

Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported adult spring chinook from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. A total of 239 spring chinook were outplanted in August for natural spawning in the basin.

Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-12-01T23:59:59.000Z

230

Squeezer Creek.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20-acre conservation easement in northwest Montana to protect critical habitat for bull trout and westslope cutthroat trout in a reach of Squeezer Creek in Lake County. Squeezer...

231

Fact Sheet Fact Sheet Fact Sheet Fact Sheet Fact Sheet Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

County trout habitat Easement would protect Missoula County trout habitat To protect fish habitat, the Bonneville Power Administration proposes to fund purchase of about six...

232

PRESENTATION TITLE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STRONG 303(d) Listing of Broken Bow Tailwaters Impairment Impaired Use Cadmium Fish and Wildlife Propagation - Trout Fishery Lead Fish and Wildlife Propagation - Trout...

233

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

234

Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.  

SciTech Connect (OSTI)

The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.

Backman, Thomas; Sprague, Sherman; Bretz, Justin [Nez Perce Tribe

2009-06-10T23:59:59.000Z

235

Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.  

SciTech Connect (OSTI)

This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. M

Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

2007-11-13T23:59:59.000Z

236

Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat  

SciTech Connect (OSTI)

Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters.

Emery, R.; Klopfer, D.C.; Skalski, J.R.

1981-07-01T23:59:59.000Z

237

Radionuclide and heavy metal concentrations in soil, vegetation, and fish collected around and within Tsicoma Lake in Santa Clara Canyon  

SciTech Connect (OSTI)

Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, total U) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, Tl) contents were determined in soil, vegetation (overstory and understory), and fish (rainbow trout) collected around and within Tsicoma Lake in Santa Clara Canyon in 1995. All heavy metal and most radionuclide contents around or within the lake, except for U in soil, vegetation, and fish, were within or just above upper limit background. Detectable levels (where the analytical result was greater than two times counting uncertainty) of U in soils, vegetation, and fish were found in slightly higher concentrations than in background samples. Overall, however, maximum total committed effective dose equivalent (CEDE)(95% confidence level)--based on consumption of 46 lb of fish--from Tsicoma Lake (0.066 mrem/y) was within the maximum total CEDE from the ingestion of fish from the Mescalero National Fish Hatchery (background)(0.113 mrem/y).

Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

1996-03-01T23:59:59.000Z

238

The Effects of Neutrally Buoyant, Externally Attached Transmitters on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon  

SciTech Connect (OSTI)

The presence of an externally attached telemetry tag is often associated with the potential for impaired swimming performance (i.e., snags and drag) as well as increased susceptibility to predation, specifically for smaller fish. The effects on swimming performance due to the presence of a neutrally buoyant externally attached acoustic transmitter were examined by comparing critical swimming speeds (Ucrit) for juvenile Chinook salmon tagged with two different neutrally buoyant external transmitters (Type A and B), nontagged individuals, and those surgically implanted with the current JSATS acoustic transmitter. Fish tagged with the Type A and B designs had lower Ucrit when compared to nontagged individuals. However, there was no difference in Ucrit among fish tagged with Type A or B designs compared to those with surgically implanted tags. Further testing was then conducted to determine if predator avoidance ability was affected due to the presence of Type A tags when compared to nontagged fish. No difference was detected in the number of tagged and nontagged fish consumed by rainbow trout throughout the predation trials. The results of this study support the further testing on the efficacy of a neutrally buoyant externally attached telemetry tag for survival studies involving juvenile salmonids passing through hydro turbines.

Janak, Jill M.; Brown, Richard S.; Colotelo, Alison HA; Pflugrath, Brett D.; Stephenson, John R.; Deng, Zhiqun; Carlson, Thomas J.; Seaburg, Adam

2012-08-01T23:59:59.000Z

239

A Fisheries Evaluation of the Dryden Fish Screening Facility : Annual Report 1994.  

SciTech Connect (OSTI)

Effectivness was evaluated of the Dryden Fish Screening Facility in the Wenatchee Reclamation District Canal near Dryden in north central Washington State. In situ tests were conducted by releasing groups of hatchery reared salmonids of different ages and sizes. Spring chinook salmon smolts (110-165 mm) were not injured or descaled in passing through the canal forebay. Smolts were not delayed as they migrated in the canal. Most fish released at the canal headworks exited the screening facility in <4 h, with >99% of the test fish captured in the fish bypass in <24 h. Steelhead subyearlings 65-125 mm were not injured or descaled in traveling through the bypass flume and fish return pipe. Average time for steelhead subyearlings to travel through thebypass structure was 70 seconds. Small rainbow trout fry 23-27mm could pass through the 0.125-in. profile bar screen openings and were entrained in the irrigation canal; about 38% was lost to the canal within 48 h of release. Some fry stayed in the forebay and did not migrate during the tests. Wild chinook fry 36-42mm were also entrained. Estimated 34% of emergent wild chinook salmon fry passed through the profile bar screens and were entrained in the canal. Approach velocity at the Dryden screens was {ge}0.4 ft/s; low velocities through the first two screen panels indicated that vertical louvers installed behind each screen panel to balance flow were not totally effective.

Mueller, Robert P.; Abernethy, C.Scott; Neitzel, Duane A.

1995-04-01T23:59:59.000Z

240

Colville Tribal Fish Hatchery, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

The Colville Tribal Hatchery produced 62,335 pounds of trout during the contract period, however, only 46,092 pounds were liberated to lakes and streams. The remaining production will be carried over to 2004 to be planted as larger fish into reservation waters for the lakes opener. New raceways were completed in November and brought on line in the spring. These raceways currently hold the redband rainbow brood stock and will be spawned in 2004. Efforts are continuing to capture redbands from other streams in coordination with the monitoring and evaluation program. Creel was expanded by hiring a second creel clerk to give better coverage of reservation waters by reducing travel time. Marking continues on all fish planted from CTH and refinements continue to be made. The first tag retention study has been completed and the second study is now underway to determine long term tag recognition. Lakes continue to be surveyed to complete the baseline analysis of all reservation lakes and will be completed in 2004.

Fairgrieve, William; Christensen, David (Colville Confederated Tribes, Nespelem, WA)

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Blood plasma levels of sex steroid hormones and vitellogenin in striped bass (morone saxatilis) exposed to 3,3{prime}, 4,4{prime}-Tetrachlorobiphenyl (TCB)  

SciTech Connect (OSTI)

Exposure to polychlorinated biphenyls (PCB) can impair reproductive processes in fish. Laboratory studies have demonstrated adverse effects in several different fish species. Evidence also exits for an association between exposure to PCBs and related compounds and impaired reproduction in wild fish. Although the mechanism of reproductive toxicity of PCBs is unclear, it appears that PCBs act of several different levels of the hypothalamus-pituitary-gonadal axis (HPG). Because of their structural similarity to 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), planar PCB congengers (e.g. 3,3`,4,4`-tetrachlorobiphenyl (TCB)) are among the most toxic PCBs. Both TCB and dioxon are reproductive toxicants in fish. TCB exposure (via intraperitoneal injections) impaired maturation in adult female white perch (Monroe americana) and reduced egg deposition in killifish (Fundulus heteroclitus). Larval or fry survival was also reduced following either maternal exposure to TCB for white perch or injections of TCB into fertilized eggs of rainbow trout. This study investigate the effects of exposure to TCB on reproductive processes in female striped bass. 12 refs., 2 tabs.

Monosson, E.; Fleming, W.J.; Sullivan, C.V. [North Carolina State Univ., Raleigh, NC (United States)] [and others] [North Carolina State Univ., Raleigh, NC (United States); and others

1996-05-01T23:59:59.000Z

242

Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume II of III; Data Summaries, 1978-1983 Final Report.  

SciTech Connect (OSTI)

The main functions of the National Marine Fisheries Service (NMFS) aquaculture task biologists and contractual scientists involved in the 1978 homing studies were primarily a surveillance of fish physiology, disease, and relative survival during culture in marine net-pens, to determine if there were any unusual factors that might affect imprinting and homing behavior. The studies were conducted with little background knowledge of the implications of disease and physiology on imprinting and homing in salmonids. The health status or the stocks were quite variable as could be expected. The Dworshak and Wells Hatcheries steelhead suffered from some early stresses in seawater, probably osmoregulatory. The incidences of latent BKD in the Wells and Chelan Hatcheries steelhead and Kooskia Hatchery spring chinook salmon were extremely high, and how these will affect survival in the ocean is not known. Gill enzyme activity in the Dworshak and Chelan Hatcheries steelhead at release was low. Of the steelhead, survival in the Tucannon Hatchery stock will probably be the highest, with Dworshak Hatchery stock the lowest. This report contains the data for the narratives in Volume I.

Slatick, Emil; Ringe, R.R.; Zaugg, Waldo S. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

1988-02-02T23:59:59.000Z

243

Development of a Database to Support a Multi-Scale Analysis of the Distribution of Westslope Cutthroat Trout  

E-Print Network [OSTI]

Development of a Database to Support a Multi-Scale Analysis of the Distribution of Westslope ....................................................................................................................................5 Database Development expression of life history, and no hybridization) comprise only 22% of this total (Thurow et al. 1997

244

International Summer School 2013 Ecological Management in the Man -Environment System  

E-Print Network [OSTI]

Olympics-2014 (including visits to Botanical garden, Trout Fish Farm, Apiary), to the Sochi National Park

Greifswald, Ernst-Moritz-Arndt-Universität

245

Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.  

SciTech Connect (OSTI)

Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection procedure. Data are maintained in computer databases housed at the IDFG Nampa Fisheries Research off

Copeland, Timothy; Johnson, June; Putnam, Scott

2008-12-01T23:59:59.000Z

246

Stocking of Offsite Waters for Hungry Horse Dam Mitigation Creston National Fish Hatchery, FY 2006 Annual Report.  

SciTech Connect (OSTI)

A total of 350,000, M012 strain, westslope cutthroat trout (WCT) eggs were received from Montana Fish Wildlife & Parks (MFWP), Washoe Park State Fish Hatchery in June of 2005 to accomplish this fishery management objective. These eggs were incubated, hatched and reared entirely inside the hatchery nursery building using a protected well water supply. Fish grew according to schedule and survival was excellent. The hatchery achieved a 0.78 feed fed to pounds gained conversion ratio for this group of WCT. Not all of the progenies from this fish lot were used for Hungry Horse Dam Fishery Mitigation Implementation. Some were used for other regional fishery management projects. Westslope cutthroat trout were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook and also utilizing a regimen adapted for hatchery specific site conditions. The fish health for these WCT was very good. Survival from first feeding fry stage to stocking was 79%. The hatchery had an annual fish health inspection performed by the USFWS Bozeman Fish Health Center in mid March of 2006. This inspection found all fish lots at Creston to be disease free. The Montana State Fish Health Board has placed the hatchery under a limited quarantine since May of 2005 due to an epizootic of Furunculosis. This classification has allowed the Creston NFH to stock disease free fish in locations approved by regional fish managers. The hatchery has been working with the State Fish Pathologist to remove the limited quarantine classification from the facility. Although fish health for all station fish lots remains disease free, MFWP has asserted it will not remove the limited quarantine until the new influent water treatment system, including the ultraviolet disinfection unit, is running full time, year round. The USFWS is working to secure the additional funding necessary to operate the treatment building year round. Distribution of the WCT took place from March through June. The stocking locations on the Flathead Reservation and State managed waters were identified by Confederated Salish and Kootenai Tribe (CSKT) and MFWP fishery biologists. Post release survival and angler success is monitored routinely by CSKT and MFWP fishery technicians. Stocking numbers and locations vary annually based on the results of biological monitoring, creel evaluations and adaptive management decisions. A total of 99,126 WCT were stocked during nine distribution trips in management approved waters (see Table 1). The average size of WCT at stocking was 3.91-inches. A total of 101,600, Arlee strain, rainbow trout (RBT) eggs were received from the Ennis National Fish Hatchery, Ennis, Montana, in December of 2005 and 35,000 Kamloops strain eggs were received from Murray Springs SFH, Eureka, Montana, in March of 2006 to accomplish this fishery management objective. The RBT were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook. There was no fish health related problems associated with this lot of fish. Survival from swim up fry stage to stocking was 93% for the Arlee's and 79% for the Kamloops. The hatchery achieved a 0.68 feed fed to pounds gained conversion ratio for the Arlee and 0.97 for the Kamloops RBT. The excellent feed conversion ratio can be attributed to refined feeding techniques and the use of an extruded high performance fry feed made with premium fish meal and marine fish oil. The Arlee strain of rainbow trout is requested for this fishery mitigation objective because the chosen stocking locations are terminal basin reservoirs or lakes, habitat conditions prevent natural spawning runs and returns to the creel are more favorable then for native westslope cutthroat trout. MFWP also requested a fall plant of Kamloops strain RBT and they will be evaluated for performance and future fall stockings in Echo Lake. Post release survival and angler success is monitored routinely by the Confederated Salish and Kootenai Tribe (CSKT) and Montana Fish Wildlife & Parks (MFWP) fishery techn

Hooley, Sharon

2009-03-20T23:59:59.000Z

247

E-Print Network 3.0 - acyl-coa dehydrogenase scad Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dehydrogenase Complementary Deoxyribonucleic Acid in Rainbow ... Source: Young, Graham - School of Aquatic and Fishery Sciences, University of Washington at Seattle...

248

‘These whites never come to our game. What do they know about our soccer?’ Soccer fandom, race, and the Rainbow Nation in South Africa   

E-Print Network [OSTI]

South African political elites framed the country’s successful bid to host the 2010 FIFA World Cup in terms of nation-building, evoking imagery of South African unity. Yet, a pre-season tournament in 2008 featuring the ...

Fletcher, Marc William

2012-11-28T23:59:59.000Z

249

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect (OSTI)

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

250

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

Simmons, M.; McKinstry, C.; Cook, C.

2004-01-01T23:59:59.000Z

251

Banks Lake Fishery Evaluation Annual Report 2002-2003.  

SciTech Connect (OSTI)

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 76 % of the time, with highest use occurring from November through April. An estimated total of 11,915 ({+-}140 SD) smallmouth bass, 6,412 ({+-}59 SD) walleye, 5,470 ({+-}260 SD) rainbow trout, and 1,949 ({+-}118 SD) yellow perch were harvested from Banks Lake in FY 2002. Only 3 kokanee were reported in the catch during the FY 2002 creel survey. In the future, data from the seasonal surveys and creel will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

2003-11-01T23:59:59.000Z

252

Acute lethal toxicity of some reference chemicals to freshwater fishes of Scandinavia  

SciTech Connect (OSTI)

Relevance of the choice of a test organism intended to be representative for a given environment seems to be under continual debate in aquatic ecotoxicology. For instance, it is commonly argue that acute toxicity tests with rainbow trout, the species most often recommended as a standard cold water teleost, were not representative for Nordic countries because the species is an alien in local faunas. A comparative study with several freshwater species was therefore initiated to clarify the validity of this assumption. As a first approximation, standard LC 50 assays were conducted. The species used were chosen only on the basis of their local availability, i.e, they randomly represented the fish fauna of Nordic inland waters. Furthermore, inter-species variation of toxicity response was compared with certain other, quantitatively more important, intra-species sources of variability affecting the toxicity of chemicals. Use of reference toxicants has been recommended as a means of standardizing bioassays. Compounds, characteristic of effluents from the pulp and paper industry, were selected for the present study. The toxicity of organic acids such a phenols and resin acids, as well as that of pupmill effluents, strongly depends on water pH. Because of the possibility that species differences could exist in this respect, effects of water acidity on toxicity of these types of substances to a randomly selected local species was investigated. Finally, as an example of the biological source of assay variability, the effect of yolk absorption was studied with a subsequent crisis period due to moderate starvation under laboratory conditions.

Oikari, A.O.J.

1987-07-01T23:59:59.000Z

253

Lake Roosevelt Fisheries Monitoring Progam; Thyroid-Induced Chemical Imprinting in Early Life Stages and Assessment of Smoltification in Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1993 Supplement Report.  

SciTech Connect (OSTI)

In 1991, two hatcheries were built to provide a kokanee salmon and rainbow trout fishery for Lake Roosevelt as partial mitigation for the loss of anadromous salmon and steelhead caused by construction of Grand Coulee Dam. The Sherman Creek Hatchery, located on a tributary of Lake Roosevelt to provide an egg collection and imprinting site, is small with limited rearing capability. The second hatchery was located on the Spokane Indian Reservation because of a spring water source that supplied cold, pure water for incubating and rearing eggs.`The Spokane Tribal Hatchery thus serves as the production facility. Fish reared there are released into Sherman Creek and other tributary streams as 7-9 month old fry. However, to date, returns of adult fish to release sites has been poor. If hatchery reared kokanee imprint to the hatchery water at egg or swim up stages before 3 months of age, they may not be imprinting as 7-9 month old fry at the time of stocking. In addition, if these fish undergo a smolt phase in the reservoir when they are 1.5 years old, they could migrate below Grand Coulee Dam and out of the Lake Roosevelt system. In the present investigation, which is part of the Lake Roosevelt monitoring program to assess hatchery effectiveness, kokanee salmon were tested to determine if they experienced thyroxine-induced chemical imprinting and smoltification similar to anadromous salmonids. Determination of the critical period for olfactory imprinting was determined by exposing kokanee to different synthetic chemicals (morpholine or phenethyl alcohol) at different life stages, and then measuring the ability to discriminate the chemicals as sexually mature adults. Whole body thyroxine content and blood plasma thyroxine concentration was measured to determine if peak thyroid activity coincided with imprinting or other morphological, physiological or behavioral transitions associated with smoltification.

Tilson, Mary Beth; Galloway, Heather; Scholz, Allan T. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

1994-06-01T23:59:59.000Z

254

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

SciTech Connect (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

255

Organotin intake through fish consumption in Finland  

SciTech Connect (OSTI)

Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune [Finnish Game and Fisheries Research Institute, Helsinki (Finland)] [Finnish Game and Fisheries Research Institute, Helsinki (Finland); Mannio, Jaakko [Finnish Environment Institute, Helsinki (Finland)] [Finnish Environment Institute, Helsinki (Finland); Hallikainen, Anja [Finnish Food Safety Authority Evira, Helsinki (Finland)] [Finnish Food Safety Authority Evira, Helsinki (Finland)

2010-08-15T23:59:59.000Z

256

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect (OSTI)

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

257

Metabolism of benzo(a)pyrene by fish cells in culture  

SciTech Connect (OSTI)

Benzo(a)pyrene (BaP) metabolism was studied in cell lines derived from rainbow trout (RTG-2), bluegill fry (BF-2), and fathead minnow (FHM). Confluent cultures were exposed to /sup 3/H-BaP (0.5 nmol/ml), and, after various exposure times, metabolites were extracted from the media with an organic solvent and analyzed by high-pressure liquid chromatography. BF-2 and RTG-2 cells converted 63% of the BaP to water-soluble metabolites within 24 h, while FHM cells converted only 12%. BF-2 and RTG-2 cells metabolized more than 90% of the BaP by 48h, while only 67% of the BaP was converted to water-soluble metabolites by FHM cells after 96h. The major organic-solvent-extractable metabolites in all three cell lines were 9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene and unidentified polar metabolites. Of the water-soluble metabolites formed by BF-2, FHM, and RTG-2 cells, 67, 42, and 19%, respectively, were converted to ethyl-acetate-extractable metabolites by treatment with ..beta..-glucuronidase. All three cell lines formed a glucuronide of 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (7,8-diol); in BF-2 and FHM cells, the 7,8-diol represented almost half of the metabolites released by ..beta..-glucuronidase treatment. Thus, cell lines derived from three widely distributed species of freshwater fish have the capacity to metabolize BaP to a form that is a proximate carcinogen in rodents and to produce a water-soluble conjugate of this metabolite.

Thornton, S.C.; Diamond, L.; Baird, W.M.

1982-07-01T23:59:59.000Z

258

Hangman Restoration Project : Annual Report, August 1, 2001 - July 31, 2002.  

SciTech Connect (OSTI)

The construction of hydroelectric facilities in the Columbia Basin resulted in the extirpation of anadromous fish stocks in Hangman Creek and its tributaries within the Coeur d'Alene Reservation. Thus, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as redband trout (Oncorhynchus mykiss garideini), westslope cutthroat trout (O. clarki lewisii) and bull trout (Salvelinus confluentus) as well as local wildlife populations. Additionally, the Tribe was forced to convert prime riparian habitat into agricultural lands to supply sustenance for their changed needs. Wildlife habitats within the portion of the Hangman Creek Watershed that lies within the Coeur d'Alene Indian Reservation have been degraded from a century of land management practices that include widespread conversion of native habitats to agricultural production and intensive silvicultural practices. Currently, wildlife and fish populations have been marginalized and water quality is significantly impaired. In the fall of 2000 the Coeur d'Alene Tribe Wildlife Program, in coordination with the Tribal Fisheries Program, submitted a proposal to begin addressing the degradations to functioning habitats within the Coeur d'Alene Reservation in the Hangman Watershed. That proposal led to the implementation of this project during BPA's FY2001 through FY2003 funding cycle. The project is intended to protect, restore and/or enhance priority riparian, wetland and upland areas within the headwaters of Hangman Creek and its tributaries in order to promote healthy self-sustaining fish and wildlife populations. A key goal of this project is the implementation of wildlife habitat protection efforts in a manner that also secures areas with the potential to provide stream and wetland habitats essential to native salmonid populations. This goal is critical in our efforts to address both resident fish and wildlife habitat needs in the Hangman Watershed. All proposed implementation activities are conducted in the headwaters of the system and are expected to prove beneficial to the natural functions of the entire Hangman Watershed. The following is the FY2001 annual report of Project activities and is submitted as partial fulfillment of Operation and Maintenance Task 2.a. The Objectives and Tasks for this first year were designed to position this Project for a long-term habitat restoration effort. As such, efforts were largely directed at information gathering and project orientation. The major task for this first year was development of a Habitat Prioritization Plan (attached) to guide implementation efforts by selecting areas that will be of greatest benefit to the native ecology. Completion of the first year tasks has positioned the project to move forward with implementing restoration activities using the latest information to accomplish the greatest possible results. The Project will be looking to implement on-the-ground protection and restoration efforts in the coming fiscal year using the data and information gathered in the last fiscal year. Continually refining our understanding of the natural watershed functions and fish and wildlife habitats within the Project Area will result in an increase in the efficiency of project implementation. Research and data gathering efforts will remain a strong emphasis in the coming fiscal year, as it will throughout the life of this Project.

Green, Gerald I.; Coeur D'Alene Tribe.

2002-06-01T23:59:59.000Z

259

Fact Sheet Fact Sheet Fact Sheet B O N N E V I L L E P O W E  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chinook, bull trout and cutthroat trout. The area also is crucial for holding adult fish of all species. How would it be funded? The purchase would be funded as part of the...

260

EIS-0265-SA-67: Supplement Analysis  

Broader source: Energy.gov [DOE]

Watershed Management Program - Install Fish Screens to Protect ESA Listed Steelhead and Bull Trout in the Walla Walla Basin

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

at large landscape-size conservation areas can bring about results that will help us delist bull trout

262

www.planetearth.nerc.ac.uk Autumn 2014 Trout in hot water Biodiversity and big data Bioenergy's carbon footprint Sustainable drainage  

E-Print Network [OSTI]

­ from pole to pole, from the deep Earth and oceans to the atmosphere and space. We work in partnership of government. Our projects range from curiosity-driven research to long-term, multi-million-pound strategic to us at Planet Earth Editors, NERC, Polaris House, North Star Avenue, Swindon SN2 1EU. NERC

Brierley, Andrew

263

Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.  

SciTech Connect (OSTI)

A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

1995-11-01T23:59:59.000Z

264

Fish Bulletin No. 68. Common Marine Fishes of California  

E-Print Network [OSTI]

36 SKIPJACK Katsuwonus pelamis Relationship: Belongs to the63 Katsuwonus pelamis, 20, 63 keta, Oncorhynchus, 1923 paucispinis, Sebastodes, 95 pelamis, Katsuwonus, 20, 63

Roedel, Phil M

1948-01-01T23:59:59.000Z

265

Fish Bulletin No. 91. Common Ocean Fishes of the California Coast  

E-Print Network [OSTI]

SKIPJACK Katsuwonus pelamis (Linnaeus) Range: CosmopolitanKatsuwonidae, 86 Katsuwonus pelamis, 86 keta, Oncorhynchus,Sebastodes, 121 pelamis, Katsuwonus, 86 peruanus,

Roedel, Phil M

1953-01-01T23:59:59.000Z

266

Steelhead and Chinook Salmon Bioenergetics: Temperature, Ration, and Genetic Effects  

E-Print Network [OSTI]

Oncorhynchus mykiss) bioenergetics. Ph.D. Dissertation,L . Johnson. 1992. Fish Bioenergetics Model 2: An UpgradeUniversity of Generalized Bioenergetics Model of Fish Growth

Cech, Joseph J Jr.; Myrick, Christopher A

1999-01-01T23:59:59.000Z

267

adipose triglyceride lipase: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Lipases from two New Zealand commercial fish species, Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus...

268

E-Print Network 3.0 - acute intestinal obstruction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

salinity in an anadromous fish (Oncorhynchus mykiss) Summary: , intestinal ion and water transport was examined in O. mykiss following acute transfer from freshwater (FW......

269

E-Print Network 3.0 - acute intestinal radiation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in an anadromous fish (Oncorhynchus mykiss) Summary: , intestinal ion and water transport was examined in O. mykiss following acute transfer from freshwater (FW... acute SW...

270

RECORD of Categorical Exclusion (CX) determination: Office of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion (CX) determination: Office of Electricity delivery and Energy Reliability (OE): EA-296-B Rainbow Energy Marketing Corporation RECORD of Categorical Exclusion...

271

Application to Export Electric Energy OE Docket No. EA-296-B...  

Office of Environmental Management (EM)

Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 Application to Export...

272

E-Print Network 3.0 - acquired pseudo-pelger-hut anomaly Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

site in ultramafic environment Summary: A positive magnetic anomaly at Rainbow hydrothermal site in ultramafic environment Jrme DYMENT1... substratum present a...

273

Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment  

E-Print Network [OSTI]

I, Cassady D, Lee K, Bennett DH, Ritz B, Vogt R: Study ofRainbow Vogt 1 , Deborah Bennett 1 , Diana Cassady 1 ,

Vogt, Rainbow; Bennett, Deborah; Cassady, Diana; Frost, Joshua; Ritz, Beate; Hertz-Picciotto, Irva

2012-01-01T23:59:59.000Z

274

Application to Export Electric Energy OE Docket No. EA-296-A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Register Notice Volume 72, No. 158 - Aug. 16, 2007 Application to Export Electric Energy OE Docket No. EA-296-A Rainbow Energy Marketing Corporation: Federal...

275

E-Print Network 3.0 - atmospheric solar heating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmosphere Absorption 12;Transmission... Refraction and Rainbow sunlight 12;The Greenhouse Effect and ... Source: Pan, Feifei - Department of Geography, University of North Texas...

276

CX-006592: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Vermont Biofuels Initiative: Rainbow Valley Biodiesel CX(s) Applied: B5.1 Date: 08292011 Location(s): Brandon County, Vermont Office(s):...

277

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NFPA...  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Jobs Fund PROJECf TITLE: Vermont 810ruels Initiative: Rainbow Valley Biodiesel Page 1 of2 STATE: VT Funding Opportunity Announcement Number Procurement Instrument...

278

Coeur d'Alene Tribe Fish and Wildlife Program Habitat Protection Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.  

SciTech Connect (OSTI)

Throughout the last century, the cumulative effects of anthropogenic disturbances have caused drastic watershed level landscape changes throughout the Reservation and surrounding areas (Coeur d'Alene Tribe 1998). Changes include stream channelization, wetland draining, forest and palouse prairie conversion for agricultural use, high road density, elimination of old growth timber stands, and denuding riparian communities. The significance of these changes is manifested in the degradation of habitats supporting native flora and fauna. Consequently, populations of native fish, wildlife, and plants, which the Tribe relies on as subsistence resources, have declined or in some instances been extirpated (Apperson et al. 1988; Coeur d'Alene Tribe 1998; Lillengreen et al. 1996; Lillengreen et al. 1993; Gerry Green Coeur d'Alene Tribe wildlife Biologist, personal communication 2002). For example, bull trout (Salvelinus confluentus) are not present at detectable levels in Reservation tributaries, westslope cutthroat trout (Oncorhynchus clarki lewisi) are not present in numbers commensurate with maintaining harvestable fisheries (Lillengreen et al. 1993, 1996), and the Sharp-tailed grouse (Tympanuchus phasianellus) are not present at detectable levels on the Reservation (Gerry Green, Coeur d'Alene Tribe wildlife biologist, personal communication). The Coeur d'Alene Tribe added Fisheries and Wildlife Programs to their Natural Resources Department to address these losses and protect important cultural, and subsistence resources for future generations. The Tribal Council adopted by Resolution 89(94), the following mission statement for the Fisheries Program: 'restore, protect, expand and re-establish fish populations to sustainable levels to provide harvest opportunities'. This mission statement, focused on fisheries restoration and rehabilitation, is a response to native fish population declines throughout the Tribe's aboriginal territory, including the Coeur d'Alene Indian Reservation (Coeur d'Alene Tribe 1998). Implicit in this statement is a commitment to provide native subsistence resources in the present and near future as well as the long-term by employing all the mitigation and conservation measures available to them. The development of this Habitat Protection Plan is intended to provide additional planning level guidance as the implementation of conservation measures moves forward. The purpose of this plan is to develop a systematic approach to habitat restoration that will ultimately lead to self-perpetuating, harvestable populations of native fish, wildlife and botanical species. Specifically, it is our intention to apply the principles and analyses presented in this plan to prioritize future restoration efforts that receive funding under the Northwest Power Planning Council's Resident Fish and Wildlife Mitigation Programs. Using an ecosystem restoration approach based on landscape ecology concepts (Primack 1993), the basic premise of the plan is to (1) protect functioning habitat conditions and (2) restore degraded habitat conditions. This plan focuses on habitat conditions at the watershed scale (macrohabitat) rather than on the needs of single species and/or species guilds. By focusing restoration efforts at a macrohabitat level, restoration efforts target all native species inhabiting that area. This approach marks a paradigm shift that emphasizes ecological based restoration rather than species-specific restoration. Traditionally, fish managers and wildlife managers have approached restoration independently, often dedicating resources to a single species by focusing on specific habitat types on a small spatial scale (microhabitat) (Robinson and Bolen 1989, Marcot et al. 2002). This management technique has done little to curb declines despite large budgets (Pianka 1994). Restoration on a landscape level has shown promising results (Holling 1992) and many riparian and wetland restoration projects throughout the northwest have inadvertently improved habitats for non-targeted species. Landscape level restoration addresses

Vitale, Angelo; Roberts, Frank; Peters, Ronald

2002-06-01T23:59:59.000Z

279

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

2003-01-01T23:59:59.000Z

280

Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2001 (September 1, 2001 to August 31, 2002).  

SciTech Connect (OSTI)

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

Polacek, Matt; Knuttgen, Kamia; Baldwin, Casey; Woller, Heather

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Washington Department of Fish and Wildlife Fish Program Hatcheries Division: Ford Hatchery, Annual Report 2001-2002.  

SciTech Connect (OSTI)

The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep, with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.

Lewis, Mike; Polacek, Matt; Knuttgen, Kamia

2002-11-01T23:59:59.000Z

282

Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered  

E-Print Network [OSTI]

population segment, it is classified as Endangered. Introduced predators (trout), air pollution Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major

Wake, David B.

283

Microsoft Word - McNary_ShuntCapAddition_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

to prevent any erosion andor runoff from construction activities from entering these water resources. Federally Listed Species and Critical Habitat. Bull trout (Salvelinus...

284

The effects of maternal employment and different child care placements on personality variables in college students  

E-Print Network [OSTI]

at this time VITA Name: Susan Patricia Trout Date of Birth: January 1), 1955 Place of Birth: 'v'ashington, D. C. Father's Name: James Barry Trout ~i'other's Name: Ruth Laura Peonies Trout Permanent Y~iling Address' . 909 Dusky Rose Lane Pasadenaa Texas...THE E FACTS OF NAT~AL RPLOYN"NT AND DIFF~vvNT CHILD CARE PLAC~P' "NTS ON PERSONALITY VARIABLES IN COLLEGE STUDENTS A Thesis by SUSAN PATRICIA TROUT Submitted to the Graduate College of Texas AM University in partial fulfillment...

Trout, Susan Patricia

1979-01-01T23:59:59.000Z

285

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Location: Twisp, Okanogan County, Wash. Acres: 145 Partners: Methow Salmon Recovery Foundation, the Yakama Nation and Trout Unlimited Purpose: The Bonneville Power Administration...

286

Microsoft Word - WCT_CX_draft1_5.18.11.doc  

Broader source: Energy.gov (indexed) [DOE]

Proposed Action: Reintroduction of westslope cutthroat trout in the Pend Orielle basin. Fish and Wildlife Project No.: 2007-149-00, Contract BPA-52530 Categorical Exclusion...

287

Microsoft Word - WCT_CX_5.4.12.docx  

Broader source: Energy.gov (indexed) [DOE]

Proposed Action: Reintroduction of westslope cutthroat trout in the Pend Orielle basin. Fish and Wildlife Project No.: 2007-149-00, Contract BPA-57129 Categorical Exclusion...

288

CX-002773: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-002773: Categorical Exclusion Determination Idaho Department of Fish and Game Purchase of Crystal Springs Trout Farm - Snake River Sockeye Captive...

289

HEADING FRONTMATTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on odor control and waste water disposal to regional trout farm, beet sugar, and potato industries. Bioremediation: Tested and developed design procedures for a new style of...

290

E-Print Network 3.0 - atlantic salmon salmo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A. - Department of Biology, Dalhousie University Collection: Environmental Sciences and Ecology 17 Norwegian Salmon and Trout Farming ROBERT J. FORD Summary: Norwegian Salmon and...

291

DOE/EIS-0312; Bonneville Power Administration, Fish and Wildlife...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Limited NZ20027j April 03, 2001 Columbia River Basin BPA Service Area Anadromous Fish Extinct Listed Anadromous Fish Species Listed Resident Fish - Bull Trout Listed...

292

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

293

Microsoft Word - Fish Letter _2_.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and municipal water supply. The system is also operated to protect the river's fish, including salmon, steelhead, sturgeon and bull trout listed as threatened or...

294

E-Print Network 3.0 - atlantic salmon fillets Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

organic salmon and tarragon mousse... smoked mackerel and trout fillets with saffron potato and red ... Source: Imperial College, Centre for Energy Policy and Technology...

295

PHOTONIC TEXTILES: OVERVIEW OF THE TECHNOLOGY, APPLICATIONS AND COMMERCIALISATION  

E-Print Network [OSTI]

colorant for automotive and industrial coatings that show multiple rainbow colors as the viewing angle changes. It is based on microscopic aluminum flakes layered with glass and inorganic pigments. The combination of SpectraFlair's rainbow-like color, aluminum core, and fine particle size creates an iridescent

Skorobogatiy, Maksim

296

2007 Fall Meeting Search Results  

E-Print Network [OSTI]

, geology, and geophysics DE: 8416 Mid-oceanic ridge processes (1032, 3614) DE: 8424 Hydrothermal systems:Further Geological Sampling Around the Rainbow Hydrothermal Site, Mid-Atlantic Ridge AU:* Ildefonse, B EM, France AB:The Rainbow hydrothermal site, at 36°14'N on the Mid-Atlantic Ridge, is one of the few known

Demouchy, Sylvie

297

SECTION 5 Table of Contents 5 Coeur d' Alene Subbasin Overview................................................................2  

E-Print Network [OSTI]

of the Spokane River, which flows westerly to its confluence with the Columbia River. Water levels in Coeur d emphasis on harvesting big game and resident fish such as westslope cutthroat trout. Adfluvial and fluvial, and over-harvesting has contributed to their declines. Currently bull trout are listed as threatened under

298

Plasma gonadotropin, estradiol, and vitellogenin and gonad phosvitin levels in relation to the seasonal  

E-Print Network [OSTI]

to the seasonal reproductive cycles of female brown trout L. W. CRIM, D. R. IDLER Marine Sciences Research for plasma gonadotropin, estradiol, and vitellogenin were obtained in female brown trout during the seasonal the blood to the gonad, under pituitary mediation (Campbell and Idler, 1976). The triggers

Paris-Sud XI, Université de

299

Resource partitioning as a factor limiting gene flow in hybridizing populations of Dolly Varden  

E-Print Network [OSTI]

. We examined juvenile stream ecology and adult reproductive ecology of these species in sympatry against hybrids at the juvenile stream-rearing life-history stage. Bull trout, however, are adfluvial, whereas Dolly Varden are permanent stream residents. Bull trout are also much larger at maturity (50­80 cm

Taylor, Eric B. "Rick"

300

4,-AN AMERICAN FISH IN FINLAND.-By OSCAR NORDgVIST.  

E-Print Network [OSTI]

. One of the most highly esteemed fishes in North America is the so-called black bass, which designation been employed also in the Swedish fish literature. The more rapid-growing trout bass, which thrives 59 fish were found dead. From Relsingfors the remaining trout bass were transported to JarveIa (four

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

^e=^^ CONSERVATION NOTES Our Commercial Fisheries  

E-Print Network [OSTI]

and streams where it is crowding out trout and bass or other more desirable sport fish. Salmon, shad, and striped bass are connmercial fish to some people and sport fish to others. Fish can be classified where it is crowding out trout and bass or other more desirable sport fish. Salnnon, shad, and striped

302

An introduction to New York State Fisheries, part 1  

E-Print Network [OSTI]

Sturgeon Pike Sturgeon Pike Eel Pike Perch Perch Bass Roach Lamprey Carp Salmon Sucker Trout Eel Catfish Perch Perch Bass Roach Lamprey Carp Salmon Sucker Trout Eel Catfish Salmon Carp Shad Elft Twalift Bass, 1644 van der Donck, 1656 Sturgeon Pike Sturgeon Pike Eel Pike Perch Perch Bass Roach Lamprey Carp

Limburg, Karin E.

303

adult sockeye salmon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka values in all fish were within an expected range for migrant adult O. nerka. Nevertheless, six of 13 fish...

304

A Literature Review, Bibliographic Listing, and Organization of Selected References Relative to Pacific salmon (Oncorhynchus spp.) and Abiotic and Biotic Attributes of the Columbia River Estuary and Adjacent Marine and Riverine Environs for Various Historical Periods : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 4 of 4, Final Report.  

SciTech Connect (OSTI)

This report contains the results of a literature review on the carrying capacity of Pacific salmon in the Columbia River Basin. The objective of the review was to find the information gaps relative to the determinants of salmon carrying capacity in the Columbia River Basin. The review was one activity designed to answer questions asked in Measure 7.1A of the Councils Fish and Wildlife Program. Based, in part, on the information learned during the literature review and the other work accomplished during this study the Pacific Northwest National Laboratory (PNNL) state concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. To increase understanding of ecology, carring capacity, and limiting factors, it is necessary to deal with the complexity of the sustained performance of salmon in the Columbia River Basin. The PNNL team suggests that the regions evaluated carrying capacity from more than one view point. The PNNL team recommends that the region use the contextualistic view for evaluating capacity.

Costello, Ronald J.

1996-05-01T23:59:59.000Z

305

Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1987 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of smolts during the 1988 spring outmigration at two migrant traps; one each on the Snake and Clearwater rivers. Due to the low runoff year, chinook salmon catch at the Snake River trap was very low. Steelhead trout catch was higher than normal, probably due to trap modifications and because the trap was moved to the east side of the river. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1987. Total cumulative recovery of PIT tagged fish at the three dams, with PIT tag detection systems was: 55% for chinook salmon, 73% for hatchery steelhead trout, and 75% for wild steelhead trout. Travel time through Lower Granite Reservoir for PIT tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three fold, and steelhead trout travel time decreased two fold. There was a statistical difference between estimates of travel time through Lower Granite Reservoir for PIT tagged and freeze branded steelhead trout, but not for chinook salmon. These differences may be related to the estimation techniques used for PIT tagged and freeze branded groups, rather than real differences in travel time. 10 figs, 15 tabs.

Buettner, Edwin W.; Nelson, V. Lance

1990-01-01T23:59:59.000Z

306

Application to Export Electric Energy OE Docket No. EA-326-A...  

Broader source: Energy.gov (indexed) [DOE]

ULC Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp Application to export Electric Energy OE Docket No. EA-210-C PPL EnergyPlus, LLC...

307

392 Book Reviews December 1817, a group of poets met in  

E-Print Network [OSTI]

392 Book Reviews December 1817, a group of poets met in London in the studio of the painter a rainbow . . . Worshipped, almost deified by the Augustan poets for his successful expla- nation

Zewail, Ahmed

308

Epileptic seizures: Quakes of the brain? Ivan Osorio,1,2,* Mark G. Frei,2,  

E-Print Network [OSTI]

Rainbow Boulevard, Mailstop 2012, Kansas City, Kansas 66160, USA 2 Flint Hills Scientific, 5040 Bob to earthquakes and forest fires 2­9 . It has been con- tended that the fact that all of these systems generate

Lai, Ying-Cheng

309

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

SciTech Connect (OSTI)

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

310

Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1999-2003 Progress Report.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS) has been conducting Natural Rearing Enhancement System (NATURES) research since the early 1990s. NATURES studies have looked at a variety of mechanisms to enhance production of wild-like salmonids from hatcheries. The goal of NATURES research is to develop fish culture techniques that enable hatcheries to produce salmon with more wild-like characteristics and increased postrelease survival. The development of such techniques is called for in the Columbia Basin Fish and Wildlife Program. This document is the draft report for the Supplemental Fish Quality Contract DE-AI79-91BP20651 Over the history of the project, the effects of seminatural raceway habitats, automated underwater feeders, exercise current velocities, live food diets, and predator avoidance training have been investigated. The findings of these studies are reported in an earlier contract report (Maynard et al. 1996a). The current report focuses on research that has been conducted between 1999 and 2002. This includes studies on the effect of exercise on salmon and steelhead trout, effects of predator avoid training, integration of NATUES protocols into production hatcheries, and the study of social behavior of steelhead grown in enriched and conventional environments. Traditionally, salmon (Oncorhynchus spp.) are reared in barren concrete raceways that lack natural substrate, in-stream structure, or overhead cover. The fish are fed in an unnatural manner with artificial feeds mechanically or hand broadcast across the water surface. This traditional approach has increased the egg-to-smolt survival of hatchery-reared fish by an order of magnitude over that experienced by wild-reared salmon. However, once hatchery-reared fish are released into the wild their smolt-to-adult survival is usually much lower than wild-reared salmon. The reduced postrelease survival of hatchery-reared fish may stem from differences in their behavior and morphology compared to wild-reared salmon. After release, hatchery-reared fish are inefficient foragers and are often found with empty stomachs or stomachs filled with indigestible debris (Miller 1953, Hochachka 1961, Reimers 1963, Sosiak et al. 1979, Myers 1980, O'Grady 1983, Johnsen and Ugedal 1986). Their social behavior also differs, with hatchery-reared fish congregating at higher densities, being more aggressive, and displaying less territory fidelity than wild-reared fish (Fenderson et al. 1968, Bachman 1984, Swain and Riddell 1990). In the natural environment this results in hatchery-reared fish spending more time in high-risk aggressive behavior and less time in beneficial foraging behavior than their wild-reared counterparts. Hatchery-reared fish are also more surface oriented than wild-reared salmonids (Mason et al. 1967, Sosiak 1978). This increases their risk of being attacked by avian predators, such as kingfishers (Ceryle spp.), which search for fish near the surface. Although some of the differences between wild and hatchery-reared fish are innate (Reisenbichler and McIntyre 1977, Swain and Riddell 1990), many are conditioned and can be modified by altering the hatchery rearing environment. NATURES studies are aimed at developing a more natural salmon culture environment to prevent the development of these unnatural attributes in hatchery-reared fish. NATURES fish culture practices are already producing salmon with up to about 50% higher in-stream survival than conventionally-reared fish (Maynard et al. 1996b). When these techniques are incorporated into production releases, they should also translate into increased smolt-to-adult survival. Conservation and supplementation programs can use NATURES-reared salmonids to rebuild stocks currently listed as endangered and threatened into healthy self-sustaining runs more rapidly than traditional programs. Traditional production programs can also use high-survival NATURES-reared fish to reduce their impact on wild populations, while still meeting their adult mitigation goals.

Maynard, Desmond J.

2003-02-25T23:59:59.000Z

311

Influence of a Weak Field of Pulsed DC Electricity on the Behavior and Incidence of Injury in Adult Steelhead and Pacific Lamprey, Final Report.  

SciTech Connect (OSTI)

Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys. The effects of electricity on fish have been widely studied and include injury or death (e.g., Sharber and Carothers 1988; Dwyer et al. 2001; Snyder 2003), physiological dysfunction (e.g., Schreck et al. 1976; Mesa and Schreck 1989), and altered behavior (Mesa and Schreck 1989). Much of this work was done to investigate the effects of electrofishing on fish in the wild. Because electrofishing operations would always use more severe electrical settings than those proposed for the pinniped barrier, results from these studies are probably not relevant to the work proposed by SRI. Field electrofishing operations typically use high voltage and amperage settings and a variety of waveforms, pulse widths (PW), and pulse frequencies (PF), depending on conditions and target species. For example, when backpack electrofishing for trout in a small stream, one might use settings such as 500 V pulsed DC, a PW of 1 ms, and a PF of 60 Hz. In contrast, the electrical barrier proposed by SRI will produce electrical conditions significantly lower than those used in electrofishing, particularly for PW and PF (e.g., PW ranging from 300-1,000 {micro}s and PF from 2-3 Hz). Further, voltage gradients (in V/cm) are predicted to be lower in the electric barrier than those produced during typical electrofishing. Although the relatively weak, pulsed DC electric fields to be produced by the barrier may be effective at deterring pinnipeds, little, if anything, is known about the effects of such low intensity electrical fields on fish behavior. For this research, we evaluated the effects of weak, pulsed DC electric currents on the behavior of adult steelhead and Pacific lamprey and the incidence of injury in steelhead only. In a series of laboratory experiments, we: (1) documented the rate of passage of fish over miniature, prototype electric barriers when they were on and off; (2) determined some electric thresholds beyond which fish would not pass over the barrier; and (3) assessed the incidence and severity of injury in steelhead exposed to relatively severe electrical conditions. The results of this study should be useful for making decisions about whether to install electrical barriers in the lower Columbia River, or elsewhere, to reduce predation on upstream migrating salmonids and other fishes by marine pinnipeds.

Mesa, Matthew

2009-02-13T23:59:59.000Z

312

Kristie Stremel Oral History  

E-Print Network [OSTI]

Under the Rainbow: Oral Histories of GLBTQ People in Kansas Kristie Stremel Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Return to Kristie Stremel Oral History in KU ScholarWorks Tami Albin, Director for Under the Rainbow...

Stremel, Kristie; Albin, Tami

2009-10-27T23:59:59.000Z

313

Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.  

SciTech Connect (OSTI)

On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds

Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

2008-12-17T23:59:59.000Z

314

The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations  

SciTech Connect (OSTI)

One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

2012-04-01T23:59:59.000Z

315

Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.  

SciTech Connect (OSTI)

The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large percentage of the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton, zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification

McLellan, Holly; Lee, Chuck; Scofield, Ben; Pavlik, Deanne

1999-08-01T23:59:59.000Z

316

Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging  

SciTech Connect (OSTI)

Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

2004-10-23T23:59:59.000Z

317

E-Print Network 3.0 - artificial lake case Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that ate fry was low... .M., Kenyon, R.,1995. Lake trout rehabilitation in Lake Erie: a case history. J. Great Lakes Res. 21, 65... spawning of artificial reefs ... Source:...

318

Independent Scientific Review Panel for the Northwest Power & Conservation Council  

E-Print Network [OSTI]

to the phosphorous eutrophication problem. We suggested that an adequate future proposal should explore potential-term treatment of the phosphorous eutrophication problem than oxygenation · include trout survival measurements

319

Microsoft Word - Springfield_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

Project Manager - KEWU-4 Proposed Action: Provision of funds to Idaho Department of Fish and Game for purchase of 72.53 acres known as the Crystal Springs Trout Farm property...

320

Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California  

E-Print Network [OSTI]

Research 12:187-212. EPRI. 2000. Instream flow assessmentrainbow trout. Palo Alto, CA: EPRI. Van Woert, W. 1964. MillVan Winkle et al. 1996; EPRI 2000), but PHABSIM is still the

Williams, John G.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reviews in Fish Biology and Fisheries 12: 373391, 2002. 2003 Kluwer Academic Publishers. Printed in the Netherlands.  

E-Print Network [OSTI]

in the Netherlands. 373 Alien invasions in aquatic ecosystems: Toward an understanding of brook trout invasions College Ave., Columbia, MO 65201, USA Accepted 7 January 2003 Contents Abstract page 373 Introduction 374

322

Water Resources Research Institute of the University of North Carolina  

E-Print Network [OSTI]

impacts on water quality: erosion and sediment control, low impact development, stormwater management; Agricultural impacts on water quality: agronomic rates for nutrients, best management practices, trout farms, aquatic weed control, green space protection; Waste management: reverse osmosis plants, septic systems

323

Biological Monitoring at Amchitka Appears to Show Impacts from...  

Energy Savers [EERE]

of the monitoring showed that Dolly Varden (a type of freshwater char, a trout-like fish), rockweed (littoral-zone algae), and to a lesser extent, Irish Lord (a small...

324

Historic and Present Distribution of Chinook Salmon and Steelhead in the Calaveras River  

E-Print Network [OSTI]

March, and April he would fish for bass every week and seehooked very strong fish that weren’t bass. They thought thefish. He used to catch his limit of trout, small mouth bass

Marsh, Glenda

2007-01-01T23:59:59.000Z

325

Interrelationships of Fishes of the Order Stomiiformes  

E-Print Network [OSTI]

2353 Galaxiela nigrostriata EBU 21542 Salmoniformes Prosopium wiliamsoni UW 048051 Oncorhynchus keta KU 328 Esociformes Esox lucius KU 5414 Umbra limi KU 2568 Neoteleostei Stomiformes Diplophos taenia KU 3781 Bonapartia... salamandroides 0.649 0.906 34.38 31 Galaxias maculatus 0.562 0.706 45.54 Galaxiela nigrostriata ? ? ? Prosopium wiliamsoni 0.578 0.753 41.09 Oncorhynchus keta 0.580 0.739 43.81 Esox lucius 0.569 0.715 47.28 Umbra limi 0.545 0.636 52.23 Diplophos taenia 0...

DeVaney, Shannon C.

2008-01-01T23:59:59.000Z

326

Michael Johnson Oral History  

E-Print Network [OSTI]

support groups or whatever like that and then it just turned into, Well there's Michael Johnson January 4, 2009 5 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas porn online too. (laugh) So it's like—it's like you just kind... stepmother had found my Xanga site as well. Along with that she had found, on his computer, links to porn site—like gay porn Michael Johnson January 4, 2009 7 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas sites, right...

Johnson, Michael; Albin, Tami

2009-12-16T23:59:59.000Z

327

Fishery Bulletin Index Volume 99(14), 2001  

E-Print Network [OSTI]

chinook salmon (Oncorhynchus tshawytscha): an analysis using microsatel lite DNA markers, by R. John dus in two fishing zones on the Great Barrier Reef, Austra lia, by Jill St John, Garry R. Russ, Ian W the Maldives, by M. S. Adam and Geof frey P. Kirkwood 197 The effect of sea state on estimates of abundance

328

Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Northwest Chinook salmon  

E-Print Network [OSTI]

Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Oregon St, Suite 200, Portland, OR 97232, U.S.A. 2 Fisheries and Oceans Canada, Pacific Biological of Washington, Seattle, WA 98195-5020, U.S.A. ABSTRACT Pacific Northwest Chinook, Oncorhynchus tshawytscha, have

329

The Auk 125(1):5159, 2008 c The American Ornithologists' Union, 2008.  

E-Print Network [OSTI]

OF SALMON INCREASES PASSERINE DENSITY ON PACIFIC NORTHWEST STREAMS KATIE S. CHRISTIE AND THOMAS E. REIMCHEN1, Canada ABSTRACT.--The annual migration of Pacific salmon (Oncorhynchus spp.) to freshwater streams or below the falls and proximity to the stream were the major predictors of songbird abundance. Each

Reimchen, Thomas E.

330

Can. J. Fish. Aquat. Sci. 56: 17001706 (1999) 1999 NRC Canada PERSPECTIVE  

E-Print Network [OSTI]

Pacifique (Oncorhynchus spp.) de la côte nord-ouest de l'Amérique du Nord ont connu des déclins régionaux et straying from their natal streams during spawning migrations. Management efforts aimed at expediting freshwater habitat in streams w

331

A Study in the Use of a High Concentration of CO2 in a Modified  

E-Print Network [OSTI]

atmospheres 10 preserve fish during shipment has been limited because of eco- nomic and technical reasons. Recenl interest in the use a/the technique to ship Pacific salmon. Oncorhynchus spp.. aUla/ Alaska has shipped in large containers or vans. Harold 1. Barnett, Research Chemist; Frederick E. Stone. Chemist

332

Field-based measurements of oxygen uptake and swimming performance with adult Pacific salmon using  

E-Print Network [OSTI]

swimming; recovery; Oncorhynchus. INTRODUCTION Swimming performance and studies of energy consumption have are capable of carrying a moderate excess post-exercise oxygen consumption without adversely affecting Ucrit is limited. Some studies have trans- ported wild adult salmonids to a laboratory for study (Jones et al

Hinch, Scott G.

333

ORIGINAL PAPER Chinook salmon invade southern South America  

E-Print Network [OSTI]

ORIGINAL PAPER Chinook salmon invade southern South America Cristia´n Correa � Mart R. Gross We document the invasion of Chinook salmon (Oncorhynchus tshawytscha) to southern South America. This is the first anadromous salmon species to have invaded such a large range in South America, and it raises many

Gross, Mart

334

Short Report Occurrence of a hybrid between endemic Miyabe charr Salvelinus  

E-Print Network [OSTI]

-0809, Japan (e-mail: itsuro@exfor.agr.hokudai.ac.jp) 2 Graduate School of Earth Environmental Science Ichthyological Research ©The Ichthyological Society of Japan 2005 Ichthyol Res (2005) 52: 83­85 DOI 10.1007/s and introduced masu salmon Oncorhynchus masou masou in the Lake Shikaribetsu system, Hokkaido, Japan Itsuro

Helsinki, University of

335

David Ollington Oral History  

E-Print Network [OSTI]

Under the Rainbow: Oral Histories of GLBTQ People in Kansas David Ollington Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Return to David Ollington...

Ollington, David; Albin, Tami

2010-01-11T23:59:59.000Z

336

George Paris Oral History  

E-Print Network [OSTI]

Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Part 6 video platform video... Under the Rainbow: Oral Histories of GLBTQ People in Kansas George Paris Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player...

Paris, George; Albin, Tami

2010-01-11T23:59:59.000Z

337

Steven Brown Oral History  

E-Print Network [OSTI]

Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Part 6 video platform video management video solutionsvideo player Part 7 video platform video... Under the Rainbow: Oral Histories of GLBTQ People in Kansas Steven Brown Oral History Part 2 video platform video management video solutionsvideo player Part 3 video platform video management video solutionsvideo player...

Brown, Steven; Albin, Tami

2010-11-24T23:59:59.000Z

338

CURRICULUM VITAE L. Clarke Cox, Ph.D.  

E-Print Network [OSTI]

.D. Bowling Green State University Bowling Green, Ohio 1975 Research Affiliations: Rainbow Babies & Children (1988 ­ 1996) Assistant & Associate Professor of Audiology Cleveland State University, 1975-1988 Education: B.S. Utah State University Logan, Utah 1972 M.S. Utah State University Logan, Utah 1973 Ph

Guenther, Frank

339

Course: ARTS 371-01, #94903 Instructor: K. Niles Classroom: FA 216 Telephone: x73020 or (607) 648-7985  

E-Print Network [OSTI]

in a grade drop. Students are also expected to be fully prepared with the appropriate materials and supplies container for tools & supplies #12;portfolio personal sketchbook for notes & sketches, as desired workable "rainbow of hues": A. *Suggested color palettes 1. Cool/cold color families (accented with a single

Suzuki, Masatsugu

340

Oxley Creek Common Brisbane, Australia  

E-Print Network [OSTI]

right about 100 m after the bridge over Oxley Creek. The gate is always open. Amenities The main and turn left before the bridge crossing Oxley Creek. If approaching from the west (Sherwood side) turn. Both Rainbow and Scaly-breasted Lorikeets fly over in small screeching flocks. Golden-headed Cisticola

Queensland, University of

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Compatible Hamilton cycles in random graphs Michael Krivelevich  

E-Print Network [OSTI]

Compatible Hamilton cycles in random graphs Michael Krivelevich Choongbum Lee Benny Sudakov, there exists a properly colored Hamilton cycle. Furthermore, our proof can be easily modified to show, there exists a Hamilton cycle in which all edges have distinct colors (i.e., a rainbow Hamilton cycle). 1

Sudakov, Benjamin

342

FOUNDATIONS OF SPECTROSCOPY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improve-  

E-Print Network [OSTI]

STALEY Diffraction Grating RetinaRetina Virtual Spectrum Incandescent Bulb Real SpectrumReal Spectrum Eye Fluorescent Lights 14 Continuous Emission 15 The Origins Of Band Spectra 16 Origins Of band Spectra 17 a region of the elec- tromagnetic spectrum. A rainbow and light from a light bulb are examples

Hardy, Darel

343

A Booklet for Elementary Students by Robert D. Pike, Ph.D. and Robin M. Carey  

E-Print Network [OSTI]

Evaporation ­ the process through which a liquid such as water changes into a gas, such as water vapor (steam). Optical property ­ the ability of matter to interact with light to give visible color, interference (rainbows), birefringence (double vision) and/or fluorescence (glows-in-the-dark) Saturated solution

Pike, Robert D.

344

A laboratory experiment from the Little Shop of Physics at  

E-Print Network [OSTI]

1 A laboratory experiment from the Little Shop of Physics at Colorado State University CMMAP Reach of colors from red to violet is the spread of different wavelengths that makes up visible light. Of course different parts of the spectrum: Wavelength and energy. The red end of the rainbow corresponds to long

Hardy, Darel

345

"Light" or the Electromagnetic spectrum www.nasa.gov  

E-Print Network [OSTI]

(absorbed then emitted light) · About the solar atmosphere · About comet tails · About our galaxy · About#12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed through a prism or grating, light is separated into its component wavelengths · This looks like a rainbow

Mojzsis, Stephen J.

346

If we omit the arts from the curriculum, we are in effect shortchanging the mind. Howard Gardner, Professor of Education, Harvard University  

E-Print Network [OSTI]

, and the Brazilian design group SuperUber. Over the Rainbow Explore the science of color theory and how it relates, psycho- logical effects of color, expressionistic color, and more in this 45-minute tour. Off the Wall: 3 of the Americas and Cold War Politics October 5 ­ January 5, 2014 During the Cold War, the Organization

Oklahoma, University of

347

Oecologia (1994) 97:326-332 ORIGINAL PAPER  

E-Print Network [OSTI]

zone of Africa; P. agamae is sometimes found as a soli- tary malaria species in populations of the rainbow lizard, Agama agama, in West Africa were studied to determine the nature of any interspecific. Mixed infections occurred 2-5 times more often than expected by chance. Parasite density within

Schall, Joseph J.

348

SM@RT: Applying Architecture-based Runtime Management into Internetware Systems  

E-Print Network [OSTI]

Engineering and Computer Science, Peking University, Beijing, 100871, China huanggang@sei.pku.edu.cn, songhui the RAI implementation code without any modification on the source code of the target system on Eclipse GUI and Android, C2 arc- hitectural models on JOnAS, Rainbow C/S style on PLASTIC and UML models

Boyer, Edmond

349

Using QoS-Contracts to Drive Architecture-Centric Self-adaptation  

E-Print Network [OSTI]

of Education School of Electronics Engineering and Computer Science Peking University, Beijing, 100871, PRC rules in Plastic [1] and [14], strategies/tactics in Rainbow [11,7], ar- chitectural aspects by Morin et modifications and consequently the estimation of their s

Paris-Sud XI, Université de

350

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE  

E-Print Network [OSTI]

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC, and steelhead trout on the West Coast of the United States. PacifiCorp's 169-megawatt Klamath Hydroelectric Hydroelectric Project is the only thorough, objective and transparent assessment tool that analyzes the cost

351

MFR PAPER 1255 Use of Salt (NaCI) Water to Reduce Mortality of Chinook Salmon  

E-Print Network [OSTI]

handling and haul- ing by truck tanker is becoming increas- ingly important to the success of a major mortality of salmon and trout during handling and hauling by tank trucks. LITERATURE SEARCHED tshawytscha, During Handling and Hauling CLIFFORD W. LONG, JERRY R. McCOMAS, and BRUCE H. MONK ABSTRACT

352

Pennsylvania Fish and Boat Commission 2008 Approved Triploid Grass Carp Dealers  

E-Print Network [OSTI]

person Street City State Zip Code Phone Number Dealer # Angelo Trout Farm John A. Angelo 181 Rogers Mill-08 Frey's Fish Ponds Mark W. Frey 820 Pine Hill Road Gulph Mills PA 19406 (610)995-2700 217-08 Hilltop Melkovitz P. O. Box 166, 6444 Hwy. Keo AR 72083 (501)842-2872 216-08 Keystone Aquaculture, Inc. John M

Boyer, Elizabeth W.

353

MFR PAPER 1121 Sophisticated electronic devices  

E-Print Network [OSTI]

MFR PAPER 1121 Sophisticated electronic devices are providing new data on salmonid biology and migration. Electronic Tags and Related Tracking Techniques Aid in Study of Migrating Salmon and Steelhead Trout in the Columbia River Basin GERALD E. MONAN, JAMES H. JOHNSON, and GORDON F. ESTER BERG ABSTRACT-Electronic

354

HollyMcLellan,ColvilleConfederatedTribes Resident Fish Division Native resident fish persisted after  

E-Print Network [OSTI]

HollyMcLellan,ColvilleConfederatedTribes Resident Fish Division Native resident fish persistedMcLellan,ColvilleConfederatedTribes Resident Fish Division Surveys document increase in walleye and decrease in native fish abundance Native fish populations affected Sanpoil: wildkokanee and redband trout populations depressed Columbia

355

Blue-green algae Flagellates Rotifers  

E-Print Network [OSTI]

Burbot Lake Trout Smallmouth Bass Walleye Lake Erie Food Web NATIONALOCEAN IC AND ATMOSPHERIC ADMINISTRATION U" by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Erie, 2009. White Perch Common Carp Alewife their homes in the waters of Lake Erie. Ten species of native fish have been extirpated from Lake Erie

356

EIS-0263: Interior Columbia Basin Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

The ICBEMP strategy will include direction which will protect and enhance aquatic ecosystems for anadromous fish and inland native trout and terrestrial ecosystems. It will also address the social and economic interactions with these biological variables. (Merged with EIS-262 to become Eastside Ecosystem Management, Washington and Oregon)

357

Eawag, the Swiss Federal Institute of Aquatic Science and Technology, is a Swiss-based and interna-tionally networked aquatic research institute within the ETH Domain (Swiss Federal Institutes of Technol-  

E-Print Network [OSTI]

in Kastanienbaum (Lucerne) has a va- cancy for a PhD Student in Fish Migration & Evolutionary Ecology Movement to the nearby Lake Lucerne and forms the distinct lake trout phenotype. However, also distinct eco (Lucerne) and offers a beautiful workplace at the shores of Lake Lucerne, a friendly international working

Uppsala Universitet

358

12 | Spring 2011 Hookin Women into  

E-Print Network [OSTI]

and enhance recreational 2010 MSU Fly Gals Au Sable brook troutLearning to tie flies Fly image above from www from a brand new fly fisher to someone who can actually catch a fish with a rod. It's made me confident

359

MFR PAPER 1000 A unique approach to the problem  

E-Print Network [OSTI]

- Figure 1. - Truck and trailer used by NMFS to haul juvenile salmon and trout down the Snake and Columbia SYSTEMS The tanh.s that we used for hauling fish orIginally had been used to haul aircraft fuel. PumpsMFR PAPER 1000 A unique approach to the problem of safely transporting juvenile fish by truck has

360

EMT and EHSC 2012 RESEARCH DAY PROGRAM 8:00 -8:30 Registration & Poster Setup  

E-Print Network [OSTI]

Simonich Environmental Chemistry "What Goes Around Comes Around ­ Chasing Air Pollution in the Western U-Madison " Linking Recruitment Failure of Great Lakes Lake Trout to Dioxin Exposure". 11:30 - 1:00 Lunch:00-1:15 EMT Trainee Lecture Will Backe Analysis of new and legacy fluorinated contaminants in groundwater

Tullos, Desiree

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Overview of WICCI's First Adaptive  

E-Print Network [OSTI]

/Co-Chairs of 15 Working Groups 220 Working Group Members #12;Chapter 1: Climate Change in Wisconsin: Past, Present contaminated (28%) · Raw sewage overflows (90 million gallons from 161 wastewater treatment plants) · FEMA paid due to a warming climate. WICCI Wildlife & Climate Working Groups #12;Brook trout Projected changes

Sheridan, Jennifer

362

Independent Scientific Review Panel for the Northwest Power Planning Council  

E-Print Network [OSTI]

Independent Scientific Review Panel for the Northwest Power Planning Council Preliminary Review to ISRP comments requested Report Page # 24001 Lake Pend Oreille Predation Research Idaho Fish and Game No and conserve high priority bull and westslope cutthroat trout habitat in Trestle Creek. Idaho Department

363

Independent Scientific Review Panel for the Northwest Power & Conservation Council  

E-Print Network [OSTI]

Independent Scientific Review Panel for the Northwest Power & Conservation Council 851 SW 6th, University of Idaho, an expert in large river fisheries population dynamics, and salmon, trout and char Section, University of British Columbia, Vancouver, B.C., Canada. Scientific Peer Review Group Members Jim

364

Biocomplexity Project Retreat March 1-3, 2002  

E-Print Network [OSTI]

, Magnuson) ­ Basement lobby CWD manipulation (Sass, Kitchell) ­ Juday House Ecological economics (Provencher, Evening Social in Juday House *Departure times are subject to change depending on schedules of passengers ­ Biocomplexity Retreat in Main Lab of Trout Lake Station 7:00 am ­ Breakfast in Juday House (bagels, donuts

365

FW 400 Conservation of Fish in Aquatic Ecosystems Lectures: TR 10-10:50 am 132 Wagar Building  

E-Print Network [OSTI]

FW 400 Conservation of Fish in Aquatic Ecosystems Fall 2011 Lectures: TR 10-10:50 am 132 Wagar Building Field trips: Two Saturday field trips are required: 24 Sept. or October 1 (plains fishes); 8 October (native trout and transition zone fishes) Instructor: Dr. James Roberts 102 Wagar Building 491

366

FW 400 Conservation of Fish in Aquatic Ecosystems Lectures: TR 10-10:50 am 132 Wagar Building  

E-Print Network [OSTI]

FW 400 Conservation of Fish in Aquatic Ecosystems Fall 2012 Lectures: TR 10-10:50 am 132 Wagar Building Field trips: Two Saturday field trips are required: 22 September (plains fishes); 29 September (native trout and transition zone fishes) Instructor: Dr. Kurt Fausch 101 Wagar Building 491-6457 kurtf

367

EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho  

Broader source: Energy.gov [DOE]

DOE’s Bonneville Power Administration is preparing an EIS that will assess potential environmental impacts of funding a proposal of the Shoshone-Bannock Tribes of the Fort Hall Reservation of Idaho to construct and operate a hatchery for spring/summer Chinook salmon in the Salmon River subbasin and Yellowstone cutthroat trout in the Upper Snake River subbasin on Fort Hall Reservation.

368

his summer marked the grand re-opening  

E-Print Network [OSTI]

trout and Kokanee salmon and other fish desired for planting in the Lake Tahoe Basin. Dr. Charles 2400 Lake Forest Road Tahoe City, CA 96145 Phone: (530) 583-3279 Fax: (530) 583-2417 http://terc.ucdavis.edu Dedication of the UC Davis Tahoe City Field Station Dr. Charles Goldman addresses a crowd of 180 at the Tahoe

Schladow, S. Geoffrey

369

The Third Interagency Conference on Research in the Watersheds, 8-11 September 2008, Estes Park, CO 155 Using a Coupled Groundwater/Surface-  

E-Print Network [OSTI]

-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential. Hay, John Doherty Abstract A major focus of the U.S. Geological Survey's Trout Lake Water, Energy in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow

370

early 800 native fish species in 36 families inhabit the freshwater rivers, streams, and  

E-Print Network [OSTI]

N early 800 native fish species in 36 families inhabit the freshwater rivers, streams, and lakes of the United States and Canada. North America has the most diverse temperate freshwater fish fauna in the world. Only about 5 percent of these are the familiar sport or game fishes like trout and bass. The remaining

Liskiewicz, Maciej

371

Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, First Annual Progress Report (Covering Field Season July-November 1982).  

SciTech Connect (OSTI)

This fisheries study is to determine the potential cumulative biological and economic effects of 20 small or micro-hydro-electric facilities (less than 5 megawatts) proposed to be constructed on tributaries to the Swan River, a 1738 square kilometer (671 square mile) drainage located in northwestern Montana. The study addresses portions of measure 1204 (b) (2) of the Norwthwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. Aerial pre-surveys conducted during 1982 identified 102 stream reaches that may support fish populations in the Swan drainage between Swan and Lindbergh lakes. These reaches were located in 49 tributary streams and constituted 416 kilometers (258 miles) of potential fish habitat. Construction of all proposed small hydro projects would divert water from 54 kilometers (34 miles) or about 13 percent of the tributary system. Only two of the 20 proposed hydro sites did not support trout populations and most were populated by migratory bull trout and westslope cutthroat trout. Potential cumulative habitat losses that could result from dewatering of all proposed project areas were predicted using a stream reach classification scheme involving stream gradient, drainage ara, and fish population data. Preliminary results of this worst case analysis indicate that 23, 19 and 6 percent of the high quality rearing habitat for cutthroat, bull, and brook trout respectively would be lost.

Leathe, Stephen A.; Graham, Patrick J.

1984-03-01T23:59:59.000Z

372

Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume I, Summary, 1983-1984 Final Report.  

SciTech Connect (OSTI)

This study was designed to develop and apply methods to evaluate the cumulative effects of 20 proposed small hydro projects on the fisheries resources of the Swan River drainage located in northwestern Montana. Fish population and reach classification information was used to estimate total populations of 107,000 brook trout, 65,000 cut-throat trout and 31,000 juvenile bull trout within the tributary system. Distribution, abundance, and life history of fish species in the drainage and their contribution to the sport fishery were considered in the cumulative impact analysis. Bull trout were chosen as the primary species of concern because of their extensive use of project areas, sensitivity to streambed sedimentation, and their importance to the lake and river sport fisheries. Dewatering of hydroelectric diversion zones and streambed sedimentation (resulting from forest and small hydro development) were the major impacts considered. The developer proposed to divert up to the entire streamflow during low flow months because maintenance of recommended minimum bypass flows would not allow profitable project operation. Dewatering was assumed to result in a total loss of fish production in these areas. 105 refs., 19 figs., 38 tabs.

Leathe, Stephen A.; Enk, Michael D.

1985-04-01T23:59:59.000Z

373

amagazineforalumniandfriendsoftheinstituteoftechnology|Fall/winter2007-08 LEFT To ThEir  

E-Print Network [OSTI]

, while cool-water fish (walleye and northern pike) and warm-water fish (bass) would likely experience their simulations show that cold-water fish (trout and cisco) would see their habitat reduced by 80 to 90 percent improved growth conditions. Would global warming affect Minnesota fish? #12;InventIng tomorrow Fall

Minnesota, University of

374

Volume II, Chapter 5 Elochoman Subbasin  

E-Print Network [OSTI]

.2.2 Fall Chinook--Elochoman Subbasin (Mill/Abernathy/Germany)....................... 5-7 5.2.3 Coho (Mill/Abernathy/Germany) ................................. 5-13 5.2.5 Chum--Elochoman Subbasin.2.7 Winter Steelhead--Elochoman Subbasin (Mill/Abernathy/Germany) .............. 5-21 5.2.8 Cutthroat Trout

375

Volunteers begin transforming Rock Creek-Clark Fork land back to prairie http://missoulian.com/news/state-and-regional/volunteers-begin-process-of-transforming-rock-creek-clark-fork-land/article_0a662764-afa2-11e2-bfb5-0019bb2963f4.html[4/28/2013 8:41:30  

E-Print Network [OSTI]

and Wildlife Conservation Trust, Trout Unlimited, Resources Legacy Fund and private donors. But getting is only recorded a telephone conversation in 2011 in which one of the Boston bombing s... Bangladesh Factory Collapse Death Toll Nears 350 Police in Bangladesh took six people into custody in connection

Vonessen, Nikolaus

376

Water Quality Improvements: How do we know if we're doing  

E-Print Network [OSTI]

buffer grassland 250 m buffer Targeted Wetland crop to switchgrassPresettlement Conservation Tillage We or irritation Value of avoided water treatment Value of commercial fishing Fish abundance and productivity, illness or irritation Value of avoided water treatment #12;Trout angling Nitrogen Water clarity/ Algal

Farritor, Shane

377

Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution  

SciTech Connect (OSTI)

A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)] [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)] [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

2014-01-14T23:59:59.000Z

378

Ryan Campbell Oral History  

E-Print Network [OSTI]

Under the Rainbow: Oral Histories of GLBTQ People in Kansas Ryan Campbell Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Lawrence, KS 66045 Requestors must identify: 1. Type of publication 2. Proposed title 3. Specific passages to be quoted 4. Anticipated uses of the passages 5. Publisher's name 6. Expected date of publication ...

Campbell, Ryan; Albin, Tami

2009-12-16T23:59:59.000Z

379

Alpha Kappa Alpha Artificial Records, 1932-2000s  

E-Print Network [OSTI]

THE OTHER SIDE OF THE RAINBOW ..... -; ALPHA KAPPA ALPHA SORORITY DELTA CHAPTER A REAL POT OF GOLD LIFt" EV'RY vOICE AND SING Li.6,t eV'!LY vo-i.c.e and ~-i.ng, T-i...t ea-uh and heaVe.l1 iU'lg, KUla w-i.,th tne. hMmolUe!.> 06 Llbeuy; Lei oun. !Le60...

2015-01-01T23:59:59.000Z

380

Rainier, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow,

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Rains County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow,Rains County,

382

Rajaram Maize Products RMP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow,Rains

383

Rajasthan Electronics Instruments Ltd REIL | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow,RainsRajasthan

384

Rake power Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow,RainsRajasthanRake

385

Asotin Creek Model Watershed Plan  

SciTech Connect (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

386

Academic Achievement of K-12 Students With Emotional and Behavioral Disorders  

E-Print Network [OSTI]

scores from gradc-lcvei group ad- ministered academic achievement tests as indices for determining academic achievement deficits (Reid, Gonzalez, Nordness, Trout, & Epstein, 2003). The ordinal nature of these scores makes it problematic to rely on them..., and mainstream accommodations: A look at main- streamed and non-mainstreamed students with serious s.. Behavioral Disorders. 19, 170-180. Mooney, P., Epstein, M. H,, Reid, R., & Nelson, J. R. (2003). Status of and trends in academic intervention research...

Nelson, J. Ron; Benner, Gregory J.; Lane, Kathleen Lynne; Smith, Benjamin W.

2004-01-01T23:59:59.000Z

387

Intercollegiate Athletics and Escalation of Commitment  

E-Print Network [OSTI]

. Brand positioning is defined as how potential buyers see the product (Ries & Trout, 1981) and how marketers create an image for a product. Roy, Greaff, and Harmon (2008) define brand positioning as the part of a brand?s identity actively communicated... but also a top academic school. College Athletics and Branding Roy, Greaff, and Harmon (2008) note that college athletics has been credited as being instrumental in shaping institutional image, the image of its students and graduates, and building...

Bouchet, Frank Adrien

2012-07-16T23:59:59.000Z

388

Natural Production Monitoring and Evaluation; Idaho Department of Fish and Game, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

This report covers the following 3 parts of the Project: Part 1--Monitoring age composition of wild adult spring and summer Chinook salmon returning to the Snake River basin in 2003 to predict smolt-to-adult return rates Part 2--Development of a stock-recruitment relationship for Snake River spring/summer Chinook salmon to forecast natural smolt production Part 3--Improve the precision of smolt-to-adult survival rate estimates for wild steelhead trout by PIT tagging additional juveniles.

Copeland, Timothy; Johnson, June; Bunn, Paul (Idaho Department of Fish and Game, Boise, ID)

2004-12-01T23:59:59.000Z

389

Dispersion of Metals from Abandoned Mines and their Effect on Biota in the Methow River, Okanogan County, Washington: Final Report 2002-2003.  

SciTech Connect (OSTI)

A study of mine-waste contamination effects on Methow River habitat on the eastern slopes of the north Cascade Mountains in Washington state, U.S.A., revealed impacts at ecosystem, community, population, individual, tissue, and cellular levels. Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's, but the mines are now inactive. An above-and-below-mine approach was used to compare potentially impacted to control sites. The concentrations of eleven trace elements (i.e., Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se, and Zn) in Methow River sediments downstream from the abandoned mine sites were higher than background levels. Exposed trout and caddisfly larvae in the Methow River showed reduced growth compared to controls. Samples of liver from juvenile trout and small intestine from exposed caddisfly larvae were examined for evidence of metal accumulation, cytopathological change, and chemical toxicity. Morphological changes that are characteristic of nuclear apoptosis were observed in caddisfly small intestine columnar epithelial and trout liver nuclei where extensive chromatin condensation and margination was observed. Histopathological studies revealed glycogen bodies were present in the cytosol and nuclei, which are indicators of Type IV Glycogen Storage Disease (GSD IV). This suggests food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body resulting in poor growth. Examination of trout hepatocytes by transmission electron microscopy revealed the accumulation of electron dense granules in the mitochondrial matrix. Matrix granules contain mixtures of Cd, Cu, Au, Pb, Ni, and Ti. Contaminated sediments caused adverse biological effects at different levels of biological organization, from the cellular to ecosystem-level responses, even where dissolved metal concentrations in the corresponding surface water met water-quality criteria.

Peplow, Dan; Edmonds, Robert

2003-05-15T23:59:59.000Z

390

Math 202 Exam 2 11.7.2006 Page 1 of 3 1. Suppose a monkey sits at a keyboard with the letters A to Z on it and randomly hits  

E-Print Network [OSTI]

z = 1 2x + 4y + 5z = 4 8. A lake is stocked each spring with three species of fish: trout, bass, bass, and salmon should be put in the lake if the food is to be completely eaten by the fish. Each bass requires 2.1 units of food I, .95 unit of food II, and .6 unit of food III daily. Each salmon

McClendon, David M.

391

Mercury concentrations in Maine sport fishes  

SciTech Connect (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States)] [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)] [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

392

Idaho Supplementation Studies, 1991-1992 Annual Report.  

SciTech Connect (OSTI)

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis (Idaho Department of Fish and Game, Boise, ID)

1993-10-01T23:59:59.000Z

393

Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.  

SciTech Connect (OSTI)

This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

Rondorf, Dennis W.; Miller, William H.

1994-03-01T23:59:59.000Z

394

Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.  

SciTech Connect (OSTI)

The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

2002-05-29T23:59:59.000Z

395

Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.  

SciTech Connect (OSTI)

Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

Park, Donn L.

1993-06-01T23:59:59.000Z

396

Beyond Sweetgrass: The Life and Art of Jaune Quick-to-See Smith  

E-Print Network [OSTI]

? x 19? Assemblage with text. (3-1) Red Rock Canyon, 1983 oil and collage; 66? x 48? (3-2) Quarter Horse, 1986 pastel on paper; 30? x 22? (3-3) Pepper?s Jazz, 1985 oil on canvas; 72? x 76? (3-4) Cactus, 1988 mixed media on canvas; 29? x 22? (3...-5) Salish, 1988, oil on canvas 50? x 60? No illustration (3-6) Rainbow, 1989, oil and mixed median on canvas; 66? x 84? (4-1) Modern Times, 1993 lithograph, collage, text, chine coll? (4-2) I SEE RED: CHIEF SLEEPY EYE WAR SHIRT, 1992 mixed media...

Murphy, Joni Lisa

2008-10-27T23:59:59.000Z

397

The Haunted Forest: New World Plants and Animals  

E-Print Network [OSTI]

wise, Florida and Hawaii notwithstanding. In fact many Kansans much prefer the initial scenes of Oz, the movie, in black and white, with tornado, to the happy-sappy-over-the-rainbow stuff later on. Columbus’s first westward crossing was storm... until it matures into a shade of strawberry-roan. L’Heritier de Brutelle unkindly named the evil-smelling Buchozia foetida after Buc’hoz – the genus name was subsequently changed, wiping out even those fifteen minutes of infamy – nevertheless...

Haines, Sally

2013-01-01T23:59:59.000Z

398

Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass  

E-Print Network [OSTI]

We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop.

Ashok K. Das; J. Frenkel; C. Schubert

2013-02-22T23:59:59.000Z

399

Western Gas Sands Project. Status report, 1 January-31 January 1980  

SciTech Connect (OSTI)

This report summarizes January, 1980, progress of the government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States. The USGS continued activities in the four primary areas of interest in the WGSP; coring and logging of Rainbow Resources No. 1-3 Federal well, Sweetwater County, Wyoming, was completed during January. The DOE Well Test Facility was moved to Wattenberg field to monitor well tests at the Colorado Interstate Gas Company cyclic injection site. Sixteen minifracs were conducted at the Nevada Test Site in conjunction with Sandia Mineback program.

Not Available

1980-01-01T23:59:59.000Z

400

Pure Maple Syrup Issue 3  

E-Print Network [OSTI]

Benny Mona Moore: 45 meanings Quill , 47 jealousy Gillian Middleton 51 chasing rainbows Laurie Taylor 64 oblivion Gillian Middleton 90 rosewell Julien 96 deal with the devil Gillian Middleton 99 staying Julien 108 lazy days Quill...; 121..., that despite all the women in the cop's life, the mountie is Ray's One True Love... DUE SOUTH is a quality TV show, created by Paul Haggis, and produced at various times by Paul Haggis, Kathy Slevin and/or Jeff King. The three main characters are Constable...

Multiple Contributors

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rainbow trout oncorhynchus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EA-297 SESCO Enterprises Canada | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC3-AB Rainbow

402

EA-297-A SESCO Enterprises Canada Ltd. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80AC3-AB Rainbow-A

403

Quantum Gravitational Optics  

E-Print Network [OSTI]

In quantum theory, the curved spacetime of Einstein's general theory of relativity acts as a dispersive optical medium for the propagation of light. Gravitational rainbows and birefringence replace the classical picture of light rays mapping out the null geodesics of curved spacetime. Even more remarkably, {\\it superluminal} propagation becomes a real possibility, raising the question of whether it is possible to send signals into the past. In this article, we review recent developments in the quantum theory of light propagation in general relativity and discuss whether superluminal light is compatible with causality.

Graham M Shore

2003-04-15T23:59:59.000Z

404

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow Bay Amphibian

405

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow Bay

406

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow BayBoiling

407

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28Rainbow

408

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28RainbowUniversity of

409

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28RainbowUniversity

410

Quark Spectral Function above T{sub c}  

SciTech Connect (OSTI)

The maximum entropy method is used to calculate the dressed-quark spectral density from the self-consistent solution of the rainbow-truncated gap equation of QCD at temperatures above T{sub c}, the critical temperature for chiral symmetry restoration. We find that, besides the normal and plasmino modes, the spectral function exhibits an essentially nonperturbative zero mode at the temperatures above but near T{sub c}. In the vicinity of T{sub c}, this long-wavelength mode contains the bulk of the spectral strength. So long as this mode persists, the system may reasonably be described as a strongly-coupled state of matter.

Qin Sixue; Chang Lei [Department of Physics, Center for High Energy Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Liu Yuxin [Department of Physics, Center for High Energy Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); Roberts, Craig D. [Department of Physics, Center for High Energy Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2011-05-24T23:59:59.000Z

411

The Observation and Study of ELP V5-120 Conformational Changes  

E-Print Network [OSTI]

, J. P.; Collinge, J.; Clarke, A. R. Proceedings of the National Academy of Sciences 2009, 106, 5651-5656. (3) Schneider, C. P.; Trout, B. L. The Journal of Physical Chemistry B 2009, 113, 2050-2058. (4) Street, T. O.; Bolen, D. W.; Rose, G. D.... Proceedings of the National Academy of Sciences 2006, 103, 13997-14002. (5) Baldwin, R. L. Journal of Molecular Biology 2007, 371, 283-301. (6) Auton, M.; Bolen, D. W. Proceedings of the National Academy of Sciences of the United States of America 2005...

Zhou, Qian

2012-10-24T23:59:59.000Z

412

Experimental observation of acoustic sub-harmonic diffraction by a grating  

SciTech Connect (OSTI)

A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expands our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.

Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu [Laboratory for Ultrasonic Nondestructive Evaluation “LUNE,” Georgia Tech Lorraine, Georgia Tech-CNRS UMI2958, Georgia Institute of Technology, 2, rue Marconi, Metz 57070 (France)

2014-06-28T23:59:59.000Z

413

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

SciTech Connect (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

414

Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.  

SciTech Connect (OSTI)

The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

2008-11-12T23:59:59.000Z

415

Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report  

SciTech Connect (OSTI)

In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

2012-09-10T23:59:59.000Z

416

The Feasibility of Using an Ultrasonic Fish Tracking System in the Tailrace of Lower Granite Dam in 2002  

SciTech Connect (OSTI)

This report describes a study conducted by PNNL in Spring 2002 at Lower Granite Dam on the Snake River for the US Army Corps of Engineers Portland District. Our goal was to determine the feasibility of using ultrasonic fish tracking in the untested environment of a hydroelectric dam tailrace. If fish tracking were determined to be feasible, we would track the movement of juvenile hatchery chinook (Oncorhynchus tshawytscha), juvenile hatchery steelhead (O. mykiss), and juvenile wild steelhead (O. mykiss) and relate their movement to dam operations. The majority of fish to be tracked were released as a part of a separate study conducted by the Biological Resources Division of the U.S. Geological Survey (BRD), which was investigating the movement of juvenile salmon in the forebay of Lower Granite Dam in relation to Removable Spillway Weir (RSW) testing. The two studies took place consecutively from April 14 to June 7, 2002.

Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.; Cash, Kenneth; Zimmerman, Shon A.

2003-09-10T23:59:59.000Z

417

Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.  

SciTech Connect (OSTI)

This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W. [Oregon Department of Fish and Wildlife

2009-07-31T23:59:59.000Z

418

Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters  

SciTech Connect (OSTI)

The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

2009-02-27T23:59:59.000Z

419

Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010  

SciTech Connect (OSTI)

The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

2012-11-15T23:59:59.000Z